Research

To Find Our Papers:


  1. Preprints Authored by De-Qi Zhang
  2. Go to arXiv.org


  3. Reviewed Papers Authored by De-Qi Zhang
  4. Go to Math Review (MR Author ID: 187025)


  5. Citation info for De-Qi Zhang, from
  6. Google Scholar


  7. Web of Science
    ResearcherID: J-3136-2013
  8. Go to Web of Science


  9. Citation info for De-Qi Zhang, from
  10. Semantics


  11. ORCID ID: 0000-0003-0139-645X

  12. Scopus Author ID:
    15069928400

Some key words


  1. Calabi-Yau Variety
  2. Complex Torus
  3. Fano
  4. Rational Connected Variety
  5. MMP (Minimal Model Program)

Journal Articles


  1. Morphisms from a very general hypersurface, arXiv:1908.06894 (New title/contents, added author, with Yongnam Lee and Yujie Luo)
  2. Structures theorems and applications of non-isomorphic surjective endomorphisms of smooth projective threefolds, arxiv.org/abs/2309.07005 (with Sheng Meng)
  3. Polynomial logarithmic volume growth in slow dynamics and the GK-dimensions of twisted homogeneous coordinate rings, Journal of Noncommutative Geometry (to appear); Journal of Noncommutative Geometry; arXiv:2104.03423 (with Hsueh-Yung Lin and Keiji Oguiso)
  4. On the virtual invariants of zero entropy groups of compact Kähler manifolds, Pure and Applied Mathematics Quarterly, Caucher Birkar’s issue (to appear); Pure and Applied Mathematics Quarterly; arxiv.org/abs/2310.04980 (with Tien-Cuong Dinh, Hsueh-Yung Lin and Keiji Oguiso)
  5. Advances in the equivariant minimal model program and their applications in complex and arithmetic dynamics, arxiv.org/abs/2311.16369, Proceedings of the Simons Symposia on Algebraic, Complex, and Arithmetic Dynamics (to appear) (with Sheng Meng)
  6. Endomorphisms of quasi-projective varieties — towards Zariski dense orbit and Kawaguchi-Silverman conjectures, Mathematical Research Letters, Volume 31 (2024) Number 3, pp. 701-746; https://dx.doi.org/10.4310/MRL.241113041354; arXiv:2104.05339 (with Jia Jia, Takahiro Shibata and Junyi Xie)
  7. Non-density of points of small arithmetic degrees, The Journal of Geometric Analysis, volume 33, Article number: 112 (2023), https://doi.org/10.1007/s12220-022-01156-y; arxiv:2002.10976 (with Yohsuke Matsuzawa, Sheng Meng and Takahiro Shibata)
  8. Surjective endomorphisms of projective surfaces : the existence of infinitely many dense orbits, Mathematische Zeitschrift, Vol 303, Article number: 39 (2023); https://doi.org/10.1007/s00209-022-03188-0; arxiv:2005.03628 (with Jia Jia and Junyi Xie)
  9. Kawaguchi-Silverman conjecture for certain surjective endomorphisms, Documenta Mathematica, Vol 27, pages 1605-1642 (Aug 2022); DOI: 10.25537/dm.2022v27.1605-1642; arXiv:1908.01605 (with Sheng Meng)
  10. Invariant subvarieties with small dynamical degree, International Mathematics Research Notices, Vol 2022, no. 15, 11448–11483; https://doi.org/10.1093/imrn/rnab039; arxiv:2005.13368 (with Yohsuke Matsuzawa, Sheng Meng, Takahiro Shibata and Guolei Zhong)
  11. Non-isomorphic endomorphisms of Fano threefolds, Mathematische Annalen, 383 (2022) 1567-1596 (2022); https://link.springer.com/article/10.1007%2Fs00208-021-02274-8 ; Springer Link ; arXiv:2008.10295 (with Sheng Meng and Guolei Zhong)
  12. Zero entropy automorphisms of compact Kähler manifolds and dynamical filtrations, Geometric and Functional Analysis, 32 (2022) 568-594; https://link.springer.com/article/10.1007/s00039-022-00599-3; arXiv:1810.04827  (with Tien-Cuong Dinh, Hsueh-Yung Lin, Keiji Oguiso)
  13. Jordan property for automorphism groups of compact spaces in Fujiki’s class C; Journal of Topology, 15 (2022) 806–814; https://doi.org/10.1112/topo.12247; arxiv:2011.09381 (with Fabio Perroni and Sheng Meng)
  14. Potential density of projective varieties having an int-amplified endomorphism, New York Journal of Mathematics, Vol 28 (2022) 433–444; http://nyjm.albany.edu/j/2022/28-17.html; arXiv:2108.11595 (with Jia Jia and Takahiro Shibata)
  15. Wild automorphisms of projective varieties, the maps which have no invariant proper subsets, Advances in Mathematics, Volume 396, 12 February 2022, 108173; https://doi.org/10.1016/j.aim.2021.108173; Elsevier Link; arxiv:2002.04437 (with Keiji Oguiso)
  16. Polarized endomorphisms of normal projective threefolds in arbitrary characteristic, Mathematische Annalen (2020) 378:637- 665; https://doi.org/10.1007/s00208-019-01877-6 ; arXiv:1710.01903 (with Paolo Cascini and Sheng Meng)
  17. Semi-group structure of all endomorphisms of a projective variety admitting a polarized endomorphism, Mathematical Research Letters, Volume 27, Number 2, 523–549, 2020; DOI:https://dx.doi.org/10.4310/MRL.2020.v27.n2.a8 ; arXiv:1806.05828 (with Sheng Meng)
  18. Normal projective varieties admitting polarized or int-amplified endomorphisms, Acta Mathematica Vietnamica, Volume 45, pages 11–26 (2020), Special issue on “Nevanlinna theory and Complex Geometry in Honor of Lê Văn Thiêm’s Centenary,” https://doi.org/10.1007/s40306-019-00333-6; https://link.springer.com/article/10.1007/s40306-019-00333-6 ; arXiv:1806.07747 (with Sheng Meng)
  19. Characterizations of Toric Varieties via Polarized Endomorphisms, Mathematische Zeitschrift, August 2019, Volume 292, Issue 3–4, pp 1223–1231; DOI: https://doi.org/10.1007/s00209-018-2160-8 ; also: arXiv:1702.07883 (with Sheng Meng)
  20. Periodic subvarieties of a projective variety under the action of a maximal rank abelian group of positive entropy, Asian Journal of Mathematics (special issue, Prof N. Mok’s 60th birthday), Vol. 22, No. 3, pp. 451- 476, June 2018; DOI: http://dx.doi.org/10.4310/AJM.2018.v22.n3.a3 , also arXiv:1604.02684 , (with Fei Hu and Sheng-Li Tan)
  21. Jordan property for non-linear algebraic groups and projective varieties, American Journal of Mathematics, Volume 140, Number 4, August 2018,1133-1145 ; https://doi.org/10.1353/ajm.2018.0026 ; arXiv:1507.02230 (with Sheng Meng)
  22. Building blocks of polarized endomorphisms of normal projective varieties, Advances in Mathematics, 325 (2018), 243–273, DOI: https://doi.org/10.1016/j.aim.2017.11.026 , also arXiv:1606.01345,  (with Sheng Meng)
  23. Positivity criteria for log canonical divisors and hyperbolicity, Journal für die reine und angewandte Mathematik, May 2017 (726), pp. 173-186, DOI: https://doi.org/10.1515/crelle-2015-0013, arXiv:1207.7346 (including the proof of Remark 4.9 for dlt surface pairs) (with Steven S. Y. Lu)
  24. Rationality of homogeneous varieties, Transactions of the American Mathematical Society, 369 (Apr 2017), 2651-2673; http://dx.doi.org/10.1090/tran/6728, arXiv:1504.05402 (Lemma 2.2 statement and Lemma 2.6 final part are slightly edited) (with CheeWhye Chin)
  25. n-Dimensional Projective Varieties with the Action of an Abelian Group of Rank n-1, Transactions of the American Mathematical Society, 368 (2016) 8849-8872, DOI: http://dx.doi.org/10.1090/tran/6629 , arXiv:1412.5779
  26. Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs, Publications mathematiques de l’IHES, 123 (2016) 283-331, DOI 10.1007/s10240-016-0080-xarXiv:1410.0938 (with Caucher Birkar)
    Google Scholar, Springer
  27. Criteria for the existence of equivariant fibrations on algebraic surfaces and hyperkähler manifolds and equality of automorphisms up to powers : a dynamical viewpoint, Journal of the London Mathematical Society (2) 92 (2015) 724 – 735, https://doi.org/10.1112/jlms/jdv045 , arXiv:1509.02996 (longer than the printed version) (with Fei Hu and JongHae Keum).
  28. Compact Kähler manifolds admitting large solvable groups of automorphisms, Advances in Mathematics, 281 (2015) 333 – 352, doi:10.1016/j.aim.2015.05.002 , arXiv:1502.07060 (with Tien-Cuong Dinh and Fei Hu)
  29. Dynkin diagrams of rank 20 on supersingular K3 surfaces, Science China Mathematics, Special issue for: Algebraic Geometry in East Asia 2013, 58 (2015) 543 – 552; doi: 10.1007/s11425-014-4902-3 , also arXiv:1408.5474, table-inclusive version available at: http://www.math.hokudai.ac.jp/~shimada/preprints.html (with I. Shimada)
  30. Effective finite generation for adjoint rings, Annales de l’institut Fourier (Grenoble) (2014), Vol. 64, no. 1, p. 127-144, Numdam Link , also arXiv:1203.5204  (with P. Cascini)
  31. Ampleness of canonical divisors of hyperbolic normal projective varieties, Mathematische Zeitschrift (2014) 278:1179 -1193, DOI: 10.1007/s00209-014-1351-1, arXiv:1407.5694 (with F. Hu and S. Meng)
  32. Pseudo-Automorphisms of positive entropy on the blowups of products of projective spaces, Mathematicsche Annalen, 359 (2014), no. 1-2, 189 – 209, DOI: https://doi.org/10.1007/s00208-013-0992-4 , arXiv:1111.3546 (with F. Perroni)
  33. Compact Kähler manifolds with automorphism groups of maximal rank,  Transactions of the American Mathematical Society, 366 (2014), 3675-3692; DOI: https://doi.org/10.1090/S0002-9947-2014-06227-2 ; also arXiv:1307.0196 (Added Hypothesis (C) to Theorem 1.2. No change of the proofs)
  34. Automorphism groups of positive entropy on projective threefolds, Transactions of the American Mathematical Society, 366 (2014), 1621-1638, DOI: https://doi.org/10.1090/S0002-9947-2013-05838-2 , also: arXiv:1203.5665, (with F. Campana and F. Wang)
  35. Invariant hypersurfaces of endomorphisms of projective varieties, Advances in Mathematics, 252 (2014) 185 – 203, https://doi.org/10.1016/j.aim.2013.10.014 , arXiv:1310.5944
  36. A characterization of compact complex tori via automorphism groups, Mathematische Annalen, (2013) 357:961 – 968, DOI: https://doi.org/10.1007/s00208-013-0927-0 , also: arXiv:1205.0607 (with B. Fu)
  37. Zariski F-decomposition and Lagrangian fibration on HyperKähler manifolds, Mathematical Research Letters, Vol. 20, No. 5 (2013) 951 – 959, DOI: http://dx.doi.org/10.4310/MRL.2013.v20.n5.a11 , also: arXiv:0907.5311 (with D. Matsushita)
  38. Algebraic varieties with automorphism groups of maximal rank, Mathematische Annalen, 355 (2013), no. 1, 131 – 146, DOI: https://doi.org/10.1007/s00208-012-0783-3 , also: arXiv:1201.2338
  39. Rationality of rationally connected threefolds admitting non-isomorphic endomorphisms, Transactions of the American Mathematical Society, 364 (2012) 6315-6333; AMS link , also: arXiv:1011.1705.
  40. K3 surfaces with order 11 automorphisms, Pure and Applied Mathematics Quarterly, 7 (2011) 1657-1674, Eckart Viehweg Special Issue, PAMQ Link , also: arXiv:math/9907020, (with K. Oguiso).
  41. Automorphism groups of positive entropy on minimal projective varieties, Advances in Mathematics, 225 (2010) 2332 – 2340; doi: 10.1016/j.aim.2010.04.022, Elsevier link , also: arXiv:1004.4781
  42. Polarized endomorphisms of uniruled varieties, Compositio Mathematica; Volume 146, Issue 01, January 2010, pp 145 – 168; doi:10.1112/S0010437X09004278; Compositio Link , also: arXiv:0903.1256
  43. Polarized Endomorphisms of Complex Normal Varieties, Mathematische Annalen, 346 (2010) 991 – 1018; doi:10.1007/s00208-009-0420-y; also: arXiv:0908.1688 (version 1, including section 5) (with N. Nakayama)
  44. The g-periodic subvarieties for an automorphism  g  of positive entropy on a compact Kähler manifold, Advances in Mathematics, 223 (2010) 405-415; doi:10.1016/j.aim.2009.08.010, Elsevier link , also arXiv:0908.2364
  45. Building blocks of etale endomorphisms of complex projective manifolds, Proceedings of the London Mathematical Society, 99 (2009) 725 – 756; DOI: https://doi.org/10.1112/plms/pdp015 , also arXiv:0903.3729 (with N. Nakayama).
  46. Cohomologically hyperbolic endomorphisms of complex manifolds, International Journal of Mathematics, 20 (2009) 803-816; https://doi.org/10.1142/S0129167X09005546 ; also arXiv:0805.4140
  47. Dynamics of automorphisms on projective complex manifolds, Journal of Differential Geometry, 82 (2009) 691 – 722; doi:10.4310/jdg/1251122550, JDG link , also  arXiv:0810.4675
  48. A theorem of Tits type for compact Kähler manifolds, Inventiones Mathematicae, Volume 176, Issue3 (2009), 449 — 459; DOI: https://doi.org/10.1007/s00222-008-0166-2 , also arXiv:0805.4114, Google Scholar , Springer
  49. Effective Iitaka fibrations, Journal of Algebraic Geometry, 18 (2009), 711-730 (with E. Viehweg);  DOI: https://doi.org/10.1090/S1056-3911-09-00515-3 , arXiv:0707.4287, Journal of Algebraic Geometry 18 (2009)
  50. Conjecture of Tits type for complex varieties and Theorem of Lie-Kolchin type for a cone, Mathematical Research Letters, 16 (2009), no. 1, 133 – 148; MRL link , also arXiv:math/0703103 (with J. Keum and K. Oguiso).
  51. Characterization of the 4-canonical birationality of algebraic threefolds, Mathematische Zeitschrift, 258 (March 2008), 565 — 585;  DOI: https://doi.org/10.1007/s00209-007-0186-4 , arXiv:math/0703593 (with M. Chen).
  52. Automorphism groups and anti-pluricanonical curves, Mathematical Research Letters, 15 (January 2008), No. 1, 163 – 183; MRL link , also arXiv:0705.0476
  53. On Kummer-type construction of supersingular K3 surfaces in characteristic 2, Pacific Journal of Mathematics, 232 (October 2007), No. 2, 379 – 400; PJM Link ; also arXiv:0709.1985 (with I. Shimada).
  54. Small bound for birational automorphism groups of algebraic varieties, Mathematische Annalen, 339 (September 2007), no. 4, 957 – 975; DOI: https://doi.org/10.1007/s00208-007-0162-7 , also arXiv:math/0609083 (with an Appendix by Y. Kawamata).
  55. Extensions of the alternating group of degree 6 in the geometry of K3 surfaces, European Journal of Combinatorics, Special Issue on Geometry and Groups, 28 (2007), 549 — 558 (February 2007); Elsevier Link ; also arXiv:math/0408105 (with J. Keum and K. Oguiso).
  56. The 5-canonical system on 3-folds of general type, Journal für die Reine und Angewandte Mathematik, 603 (2007), 165 — 181 (February 2007); DOI: https://doi.org/10.1515/CRELLE.2007.015 , also arXiv:math/0512617
    (with J. A. Chen and M. Chen).
  57. The alternating groups and K3 surfaces, Journal of Pure and Applied Algebra, 207 (2006) 119 – 138; Elsevier Link ; also  arXiv:math/0506610
  58. The Noether inequality for smooth minimal 3-folds, Mathematical Research Letters, Vol. 13, No. 4 (July 2006), 653 — 666; DOI: http://dx.doi.org/10.4310/MRL.2006.v13.n4.a13, MRL Link , also arXiv:math/0507606 (with F. Catanese and M. Chen).
  59. A non-vanishing theorem for Q-divisors on surfaces, Journal of Algebra, 293 (2005), 363 – 384; Elsevier Link ; also  arXiv:math/0504314 (with J. A. Chen and M. Chen).
  60. The alternating group of degree 6 in geometry of the Leech lattice and K3 surfaces, Proceedings of the London Mathematical Society, 90 (2005), 371 – 394; DOI: https://doi.org/10.1112/S0024611504014984 ,
    also arXiv:math/0311462 (with J. Keum and K. Oguiso).
  61. The determination of integral closures and geometric applications, Advances in Mathematics, 185 (2004), 215 – 245; Elsevier Link , also arXiv:math/0310467 (with S. L. Tan).
  62. Equivariant classification of Gorenstein open log del Pezzo surfaces with finite group actions, Journal of Mathematical Society of Japan, 56 (2004), 215 – 245; Project Euclid Link ; also  arXiv:math/0311138 (with M. Miyanishi)
  63. On Gorenstein surfaces dominated by P^2, Nagoya Mathematical Journal, 168 (2002), 41-63; Cambridge University Press Link ; also arXiv:math/0112242 (with R. V. Gurjar and C. R. Pradeep)
  64. Automorphisms of finite order on Gorenstein del Pezzo surfaces, Transactions of the American Mathematical Society, 354 (2002), 4831 – 4845; AMS Link ; also arXiv:math/0202131
  65. Fundamental groups of open K3 surfaces, Enriques surfaces and Fano 3-folds, Journal of Pure and Applied Algebra, 170 (2002), 67 — 91; JPAA Link ; also arXiv:math/0104017  (with J. Keum)
  66. Miranda-Persson’s problem on extremal elliptic K3 surfaces, Pacific Journal of Mathematics, 202 (2002), 37 – 72; Article Link ; also arXiv:math/9809065 (with Enrique Artal Bartolo, Hiro-o Tokunaga)
  67. Automorphisms of finite order on rational surfaces, Journal of Algebra, 238 (2001), 560–589; Dolgachev HP Link ; also arXiv:math/0009126 (with an Appendix by I. Dolgachev)
  68. Coble rational surfaces, American Journal of Mathematics, 123 (2001), 79 – 114; JStor Read Online , also arXiv:math/9909135 (with I. Dolgachev)
  69. Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces, Nagoya Mathematical Journal, 161 (2001), 23 – 54; Nagoya Math J Link , also arXiv:math/0007171 (with I. Shimada)
  70. On Vorontsov’s theorem on K3 surfaces with non-symplectic group actions, Proceedings of the American Mathematical Society, 128 (2000), 1571 – 1580; AMS Link , also arXiv:math/9906006 (with K. Oguiso)
  71. On the complete classification of extremal log Enriques surfaces, Mathematische Zeitschrift, 231 (1999), 23–50; DOI: https://doi.org/10.1007/PL00004724 , also arXiv:math/9906005 (with K. Oguiso)
  72. K3 surfaces with order five automorphisms, Journal of Mathematics, Kyoto University, 38 (1998), 419–438; Project Euclid Link (with K. Oguiso)
  73. Quotients of K3 surfaces modulo involutions, Japanese Journal of Mathematics, 24 (1998), 335–366; Jap J Math Link , also arXiv:math/9905193
  74. Normal algebraic surfaces with trivial two or four times of the canonical divisors, International Journal of Mathematics, 9 (1998), 377–406; DOI: https://doi.org/10.1142/S0129167X98000166
  75. On extremal log Enriques surfaces, II, Tohoku Mathematical Journal, 50 (1998), 419 – 436; Project Euclid Link (with K. Oguiso)
  76. Normal algebraic surfaces with trivial tricanonical divisors, Publications of the Research Institute for Mathematical Sciences, Kyoto University, 33 (1997), 427 – 442; EMS Press Link
  77. Normal algebraic surfaces with trivial bicanonical divisor, Journal of Algebra, 186 (1996), 970 – 989; Article Link via ResearchGate (with R.V.Gurjar)
  78. On the most algebraic K3 surfaces and the most extremal log Enriques surfaces, American Journal of Mathematics 118 (1996), 1277–1297; JStor Read Online (with K.Oguiso)
  79. Algebraic surfaces with log canonical singularities and the fundamental groups of their smooth parts, Transactions of American Mathematical Society, 348 (1996), 4175–4184; AMS Link
  80. On the fundamental group of some open rational surfaces, Mathematische Annalen 306 (1996), 15–30; DOI: https://doi.org/10.1007/BF01445240 (with R. V. Gurjar)
  81. Pi one of smooth points of a log del Pezzo surface is finite, II, Journal of  Mathematical Science, University of Tokyo, 2 (1995), 165 – 196; J Math Sci U Tokyo Link (with R.V.Gurjar)
  82. Normal algebraic surfaces of anti-Kodaira dimension one or two, International Journal of Mathematics, 6 (1995), 329–336; DOI: https://doi.org/10.1142/S0129167X95000523
  83. The fundamental group of the smooth part of a log Fano variety, Osaka Journal of Mathematics (1995), 637–644; Project Euclid Link
  84. Algebraic surfaces with nef and big anti-canonical divisor, Mathematical Proceedings, Cambridge Philosophical Society, 117 (1995), 161–163; DOI: https://doi.org/10.1017/S0305004100072984
  85. Pi one of smooth points of a log del Pezzo surface is finite: I, Journal of  Mathematical Science, University of Tokyo, 1 (1994), 137– 180; J Math Sci U Tokyo Link (with R.V.Gurjar)
  86. Gorenstein log del Pezzo surfaces, II, Journal of Algebra, 156 (1993), 183-193; Article Link via ResearchGate (with M. Miyanishi)
  87. Log Enriques surfaces, II, Journal of Mathematics, Kyoto University, 33 (1993), 357-397; Project Euclid Link
  88. On algebras which resemble the local Weyl algebra, Osaka Journal of Mathematics 29 (1992), 393-404; Project Euclid Link (with C. W. Hang et al.)
  89. Noether’s inequality for non-complete algebraic surfaces of general type, II, Publications of the Research Institute for Mathematical Sciences, Kyoto University, 28 (1992), 679-707; J-Stage Link
  90. Noether’s inequality for non-complete algebraic surfaces of general type, Publications of the Research Institute for Mathematical Sciences, Kyoto University, 28 (1992), 21-38; EMS Press Link (with S. Tsunoda)
  91. Log Enriques surfaces, Journal of Mathematics of Kyoto University 31 (1991), 419-466; J Math Kyoto U Link
  92. Logarithmic del Pezzo surfaces with rational double and triple singular points, Tohoku Mathematical Journal 41 (1989), 399-452; Project Euclid Link
  93. Gorenstein log del Pezzo surfaces of rank one, Journal of Algebra, 118 (1988), 63-84; Elsevier Link (with M. Miyanishi)
  94. Logarithmic del Pezzo surfaces of rank one with contractible boundaries, Osaka Journal of Mathematics 25 (1988), 461-497; Project Euclid Link
  95. On Iitaka surfaces, Osaka Journal of Mathematics 24 (1987), 417 – 460; Project Euclid Link

Conference Papers:


  1. Log Kodaira dimension of homogeneous varieties, Advanced Studies in Pure Mathematics (ASPM) Vol 75 (yr 2017), pages 1-6, Mathematical Society of Japan, Editors: Kayo Masuda, Takahashi Kishimoto, Hideo Kojima, Masayoshi Miyanishi and Mikhail Zaidenberg; Project Euclid Link via https://doi.org/10.2969/aspm/07510001 ; also arXiv:1511.01274  (with M. Brion)
  2. Birational geometry in the study of dynamics of automorphisms and Brody/Mori/Lang hyperbolicity. Proceedings of the Sixth International Congress of Chinese Mathematicians. Vol. I, 519–539, Adv. Lect. Math. (ALM), 36, Int. Press, Somerville, MA, 2017. ICCM2013, Taipei, July 2013; also arXiv:1308.2997
  3. Birational Automorphism Groups of Projective Varieties of Picard Number Two (via: https://doi.org/10.1007/978-3-319-05681-4_13) , in: Automorphisms in Birational and Affine Geometry, Levico Terme, Italy, October 2012, Editors: Ivan Cheltsov, Ciro Ciliberto, Hubert Flenner, James McKernan, Yuri G. Prokhorov, and Mikhail Zaidenberg, Springer Proceedings in Mathematics & Statistics, PROMS 79 (yr 2014), Pages 231-238, arXiv:1307.5490
  4. Invariant hypersurfaces of endomorphisms of the projective 3-space, in : Proceedings of the conference Affine Algebraic Geometry, edited by K. Masuda, H. Kojima and T. Kishimoto, World Scientific 2013, pp. 314 – 330; https://doi.org/10.1142/9789814436700_0016 ; also arXiv:1104.1142
  5. Dynamics of automorphisms of compact complex manifolds, in: Proceedings of The Fourth International Congress of Chinese Mathematicians (ICCM2007), Section: Algebraic Geometry, 17 – 22 December 2007, HangZhou, China, ICCM 2007, Vol II, pp. 678 – 689 ; also arXiv:0801.0843
  6. Automorphisms of K3 surfaces, in: Proceedings of the International Conference on Complex Geometry and Related Fields, pp. 379–392; AMS/IP Studies in Advanced Mathematics, Volume 39; 2007; 402 pp, Amer. Math. Soc., Providence, RI ; also arXiv:math/0506612
  7. K3 surfaces with ten cusps, Contemporary Mathematics, American Mathematical Society, Dolgachev’s volume, Vol. 422, pp. 187 – 211 (October 2007); Print Version ; also arXiv:math/0411425 (with I. Shimada)
  8. Niemeier Lattices and K3 Groups, Contemporary Mathematics, American Mathematical Society, Dolgachev’s volume, Vol. 422, pp.223 – 239 (October 2007) ; also arXiv:math/0408106
  9. Non-singular affine surfaces with self-map, pp. 217 – 229, In: Affine algebraic geometry, Osaka Univ. Press, Osaka, edited by T. Hibi, October 2007 ; also arXiv:0802.4323 (with R. V. Gurjar).
  10. The simple group of order 168 and K3 surfaces, in: Complex Geometry, Collection of papers dedicated to Hans Grauert. Selected papers from the International Conference on Analytic and Algebraic Methods in Complex Geometry held in Göttingen, April 3–8, 2000, I. Bauer, F. Catanese, Y. Kawamata, T. Peternell and Y. –T. Siu (eds), Springer-Verlag, Berlin, Aug 2002, pp. 165 – 184; Book Link ; also arXiv:math/0011259 (with K. Oguiso)
  11. On endomorphisms of algebraic surfaces, in: Topology and Geometry: Commemorating SISTAG, Contemporary Mathematics, 314 (2002), 249-263, American Mathematical Society; Book Link (via DOI: http://dx.doi.org/10.1090/conm/314 ; also arXiv:math/0210021
  12. Algebraic surfaces with quotient singularities – including some discussion on  automorphisms and fundamental groups, (with J. Keum),  in : Algebraic Geometry in East Asia, International Institute for Advanced Studies, Kyoto, Japan, August 3–10, 2001, A. Ohbuchi, K. Konno, S. Usui, A. Moriwaki and N. Nakayama (eds), World Scientific Publishing Co., Inc., River Edge, NJ, August  2002, pp. 113-142; https://doi.org/10.1142/9789812705105_0003 ; also arXiv:math/0210005
  13. Log Fano threefolds and quotients of K3 surfaces, in: Proc. Pacific Rim Geometry Conf. Singapore 1994, Walter de Gruyter, (Berlin, 1997), A J Berrick, B Loo and H Wang (eds.), 403 — 413. (Germany); https://doi.org/10.1515/9783110908961.403
  14. Non-complete algebraic surfaces, Peking University Press, Beijing, 1991, 171–184.
    ISBN: 7-301-01622-1, in: Chinese Mathematics into the 21st century, Nankai University, Tianjin, August 20–24, 1988, Organised by S. S. Chern, edited by Wen-tsun Wu and Min-de Cheng, 171 – 184, Beijing, China : Peking University Press ; Berlin ; New York : Springer-Verlag, 1991, 296 pp, Book Info