LI Lifeng | |
Personal Particulars | |
Research Fellow |
|
Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, Singapore, 117585 | |
Office: E5-01-01 | |
Phone: (+65) 88896409 | |
Professional Profile: Google Scholar; ORCID | |
Email: lifengli@nus.edu.sg |
CURRENT WEBSITE (http://homepage.hit.edu.cn/lilifeng)
EDUCATION BACKGROUND AND WORK EXPERIENCE
- 2020–2021, Research officer, The Australian National University (ANU), Australia
- 2015–2020, Doctor of Philosophy (Ph.D.), The Australian National University (ANU), Australia
- 2012–2014, Master of Science (M.Sc.), Karlsruhe Institute of Technology (KIT), Germany & Uppsala University (UU), Sweden
- 2008–2012, Bachelor of Engineering (B.Eng.), Zhejiang University (ZJU), China
Research Interests
- Optics, transport phenomena and chemical reaction engineering applied to solar thermal and thermochemical systems;
- In particular, numerical and experimental studies of optics and solar receiver–reactors for high-temperature solar thermochemical processing;
- Radiative transfer, transport phenomena and cell growth kinetics of photobioreactor systems for cultivation of microalgae.
Research Highlights
- Ongoing project (2021.11–present) on Design, Modelling and Optimisation of Photobioreactor (PBR) Systems for Cultivation of Microalgae
Figure 1: Optimisation of photobioreactor (PBR) systems via a combined methodology of numerical modelling and experimental testing.
- Research project (2020.11–2021.11) on Experimental Evaluation of a High-Temperature Solar Calcination–Carbonation Reactor Using Simulated High-Flux Solar RadiationA packed-bed solar thermochemical reactor was experimentally tested for solar energy storage and carbon dioxide (CO2) capture using calcination–carbonation chemical-looping cycling of calcium carbonate (CaCO3). The reactor was driven by simulated high-flux solar irradiation provided by the ANU high-flux solar simulator (HFSS).
- Doctoral work (2015.04–2020.11) on Design, Modelling and Optimisation of Optical Systems for High-Temperature Concentrating Solar Applications
Optical studies were conducted for a high-flux solar simulator (HFSS) based experimental system and commercial-scale solar central receiver systems (CRSs). Optical studies of a compound parabolic concentrator (CPC) and reflective optics were performed to aid in solving the limitations and problems of the HFSS-based experimental system. Commercial-scale solar CRSs were investigated for a wide range of receiver temperatures in a low and a high power level. A proposed novel solar beam-down system with a rotating tower reflector was proposed and optically investigated.
Publications
ARTICLES IN REFEREED JOURNALS:
- L. Li, Z.M.H Mohd Shafie, T. Huang, R. Lau, and C.-H. Wang, 2023. Multiphysics simulations of concentric-tube internal loop photobioreactors for microalgae cultivation. Chemical Engineering Journal 457, 141342, https://doi.org/10.1016/j.cej.2023.141342.
- L. Li, X. Xu, W. Wang, R. Lau, and C.-H. Wang, 2022. Hydrodynamics and mass transfer of concentric-tube internal loop airlift reactors: A review. Bioresource Technology 359, 127451, https://doi.org/10.1016/j.biortech.2022.127451.
- L. Li, A. Rahbari, M. Taheri, R. Pottas, A. Rahbari, L. Reich, L. Yue, J. Zapata, P. Kreider, A. Bayon, B. Wang, C.-H. Wang, J. Coventry, and W. Lipiński, 2022. Experimental evaluation of an indirectly-irradiated packed-bed solar thermochemical reactor for calcination–carbonation chemical looping. Submitted to Chemical Engineering Journal, under revision.
- J. Pottas1, L. Li1, M. Habib, B. Wang, J. Coventry, C.-H. Wang, and W. Lipiński, 2021. Optical alignment and radiometry flux characterization of a multi-source high-flux solar simulator. Solar Energy 236, 434–444, https://doi.org/10.1016/j.solener.2022.02.026.
- S. Yang, L. Li, B. Wang, S. Li, J. Wang, P. Lund, and W. Lipiński, 2021. Thermodynamic analysis of a conceptual fixed-bed solar thermochemical cavity receiver–reactor array for water splitting via ceria redox cycling. Frontiers in Energy Research 9, 253, https://doi.org/10.3389/fenrg.2021.565761.
- B. Wang, L. Li, F. Schäfer, J. Pottas, A. Kumar, V. M. Wheeler, and W. Lipiński, 2021. Thermal reduction of iron–manganese oxide particles in a high-temperature packed-bed solar thermochemical reactor. Chemical Engineering Journal 410(C), 128255, https://doi.org/10.1016/j.cej.2020.128255.
- W. Lipiński, E. Abbasi-Shavazi, J. Chen, J. Coventry, M. Hangi, S. Iyer, A. Kumar, L. Li, S. Li, J. Pye, J. F. Torres, B. Wang, Y. Wang, and V. Wheeler, 2020. Progress in heat transfer research for high-temperature solar thermal applications. Applied Thermal Engineering 184(C), 116137, https://doi.org/10.1016/j.applthermaleng.2020.116137.
- L. Li, B. Wang, J. Pye, R. Bader, W. Wang, and W. Lipiński, 2020. Optical analysis of a multi- aperture solar central receiver system for high-temperature concentrating solar applications. Optics Express 28(25), 37654–37668, https://doi.org/10.1364/OE.404867.
- B. Wang, L. Li, R. Bader, J. Pottas, V. Wheeler, P. Kreider, and W. Lipiński, 2020. Thermal model of a solar thermochemical reactor for metal oxide reduction. Journal of Solar Energy Engineering 142, 051002, https://doi.org/10.1115/1.4046229.
- L. Li, B. Wang, J. Pye, and W. Lipiński, 2020. Temperature-based optical design, optimization and economics of solar polar-field central receiver systems with an optional compound parabolic concentrator. Solar Energy 206, 1018–1032, https://doi.org/10.1016/j.solener.2020.05.088.
- L. Li, S. Yang, B. Wang, J. Pye, and W. Lipiński, 2020. Optical analysis of a solar thermochemical system with a rotating tower reflector and a receiver–reactor array. Optics Express 28(13), 19429–19445, https://doi.org/10.1364/OE.389924.
- L. Li, B. Wang, R. Bader, J. Zapata, and W. Lipiński, 2019. Reflective optics for redirecting convergent radiative beams in concentrating solar applications. Solar Energy 191, 707–718, https://doi.org/10.1016/j.solener.2019.08.077.
- L. Li, B. Wang, J. Pottas, and W. Lipiński, 2019. Design of a compound parabolic concentrator for a multi-source high-flux solar simulator. Solar Energy 183, 805–811, https://doi.org/10.1016/j.solener.2019.03.017.
- W. Wang, B. Wang, L. Li, B. Laumert, and S. Torsten, 2016. The effect of the cooling nozzle arrangement to the thermal performance of a solar impinging receiver. Solar Energy 131, 222– 234, https://doi.org/10.1016/j.solener.2016.02.052.
- L. Li, J. Coventry, R. Bader, J. Pye, and W. Lipiński, 2016. Optics of solar central receiver systems: A review. Optics Express 24(14), A985–A1007, https://doi.org/10.1364/OE.24.00A985.
BOOKS AND BOOK CHAPTERS:
- L. Li, B. Wang, R. Bader, T. Cooper, and W. Lipiński, 2021, Concentrating collector systems for high-temperature solar thermal and thermochemical applications, in: W. Lipiński (Ed.), Advances in Chemical Engineering, Elsevier, volume 58, pp: 1–53, https://doi.org/10.1016/bs.ache.2021.10.001.
- X. Wang, F. Zhang, L. Li, H. Zhang, and S. Deng, 2021, Carbon dioxide capture, in: W. Lipiński (Ed.), Advances in Chemical Engineering, Elsevier, volume 58, pp: 297–348, https://doi.org/10.1016/bs.ache.2021.10.005.
ABSTRACTS AND EXTENDED ABSTRACTS IN CONFERENCE PROCEEDINGS (SELECTED):
- L. Li, Z.M.H. Mohd Shafie, T. Huang, Y.-C. Wang, R. Lau, and C.-H. Wang. Multiphysics simulation of internal loop airlift photobioreactors for microalgae cultivation. In Proceedings of the 2022 AIChE Annual Meeting, Phoenix, 13–18 November 2022.
- L. Li, X. Xu, W. Wang, R. Lau, and C.-H. Wang. Concentric-tube internal loop airlift reactors for microalgae cultivation: A review. In Proceedings of the 2022 AIChE Annual Meeting, Phoenix, 13–18 November 2022.
- L. Li, B. Wang, J. Pye, and W. Lipiński. Concentrating collector systems for high-temperature solar thermal applications. In Proceedings of the OSA Advanced Photonics Congress, virtual, 26–30 July 2021. Extended abstract.
- L. Li, B. Wang, R. Bader, W. Wang, J. Pye and W. Lipiński. Optical analysis of multi-aperture solar central receiver systems for high-temperature concentrating solar applications. In Proceedings of the 2020 SolarPACES International Symposium on Concentrating Solar Power and Chemical Energy, virtual, 29 September–2 October 2020.
- L. Li, B. Wang, J. Pottas, and W. Lipiński. Application of a compound parabolic concentrator to a multi-source high-flux solar simulator. In Proceedings of the OSA 2018 Light, Energy and the Environment Congress, Sentosa Island, Singapore, 5–8 November 2018. Extended abstract.