Tag: beta-2 adrenoceptors

Clonidine as an analgesic?

Administration of clonidine can reduce the doses of opioid analgesics required for pain control. Clonidine is also used to counteract symptoms of opioid withdrawal. How does this work? 

Clonidine is an alpha-2-adrenoceptor agonist. Clonidine activates presynaptic alpha-2-adrenoceptors serving as autoreceptors on both central and peripheral nervous system noradrenergic nerve terminals. Activation of these autoreceptors reduces release of nordrenaline. Clonidine also activates alpha-2-adrenoceptors on the neurones of the locus coeruleus,  the major source of noradrenergic innervation in the brain, to inhibit locus coeruleus neurone firing and further reduce central nervous system noradrenergic neurotransmission. By these mechanisms, clonidine is an indirect sympatholytic agent and has been used as an antihypertensive drug.

Clonidine is also a direct adrenoceptor agonist at presynaptic alpha-2-adrenoceptors serving as heteroreceptors on the primary afferent neurone nerve terminals bringing nociceptive signals into the spinal cord and at postsynaptic alpha-2-adrenoceptors on secondary spinal cord neurones relaying pain information up to the brain. The descending systems gating pain transmission through the spinal cord include noradrenergic neurones releasing noradrenaline to activate the presynaptic alpha-2-adrenoceptor heteroreceptors on the primary afferent neurone nerve terminals preventing them from releasing their neurotransmitters and transmitting their nociceptive signals. Meanwhile, the noradrenergic descending projections also active postsynaptic alpha-2-adrenoceptors on secondary spinal cord neurones, inhibiting these neurones, and preventing them from relaying the nociceptive signals up to the brain. Therefore, clonidine, which activates these alpha-2-adrenoceptors, has analgesic properties.

The descending pain gating systems also activate local engodenous opioid peptide releasing interneurones within the spinal cord. These interneurones inhibit the secondary spinal cord neurones relaying the nociceptive information up to the brain and so further block transmission of nociceptive signals through the spine. There is therefore a good additive effect between clonidine and the opioid analgesics, which produce spinal analgesia by mimicking the action of the endogenous opioid peptides. Administering clonidine can reduce the doses of opioid analgesics required to control pain.

Another use for clonidine is in controlling symptoms of opioid withdrawal. Part of the reason why clonidine helps is that by its non-opioid analgesic mechanisms it controls the pain associated with opioid withdrawal. Opioid receptors also normally inhibit the neurones of the locus coeruleus and opioid withdrawal is also associated with over activation of the locus coeruleus and the brain noradrenergic system. This results in symptoms such as anxiety, agitation, irritability, and mood swings.  Clonidine activates  alpha-2-adrenoceptors inhibiting the cells of the locus coeruleus and presynaptic alpha-2-adrenoceptor autoreceptors reducing noradrenaline release.

Why does overdose of salbutamol cause tachycardia?

Salbutamol is beta-2 adrenoceptor agonist used to treat the respiratory symptoms of asthma. We learned that it is beta-2 adrenoceptors in the lungs and beta-1 adrenoceptors in the heart. So why does overdose of salbutamol cause a rapid heart rate? 

Activation of beta-2 adrenoceptors in the airways promotes bronchodilation, reduction of airway secretions, and stimulation of mucociliary clearance.  Thus beta-2 adrenoceptor agonists are used in treating the symptoms of asthma. Meanwhile, in the heart, beta-1 adrenoceptor activation has inotropic and chronotropic effects, increasing contractile force and heart rate, respectively.

For the treatment of the symptoms of asthma without causing cardiovascular adverse effects, selective beta-2 adrenoceptor agonists would be the preferred.  Salbutamol is an example of a selective beta-2 adrenoceptor agonist. However, the beta-2 and beta-1 adrenoceptors are very similar, so salbutamol is not entirely selective. Salbutamol shows dose-dependent selectivity for beta-2 adrenoceptors but does still act as a weak beta-1 agonist.  Thus, on overdose, the beta-1 agonist activity of salbutamol can start to cause cardiovascular adverse effects by activating beta-1 adrenoceptors in the heart to increase the force and rate of heart contractions.

© 2024 PharmaNUS

Theme by Anders NorenUp ↑

Viewing Message: 1 of 1.
Warning

Blog.nus accounts will move to SSO login, tentatively before the start of AY24/25 Sem 2. Once implemented, only current NUS staff and students will be able to log in to Blog.nus. Public blogs remain readable to non-logged in users. (More information.)

Skip to toolbar