Pei Lizhai
|
|
Personal Particulars |
Visiting Scholar |
NUS Environmental Research Institute,
1 CREATE Way, #15-02 CREATE Tower,
Singapore, 138602 |
ORCID: 0000-0002-8046-6622 |
Phone: (65) 8193 3469 |
Email: chev252@nus.edu.sg |
Personal Website
Education
2001-2006: Ph. D. Candidate, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
1997-2001: Undergraduate Student, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
Work experiences
2022.12-2023.12: Visiting scholar, National University of Singapore, Singapore
2011.12-present: Professor, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
2006.7-2011.11: Associate professor, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan, Anhui 243002, P. R. China
Research Interests
Nanoscale materials; Solid waste utilization
Publications
[1] F. H. Tao, C. H. Yu, J. F. Huang, F. Y. Li, Z. Y. Cai, C. G. Fan, L. Z. Pei*. Synthesis and properties of BiDy composite electrode materials in electrochemical sensors. Materials Chemistry Frontiers, 2022, 6(19): 2880-2893.
[2] J. F. Huang, F. H. Tao, Z. Z. Sun, F. Y. Li, Z. Y. Cai, Y. Zhang, C. G. Fan, L. Z. Pei*. A facile synthesis route to BiPr composite nanosheets and sensitive electrochemical detection of L-cysteine. Microchemical Journal, 2022, 182(11): 107915.
[3] X. Y. Wang, J. F. Huang, C. H. Yu, F. Y. Li, Z. Y. Cai, Y. Zhang, C. G. Fan, L. Z. Pei*. A facile route to synthesize DyF3/Bi2O3 nanowires and sensitive L-cysteine sensing properties. Journal of The Electrochemical Society, 2022, 169(7): 076504.
[4] J. F. Huang, F. H. Tao, F. Y. Li, Z. Y. Cai, Y. Zhang, C. G. Fan, L. Z. Pei*. Controllable synthesis of BiPr composite oxide nanowires electrocatalyst for sensitive L-cysteine sensing properties. Nanotechnology, 2022, 33(34): 345704.
[5] A. J. Deng, Z. Y. Xue, C. H. Yu, J. F. Huang, H. B. Pan*, L. Z. Pei*. Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants. Journal of Materials Research and Technology, 2022, 19(7-8): 1073-1089.
[6] H. J. Chen, F. Y. Li, F. H. Tao, J. F. Huang, Y. Zhang, L. Z. Pei*. Bismuth oxide/carbon nanodots/indium oxide heterojunctions with enhanced visible light photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2022, 33(9): 7154-7171.
[7] Z. Wang, H. J. Chen, L. Z. Pei*, X. Y. Guo, C. G. Fan. Preparation and characterisation of environmental-friendly ceramsites from iron ore tailings and sludge [J]. International Journal of Sustainable Engineering, 2021, 14(4): 884-892.
[8] Y. Zhang*, F. F. Lin, T. Wei, L. Z. Pei*. Facile synthesis of Cu bismuthate nanosheets and senstive electrochemical detection of tartaric acid. Journal of Alloys and Compounds, 2017, 723(11): 1062-1069.
[9] L. Z. Pei*, T. Wei, N. Lin, C. G. Fan, Z. Yang. Aluminium bismuthate nanorods and electrochemical performance for the detection of tartaric acid. Journal of Alloys and Compounds, 2016, 679(9): 39-46.
[10] L. Z. Pei*, T. Wei, N. Lin, H. Zhang. Synthesis of bismuth nickelate nanorods and electrochemical detection of tartaric acid using nanorods modified electrode. Journal of Alloys and Compounds, 2016, 663(4): 677-685.
[11] L. Z. Pei*, T. Wei, N. Lin, Z. Y. Cai, C. G. Fan, Z. Yang*. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine. Journal of The Electrochemical Society, 2016, 163(2): H1-H8.
[12] L. Z. Pei*, N. Lin, T. Wei, H. D. Liu, H. Y. Yu. Formation of copper vanadate nanobelts and the electrochemical behaviors for the determination of ascorbic acid. Journal of Materials Chemistry A, 2015, 3(6): 2690-2700.
[13] L. Z. Pei*, S. Wang, H. D. Liu, N. Lin, H. Y. Yu*. Vanadium doped barium germanate microrods and photocatalytic properties under solar light. Solid State Communications, 2015, 202(1): 35-38.
[14] L. Z. Pei*, S. Wang, Y. K. Xie, Y. H. Yu, Y. H. Guo. Hydrothermal synthesis of Ba germanate microrods and photocatalytic degradation performance for methyl blue. Journal of Alloys and Compounds, 2014, 587(2): 625-631.
[15] Y. K. Xie, L. Z. Pei*, Y. Q. Pei, Z. Y. Cai*. Determination of phenyl acetic acid by cyclic voltammetry with electrochemical detection. Measurement, 2014, 47: 341-344.
[16] L. Z. Pei*, S. Wang, Y. X. Jiang, Y. Li, Y. K. Xie, Y. H. Guo. Single crystalline Sr germanate nanowires and their photocatalytic performance for the degradation of methyl blue. CrystEngComm, 2013, 15(38): 7815-7823.
[17] L. Z. Pei*, Y. K. Xie, Y. Q. Pei, Y. X. Jiang, H. Y. Yu, Z. Y. Cai. Hydrothermal synthesis of Mn vanadate nanosheets and visible-light photocatalytic performance for the degradation of methyl blue. Materials Research Bulletin, 2013, 48(3): 2557-2565.
[18] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. G. Fan, H. Y. Yu. Synthesis and characterization of manganese vanadate nanorods as glassy carbon electrode modified materials for the determination of L-cysteine. CrystEngComm, 2013, 15(9): 1729-1738.
[19] Y. P. Dong*, L. Z. Pei, X. F. Chu, W. B. Zhang, Q. F. Zhang. Electrogenerated chemiluminescence of bismuth sulfide nanorods modified electrode in alkaline aqueous solution. Analyst, 2013, 138(8): 2386-2391.
[20] L. Z. Pei*, Z. Y. Cai, Y. Q. Pei, Y. K. Xie, C. G. Fan, D. G. Fu. Electrochemical behaviors of ascorbic acid at CuGeO3/polyaniline nanowire modified glassy carbon electrode. Journal of The Electrochemical Society, 2012, 159(10): G107-G111.
[21] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. G. Fan, D. K. Li, Q. F. Zhang. Formation process of calcium vanadate nanorods and their electrochemical sensing properties. Journal of Materials Research, 2012, 27(18): 2391-2400.
[22] L. Z. Pei*, Y. Q. Pei, Y. K. Xie, C. Z. Yuan, D. K. Li, Q. F. Zhang. Growth of calcium vanadate nanorods. CrystEngComm, 2012, 14(13): 4262-4265.
[23] L. Z. Pei*, Y. K. Xie, Z. Y. Cai, Y. Yang, Y. Q. Pei, C. G. Fan, D. G. Fu. Electrochemical behaviors of ascorbic acid at copper germanate nanowire modified electrode. Journal of The Electrochemical Society, 2012, 159(3): K55-K60.
[24] L. Z. Pei*, Y. Yang, Y. Q. Pei, S. L. Ran. Synthesis and microstructural control of flower-like cadmium germanate. Materials Characterization, 2011, 62(11): 1029-1035.
[25] L. Z. Pei*, Y. Yang, C. G. Fan, C. Z. Yuan, T. K. Duan, Q. F. Zhang. Synthesis and characterizations of calcium germanate nanowires. CrystEngComm, 2011, 13(14): 4658-4665.
[26] L. Z. Pei*, Y. Yang, C. Z. Yuan, T. K. Duan, Q. F. Zhang. A simple route to synthesize manganese germanate nanorods. Materials Characterization, 2011, 62(6): 555-562.
[27] L. Z. Pei*, J. F. Wang, L. J. Yang, S. B. Wang, Y. P. Dong, C. G. Fan, Q. F. Zhang. Synthesis of CuS and Cu1.1Fe1.1S2 crystals and their electrochemical properties. Materials Characterization, 2011, 62(3): 354-359.
[28] L. Z. Pei*, L. J. Yang, Y. Yang, C. Z. Yuan, C. G. Fan, Q. F. Zhang. Large-scale synthesis and growth conditions dependence on the formation of CuGeO3 nanowires. Materials Chemistry and Physics, 2011, 130(1-2): 104-112.
[29] Y. P. Dong, L. Z. Pei*, X. F. Chu, W. B. Zhang, Q. F. Zhang. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode. Electrochimica Acta, 2010, 55(18): 5135-5141.
[30] L. Z. Pei*, L. J. Yang, Y. Yang, C. G. Fan, W. Y. Yin, J. Chen, Q. F. Zhang. A green and facile route to calcium silicate nanowires. Materials Characterization, 2010, 61(11): 1281-1285.
[31] L. Z. Pei*, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, Q. F. Zhang. Single crystalline ZnO nanorods grown by a simple hydrothermal process. Materials Characterization, 2009, 60(9): 1063-1067.
[32] L. Z. Pei*, H. S. Zhao, W. Tan, H. Y. Yu, Y. W. Chen, Q. F. Zhang, C. G. Fan. Low temperature growth and characterizations of single crystalline CuGeO3 nanowires. CrystEngComm, 2009, 11(8): 1696-1701.
[33] L. Z. Pei*, H. S. Zhao, W. Tan, Q. F. Zhang. Facile hydrothermal preparation and characterizations of single crystalline Ge dioxide nanowires. Journal of Applied Physics, 2009, 105(5): 054313.
[34] L. Z. Pei*. Hydrothermal deposition and characterization of silicon oxide nanospheres. Materials Characterization, 2008, 59(5): 656-659.
[35] L. Z. Pei. Y. H. Tang*, X. Q. Zhao, Y. W. Chen, C. Guo. Formation mechanism of silicon carbide nanotubes with special morphology, Journal of Applied Physics, 2006, 100(4): 046105.
[36] L. Z. Pei, Y. H. Tang*, Y. W. Chen, C. Guo, X. X. Li, Y. Yuan, Y. Zhang. Preparation of silicon carbide nanotubes by hydrothermal method. Journal of Applied Physics, 2006, 99(11): 114306.
[37] Y. H. Tang*, L. Z. Pei, Y. W. Chen, C. Guo. Self-assembled silicon nanotubes under supercritically hydrothermal conditions. Physical Review Letters, 2005, 95: 116102.
Books:
[1] L. Z. Pei. Introduction to functional ceramics materials [M]. Beijing: Chemical Industry Press (China), ISBN 978-7-122-39248-0, 2021.
[2] L. Z. Pei. High technology ceramics materials [M]. Hefei Anhui: Hefei University of Technology Press (China), ISBN 978-7-5650-2161-9, 2015.
[3] Y. H. Tang, L. Z. Pei, X. Q. Zhao. Introduction to nanoscale materials [M]. Changsha Hunan: Hunan University Press (China), ISBN 978-7-81113-911-2, 2011.
[4] C. G. Jin, L. Z. Pei, H. Y. Yu. One-dimensional inorganic nanoscale materials [M]. Beijing: Metallurgical Industry Press (China), ISBN 978-7-50244-354-2, 2007.