Category: anti-asthma drugs

Why is monotherapy with LABAs contraindicated in asthma?

Why is the chronic use of long-acting beta agonists (LABAs) alone without the concomitant use of an inhaled corticosteroid contraindicated in asthma? What about short-acting beta agonists (SABAs), can they be used without taking an inhaled corticosteroid at the same time?

Activation of β2-adrenoceptor promotes bronchodilation. β2-adrenoceptor agonists are the most potent bronchodilators in current clinical use. Inhaled short-acting beta agonists (SABAs), for example salbutamol (known as albuterol in the USA) have a bronchodilator effect that lasts for 4 to 6 hours, while long-acting beta agonists (LABAs), for example salmeterol, have a  bronchodilator effect that lasts for 12 to 24 hours (depending upon the drug). SABAs are used to relieve acute bronchoconstriction. Use of a SABA can be a life-saving intervention during an asthma attack. In contrast, LABAs are used chronically to mainain bronchodilation improving airway function and controlling occurance of symptoms.

Chronic use of LABAs causes tolerance due to downregulation of β2-adrenoceptors. This is associated with an increased risk of mortality in patients with asthma. Therefore the use of LABAs alone is contraindicated. The downregulation of β2-adrenoceptors by chronic use of LABAs can impair the response to SABAs when they are need for acutre relief of symptoms during an asthma attack.

Continue reading

Can ipratropium produce bradycardia not tachycardia?

Ipratropium is a muscarinic antagonist used as a bronchodilator in the treatment of chronic obstructive pulmonary disease and asthma. Parasympathetic nervous system activation of M2 receptors in the heart slows the heart but the adverse effects of the muscarinic receptor antagonist, ipratropium, reported by patients can include bradycardia (slowing of the heart). How is this possible?

The parasympathetic nervous innervation of the heart releases acetylcholine, which acts at M2 receptors to slow the heart rate. Thus, muscarinic acetylcholine receptors antagonists, such as atropine, are expected to induce tachycardia (increase the heart rate).  Indeed, they do this at high doses. However, there is a balance between the sympathetic and parasympathetic branches of our autonomic nervous system. If we block the parasympathetic nervous system with a muscarinic receptor antagonist, such as atropine, our body tries to compensate by down-regulating the sympathetic nervous system.  With low doses of muscarinic receptor antagonists, this compensatory down-regulation of the sympathetic nervous system can be sufficient or even overshoot resulting in bradycardia. However, at higher doses of muscarinic receptor antagonists, the compensatory effect is no longer enough, and the parasympatholytic tachycardia dominates.

When delivered by inhalation for the relief of bronchoconstriction, very little ipratropium escapes into the systemic circulation. Thus, the doses reaching the heart are low doses. The compensatory mechanism is in action, and we may see compensatory bradycardia rather than tachycardia. In fact, in normal clinical use, so little inhaled ipratropium escapes into the systemic circulation that even bradycardia is a rare side effect. Of course, in patients with other risk factors, at higher doses, or if administered orally, we need to look out for the risk of tachycardia.

Cromoglycate and Amiodarone

The surprising connection between cromoglycate and amiodarone

Cromoglycate is a mast cell stabiliser administered by inhalation as a preventer in the prophylactic control of asthma. It is also used for prophylactic control of allergic rhinitis and allergic conjunctivitis. Amiodarone is a  class III antiarrhythmic agent, which prolongs repolarization of the cardiac action potential thus increasing the cardiac action potential duration.

Pharmacologically there is no obvious connection between cromoglycate and amiodarone. However, both drugs were first synthesised as derivatives of khellin the active ingredient obtained from plant extracts of khella (Ammi visnaga).

© 2024 PharmaNUS

Theme by Anders NorenUp ↑

Skip to toolbar