Tag: glaucoma

Brimonidine for glaucoma

If brimonidine is an adrenergic agonist, how and why does it reduce glaucoma?

Brimonidine acts at postsynaptic alpha-2 adrenoreceptors on blood vessels to cause vasoconstriction, reducing aqueous humour production. Long-term, there are also effects on uveoscleral drainage, perhaps secondary to reduced blood flow to the ciliary muscle.

Brimonidine alone is not as potent at reducing intraocular pressure (IOP) as beta-blockers or prostaglandin F2alpha analogues (e.g., latanoprost). The primary reason that brimonidine has come back into use is that it also has a neuroprotective action, reducing the death of retinal ganglion cells through mechanisms that remain poorly understood.

Beta-adrenoceptors and intraocular pressure

Non-selective beta-blockers (e.g. timolol) and beta1-adrenoceptor selective beta-blockers (e.g. betaxolol) can reduce intraocular pressure in glaucoma. But I read online that the adrenoceptors in the ciliary body of the eye, which regulates aqueous humour production, are beta2-adrenoceptors. So why are beta2-adrenoceptor selective beta-blockers not used to treat glaucoma?

Glaucoma is a group of eye diseases associated with optic neuropathy and progressive loss of retinal ganglion cells resulting in visual field loss, and irreversible blindness if left untreated (Jacobs, 2019; Weinreb and Khaw, 2004). In some forms of glaucoma, intraocular pressure (IOP) is elevated and likely contributes to damage to the retinal ganglion cells and their axons exiting the eye via the optic nerve. Drugs that reduce IOP have helped to slow the progression of visual field loss in glaucoma.

We can use topical application of beta-blockers to reduce IOP (although topical prostaglandin F2alpha analogues are now usually the first-line choice for pharmacological reduction of IOP). Both non-selective beta-blockers (e.g. timolol) and beta1-adrenoceptor selective beta-blockers (e.g. betaxolol) can reduce IOP when applied topically to the eyes. They are thought to work by blocking beta-adrenoceptors in the ciliary body to reduce the production of aqueous humour and so reduce IOP.

Continue reading

© 2025 PharmaNUS

Theme by Anders NorenUp ↑

Viewing Message: 1 of 1.
Warning

Blog.nus accounts will move to SSO login, tentatively before the start of AY24/25 Sem 2. Once implemented, only current NUS staff and students will be able to log in to Blog.nus. Public blogs remain readable to non-logged in users. (More information.)

Skip to toolbar