Chemical Biology

A key step towards the biological characterization of enzymes, as well as their adoption as drug targets, is the development of global solutions that bridge the gap in understanding these proteins and their interactions. We herein present technological advances that facilitate the study of enzymes and their properties in a high-throughput manner.

Over the years, our group has introduced and developed a variety of such enabling platforms for many classes of enzymes, including kinases, phosphatases and proteases. For each of these different types of enzymes, specific design considerations are required to develop the appropriate chemical tools to characterize each class. These tools include activity-based probes and chemical compound libraries, which are rapidly assembled using efficient combinatorial synthesis or “click chemistry” strategies. The resulting molecular assortments may then be screened against the target enzymes in high-throughput using microplates or microarrays. These techniques offer powerful means to study, profile, and discover potent small molecules that can modulate enzyme activity.