Publications

Profiles:

Google Scholar profile (6NpSa1kAAAAJ)

ORCID (0000-0002-1466-038X)

Scopus profile (57189447961)

Web of Science (E-4680-2011)


Research Impact & Visibility

  • Prof. Linga is identified as among the World’s Best Engineering and Technology Scientists in 2024, with a rank of #10 in Singapore and a worldwide rank of #916. This ranking by Research.com is based on h-index within a discipline (discipline index).
  • Prof. Linga is identified as among the World’s Most Influential Scientific Minds and Highly Cited Researchers in Engineering by Clarivate Analytics (formerly Thomson Reuters) in 2018. This list recognizes world-class researchers selected for their exceptional research performance in the preceding 11 years.
  • Highlighted by Clarivate in 2020 Research Fronts Report as a key contributor of “core” highly cited papers to gas hydrates research front. Says Clarivate on Page 26, “Notably, the top three most-cited papers in this Research Front are from a team led by Professor Praveen Linga at the National University of Singapore.” for the period 2014-2019.
  • Prof. Linga is identified as ScholarGPS Highly Ranked Scholar in 2024. States ScholarGPS, “Your prolific publication record, the high impact of your work, and the outstanding quality of your scholarly contributions have placed you in the top 0.05% of all scholars worldwide“. Prof Linga is ranked #1 in the world for “methane clathrate” and ranked #135 in the world for “energy” specialities for the prior 5-year period. Profile Link
  • Prof. Linga is ranked among the top 2% scientists in the world in Elsevier-Stanford’s list for four consecutive years (2023, 20222021 & 2020) based on a composite indicator (c-score) for career data. In Energy sub-field for career data, Prof. Linga is ranked in the top 0.48 percentile (world rank #1382 of ~285,000 scientists) in 2023. He has also been ranked among the top 2% in single year analysis list for five consecutive years (2023, 2022, 2021, 2020 & 2019) with a top percentile of 0.09 (world rank #261 of ~285,000 scientists) in 2023 in Energy sub-field.

Invited Review Articles

Historical perspectives on gas hydrates and citation impact analysisCanadian Journal of Chemical Engineering 2023doi:10.1002/cjce.24519.Plum Metrics


Solidified Hydrogen Storage (Solid-HyStore) via Clathrate Hydrates. Chemical Engineering Journal 2022. doi:10.1016/j.cej.2021.133702Solidified Hydrogen Storage (Solid-HyStore) via Clathrate Hydrates


Amino acids as kinetic promoters for gas hydrate applications: A mini review. Energy and Fuels 2021. doi:10.1021/acs.energyfuels.1c00502Amino acids as kinetic promoters for gas hydrate applications: A mini review


Hydrates for cold energy storage and transport: A Review. Advances in Applied Energy 2021. doi:10.1016/j.adapen.2021.100022Hydrates for cold energy storage and transport: A Review


Carbon dioxide sequestration via gas hydrates: A potential pathway towards decarbonization. Energy & Fuels 2020. doi: 10.1021/acs.energyfuels.0c02309Carbon Dioxide Sequestration via Gas Hydrates: A Potential Pathway toward Decarbonization


LNG Cold Energy Utilization: Prospects and Challenges. Energy 2019. doi:10.1016/j.energy.2018.12.170LNG cold energy utilization: Prospects and challenges


A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy 2018. doi:10.1016/j.apenergy.2018.02.059 A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates


A review of gas hydrate growth kinetic models Chemical Engineering Journal 2018. doi:10.1016/j.cej.2018.01.120 A review of gas hydrate growth kinetic models


A review of clathrate hydrate based desalination to strengthen energy-water nexus. ACS Sustainable Chemistry & Engineering 2018. doi:10.1021/acssuschemeng.8b01616A Review of Clathrate Hydrate Based Desalination to Strengthen Energy-Water Nexus


A review of clathrate hydrate nucleation ACS Sustainable Chemistry and Engineering 2017. doi:10.1021/acssuschemeng.7b03238A review of clathrate hydrate nucleation


Review of gas hydrate dissociation kinetic models for energy recovery. Journal of Natural Gas Science and Engineering 2016. doi:10.1016/j.jngse.2016.04.050 Review of gas hydrate dissociation kinetic models for energy recovery


Review of natural gas hydrates as an energy resource: Prospects and Challenges. Applied Energy 2016. doi:10.1016/j.apenergy.2014.12.061 Review of natural gas hydrates as an energy resource: Prospects and challenges


A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015. doi:10.1016/j.energy.2015.03.103 A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture


Hydrogen storage in clathrate hydrates: Current state of the art and future directions. Applied Energy 2014. doi:10.1016/j.apenergy.2014.01.063 Hydrogen storage in clathrate hydrates: Current state of the art and future directions


List of Publications (peer-reviewed)

The bold first author represents supervised/mentored students/staff or work done at Linga Lab. For a copy of our publications, send us an email at chepl@nus.edu.sg

(J186)  Dhamu, V.; Qureshi, M. F.; Selvaraj, N.; Yuanmin, J. Y.; Guo, I. T.; Linga, P.;Dual Promotional Effect of l-Tryptophan and 1,3-Dioxane on CO2 Hydrate Kinetics in Seawater under Static/Unstatic Conditions for Carbon Capture and Storage ApplicationEnergy & Fuels 2024. doi:10.1021/acs.energyfuels.4c01553.

(J185)  Zheng, J.; Zhang, Y.; Zhao, L.; Li, H.; Zhao, R.; Nie, X.; Deng, S.; Linga, P.; A hydrate-based post-combustion capture system integrated with cold energy: Thermodynamic analysis, process modeling and energy optimization. Energy Conversion and Management 2024. doi:10.1016/j.enconman.2024.118656.


(J184)  Sun, J.; Zhang, Y.; Bhattacharjee, G.; Li, X. S.; Jiang, L.; Linga, P.; Hydrate-based energy storage: Studying mixed CH4/1,3-dioxane hydrates via thermodynamic modeling, in-situ Raman spectroscopy, and macroscopic kinetics. Applied Energy 2024. doi:10.1016/j.apenergy.2024.123517.


(J183) Paul, L.; Lee, J. D.; Linga, P.; Kumar, R.; Exploring thermodynamic viable conditions for separation of highly energy intensive H2O and D2O mixtures through gas hydrate based processApplied Energy 2024. doi:10.1016/j.apenergy.2024.123515.


(J182) Ren, J.; Yin, Z.; Lu, H.; Xu, C.; Kuang, Z.; Deng, X.; Liu, Y.; Linga, P.; Effects of South China Sea clayey-silty sediments on the kinetics and morphology of CH4 hydrate: Implication on energy recoveryApplied Energy 2024. doi:10.1016/j.apenergy.2024.123399.


(J181) Ouyang, Q.; Zheng, J.; Pandey, J. S.; Von Solms, N.; Linga, P.; Coupling amino acid injection and slow depressurization with hydrate swapping exploitation: An effective strategy to enhance in-situ CO2 storage in hydrate-bearing sedimentApplied Energy 2024. doi:10.1016/j.apenergy.2024.123300.


(J180) Ren, J.; Yin, Z.; Chen, G.; Lu, H.; Xu, C.; Zeng, S.; Linga, P.; Effect of marine clay minerals on the thermodynamics of CH4 hydrate: Evidence for the inhibition effect with implicationsChemical Engineering Journal 2024. doi:10.1016/j.cej.2024.151148.


(J178) Zhao, J.; Zhang, Y.; Liao, Y.; Zhang, K.; Yang, M.; Linga, P.; Formation and production characteristics of shallow marine hydrates considering overlying water erosion. Energy & Fuels 2024. doi:10.1021/acs.energyfuels.3c04594.

(J177) Dhamu, V.; Mengqi, X.; Qureshi, M. F.; Yin, Z.; Jana, A. K.; Linga, P.; Evaluating CO2 hydrate kinetics in multi-layered sediments using experimental and machine learning approach: Applicable to CO2 sequestrationEnergy 2024. doi:10.1016/j.energy.2023.129947.

(J176) Wu, Y.; Zhang, Y.; Bhattacharjee, G.; He, Y.; Zhai, M.; Linga, P.; Seawater-based methane storage via mixed CH4/1,3-dioxane hydrates: Insights from experimental and molecular dynamic simulations. Chemical Engineering Journal 2024. doi:10.1016/j.cej.2023.147721.

(J175) Jeenmuang, K.; Pornaroontham, P.; Qureshi, M. F.; Linga, P.; Rangsunvigit, P.; Micro kinetic analysis of the CO2hydrate formation and dissociation with L-Tryptophan in brine via high pressure in situ Raman spectroscopy for CO2sequestration. Chemical Engineering Journal 2024. doi:10.1016/j.cej.2023.147691.

(J174) Zhang, Y.; Clarke, M.; Linga, P.;  Solid-Liquid-Vapour equilibrium conditions of tetra-iso-amyl ammonium bromide (TiAAB) semiclathrates formed from H2. Fluid Phase Equilibria 2024. doi:10.1016/j.fluid.2023.114010.

(J173) Sun, N.; Zhang, Y.; Bhattacharjee, G.; Li, Y.; Qiu, N.; Du, S.; Linga, P.; Seawater-based sII hydrate formation promoted by 1,3-Dioxolane for energy storageEnergy 2024. doi:10.1016/j.energy.2023.129606.

(J172) Zeng, S.; Yin, Z.; Ren, J.; Bhawangirkar, D.R.; Huang, L.; Linga, P.; Effect of MgCl2 on CO2 sequestration as hydrates in marine environment: A thermodynamic and kinetic investigation with morphology insightsEnergy 2023. doi:10.1016/j.energy.2023.129616.

(J171) Dhamu, V.; Qureshi, M. F.; Bharckoltz, T. A.; Mhadeshwar, A. B.; Linga, P.;
Evaluating liquid CO2 hydrate formation kinetics, morphology, and stability in oceanic sediments on a lab scale using top injection. Chemical Engineering Journal 2023. doi:10.1016/j.cej.2023.147200.

(J170) Xiao, P.; Li, J.J.; Chen, W.; Pang, W.X.; Peng, X.W.; Xie, Y.; Wang, X.H.; Deng, C.; Sun, C.Y.; Liu, B.; Zhu, Y.J.; Peng, Y.L.; Linga, P.; Chen, G.J.; Enhanced formation of methane hydrate from active ice with high gas uptakeNature Communications 2023.

(J169) Li, Y.; Yin, Z.; Lu, H.; Xu, C.; Liu, X.; Huang, H.; Chen, D.; Linga, P.; Evaluation of amino acid L-Leucine as a kinetic promoter for CO2 sequestration as hydrate: A kinetic and morphological studyJournal of Environmental Chemical Engineering 2023. doi:10.1016/j.jece.2023.111363.Plum Metrics

(J168) Zhang, J.; Li, Y.; Yin, Z.; Zheng, X. Y.; Linga, P.; How THF tunes the kinetics of H2-THF hydrate?A kinetic study with morphology and calorimetric analysisIndustrial & Engineering Chemistry Research 2023. doi:10.1021/acs.iecr.3c02869.Plum Metrics

(J167) Dhamu, V.; Qureshi, M. F.; Abubakar, S.; Usadi, A.; Bharckoltz, T. A.; Mhadeshwar, A. B.; Linga, P.; Investigating high-pressure liquid CO2 hydrate formation, dissociation kinetics, and morphology in brine and freshwater static system. Energy & Fuels 2023. doi:10.1021/acs.energyfuels.3c01089.Plum Metrics

(J166) Zhang, J.; Li, Y.; Linga, P.; He, T.; Zheng, X. Y.; Yin, Z.; Coupling amino acid L-Val with THF for superior hydrogen hydrate kinetics: Implication for hydrate-based hydrogen storage. Chemical Engineering Journal 2023. doi:10.1016/j.cej.2023.143459.Plum Metrics

(J165) Zhang, Y.; Xu, H.; Bhattacharjee, G.; Linga, P.; Methane storage in simulated seawater enabled by 1,3-Dioxane as an environmentally benign promoter. Energy & Fuels 2023. doi:10.1021/acs.energyfuels.3c01036.Plum Metrics

(J164) Zheng, L.; Zheng, J.; Wang, Z.; Gao, S.; Sun, B.; Linga, P., Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirsApplied Energy 2023. doi:10.1016/j.apenergy.2023.121064.Plum Metrics

(J163) Ren, J.; Zeng, S.; Chen, D.; Yang, M.; Linga, P., Yin. Z.; Roles of montmorillonite clay on the kinetics and morphology of CO2 hydrate in hydrate-based CO2 sequestration. Applied Energy 2023. doi:10.1016/j.apenergy.2023.120997.Plum Metrics

(J162) Zhang, Q.; Zheng, J.; Zhang, B.-Y.; Linga, P.; Kinetic evaluation of hydrate-based coalbed methane recovery process promoted by structure II thermodynamic promoters and amino acids. Energy 2023. doi:10.1016/j.energy.2023.127322.Plum Metrics

(J161) Gaikwad, N.; Kim, H.; Bhattacharjee, G.; Sangwai, J.S.; Kumar, R.; Linga, P.; Thermodynamics, kinetics, morphology, and Raman studies for sH hydrate of methane and cyclooctaneACS Engineering Au 2023. doi:10.1021/acsengineeringau.2c00050.Plum Metrics

(J160) Yodpetch, V.; Inkong, K.; Veluswamy, H. P.; Kulprathipanja, S.; Rangsunvigit, P.; Linga, P.; Investigation on the amino acid-assisted CO2 hydrates: A promising step towards hydrate-based decarbonizationACS Sustainable Chemistry & Engineering 2023. doi:10.1021/acssuschemeng.2c05967.Plum Metrics

(J159) Kim, H.; Zheng, J.; Yin, Z.; Babu, P.; Kumar, S.; Tee, J.; Linga, P.; Semi-clathrate hydrate slurry as a cold energy storage and transport medium: rheological study, energy analysis and enhancement by amino acidEnergy 2023. doi:10.1016/j.energy.2022.126226.Plum Metrics


(J158) Jeenmuang, K.; Pornaroontham, P.; Inkong, K.; Bhattacharjee, G.; Kulprathipanja, S.; Linga, P.; Rangsunvigit, P.; Roles of amino acid hydrophobicity on methane-THF hydrates in the context of storage and stabilityChemical Engineering Journal 2023. doi:10.1016/j.cej.2022.140326.Plum Metrics


(J157) Linga, P.; Historical perspectives on gas hydrates and citation impact analysisCanadian Journal of Chemical Engineering 2023doi:10.1002/cjce.24519.Plum Metrics


(J156) Bamaga, O.; Ahmed, I.; Wafiyah, A. M.; Albeirutty, M.; Abdulkhair, H.; Shaiban, A.; Linga, P.; Studies on methane gas hydrate formation kinetics enhanced by isopentane and sodium dodecyl sulfate Promoters for Seawater Desalination. Energies 2022. doi:10.3390/en15249652.Plum Metrics


(J155) Zhang, Y.; Zhao, J.; Bhattacharjee, G.; Xu, H.; Yang, M.; Kumar, R.; Linga, P.; Synthesis of methane hydrate at ambient temperature with ultra-rapid formation and high gas storage capacity. Energy & Environmental Science 2022. doi:10.1039/D2EE01968J.Plum Metrics


(J154) Chaovarin, C.; Yodpetch, V.; Inkong, K.; Veluswamy, H. P.; Kulprathipanja, S.; Linga, P.; Rangsunvigit, P.; Improvement of methane hydrate formation using biofriendly amino acids for natural gas storage applications: Kinetic and morphology insightsEnergy & Fuels 2022. doi:10.1021/acs.energyfuels.2c02780.Plum Metrics


(J153) Lee, N.; Kim, H.; Jung, J. Y.; Park, K. H.; Linga, P.; Seo, Y.; Time series prediction of hydrate dynamics on flow assurance using PCA and recurrent neural networks with iterative transfer learning Chemical Engineering Science 2022, 263, 118111. doi:10.1016/j.ces.2022.118111.Plum Metrics

(J152) Kumar, A.; Daraboina, N.; Linga, P.; Kumar, R.; Ripmeester, J. A. Experimental Study on Hydrate Structure Transition using in-situ High Pressure powder X-ray diffractometer: Application in CO2 Capture. ACS Sustainable Chemistry & Engineering 2022. doi:10.1021/acssuschemeng.2c02581.Plum Metrics

(J151)  Ahmed, I.; Bamaga, O. A.; Albeirutty, M.; Abdulkhair, H.; Alsaiari, A.; Organji, H.; Linga, P.; Significance of low stirring modes on the kinetics of methane hydrate formation. Energy & Fuels 2022. doi:10.1016/acs.energyfuels.2c00395.Plum Metrics

(J150) Qureshi, M. F.; Khandelwal, H.; Usadi, A.; Bharckoltz, T. A.; Mhadeshwar, A. B.; Linga, P.; CO2 hydrate stability in oceanic sediments under brine conditionsEnergy 2022. doi:10.1016/j.energy.2022.124625.Plum Metrics


(J149) Kim, H.; Zheng, J.; Babu, P.; Kumar, S.; Tee, J.; Linga, P.Key factors influencing the kinetics of tetra-n-butylammonium bromide hydrate formation as a cold storage and transport materialChemical Engineering Journal 2022doi:10.1016/j.cej.2022.136843.Plum Metrics


(J148) Liao, Y.; Zheng, J.; Wang, Z.; Sun, B.; Sun, X.; Linga, P.; Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media. Applied Energy 2022. doi:10.1016/j.apenergy.2022.118804.Plum Metrics


(J147) Linga, P.; Impact of Mobile Water on Energy Production from Methane Hydrates. Energy & Fuels 2022. doi:10.1021/acs.energyfuels.2c00360.Plum Metrics


(J146) Zhang, Y.; Bhattacharjee, G.; Vijayakumar, M. D.; Linga, P.; Rapid and energy-dense methane hydrate formation at near ambient temperature using 1, 3-dioxolane as a dual-function promoter. Applied Energy 2022. doi:10.1016/j.apenergy.2022.118678.Plum Metrics


(J145) Qureshi, M. F.; Dhamu, V.; Usadi, A.; Bharckoltz, T. A.; Mhadeshwar, A. B.; Linga, P.; CO2 Hydrate Formation Kinetics and Morphology Observations using High-Pressure Liquid CO2 applicable to SequestrationEnergy & Fuels 2022. doi:10.1021/acs.energyfuels.1c03840.CO2 Hydrate Formation Kinetics and Morphology Observations using High-Pressure Liquid CO2 applicable to Sequestration


(J144) Inkong, K.; Yodpetch, V.; Kulprathipanja, S.; Rangsunvigit, P.; Linga, P.; Influences of Different Co-promoters on the Mixed Methane Hydrate Formation with Salt Water at Moderate ConditionsFuel 2022, 316, 123215. doi:10.1016/j.fuel.2022.123215.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J143) Inkong, K.; Yodpetch, V.; Veluswamy, H. P.; Kulprathipanja, S.; Rangsunvigit, P.; Linga, P.; Hydrate-based gas storage application using simulated seawater in the presence of a co-promoter: Morphology investigationEnergy & Fuels 2022. doi:10.1021/acs.energyfuels.1c03877.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J142) Qureshi, M. F.; Zheng, J.; Khandelwal, H.; Venkatraman, P.; Usadi, A.; Bharckoltz, T. A.; Mhadeshwar, A. B.; Linga, P.; Laboratory Demonstration of the Stability of CO2 Hydrates in Deep-oceanic SedimentsChemical Engineering Journal 2022. doi:10.1016/j.cej.2021.134290.

[This work has been highlighted in a news article by Straits Times, NUS research news, featured in more than 15 print and online research news media around the world, including Phys Org, Mirage News, Science Daily, Alpha Galileo, Azo Clean Tech, Innovation News Network, Nature World News, Environmental News Network, Yahoo News, MSN News etc] A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J141) Kim, H.; Zheng, J.; Yin, Z.; Kumar, S.; Tee, J.; Seo, Y.; Linga, P.; An electrical resistivity-based method for measuring semi-clathrate hydrate formation kinetics: application for cold storage and transportApplied Energy 2022. doi:10.1016/j.apenergy.2021.118397.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J140) Zhang, Y.; Bhattacharjee, G.; Kumar, R.; Linga, P.; Solidified Hydrogen Storage (Solid-HyStore) via Clathrate HydratesChemical Engineering Journal 2022. doi:10.1016/j.cej.2021.133702.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J139) Huang, L.; Yin, Z.; Linga, P.; Veluswamy, H. P.; Liu, C.; Chen, Q.; Hu, G.; Sun, J.; Wu, N.Experimental investigation on the production performance from oceanic hydrate reservoirs with different buried depthsEnergy 2022. doi:10.1016/j.energy.2021.122542.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J138) Wan, Q. C.; Yin, Z.; Gao, Q.; Si, H.; Li, B.; Linga, P.; Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4+H2O. Applied Energy 2022. doi:10.1016/j.apenergy.2021.117902.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J137) Zhang, Y.; Bhattacharjee, G.; Zheng, J.; Linga, P.; Hydrogen storage as clathrate hydrates in the presence of 1,3-Dioxolane as a dual-function promoter. Chemical Engineering Journal 2022. doi:10.1016/j.cej.2021.131771.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J136) Mahant, B.; Linga, P.; Kumar, R.; Hydrogen economy and role of hythane as a bridging solution: A perspective review. Energy & Fuels 2021, 35 (19), 15424–15454. doi:10.1021/acs.energyfuels.1c02404.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J135) Kim, H.; Jung, J. Y.; Park, K. H.; Linga, P.; Seo, Y.; Wood, C.; Enhanced kinetic performance of amine-infused hydrogels for separating CO2 from CH4/CO2 gas mixture. Energy & Fuels 2021, 35 (17), 13889–13899. doi:10.1021/acs.energyfuels.1c01501.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J134) Gaikwad, N.; Sangwai, J.; Kumar, R.; Linga, P.; CO2-CH4 hydrate formation using L-tryptophan and Cyclooctane employing a conventional stirred-tank reactor. Energy & Fuels 2021, 35 (16), 13224–13239. doi:10.1021/acs.energyfuels.1c01759.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J133) Kumar, A.; Yeo, C.; Kumar, S.; Linga, P.; Calorimetric assessment of ternary methane-carbon dioxide-tetrahydrofuran (CH4-CO2-THF) hydrates: Applicable to storage and transport of CO2 lean natural gas. Energy & Fuels 2021, 35 (16), 13249–13255. doi:10.1021/acs.energyfuels.1c01937.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J132) Kumar, A.; Veluswamy, H. P.; Kumar, S.; Kumar, R.; Linga, P.; In-situ characterization of mixed CH4-THF hydrates formed from seawater: High pressure calorimetric and spectroscopic analysis. Journal of Physical Chemistry C 2021, 125 (30), 16435 – 16443. doi:10.1021/acs.jpcc.1c04483.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J131) Gaikwad, N.; Linga, P.; Sangwai, J.S.; Kumar, R.; Separation of coal mine methane gas mixture via sII and sH hydrate formation. Fuel 2021, 305, 121467. doi:10.1016/j.fuel.2021.121467.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J130)  Bhattacharjee, G.Linga, P.; Amino acids as kinetic promoters for gas hydrate applications: A mini review. Energy & Fuels 2021, 35 (9), 7553-7571. doi:10.1021/acs.energyfuels.1c00502 [Invited review article]A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J129)  Kan, J.; Viriyakul, C.; Inkong, K.; Veluswamy, H. P.; Rangsunvigit, P.; Kulprathipanja, S.; Linga, P.; Enhanced hydrate formation by natural-like hydrophobic side chain amino acids at ambient temperature: A kinetics and morphology investigation. Fuel 2021, 299, 120828. doi:10.1016/j.fuel.2021.120828.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J128)  Zhang, Y.; Bhattacharjee, G.; Linga, P.; A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems. Fluid Phase Equilibria 2021, 540, 113034. doi:10.1016/j.fluid.2021.113034.A robust and highly efficient phase boundary method for determining the thermodynamic equilibrium conditions of bulk gas hydrate systems


(J127)  Yin, Z.; Zheng, J.; Kim, H.; Seo, Y.; Linga, P.; Hydrates for cold energy storage and transport: A Review. Advances in Applied Energy 2021, 2, 100022. doi:10.1016/j.adapen.2021.100022 [Invited review article]


(J126)  He, T.; Zhang, J.; Mao, N.; Linga, P.; Organic Rankine cycle integrated with hydrate-based desalination for a sustainable energy-water nexus system. Applied Energy 2021, 291, 116839. doi:10.1016/j.apenergy.2021.116839.Organic Rankine cycle integrated with hydrate-based desalination for a sustainable energy-water nexus system


(J125)  Veluswamy, H. P.; Linga, P.; Natural gas hydrate formation using saline/seawater for gas storage application. Energy & Fuels 2021, 35 (7), 5988-6002. doi:10.1021/acs.energyfuels.1c00399[Invited submission for a special issue for authors recognised for “Most Cited Articles 2014-2018)]Natural gas hydrate formation using saline/seawater for gas storage application


(J124)  Bhattacharjee, G.; Veluswamy, H. P.; Kumar, A.; Linga, P.; Stability analysis of methane hydrates for gas storage application. Chemical Engineering Journal 2021, 415, 128927. doi:10.1016/j.cej.2021.128927.Stability analysis of methane hydrates for gas storage application


(J123)  Zhang, Q.; Zheng, J.; Zhang, B.; Linga, P.; Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids. Applied Energy 2021, 287, 116576. doi:10.1016/j.apenergy.2021.116576.Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids


(J122)  Khandelwal, H.; Qureshi, M. F.; Zheng, J.; Venkataraman, P.; Barckholtz, T.; Mhadeshwar, A.; Linga, P.; Effect of L-tryptophan in promoting the kinetics of carbon dioxide hydrate formation. Energy & Fuels 2021, 35, 1, 649–658. doi:10.1021/acs.energyfuels.0c03709.Effect of L-tryptophan in promoting the kinetics of carbon dioxide hydrate formation


(J121)  Gaikwad, N.; Bhattacharjee, G.; Sangwai, J. S.; Kumar, R.; Linga, P.; Kinetic and morphology study of an equimolar CO2−CH4 gas hydrate formation in the presence of Cyclooctane and L-Tryptophan. Energy & Fuels  2021, 35, 1, 636–648. doi:10.1021/acs.energyfuels.0c03665Kinetic and Morphology Study of Equimolar CO2–CH4 Hydrate Formation in the Presence of Cyclooctane and l-Tryptophan


(J120)   Gao, Q.; Yin, Z.; Zhao, J.; Yang, D.; Linga, P.; Tuning the fluid production behaviour of hydrate-bearing sediments by multi-stage depressurization. Chemical Engineering Journal 2021, 406, 127174. doi:10.1016/j.cej.2020.127174Tuning the fluid production behaviour of hydrate-bearing sediments by multi-stage depressurization


(J119)   Bhattacharjee, G.; Goh, M. N.; Arumuganainar, S. E. K.; Zhang, Y.; Linga, P.; Ultra-rapid uptake and highly stable storage of methane as combustible ice. Energy & Environmental Science 2020, 13, 4946-4961. doi:10.1039/D0EE02315A[This work has been highlighted in a news article by Chemistry World Magazine, “Additive mixture speeds up process for making combustible ice”; Channel News Asia, “NUS team invents ‘fast and safe’ way to convert natural gas to solid form, says method can boost energy security”; NUS press release, “A fast and safe way to store natural gas”; Highlighted by more than 25 news media outlets]
Ultra-rapid uptake and the highly stable storage of methane as combustible ice


(J118)  Zheng, J.; Chong, Z. R.; Qureshi, M. F.; Linga, P.; Carbon dioxide sequestration via gas hydrates: A potential pathway towards decarbonization. Energy & Fuels 2020, 34 (9), 10529-10546. doi: 10.1021/acs.energyfuels.0c02309[Invited submission]Carbon Dioxide Sequestration via Gas Hydrates: A Potential Pathway toward Decarbonization


(J117)  Veluswamy, H. P.; Bhattacharjee, G.; Liao, J., Linga, P.; Macroscopic kinetic investigations on mixed natural gas hydrate formation for gas storage application. Energy & Fuels 2020, 34 (12), 15257–15269. doi: 10.1021/acs.energyfuels.0c01862[Invited submission for a special issue for Prof Michael Klein, former EiC of Energy & Fuels]

Macroscopic kinetic investigations on mixed natural gas hydrate formation for gas storage application


(J116)  Gaikwad, N.; Bhattacharjee, G.; Kushwaha, O. S.; Sangwai, J. S.; Linga, P.; Kumar, R.; Effect of Cyclooctane and L-tryptophan on hydrate formation from an equimolar CO2-CH4 gas mixture employing a horizontal-tray packed bed reactor. Energy & Fuels 2020, 34 (8), 9840-9851. doi: 10.1021/acs.energyfuels.0c01511.Effect of Cyclooctane and l -Tryptophan on Hydrate Formation from an Equimolar CO-CHGas Mixture Employing a Horizontal-Tray Packed Bed Reactor


(J115)  Yin, Z.; Wan, Q.; Gao, Q.; Linga, P.; Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments. Applied Energy 2020, 271, 115195. doi: 10.1016/j.apenergy.2020.115195.Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments


(J114)  Bhattacharjee, G.; Veluswamy, H. P.; Kumar, R.; Linga, P.; Seawater based mixed methane-THF hydrate formation at ambient temperature conditions. Applied Energy 2020, 271, 115158. doi: 10.1016/j.apenergy.2020.115158[Invited submission for a special issue for ICAE2019 conference]Seawater based mixed methane-THF hydrate formation at ambient temperature conditions


(J113)  Yin, Z.; Zhang, S.; Linga, P.; Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization. Applied Energy 2020, 271, 115229. doi: 10.1016/j.apenergy.2020.115229.Estimation of the thermal conductivity of a heterogeneous CH 4 -hydrate bearing sample based on particle swarm optimization


(J112)  Bhattacharjee, G.; Veluswamy, H. P.; Kumar, R.; Linga, P.; Rapid methane storage via sII hydrates at ambient temperature. Applied Energy 2020, 269, 115142. doi: 10.1016/j.apenergy.2020.115142 [Invited submission for a special issue for ICAE2019 conference]Rapid methane storage via sII hydrates at ambient temperature


(J111)  Babu, P.; Nambiar, A.; Chong, Z. R.; Daraboina, N.; Albeirutty, M.; Bamaga, O. A.; Linga, P.; Hydrate-based desalination (HyDesal) process employing a novel prototype design. Chemical Engineering Science 2020, 218, 115563. doi:10.1016/j.ces.2020.115563Hydrate-based desalination (HyDesal) process employing a novel prototype design


(J110)  He, T.; Chong, Z. R.; Babu, P.; Linga, P.; Techno-economic Evaluation of Cyclopentane Hydrate-Based Desalination with LNG Cold Energy Utilization. Energy Technology 2020, 8 (8), 190212. doi: 10.1016/ente.201900212[Invited submission for a special issue on “Methane and Natural Gas Utilization”]Techno-Economic Evaluation of Cyclopentane Hydrate-Based Desalination with Liquefied Natural Gas Cold Energy Utilization


(J109)  Inkong, K.; Veluswamy, H. P.; Rangsunvigit, P.; Kulprathipanja, S.; Linga, P.; Innovative approach to enhance the methane hydrate formation at near ambient temperature and moderate pressure for gas storage applications. Industrial and Engineering Chemistry Research 2019, 58 (49), 22178–22192. doi: 10.1021/acs.iecr.9b04498.Innovative Approach to Enhance the Methane Hydrate Formation at Near-Ambient Temperature and Moderate Pressure for Gas Storage Applications


(J108)  Inkong, K.; Veluswamy, H. P.; Rangsunvigit, P.; Kulprathipanja, S.; Linga, P.; Investigation on the kinetics of methane hydrate formation in presence of methyl ester sulfonate. Journal of Natural Gas Science and Engineering 2019, 102999. doi: 10.1016/j.jngse.2019.102999.Investigation on the kinetics of methane hydrate formation in the presence of methyl ester sulfonate


(J107)  Yin, Z.; Moridis, G.; Linga, P.; On the importance of phase saturation heterogeneity in the analysis of laboratory studies of hydrate dissociation. Applied Energy 2019, 255, 113861. doi: 10.1016/j.apenergy.2019.113861.On the importance of phase saturation heterogeneity in the analysis of laboratory studies of hydrate dissociation


(J106)  Yin, Z.; Huang, L.; Linga, P.; Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization. Applied Energy 2019, 254, 113635. doi: 10.1016/j.apenergy.2019.113635.Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization


(J105)  Veluswamy, H. P.; Kumar, A.; Kumar, R.; Linga, P.; Investigation of mixed methane hydrate formation kinetics in saline and seawater. Applied Energy 2019, 253, 113515. doi: 10.1016/j.apenergy.2019.113515.[Invited submission for a special issue for ICAE2018 conference]Investigation of the kinetics of mixed methane hydrate formation kinetics in saline and seawater


(J104)  Inkong, K.; Rangsunvigit, P.; Kulprathipanja, S.; Linga, P.; Effect of temperature and pressure on the methane hydrate formation with the presence of tetrahydrofuran (THF) as a promoter in an unstirred tank reactor. Fuel 2019, 255, 115705. doi: 10.1016/j.fuel.2019.115705.Effects of temperature and pressure on the methane hydrate formation with the presence of tetrahydrofuran (THF) as a promoter in an unstirred tank reactor


(J103)  Yin, Z.; Moridis, G.; Chong, Z. R.; Linga, P.; Effectiveness of multi-stage cooling processes in improving the CH4-hydrate saturation uniformity in sandy laboratory samples. Applied Energy 2019, 250, 729-749. doi: 10.1016/j.apenergy.2019.05.077.[Invited submission for a special issue for ICAE2018 conference]Effectiveness of multi-stage cooling processes in improving the CH 4 -hydrate saturation uniformity in sandy laboratory samples


(J102)  Pandey, G.; Veluswamy, H. P.; Sangwai, J.; Linga, P.; Morphology study of mixed methane-tetrahydrofuran hydrates with and without the presence of salt. Energy & Fuels 2019, 33 (6), 4865-4876. doi: 10.1021/acs.energyfuels.9b00490.Morphology study of mixed methane-tetrahydrofuran hydrates with and without the presence of salt


(J101)  Zheng, J.; Loganathan, N.; Zhao, J.; Linga, P.; Clathrate hydrate formation of CO2/CH4 mixture at room temperature: Application to direct transport of CO2-containing natural gas. Applied Energy 2019, 249, 190-203. doi: 10.1016/j.apenergy.2019.04.118.[Invited submission for a special issue for ICAE2018 conference]Clathrate hydrate formation of CO 2 /CH 4 mixture at room temperature: Application to direct transport of CO 2 -containing natural gas


(J100)  Chong, Z. R.; He, T.; Babu, P.; Zheng, J.; Linga, P.; Economic evaluation of energy efficient hydrate based desalination utilizing cold energy from liquefied natural gas (LNG). Desalination 2019, 469, 69-80. doi: 10.1016/j.desal.2019.04.015.Economic evaluation of energy efficient hydrate based desalination utilizing cold energy from liquefied natural gas (LNG)


(J99)    Kumar, A.; Kumar, R.; Linga, P.; Sodium dodecyl sulfate preferentially promotes enclathration of methane in mixed methane-tetrahydrofuran hydrates. iScience 2019, 14, 136-146. doi: 10.1016/j.isci.2019.03.020.Sodium Dodecyl Sulfate Preferentially Promotes Enclathration of Methane in Mixed Methane-Tetrahydrofuran Hydrates


(J98)    Khurana, M.; Veluswamy, H. P.; Daraboina, N.; Linga, P.; Thermodynamic and kinetic modelling of mixed CH4-THF hydrate for methane storage application. Chemical Engineering Journal 2019, 370, 760-771. doi:10.1016/j.cej.2019.03.172.Thermodynamic and kinetic modelling of mixed CH 4 -THF hydrate for methane storage application


(J97)    Nambiar, A.; Babu, P.; Linga, P.; Improved kinetics and water recovery with propane as co-guest gas on the hydrate based desalination (HyDesal) process. ChemEngineering 2019, 3 (1), 31. doi:10.3390/chemengineering3010031.[Invited submission for Dr Babu in-lieu of his 2018 ChemEngineering travel award]

Improved kinetics and water recovery with propane as co-guest gas on the hydrate-based desalination (Hydesal) process


(J96)    Yin, Z.; Linga, P.; Methane hydrates: A future clean energy resource. Chinese Journal of Chemical Engineering 2019, 27 (9), 2026-2036. doi:10.1016/j.cjche.2019.01.005.[Invited Submission for a special issue on Natural Gas Hydrates]Methane hydrates: A future clean energy resource


(J95)    He, T.; Chong, Z. R.; Zheng, J.; Ju, Y.; Linga, P.; LNG Cold Energy Utilization: Prospects and Challenges. Energy 2019, 170, 557-568. doi:10.1016/j.energy.2018.12.170[Invited Review, Listed as a “Highly Cited Paper (top 1% in Engineering field)]LNG cold energy utilization: Prospects and challenges


(J94)    Kumar, A.; Veluswamy, H.P.; Kumar, R*; Linga, P.; Direct use of seawater for rapid methane storage via clathrate (sII) hydrates. Applied Energy 2019, 235, 6984-6994. doi:10.1016/j.apenergy.2018.10.085.Direct use of seawater for rapid methane storage via clathrate (sII) hydrates


(J93)   Kumar, A.; Veluswamy, H.P.; Linga, P.; Kumar, R; Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: Implications to energy storage. Fuel 2019, 236, 1505-1511. doi:10.1016/j.fuel.2018.09.126.Molecular level investigations and stability analysis of mixed methane-tetrahydrofuran hydrates: Implications to energy storage


(J92)    Pandey, G.; Bhattacharjee, G.; Veluswamy, H.P.; Kumar, R; Sangwai, J.; Linga, P.; Alleviation of foam formation in a surfactant driven gas hydrate system: Insights via a detailed morphological study. ACS Applied Energy Materials 2018, 1 (12), 6899-6911. doi: 10.1021/acsaem.8b01307Alleviation of Foam Formation in a Surfactant Driven Gas Hydrate System: Insights via a Detailed Morphological Study


(J91)    Kim, H.; Veluswamy, H.P.; Seo, Y.; Linga, P.; Morphology study on the effect of thermodynamic inhibitors during methane hydrate formation in presence of NaCl Crystal Growth & Design 2018, 18 (11), 6984-6994. doi:10.1021/acs.cgd.8b01161Morphology Study on the Effect of Thermodynamic Inhibitors during Methane Hydrate Formation in the Presence of NaCl


(J90)    Yin, Z.; Moridis, G.; Chong, Z. R.; Tan, H. K.; Linga, P.; Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium. Applied Energy 2018, 230, 444-459. doi:10.1016/j.apenergy.2018.08.115Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium


(J89)    Chong, Z. R.; Moh, J. W. R..; Yin, Z.; Zhao, J.; Linga, P.; Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments. Applied Energy 2018, 229, 637-647. doi:10.1016/j.apenergy.2018.08.020Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments


(J88)    Zheng, J.; Zhang, B.Y.; Wu, Q.; Linga, P.; Kinetic evaluation of cyclopentane as a promoter for CO2 capture via clathrate process employing different contact modes. ACS Sustainable Chemistry & Engineering 2018, 6 (9), 11913–11921. doi:10.1021/acssuschemeng.8b02187Kinetic Evaluation of Cyclopentane as a Promoter for CO Capture via a Clathrate Process Employing Different Contact Modes


(J87)    Babu, P.; Nambiar, A.; He, T.; Karimi, I.A.; Lee, J. D.; Englezos, P.; Linga, P.; A review of clathrate hydrate based desalination to strengthen energy-water nexus. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8093-8107. doi:10.1021/acssuschemeng.8b01616A Review of Clathrate Hydrate Based Desalination to Strengthen Energy-Water Nexus


(J86)    He, T.; Nair, S. K.; Babu, P.; Linga, P.; Karimi, I.A.; A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy. Applied Energy 2018, 222, 13-24. doi:10.1016/j.apenergy.2018.04.006A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy


(J85)    Yin, Z.; Moridis, G.; Tan, H. K.; Linga, P.; Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium. Applied Energy 2018, 220, 681-704. doi:10.1016/j.apenergy.2018.03.075Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium


(J84)    Zheng, J.; Bhatnagar, K.; Khurana, M.; Zhang, P.; Zhang, B.Y.; Linga, P.; Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives Applied Energy 2018, 217, 377-389. doi:10.1016/j.apenergy.2018.02.133 [Invited submission for a special issue for CUE 2017 conference]Semiclathrate based CO 2 capture from fuel gas mixture at ambient temperature: Effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives


(J83)    Veluswamy, H. P.; Kumar, A.; Seo, Y.; Lee, J. D.; Linga, P.; A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy 2018, 216, 262-285. doi:10.1016/j.apenergy.2018.02.059 [Invited submission featured under a special section “Progress in Applied Energy”; Listed as a “Highly Cited Paper (top 1% in Engineering field); 2020 Applied Energy Best Paper Award] A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates


(J82)    Lin, Y.; Veluswamy, H. P.; Linga, P.; Effect of eco-friendly cyclodextrin on the kinetics of mixed methane-tetrahydrofuran hydrate formation. Industrial & Engineering Chemistry Research 2018, 57 (17), 5944-5950. doi:10.1021/acs.iecr.7b05107 [Invited submission for a special issue “PSE Advances in Natural Gas Value Chain”]Effect of Eco-Friendly Cyclodextrin on the Kinetics of Mixed Methane-Tetrahydrofuran Hydrate Formation


(J81)    Chong, Z. R.; Zhao, J.; Chan, J. H. R.; Yin, Z.; Linga, P.; Effect of horizontal wellbore on the production behaviour from marine hydrate bearing sediment. Applied Energy 2018, 214, 117-130. doi:10.1016/j.apenergy.2018.01.072 [Invited submission for a special issue for CUE 2017 conference]Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment


(J80)    Yin, Z.; Khurana, M.; Tan, H.K.; Linga, P.; A review of gas hydrate growth kinetic models Chemical Engineering Journal 2018, 342, 9-29. doi:10.1016/j.cej.2018.01.120 [Invited Review; Listed as a “Highly Cited Paper (top 1% in Engineering field)]A review of gas hydrate growth kinetic models


(J79)    Too, J. L.; Cheng, A.; Khoo, B. C.; Palmer, A.; Linga, P.; Hydraulic fracturing in a penny-shaped crack. Part II: Testing the frackability of methane hydrate-bearing sand. Journal of Natural Gas Science and Engineering 2018, 52, 619-628. doi:10.1016/j.jngse.2018.01.046Hydraulic fracturing in a penny-shaped crack. Part II: Testing the frackability of methane hydrate-bearing sand


(J78)    Too, J. L.; Cheng, A.; Khoo, B. C.; Palmer, A.; Linga, P.; Hydraulic fracturing in a penny-shaped crack. Part I: Methodology and testing of frozen sand. Journal of Natural Gas Science and Engineering 2018, 52, 609-618. doi:10.1016/j.jngse.2017.12.022Hydraulic fracturing in a penny-shaped crack. Part I: Methodology and testing of frozen sand


(J77)    Yin, Z.; Moridis, G.; Chong, Z. R.; Tan, H. K.; Linga, P.; Numerical analysis of experiments on thermally-induced dissociation of methane hydrates in porous media. Industrial and Engineering Chemistry Research 2018, 57 (17), 5776-5791.doi:10.1021/acs.iecr.7b03256 [Invited submission for a special issue “PSE Advances in Natural Gas Value Chain”]Numerical Analysis of Experiments on Thermally Induced Dissociation of Methane Hydrates in Porous Media


(J76)    Kumar, A.; Vedula, S. S.; Kumar, R.; Linga, P.; Hydrate phase equilibrium data of mixed methane-tetrahydrofuran hydrates in saline water. Journal of Chemical Thermodynamics 2018, 117, 2-8. doi:10.1016/j.jct.2017.05.014 [Invited submission for a special issue “Gas Hydrates”]Hydrate phase equilibrium data of mixed methane-tetrahydrofuran hydrates in saline water


(J75)    Khurana, M.; Yin, Z.; Linga, P.; A review of clathrate hydrate nucleation ACS Sustainable Chemistry and Engineering 2017, 5 (12), 11176-11203. doi:10.1021/acssuschemeng.7b03238A review of clathrate hydrate nucleation


(J74)    He, Z.; Linga, P.; Jiang, J.; CH4 hydrate formation between silica and graphite surfaces: Insights from microsecond molecular dynamics simulations Langmuir 2017, 33 (43), 11956-11967. doi:10.1021/acs.langmuir.7b02711CH Hydrate Formation between Silica and Graphite Surfaces: Insights from Microsecond Molecular Dynamics Simulations


(J73)    Veluswamy, H. P.; Kumar, A.; Premasinghe, K.; Linga, P.; Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system. Applied Energy 2017, 207, 573-583. doi:10.1016/j.apenergy.2017.06.101 [Invited submission for a special issue on International Conference on Applied Energy ICAE2016]Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system


(J72)    Veluswamy, H. P.; Lee, P. Y.; Premesinghe, K.; Linga, P.; Effect of bio-friendly amino acids on the kinetics of methane hydrate formation and dissociation. Industrial and Engineering Chemistry Research 2017, 56 (21), 6145-6154. doi:10.1021/acs.iecr.7b00427 [Invited submission for a special issue “2017 Class of Influential Researchers”]Effect of Biofriendly Amino Acids on the Kinetics of Methane Hydrate Formation and Dissociation


(J71)    He, Z.; Linga, P.; Jiang, J.; What are the key factors governing the nucleation of CO2 hydrate? Physical Chemistry Chemical Physics 2017, 19, 15657-15661. doi:10.1039/c7cp01350gWhat are the key factors governing the nucleation of CO hydrate?


(J70)    Chong, Z. R.; Yin, Z.; Tan, J. H. C.; Linga, P.; Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach. Applied Energy 2017, 204, 1513-1525. doi:10.1016/j.apenergy.2017.04.031 [Invited submission for a special issue on International Conference on Applied Energy ICAE2016]Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach


(J69)    Chong, Z. R.; Koh, J. W.; Linga, P.; Effect of KCl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments. Energy 2017, 137, 518-529. doi:10.1016/j.energy.2017.01.154 [Invited submission for a special issue on Sustainable Energy Technologies (SET2016) conference]Effect of KCl and MgCl 2 on the kinetics of methane hydrate formation and dissociation in sandy sediments


(J68)    Pandey, G.; Linga, P.; Sangwai, J.; High pressure rheology of gas hydrate formed from multiphase systems using modified couette rheometer Review of Scientific Instruments 2017, 88 (2), 025102. doi:10.1063/1.4974750High pressure rheology of gas hydrate formed from multiphase systems using modified Couette rheometer


(J67)    Veluswamy, H. P.; Kumar, A.; Kumar, R.; Linga, P. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application Applied Energy 2017, 188, 190-199. doi:10.1016/j.apenergy.2016.12.002 [Listed as a “Highly Cited Paper (top 1% in Engineering field)]An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application


(J66)    Linga, P.; Clarke, M.A.; A review of reactor designs and materials employed for increasing the rate of gas hydrate formation Energy and Fuels 2017, 31 (1), 1-13. doi:10.1021/acs.energyfuels.6b02304  [Listed as a “Highly Cited Paper (top 1% in Engineering field)]A review of reactor designs and materials employed for increasing the rate of gas hydrate formation


(J65)    Yang, M.; Chong, Z. R.; Zheng, J.; Song, Y.; Linga, P.; Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates Renewable and Sustainable Energy Reviews 2017, 74, 1346-1360. doi:10.1016/j.rser.2016.11.161Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates


(J64)    Zheng, J.; Zhang, P.; Linga, P.; Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures Applied Energy 2017, 194, 267-278. doi:10.1016/j.apenergy.2016.10.118 [Invited submission for a special issue on Sustainable Energy Technologies (SET2016) conference; Listed as a “Highly Cited Paper (top 1% in Engineering field)]Semiclathrate hydrate process for pre-combustion capture of CO 2 at near ambient temperatures


(J63)    Kumar, A.; Daraboina, N.; Kumar, R.; Linga, P.; Experimental investigation to elucidate why tetrahydrofuran rapidly promotes methane hydrate formation kinetics: Applicable to energy storage Journal of Physical Chemistry C 2016, 120 (51), 29062-29068. doi:10.1021/acs.jpcc.6b11995Experimental Investigation to Elucidate Why Tetrahydrofuran Rapidly Promotes Methane Hydrate Formation Kinetics: Applicable to Energy Storage


(J62)    He, Z.; Gupta, K.; Linga, P.; Jiang, J.; Molecular insights into the crystal nucleation and growth of CH4 and CO2 mixed hydrates from microsecond simulations Journal of Physical Chemistry C 2016, 120 (44), 25225-25326. doi:10.1021/acs.jpcc.6b07780Molecular Insights into the Nucleation and Growth of CH and CO Mixed Hydrates from Microsecond Simulations


(J61)    Veluswamy, H. P.; Kumar, S.; Kumar, R.; Rangsunvigit, P.; Linga, P.; Morphology study of methane hydrate formation and dissociation in the presence of amino acid. Crystal Growth & Design 2016, 16(10), 5932-5945. doi:10.1021/acs.cgd.6b00997Morphology Study of Methane Hydrate Formation and Dissociation in the Presence of Amino Acid


(J60)    Veluswamy, H. P.; Kumar, S.; Kumar, R.; Rangsunvigit, P.; Linga, P.; Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage. Fuel 2016, 182, 907-919. doi:10.1016/j.fuel.2016.05.068 [Listed as a “Highly Cited Paper (top 1% in Engineering)]Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage


(J59)    Chong, Z. R.; Pujar, G. A.; Yang, M.; Linga, P.; Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery. Applied Energy 2016, 177, 409-421. doi:10.1016/j.apenergy.2016.05.077Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery


(J58)    Yin, Z.; Chong, Z. R.; Tan, H. K.; Linga, P.; Review of gas hydrate dissociation kinetic models for energy recovery. Journal of Natural Gas Science and Engineering 2016, 35, 1362-1387. doi:10.1016/j.jngse.2016.04.050 [Invited submission for a special issue on “Gas Hydrates and Applications” to honor Professor Raj Bishnoi of the University of Calgary; Most Cited Paper recognition in 2019 (this constitutes the top 25 of 3000+ publications in the journal from 2015-2019); Listed as a “Highly Cited Paper (top 1% in Engineering field)]Review of gas hydrate dissociation kinetic models for energy recovery


(J57)    Zheng, J.; Babu, P.; Zhang, P.; Linga, P.; Impact of fixed bed reactor orientation, liquid saturation, bed volume and temperature on the clathrate hydrate process for pre-combustion carbon capture. Journal of Natural Gas Science and Engineering 2016, 35, 1499-1510. doi:10.1016/j.jngse.2016.03.100 [Invited submission for a special issue on “Gas Hydrates and Applications” to honor Professor Raj Bishnoi of the University of Calgary]Impact of fixed bed reactor orientation, liquid saturation, bed volume and temperature on the clathrate hydrate process for pre-combustion carbon capture


(J56)    Kumar, A.; Kushwaha, O. S.; Rangsunvigit, P.; Linga, P.; Kumar, R.; Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: Application in energy storage and transportation. Canadian Journal of Chemical Engineering 2016, 94 (11), 2160-2167. doi:10.1002/cjce.22583 Effect of additives on formation and decomposition kinetics of methane clathrate hydrates: Application in energy storage and transportation


(J55)    Veluswamy, H. P.; Prasad, P. S. R.; Linga, P., Mechanism of methane hydrate formation in the presence of hollow silica. Korean Journal of Chemical Engineering 2016, 33 (7), 2050-2062. doi:10.1007/s11814-016-0039-0 [Invited submission for a special issue dedicated to Professor Huen Lee of KAIST South Korea]Mechanism of methane hydrate formation in the presence of hollow silica


(J54)    Veluswamy, H. P.; Wong, A. J. H.; Babu, P.; Kumar, R.; Kulprathipanja, S.; Rangsunvigit, P.; Linga, P., Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chemical Engineering Journal 2016, 290, 161-173. doi:10.1016/j.cej.2016.01.026 [Listed as a “Highly Cited Paper (top 1% in Engineering Field)]Rapid methane hydrate formation to develop a cost effective large scale energy storage system


(J53)    Chong, Z. R.; Yang, M.; Khoo, B. C.; Linga, P., Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment. Industrial & Engineering Chemistry Research 2016, 55 (29), 7981-7991. doi:10.1021/acs.iecr.5b03908 [Invited submission for a special issue on ICCDU 2015 Conference]Size Effect of Porous Media on Methane Hydrate Formation and Dissociation in an Excess Gas Environment


(J52)    Babu, P.; Ong, H. W. N.; Linga, P., A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide. Energy 2016, 94, 431-442. doi:10.1016/j.energy.2015.11.009A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide


(J51)    Chong, Z. R.; Yang, S. H. B.; Babu, P.; Linga, P.; Li, X.-S., Review of natural gas hydrates as an energy resource: Prospects and Challenges. Applied Energy 2016, 162, 1633-1652. doi:10.1016/j.apenergy.2014.12.061 [Invited Review submission for a special issue for International Conference on Applied Energy (ICAE2014); Listed as a “Highly Cited Paper (top 1% in Engineering field); Listed as a Hot Paper(Top 0.1% in Engineering field); Most Cited Paper recognition in 2018 (this constitutes the top 25 of 7000+ publications in the journal from 2013-2017); “Applied Energy Best Paper Award 2017-2019“]Review of natural gas hydrates as an energy resource: Prospects and challenges


(J50)    Yang, S. H. B.; Babu, P.; Chua, S. F. S.; Linga, P., Carbon dioxide hydrate kinetics in porous media with and without salts. Applied Energy 2016, 162, 1131-1140. doi:10.1016/j.apenergy.2014.11.052 [Invited submission for a special issue for International Conference on Applied Energy (ICAE2014); Listed as a “Highly Cited Paper (top 1% in Engineering field); Listed as a Hot Paper(Top 0.1% in Engineering field)]Carbon dioxide hydrate kinetics in porous media with and without salts


(J49)    Babu, P.; Paricaud, P.; Linga, P., Experimental measurements and modeling of the dissociation conditions of semiclathrate hydrates of tetrabutyl ammonium nitrate and carbon dioxide. Fluid Phase Equilibria 2016, 413, 80-85. doi:10.1016/j.fluid.2015.08.034 [Invited submission for a special issue on “Gas Hydrates and Semiclathrate Hydrates”]Experimental measurements and modeling of the dissociation conditions of semiclathrate hydrates of tetrabutyl ammonium nitrate and carbon dioxide


(J48)    Chong, Z. R.; Chan, A. H. M.; Babu, P.; Yang, M.; Linga, P., Influence of NaCl on methane hydrate formation and dissociation in porous media. Journal of Natural Gas Science and Engineering 2015, 27,178-189. doi:10.1016/j.jngse.2015.08.055Effect of NaCl on methane hydrate formation and dissociation in porous media


(J47)    Lee, J.-M.; Cho, S.-J.; Lee, J.-D.; Linga, P.; Kang, K.-C.; Lee, J.; New insights on the kinetics of methane hydrate formation in a stirred tank reactor coupled with in-situ Raman spectroscopy. Energy Technology 2015, 3 (9), 925-934. doi:10.1002/ente.201500066Insights into the Kinetics of Methane Hydrate Formation in a Stirred Tank Reactor by InSitu Raman Spectroscopy


(J46)   Veluswamy, H. P.; Ang, W. J.; Zhao, D.; Linga, P.; Influence of cationic and non-ionic surfactants on the kinetics of mixed hydrogen/tetrahydrofuran hydrates. Chemical Engineering Science 2015, 132, 186-199. doi:10.1016/j.ces.2015.03.061Influence of cationic and non-ionic surfactants on the kinetics of mixed hydrogen/tetrahydrofuran hydrates


(J45)    Babu, P.; Linga, P.; Kumar, R.; Englezos, P.; A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy 2015, 85, 261-279. doi:10.1016/j.energy.2015.03.103 [Invited Review; Listed as a “Highly Cited Paper” (top 1% in Engineering field); Listed as a “Hot Paper” (top 0.1% in Engineering field); Most Cited Paper in 2018 (this constitutes the top 25 of 6000+ publications in the journal from 2013-2017)]A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture


(J44)    Nambiar, A.; Babu, P.; Linga, P.; CO2 capture using the clathrate hydrate process employing cellulose foam as a porous media. Canadian Journal of Chemistry 2015, 93 (8), 808-814. doi:10.1139/cjc-2014-0547 [Invited submission for a special issue dedicated to Dr. John Ripmeester of National Research Council Canada]CO capture using the clathrate hydrate process employing cellulose foam as a porous media


(J43)    Veluswamy, H. P.; Chen, J. Y.; Linga, P.; Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates. Chemical Engineering Science 2015, 126, 488-499. doi:10.1016/j.ces.2014.12.052Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates


(J42)    Siangsai, A.; Rangsunwigit P.; Kitiyanan, B.; Kulaprathipanja, S.; Linga, P.; Investigation on the Roles of Activated Carbon Particle Sizes on Methane Hydrate Formation and Dissociation. Chemical Engineering Science 2015, 126, 383-389. doi:10.1016/j.ces.2014.12.047Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation


(J41)    Loh, M.; Too, J. L.; Falser, S.; Linga, P.; Khoo, B. C.; Palmer, A.; Gas production from methane hydrates in a dual wellbore system. Energy & Fuels 2015, 29 (1), 35-42. doi:10.1021/ef501769rGas production from methane hydrates in a dual wellbore system


(J40)    Veluswamy, H. P.; Yew, J. C.; Linga, P.; New hydrate phase equilibrium data for two binary gas mixtures of hydrogen and propane coupled with kinetic study. Journal of Chemical & Engineering Data 2015, 60 (2), 228-137. doi:10.1021/je500489d [Invited submission for a special issue on gas hydrates, dedicated to Professor E. Dendy Sloan’s 70th birthday]New hydrate phase equilibrium data for two binary gas mixtures of hydrogen and propane coupled with a kinetic study


(J39)    Kumar, A.; Sakpal, T.; Linga, P.; Kumar, R.; Enhanced Carbon Dioxide Hydrate Formation Kinetics in a Fixed Bed Reactor Filled with Metallic Packing. Chemical Engineering Science 2015, 122, 78-85. doi:10.1016/j.ces.2014.09.019Enhanced carbon dioxide hydrate formation kinetics in a fixed bed reactor filled with metallic packing


(J38)    Babu, P.; Datta, S.; Kumar, R.; Linga, P.; Impact of experimental pressure and temperature on semiclathrate hydrate formation for pre-combustion capture of CO2 using tetra-n-butyl ammonium nitrate. Energy 2014, 78, 458-464. doi:10.1016/j.energy.2014.10.033Impact of experimental pressure and temperature on semiclathrate hydrate formation for pre-combustion capture of CO 2 using tetra-n-butyl ammonium nitrate


(J37)    Kang, K. C.; Linga, P.; Park, K.-N.; Choi, S.-J.; Lee, J.-D.; Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl, SO42-). Desalination 2014, 353, 84-90. doi:10.1016/j.desal.2014.09.007 [Most Cited Paper recognition in 2019 (this constitutes the top 25 most cited of 2000+ publications in the journal from 2014-2018)]Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na + , K + , Mg 2+ , Ca 2+ , B 3+ , Cl − , SO 4 2− )


(J36)    Babu, P.; Kumar, R.; Linga, P.; Unusual behavior of propane as a co-guest during hydrate formation in silica sand: Potential application to seawater desalination and carbon dioxide capture. Chemical Engineering Science 2014, 117, 342-351. doi:10.1016/j.ces.2014.06.044Unusual behavior of propane as a co-guest during hydrate formation in silica sand: Potential application to seawater desalination and carbon dioxide capture


(J35)    Kumar, A.; Sakpal, T.; Linga, P.; Kumar, R.; Impact of Fly Ash Impurity on the Hydrate Based Gas Separation Process for Carbon Dioxide Capture from a Flue Gas Mixture. Industrial & Engineering Chemistry Research 2014, 53 (23), 9849-9859. doi:10.1021/ie5001955Impact of fly ash impurity on the hydrate-based gas separation process for carbon dioxide capture from a flue gas mixture


(J34)    Babu, P.; Ho, C. Y.; Kumar, R.; Linga, P.; Enhanced kinetics for the clathrate process in a fixed bed reactor in the presence of liquid additives for pre-combustion carbon dioxide capture. Energy 2014, 70, 664-673. doi:10.1016/j.energy.2014.04.053Enhanced kinetics for the clathrate process in a fixed bed reactor in the presence of liquid promoters for pre-combustion carbon dioxide capture


(J33)    Veluswamy, H. P.; Yang, T.; Linga, P.; Crystal growth of hydrogen/tetra-n-butylammonium bromide semiclathrates based on morphology study. Crystal Growth & Design 2014, 14 (4), 1950-1960. doi:10.1021/cg500074c


(J32)    Mekala, P.; Babu, P.; Sangwai, J.; Linga, P.; Formation and Dissociation Kinetics of Methane Hydrates in Seawater and Silica Sand. Energy & Fuels 2014, 28 (4), 2708-2716. doi:10.1021/ef402445kFormation and dissociation kinetics of methane hydrates in seawater and silica sand


(J31)    Babu, P.; Chin, W. I.; Kumar, R.; Linga, P.; Systematic evaluation of tetra-n-butyl ammonium bromide (TBAB) for carbon dioxide capture employing the clathrate process. Industrial & Engineering Chemistry Research 2014, 53 (12), 4878-4887. doi:10.1021/ie4043714Systematic evaluation of tetra-n-butyl ammonium bromide (TBAB) for carbon dioxide capture employing the clathrate process


(J30) Babu, P.; Yao, M.; Datta, S.; Kumar, R.; Linga, P.; Thermodynamic and kinetic verification of tetra-n-butyl ammonium nitrate (TBANO3) as a promoter for the clathrate process applicable to pre-combustion carbon dioxide capture. Environmental Science & Technology 2014, 48 (6), 3550-3558. doi:10.1021/es4044819Thermodynamic and kinetic verification of tetra-n-butyl ammonium nitrate (TBANO) as a promoter for the clathrate process applicable to precombustion carbon dioxide capture


(J29) Veluswamy, H. P.; Kumar, R.; Linga, P.; Hydrogen storage in clathrate hydrates: Current state of the art and future directions. Applied Energy 2014, 122, 112-132. doi:10.1016/j.apenergy.2014.01.063 [Listed as a “Highly Cited Paper (top 1% in Engineering field); Listed as a Hot Paper(top 0.1% in Engineering field); “2015 Applied Energy Award”]Hydrogen storage in clathrate hydrates: Current state of the art and future directions


(J28) Veluswamy, H. P.; Chin, W. I.; Linga, P.; Clathrate hydrates for hydrogen storage: The impact of tetrahydrofuran, tetra-n-butylammonium bromide and cyclopentane as promoters on the macroscopic kinetics. International Journal of HydrogenEnergy 2014, 39 (28), 16234-16243. doi:10.1016/j.ijhydene.2014.01.054Clathrate hydrates for hydrogen storage: The impact of tetrahydrofuran, tetra-n-butylammonium bromide and cyclopentane as promoters on the macroscopic kinetics


(J27) Babu, P.; Kumar, R.; Linga, P.; A new porous material to enhance the kinetics of clathrate process: Application to pre-combustion carbon dioxide capture. Environmental Science & Technology 2013, 47 (22), 13191-13198. doi:10.1021/es403516fA new porous material to enhance the kinetics of clathrate process: Application to precombustion carbon dioxide capture


(J26) Ho, L. C.; Babu, P.; Kumar, R.; Linga, P.; HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane. Energy 2013, 63, 252-259. doi:10.1016/j.energy.2013.10.031 [Listed as a “Highly Cited Paper (top 1% in Engineering field)]HBGS (hydrate based gas separation) process for carbon dioxide capture employing an unstirred reactor with cyclopentane


(J25) Babu, P.; Kumar, R.; Linga, P.; Medium pressure hydrate based gas separation (HBGS) process for pre-combustion capture of carbon dioxide employing a novel fixed bed reactor. International Journal of Greenhouse Gas Control 2013, 17, (5), 206-214.doi:10.1016/j.ijggc.2013.05.010 [Listed as a “Highly Cited Paper (Top 1% in Engineering field); Listed as a Hot Paper(top 0.1% in Engineering field); “Most Cited Paper” recognition in 2018 (for 2013-2017), in 2017 (for 2012-2017) (this constitutes the top 25 of 1600+ publications in the journal for the five year period)]Medium pressure hydrate based gas separation (HBGS) process for pre-combustion capture of carbon dioxide employing a novel fixed bed reactor


(J24) Babu, P.; Yee, D.; Linga, P.; Palmer, A.; Khoo, B. C.; Tan, T. S.; Rangsunwigit, P., Morphology of methane hydrate formation in porous media. Energy & Fuels 2013, 27, (6), 3364-3372. doi:10.1021/ef4004818Morphology of methane hydrate formation in porous media


(J23) Lim, Y.-A.; Babu, P.; Kumar, R.; Linga, P.; Morphology of Carbon Dioxide–Hydrogen–Cyclopentane Hydrates with or without Sodium Dodecyl Sulfate. Crystal Growth & Design 2013, 13, (5), 4587-4596. doi:10.1021/cg400118pMorphology of carbon dioxide-hydrogen-cyclopentane hydrates with or without sodium dodecyl sulfate


(J22) Babu, P.; Yang, T.; Veluswamy, H. P.; Kumar, R.; Linga, P.; Hydrate phase equilibrium of ternary gas mixtures containing carbon dioxide, hydrogen and propane. Journal of Chemical Thermodynamics 2013, 61, 58-63. doi:10.1016/j.jct.2013.02.003Hydrate phase equilibrium of ternary gas mixtures containing carbon dioxide, hydrogen and propane


(J21) Daraboina, N.; Linga, P.; Experimental investigation of the effect of poly-N-vinyl pyrrolidone (PVP) on methane/propane clathrates using a new contact mode. Chemical Engineering Science 2013, 93, 387-394. doi:10.1016/j.ces.2013.02.011Experimental investigation of the effect of poly- N -vinyl pyrrolidone (PVP) on methane/propane clathrates using a new contact mode


(J20) Veluswamy, H. P.; Linga, P.; Macroscopic Kinetics of hydrate formation of mixed hydrates of hydrogen/tetrahydrofuran for hydrogen storage. International Journal of Hydrogen Energy 2013, 38, (11), 4587–4596. doi:10.1016/j.ijhydene.2013.01.123 [Listed as a “Highly Cited Paper(Top 1% in Engineering)]Macroscopic kinetics of hydrate formation of mixed hydrates of hydrogen/tetrahydrofuran for hydrogen storage


(J19) Babu, P.; Kumar, R.; Linga, P.; Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process. Energy 2013, 50, 364-373. doi:10.1016/j.energy.2012.10.046 [Listed as a “Highly Cited Paper(Top 1% in Engineering field); Listed as a Hot Paper (top 0.1% in Engineering field); “Most Cited Paper” recognition in 2018 (2013-2017) and in 2017 (2012-2016) (this represents top 25 among 6000+ publications in the journal for the five year period); Highlighted by Elsevier in a virtual special issue on Chemistry and Materials for Energy.Pre-combustion capture of carbon dioxide in a fixed bed reactor using the clathrate hydrate process


(J18) Kumar, A.; Sakpal, T.; Linga, P.; Kumar, R.; Influence of contact medium and surfactants on carbon dioxide clathrate hydrate kinetics. Fuel 2013, 105, (3), 664-671. doi:10.1016/j.fuel.2012.10.031 [Listed as a “Highly Cited Paper (Top 1% in Engineering field)]Influence of contact medium and surfactants on carbon dioxide clathrate hydrate kinetics


(J17) Kanagasabapathy, M.; Ramesh Bapu, G. N. K.; Linga, P.; Gnanamuthu, R. M. Numerical Modeling on Non-enzymatic, Potentiometric Glucose Sensor. Portugaliae Electrochimica Acta 2012, 30 (4), 294-306. doi:10.4152/pea.201204295Numerical modeling on non-enzymatic, potentiometric glucose sensor


(J16) Loh, M.; Falser, S.; Babu, P.; Linga, P.; Palmer, A.; Tan, T. S.; Dissociation of Fresh- And Seawater Hydrates along the Phase Boundaries between 2.3 and 17 MPa. Energy & Fuels 2012, 26, (10), 6240-6246. doi:10.1021/ef3008954Dissociation of fresh- and seawater hydrates along the phase boundaries between 2.3 and 17 MPa


(J15) Linga, P.; Daraboina, N.; Ripmeester, J. A.; Englezos, P.; Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel. Chemical Engineering Science 2012, 68, (1), 617-623. doi:10.1016/j.ces.2011.10.030 [“Most Cited Paper recognition in 2015 (for 2010-2014), in 2016 (for 2011-2015) & in 2017 (for 2012-2016). This constitutes the top 25 of 4000+ publications in the journal for the five-year period]Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel


(J14) Daraboina, N.; Linga, P.; Ripmeester, J.; Walker, V. K.; Englezos, P.; Natural Gas Hydrate Formation and Decomposition in the Presence of Kinetic Inhibitors. 2. Stirred Reactor Experiments. Energy & Fuels 2011, 25, (10), 4384-4391. doi:10.1021/ef200813vNatural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 2. Stirred reactor experiments


(J13) Yoslim, J.; Linga, P.; Englezos, P.; Enhanced growth of methane – propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants. Journal of Crystal Growth 2010, 313, (1), 68-80. doi:10.1016/j.jcrysgro.2010.10.009Enhanced growth of methane–propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants


(J12) Linga, P.; Kumar, R.; Lee, J. D.; Ripmeester, J. A.; Englezos, P.; A new large scale apparatus to enhance the rate of gas hydrate formation: application to capture of carbon dioxide. International Journal of Greenhouse Gas Control 2010, 4, (4), 630-637. doi:10.1016/j.ijggc.2009.12.014 [“Most Cited Paper recognition in 2015 (This constitutes the top 25 among 1000+ publications from 2010-2014); Listed as a “Highly Cited Paper (Top 1% in Engineering field)]A new apparatus to enhance the rate of gas hydrate formation: Application to capture of carbon dioxide


(J11) Lee, H. J.; Lee, J. D.; Linga, P.; Englezos, P.; Kim, Y. S.; Lee, M. S.; Kim, Y. D.; Gas hydrate formation process for pre-combustion capture of carbon dioxide. Energy 2010, 35, (6), 2729-2733. doi:10.1016/j.energy.2009.05.026 [Listed as a “Highly Cited Paper (Top 1% in Engineering field)]Gas hydrate formation process for pre-combustion capture of carbon dioxide


(J10) Haligva, C.; Linga, P.; Ripmeester, J. A.; Englezos, P.; Recovery of Methane from a Variable-Volume Bed of Silica Sand/Hydrate by Depressurization. Energy & Fuels 2010, 24, (5), 2947-2955. doi:10.1021/ef901220mRecovery of methane from a variable-volume bed of silica sand/hydrate by depressurization


(J9) Adeyemo, A.; Kumar, R.; Linga, P.; Ripmeester, J.; Englezos, P.; Capture of CO2 from flue or fuel gas mixtures by clathrate crystallization in a silica gel column. International Journal of Greenhouse Gas Control 2010, 4, (3), 478-485. doi:10.1016/j.ijggc.2009.11.011Capture of carbon dioxide from flue or fuel gas mixtures by clathrate crystallization in a silica gel column


(J8) Linga, P.; Haligva, C.; Nam, S.-C.; Ripmeester, J. A.; Englezos, P.; Recovery of methane from hydrate formed in a variable volume bed of silica sand particles. Energy & Fuels 2009, 23, (11), 5508–5516. doi:10.1021/ef900543vRecovery of methane from hydrate formed in a variable volume bed of silica sand particles


(J7) Linga, P.; Haligva, C.; Nam, S.-C.; Ripmeester, J. A.; Englezos, P.; Gas hydrate formation in a variable volume bed of silica sand particles. Energy & Fuels 2009, 23, (11), 5496–5507. doi:10.1021/ef900542mGas hydrate formation in a variable volume bed of silica sand particles


(J6) Kumar, R.; Linga, P.; Ripmeester, J., A.; Englezos, P.; A two-stage clathrate hydrate/membrane process for pre-combustion capture of carbon dioxide and hydrogen. Journal of Environmental Engineering 2009, 135, (6), 411-417. doi:10.1061/(ASCE)EE.1943-7870.0000002Two-stage clathrate hydrate/membrane process for precombustion capture of carbon dioxide and hydrogen


(J5) Kumar, R.; Linga, P.; Moudrakovski, I.; Ripmeester, J. A.; Englezos, P.; Structure and kinetics of gas hydrates from methane/ethane/propane mixtures relevant to the design of natural gas hydrate storage and transport facilities. AIChE Journal 2008, 54, (8), 2132-2144. doi:10.1002/aic.11527Structure and kinetics of gas hydrates from methane/ethane/propane mixtures relevant to the design of natural gas hydrate storage and transport facilities


(J4) Linga, P.; Adeyemo, A.; Englezos, P.; Medium-Pressure Clathrate Hydrate/Membrane Hybrid Process for Postcombustion Capture of Carbon Dioxide. Environmental Science & Technology 2008, 42, (1), 315-320. doi:10.1021/es071824kMedium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide


(J3) Linga, P.; Kumar, R.; Englezos, P.; The clathrate hydrate process for post and pre-combustion capture of carbon dioxide. Journal of Hazardous Materials 2007, 149, (3), 625-629. doi:10.1016/j.jhazmat.2007.06.086 [Listed as a “Highly Cited Paper (Top 1% in Engineering field)]The clathrate hydrate process for post and pre-combustion capture of carbon dioxide


(J2) Linga, P.; Kumar, R.; Englezos, P.; Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chemical Engineering Science 2007, 62, (16), 4268-4276. doi:10.1016/j.ces.2007.04.033 [“Most Cited Paper recognition in 2012 (This constitutes the top 25 most cited among 3000+ publications from 2007-2011)]Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures


(J1) Linga, P.; Al-Saifi, N.; Englezos, P.; Comparison of the Luus-Jaakola optimization and Gauss-Newton methods for parameter estimation in ordinary differential equation models. Industrial & Engineering Chemistry Research 2006, 45, (13), 4716-4725. doi:10.1021/ie060051qComparison of the Luus-Jaakola optimization and Gauss-Newton methods for parameter estimation in ordinary differential equation models