Category: PA2131 (page 4 of 4)

VX Nerve Agent

VX nerve agent,  which has been in the news lately with the killing of Kim Jong-nam, is another example of an organophosphate anticholinesterase.

The newspapers and other media have recently reported that it was the VX nerve agent that was used to kill Kim Jong-nam, the half-brother of North Korea’s leader, in Malaysia. VX nerve agent is an example of an organophosphate anticholinesterase. Other examples of organophosphate anticholinesterases include the chemical weapon sarin and the organophosphate insecticides such as a malathion.

VX (S-2 Diisoprophylaminoethyl methylphosphonothiolate) is one of the most toxic nerve agent known. It is especially insidious as it is a highly viscous, tasteless and odourless liquid that can easily be transferred via clothing to be absorbed into the body by inhalation, ingestion, skin contact, or eye contact.

Although more potent and fast-acting, the effects of VX poisoning would be the same as for any organophosphate anticholinesterase. Inhibition of acetylcholinesterase will result in increased levels of acetylcholine at all cholinergic synapses in the body.

Continue reading

Why is aspirin not used in gout?

Non-steroidal anti-inflammatory drugs (NSAIDs)  are used to control pain and inflammation in gout. Aspirin is the prototypical NSAID and is available over-the-counter (i.e. without a doctor’s prescription or consultation with a pharmacist or prescribing nurse). So why are patients with gout told not to take aspirin? 

Gout is caused by elevated uric acid levels. At high levels, uric acid is deposited as monosodium urate crystals in the tissues of the joints.  When the body’s immune system attacks the monosodium urate crystals, it triggers severe bouts of pain and inflammation.  During these acute gouty attacks, the priority in the treatment of gout is to reduce the pain and inflammation. NSAIDs can help to achieve this.  Between gouty attacks, a key aim in the treatment of gout is to reduce the plasma levels of uric acid to prevent recurrence of acute gouty attacks.  This can be achieved by dietary modifications together with drugs such as allopurinol, which inhibits uric acid synthesis, and uricosuric drugs, which increase uric acid excretion through the kidney.

Aspirin is both an NSAID and uricosuric at high doses. Therefore, it might at first seem reasonable to use aspirin for the treatment of gout. However, the story is more complicated. At lower doses, aspirin and other salicylates are in fact anti-uricosuric. Taking aspirin or other salicylates can increase plasma uric acid levels and increase the risk of gout.  Aspirin and other salicylates can also interfere with the action of uricosuric drugs prescribed for the treatment of gout.

So, what about taking high doses of aspirin? No, that is not helpful either.

Firstly, the uricosuric effect of apsirin only manifests at or above the higher end of the normal analgesic and anti-inflammatory therapeutic dosage range. Meanwhile, aspirin has a very short half-life of only about 20 min. This is the reason why for analgesic and anti-inflammatory use you have to take aspirin once every 4 to 6 hours. This means that it is hard, likely impossible, to maintain aspirin levels continuously within the uricosuric range without risking overdose and other adverse effects. Meanwhile, any time the plasma concentration of aspirin drops, the anti-uricosuric effects can kick in.

Secondly, the analgesic and anti-inflammatory actions of NSAIDs are more useful in combating acute gouty attacks. However, during acute gouty attacks, uricosuric agents are contraindicated. During gout attacks, uric acid is already mobilising out of the joints, and plasma levels are elevated. Forcing more uric acid out through the kidneys with uricosuric agents can increase the risk of kidney stones and kidney damage. Moreover, rapidly reducing plasma concentrations of uric acid creates a concentration gradient from the joints to the plasma causing more uric acid to mobilise from the joints. During mobilisation of the monosodium urate crystals, there is a greater chance of attack on the crystals by the body’s immune system.  This increases the risk of making the gouty attack worse and triggering further gout attacks at other joints.

 

Sympathetic cholinergic innervation of blood vessels? Not in humans.

Exceptions to the general rule that the sympathetic nervous system is adrenergic include cholinergic innervation of sweat glands expressing M3 receptors and dopaminergic innervation of the renal blood vessels expressing D1 receptors. But what about the arteries of skeletal muscle? 

Parasympathetic cholinergic fibres innervate some blood vessels. In arterial blood vessels, the release of acetylcholine activates M3 receptors on the vascular endothelium, which are coupled to formation of nitric oxide (NO) that produces vasodilation (1). However, if the synthesis of NO is inhibited, the activation of M3 and M2 receptors can produce vasoconstriction. In contrast, cerebral arteries express M5 receptors, which produce vasodilation in response to acetylcholine (1).

In cats and dogs, some of the arterial blood vessels in skeletal muscle are innervated by sympathetic cholinergic nerves that release acetylcholine, which acts at M3 receptors to produce vasodilation (1). In these species, the sympathetic nervous system innervation of the arterial blood vessel in skeletal muscle appears to play a role in active hyperaemia, increasing blood flow to the muscle at the start of exercise (1).

In contrast to cats and dogs, humans do not have sympathetic cholinergic innervation of arterial blood vessels in skeletal muscle (1).

Reference:
(1) Richard E Klabunde Cardiovascular Physiology Concepts: Adrenergic and Cholinergic Receptors in Blood Vessels http://www.cvphysiology.com/Blood%20Pressure/BP010b [Accessed 7 Feb 2017]

Low-dose aspirin plus glycine for anti-platelet drug therapy

Why do some low-dose aspirin formulations intended for use as anti-platelet medications contain glycine?

Aspirin has a potent anti-platelet action because it is an irreversible inhibitor of cyclooxygenase (COX). COX-1 is required for synthesis of the prothrombotic factor, thromboxane A2 (TXA2), in platelets. Platelets, being fragments of megakaryocytes, do not have a nucleus and therefore cannot synthesise more COX when it is irreversibly inhibited by aspirin. Thus,  to recover from irreversible inhibition of COX-1 in the platelets, your body has to make new platelets. The average lifespan of a platelet is 8 to 9 days, so the anti-platelet effect aspirin is potent and long-lasting. However, in the stomach, inhibition of COX-1 prevents the production of protective prostaglandins and results in increased risk of gastrointestinal disturbance and peptic ulcers.

The combination of aspirin with glycine is reported to improve gastrointestinal tolerance to aspirin for anti-platelet drug therapy (1).  Glycine is also itself reported to have an anti-platelet effect (2).  The evidence to date for the efficacy of glycine both in improving gastrointestinal tolerance of aspirin and in having anti-platelet actions is limited. However, as glycine is a common dietary amino acid, there is little concern over the risk-to-benefit ratio of including glycine in aspirin formulations for use in anti-platelet drug therapy.

References:
(1) Kusche W, Paxinos R, Haselmann J, Schwantes U, Breddin HK. Acetylsalicylic acid tablets with glycine improve long-term tolerability in antiplatelet drug therapy: results of a noninterventional trial. Adv Ther. 2003 Sep-Oct;20(5):237-45.

(2) Schemmer P, Zhong Z, Galli U, Wheeler MD, Xiangli L, Bradford BU, Conzelmann LO, Forman D, Boyer J, Thurman RG. Glycine reduces platelet aggregation. Amino Acids. 2013 Mar;44(3):925-31. doi: 10.1007/s00726-012-1422-8.

Newer posts

© 2025 PharmaNUS

Theme by Anders NorenUp ↑

Viewing Message: 1 of 1.
Warning

Blog.nus accounts will move to SSO login, tentatively before the start of AY24/25 Sem 2. Once implemented, only current NUS staff and students will be able to log in to Blog.nus. Public blogs remain readable to non-logged in users. (More information.)

Skip to toolbar