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Lecture 1: Review of Probability Theory

Lecturer: LIN Zhenhua ST5215 AY2019/2020 Semester I

1.1 Topological Spaces and Continuity

Topology

• It is well known that, the interval of the form (a, b) ⊂ R is called an open interval, while

the interval[a, b] is called an closed interval. We also learn that a function f : R → R is

continuous, if for every x ∈ R, for every ε > 0, there exists a δ > 0 such that, for all y ∈ R
satisfying |y−x| < δ, then |f(x)−f(y)| < ε. All these concepts, open, closed and continuous,

are topological concepts.

• In fact, in topoloyg, one concerns with the properties that are preserved/invariant under

continuous deformations/functions.

• Sometimes, one needs to deal with objects other than real numbers or even Euclidean space

Rd. It is important to generalize these concepts to general spaces. The generalization in

turn will deepen our understanding of the usual Euclidean spaces.

• We brie�y review some basic topological concepts in their most general form. Further infor-

mation about topology can be found in Munkres (2000).

De�nition 1.1. A topology on a set S is a collection T of subsets of S such that

1. The empty set is in T , i.e. ∅ ∈ T ;

2. If A ⊂ T , then ⋃A∈AA ∈ T ;
3. If A ⊂ T and the cardinality of A is �nite, then

⋂
A∈AA ∈ T .

S is called a topological space if a topology on it has been speci�ed. Elements in T (recall that

these elements are subsets of S) are called open sets. If A is an open set, then its complement Ac

is called a closed set.

• Note that, a topology has two components

� a set of objects (S in the above de�ntion), and

� a structure (T in the above de�ntion) about the set.

• This pattern is very common in mathematics: a space is often a set of objects endowed with

certain structure.
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• Notationally, the component T is often omitted if it is clear from the context.

• Given a set S, how to introduce a topology T on it?

� approach 1: Enumerate all open sets, and make sure they satisfy the conditions listed

in De�nition (1.1).

� approach 2: Declare some �seed� subsets of S as open sets and then specify a topology

on S as the �smallest� topology containing the seed subsets.

� These seed subsets are called basis elements and the collection of basis elements are call

a basis for the topology it induces.

De�nition 1.2. A basis for a set S is a collection B of subsets of S such that

1. If x ∈ S, then there is B ∈ B such that x ∈ B;

2. If x ∈ B1 ∩B2 and B1, B2 ∈ B, then there exists B3 ∈ B such that B3 ⊂ B1 ∩B2.

The elements in B are called basis elements.

• Let B be a basis for S, and de�ne T to be the collection of all unions of elements of B. One
can check that T is a topology on S.

• �Smallest�: if G is a topology on S such that B ⊂ G, then T ⊂ G.

• We say that T is generated by the basis B.

Example 1.3. Let S = R and B = {(a, b) : −∞ < a < b < +∞}. We can check that B is a basis.

The topology generated by B is the standard/canonical topology on the real line R.

Example 1.4. Let S = Rd and Bx(ε) = {y ∈ Rd : ‖x − y‖2 < ε}. The topology generated by

B = {Bx(ε) : x ∈ Rd, ε > 0} is called the standard/canonical topology on Rd.

• When we talk about Rd, by default, we assume the standard topology on it.

Continuous Functions

• In multivariate calculus, we learned continuous functions f : Rd → R via the δ − ε language

• From the perspective of topology, they are indeed functions between two topological spaces,

namely, Rd and R

• More generally, consider functions f : S → V between two general topological spaces (S, T )

and (V,V).

• De�ne f−1(B) = {x ∈ S : f(x) ∈ B}, called the preimage of B under f
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De�nition 1.5. A function f : S → V between topological spaces (S, T ) and (V,V) is continuous

if and only if for any open set B ∈ V, the preimage f−1(B) belongs to T , i.e. f−1(B) ∈ T . If f is

bijective and both f and its inverse f−1 are continuous, then we say f is a homeomorphism.

• We say S is homeomorphic to V if there exists a homeomorphism between them.

• Homeomorphic spaces share the same topological properties.

• Topological properties are properties that are invariant under continuous deformation/functions.

• For example, compactness is a topological property, and a continuous function f preserves

compactness.

De�nition 1.6. A collection A of subsets of S is said to cover A, or to be a covering of A, if

A ⊂ ⋃A. If A is a covering of A and all elements in A are open, then A is an open covering of A.

A subset A of S is said to be compact if every open covering of A contains a �nite subcollection

that also covers A.

• Examples of compact subsets of R (endowed with the canonical topology) are closed intervals

of the form [a, b].

• In fact, all closed subsets of �nite diameter of Rd are compact.

• We already know that if f : [a, b]→ R is continuous, then f has a maximum and a minimum

value on [a, b].

• This generalizes to any compact subset of a general topological space: If f : A → R is

continuous and A ⊂ S is compact, then f attains its extreme value (either maximum or

minimum) at some element of A.

1.2 Measure Spaces, Borel Sets and Probability Spaces

• Probability theory is essential for mathematical statistics, and is based on measure theory.

• We now brie�y introduce some general concepts from measure theory and then specialize

them to probability theory.

• Let Ω be a set of objects. In probability theory, this will be our sample space. For the

moment, we treat it as a general set of objects.

• Now, we want to measure the �size� of subsets of Ω.

� For example, if Ω = R and A = [a, b], then the size of A is naturally de�ned as its length

b− a.
� If Ω = R2 and A is a polygon, we can measure its size by its area.
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� Similarly, if Ω = R3 and A is a bounded subset, we might measure its size by its volume.

• In all of these examples, the measure is a set function ν that maps a subset of R, R2 or R3

to a (nonnegative) real number

� e.g. ν([a, b]) = b− a

• Generalize this concept to a set of general objects? In�nite ways to do so!

• But, what properties we expect from such a generalization?

� What do we expect from �size�?

• Intuition 1 (�nite additivity): if A ⊂ Ω and B ⊂ Ω are disjoint, then the size of their union

A ∪B shall be equal to the sum of the size of A and the size of B.

� If A ∩B = ∅, then ν(A) + ν(B) = ν(A ∪B)

� More generally, if A1, . . . , Ak are disjoint, then
∑k
i=1 ν(Ai) = ν

(⋃k
i=1Ai

)
.

• Intuition 2 (�empty� has zero measure): ν(∅) = 0.

• Attempt: de�ne measure ν on S as a set function satisfying the above intuitions.

• In addition, when S = R,R2,R3, . . ., the length/area/volume shall be a measure

• One quick question: can we de�ne measure ν for all subsets of S? In other words, can we

measure the �size� of each subset of S, while the above two intuitions still hold? The answer

is

� yes, if the set S is countable

� no, if the set is uncountable

• Why?

� important feature of length/area/volume: the congruence invariance. For example, for

Ω = R3, m(A) = m(x+A) for all x ∈ R3, where m denotes the volume.

• Banach-Tarski Paradox: this provides an example that not every subset of R3 has a Lebesgue

measure: A ball B in R3 can be partitioned into two disjoint subsets B1 and B2 such that,

each of this subsets can be further divided into several pieces, and these pieces, after some

translation, rotation and re�ection operations, together form a new ball that is identical to

the original ball. This implies that, B = B1 ∪B2 and m(B) = m(B1) = m(B2)!

� This paradox implies that we cannot de�ne volume for every subset of R3.

• We are forced to declare some subsets to have volume and some not. Those with volume are

called measurable subsets.
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• More generally, before we can measure the size of subsets of a general set Ω, we need to

specify which subsets are measurable, and these measurable subsets shall allow us to de�ne

a �measure� on them, e.g. a measure that satis�es �nite additivity.

De�nition 1.7. A collection F of subsets of a set Ω is called a σ-�eld (or σ-algebra) if

1. ∅ ∈ F ,

2. if A ∈ F , then Ac ∈ F ,

3. if Ai ∈ F for i = 1, 2, . . . ,then
⋃
Ai ∈ F .

A pair (Ω,F) of a set Ω and a σ-�eld F on it is called a measurable space.

De�nition 1.8. A (positive) measure ν on a measurable space (Ω,F) is a nonnegative function

ν : F → R such that

1. (nonnegativity) 0 ≤ ν(A) ≤ ∞ for all A ∈ F ,

2. (empty is zero) ν(∅) = 0, and

3. (σ-additivity):
∑∞
i=1 ν(Ai) = ν (

⋃∞
i=1Ai) if Ai ∈ F for i = 1, 2, . . . and A1, A2, . . . are

disjoint.

The triple (Ω,F , ν) is called a measure space.

• There are many ways to de�ne a σ-�eld and a measure on a given set.

• For R, we want open intervals (a, b) to be measurable and the measure is b− a.

• More generally, we want all open sets to be measurable. The �smallest� σ-�eld that contains

all open sets of R is called the Borel σ-�eld.

• This generalizes to any topological space: For a topological space S, the smallest σ-�eld

containing all open sets is called the Borel σ-�eld of S. The elements of a Borel σ-�eld are

called Borel sets.

Exercise 1.9. Let A be a collection of subsets of Ω. Show that there exists a σ-�eld F such that

A ⊂ F and if E is a σ-�eld that also contains A, then F ⊂ E . In this sense, such σ-�eld is the

smallest one containing A. It is often denoted by σ(A) and said to be generated by A.

Example 1.10 (Lebesgue measure on R). Let B be the Borel σ-�eld on R. By de�nition, this is

the smallest σ-�eld that contains all open sets ofR. There exists a unique measurem on (R,B) that

satis�es m([a, b]) = b− a. This is called the Lebesgue measure on R. It is the standard/canonical
measure on R. When R is mentioned, without otherwise explicitly mentioned, it is by default

endowed with such Borel σ-�eld and Lebesgue measure.
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• Note that m({a}) = 0 for any a ∈ R

• More generally, m(A) = 0 if A is countable (note that any countable set of R is measurable)

Example 1.11 (Counting measure). Let F be the collection of all subsets of Ω, and ν(A) = |A|
if |A| <∞ and ν(A) =∞ if |A| =∞. This measure is called the counting measure on (Ω,F).

Example 1.12 (Point mass). Let x ∈ Ω be a �xed point. De�ne

δx(A) =

1 x ∈ A,
0 x 6∈ A.

• How to introduce a measure on a product space Ω1 × · · · × Ωd, like, Rd = R× · · · × R?

• For a product space Ω1 × · · · × Ωd,where each Ωi is endowed with a σ-�eld Fi, the σ-�eld
generated by

∏d
i=1 Fi = {A1 × · · ·Ad : Ai ∈ Fi} is called the product σ-�eld.

• For Rd, the product σ-�eld is the same as its Borel σ-�eld.

• A measure ν on (Ω,F) is said to be σ-�nite if there exists a countable number of measurable

sets A1, A2, . . . such that
⋃
Ai = Ω and ν(Ai) <∞ for all i.

• The Lebesgue measure is clearly σ-�nite, since R =
⋃
Ai with Ai = [−i, i] and m(Ai) = 2i <

∞.

Proposition 1.13. Suppose (Ωi,Fi, νi), i = 1, 2, . . . , d, are measure spaces and ν1, . . . , νd are all

σ-�nite. There exists a unique σ-�nite measure on the product σ-�eld, denoted by ν1 × · · · × νd,
such that

ν1 × · · · × νd(A1 × · · · ×Ad) =

d∏
i=1

ν(Ai)

for all Ai ∈ Fi.

• σ-�nite is required in some important theorems (Radon-Nikodym, Fubin's). So we only focus

on σ-�nite measures in this course. In particular, all �nite measures are σ-�nite.

Example 1.14 (Lebesgue measure on Rd). For Rd, the unique product measure is called the

Lebesgue measure on Rd on the Borel σ-�eld Bd on Rd. It is the standard/canonical measure on

Rd. Again, without otherwise explicitly mentioned, Rd is endowed with such Borel σ-�eld and

Lebesgue measure.

• A probability space is a special measure space

De�nition 1.15. A measure space (Ω,F , ν) is called a probability space if ν(Ω) = 1. In this case,

Ω is called a sample space, the elements of F are called events, and the measure ν is called a

probability measure. The number ν(A) is interpreted as the probability of the event A to happen.



Lecture 1: Review of Probability Theory 9

• In probability theory, the probability measure ν is often denoted by P or Pr.

• Like continuous functions between topological spaces, for two measurable spaces, we want to

study functions between them that preserve measure properties, like measurability, etc.

• This is a quite common pattern: for a category of spaces of the same kind, there are functions

between them that preserve the space structure

� for the category of topological spaces, they are continuous funcitons

� for the category of measurable spaces, they are measurable functions

� for the category of linear spaces, they are linear transformations

De�nition 1.16. Let (Ω,F) and (Λ,G) be two measurable spaces and f : Ω→ Λ a function. The

function f is called a measurable function if and only if f−1(B) ∈ F for all B ∈ G. When Λ = R
and G is the Borel σ-�eld, then we say f is Borel measurable or a Borel function on (Ω,F).

• In probability theory, a measurable function is also called a random element, and often

denoted by capital letters X, Y , Z, . . .. If X is real-valued, then it is called a random

variable; if it is vector-valued, then it is called a random vector.

Exercise 1.17. Check that the indicator function IA for a measurable set A is a Borel function.

Here,

IA(x) =

1 x ∈ A,
0 x 6∈ A.

More generally, a simple function of the form

f(ω) =

k∑
i=1

aiIAi(ω) (1.1)

is also a Borel function for any real numbers a1, . . . , ak and measurable sets A1, . . . , Ak.

• Note: when we say A1, A2, . . . are measurable without explicitly mentioning a measurable

space, we often assume a common measurable space, such as (Ω,F).

1.3 Integration and Expectation

• In calculus, the integral of a continuous function is de�ned as the limit of a Riemann sum.

For example,

� let f be a continuous function de�ned on the interval [0, 1].

� chop the interval into subintervals of equal length, say Dni = [(i − 1)/n, i/n] for some

n and i = 1, 2, . . . , n.
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� Let ani = min{f(x) : x ∈ Dni} and bni = max{f(x) : x ∈ Dni}.
� De�neAn =

∑n
i=1 ani/n =

∑n
i=1 anim(Dni) and similarlyBn =

∑n
i=1 bni/n =

∑n
i=1 anim(Dni).

� For a continuous function, one can show that An → c and Bn → c, and this common

c is de�ned as the Riemann integral of f on [0, 1] and denoted by
∫ 1

0
f(x)dx or simply∫

f when the domain is known from the context.

• We can see that the Riemann integral is a kind of average of the value of f over some

domain/interval.

• In statistics, we also want to express the concept of average, but for all random variables

which might not be continuous at all.

� We need to generalize Riemann integral to the so-called Lebesgue integral, as follows.

• We do it in three steps:

� step 1: de�ne Lebesgue integral on �simple� functions � easy case

� step 2: use integral of simple functions to approximate integral of nonnegative Borel

functions

� step 3: de�ne integral for all Borel functions

• Let us �x a σ-�nite measure space (Ω,F , ν).

Integral of a nonnegative simple function

• Suppose f : Ω→ R is a simple nonnegative function: f(x) =
∑k
i=1 aiIAi(x) for Ai ∈ F and

ai ≥ 0.

• It is quite intuitive and straightforward to de�ne the integral (average) of f as
∫
fdν =∑k

i=1 aiν(Ai).

• This is well de�ned even when ν(Ai) = ∞ for some Ai, since a∞ = ∞ when a > 0 and

a∞ = 0 when a = 0.

• Note that
∫
fdν =∞ is possible and allowed.

Integral of a nonnegative Borel function

• For a general Borel function, it is di�cult to de�ne an integral directly.

• Note that, a Borel function can be approximated by simple functions to any arbitrary preci-

sion (in certain sense)

• Since we have integrals for simple functions, we shall use the integrals of these simple functions

as proxy of the integral of the Borel function.



Lecture 1: Review of Probability Theory 11

• Let Sf be the collection of all nonnegative simple functions of the form (1.1) such that

g(ω) ≤ f(ω) for all ω ∈ Ω if g ∈ Sf . Intuitively, functions in Sf approximate f from below.

• De�ne the integral of f as ∫
fdν = sup{

∫
gdν : g ∈ Sf}. (1.2)

• compare to the de�nition of Riemann integral of a continuous function f :

� chop the interval into subintervals of equal length, say Dni = [(i − 1)/n, i/n) for some

n and i = 1, 2, . . . , n.

� Let ani = min{f(x) : x ∈ Dni} and bni = max{f(x) : x ∈ Dni}.
� De�neAn =

∑n
i=1 ani/n =

∑n
i=1 anim(Dni) and similarlyBn =

∑n
i=1 bni/n =

∑n
i=1 anim(Dni).

� Let gn(x) = ani if x ∈ Dni, and hn(x) = bni if x ∈ Dni.

� These gn and hn are simple functions!

� Also gn(x) ≤ f(x) ≤ hn(x)

�
∫
fdν = limn→∞

∫
gndν = limn→∞

∫
hndν since f is continuous.

� For a continuous f , the Riemann integral is equal to its Lebesgue integral

Integral of a arbitrary Borel function

• Divide f into two parts

� positive part: f+(x) = max{f(x), 0}
� negative part: f−(x) = −min{f(x), 0} = max{−f(x), 0}.
� note that the negative part is also a nonnegative function

• f = f+ − f−1

• De�ne
∫
fdν as ∫

fdν =

∫
f+dν −

∫
f−dν

if at least one of
∫
f+dν and

∫
f−dν is �nite.

� if yes, we say the integral of f exists

� if not, then we can the integral of f does not exist

• When both
∫
f+dν and

∫
f−dν are �nite, we say f is integrable.

• Sometimes, we only want to see the average of f over a subset A of Ω. The above de�nition

is for the whole domain Ω. Then how?

• Note that IA is measurable, and so is the product IAf . Note that (IAf)(x) = IA(x)f(x).
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• If the integral of IAf exists, then we can de�ne∫
A

fdν =

∫
IAfdν.

• Notation:
∫
fdν =

∫
Ω
fdν =

∫
f(x)dν(x) =

∫
f(x)ν(dx)

• If ν is a probabiltiy measure,
∫
XdP = EX = E(X), and called the expectation of X

Change of variables

Let f be measurable from (Ω,F , ν) to (Λ,G). Then f induces a measure on Λ, denoted by ν ◦ f−1

and de�ned by

ν ◦ f−1(B) = ν(f−1(B)) ∀B ∈ G.

• when ν = P is a probability measure and Λ = R and f = X is a random variable, then

P ◦X−1 is often denoted by PX

• PX is called the law or the distribution of X

• The CDF of X is denoted by FX and de�ned by FX(x) = P (X ≤ x).

• sometimes, we also use FX in the place of PX

Theorem 1.18 (Change of variables). The integral of Borel function g ◦ f is computed via∫
Ω

g ◦ fdν =

∫
Λ

gd(ν ◦ f−1).

• Application:

� Ω : a general measurable space

� Λ = R
� X: a random variable de�ned on Ω.

� EX is not easy to computed, but
∫
R xdPX might be easy. We then compute EX =∫

Ω
XdP =

∫
R xdPX =

∫
R xdFX .

� In this example, g is the identity function g(x) = x.

Properties of expectation/integral

• Assume the expectation of random variables below exists

• Linearity: E(aX + bY ) = aEX + bEY when EX, EY and E(aX + bY ) exist.

• EX is �nite if and only if E|X| is �nite
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• a.e. (almost everywhere) and a.s. statements: A statement holds ν-a.e. (or simple a.e.) if it

holds for all ω in Ac with ν(A) = 0 for some (measurable) A.

� if ν is a probability, the a.e. is often written as a.s. (almost surely)

� e.g. Let f(x) = x2, then f(x) > 0 m-a.e. (recall: m denotes the Lebesgue measure on

R): f(x) = 0 i� x = 0, and m({0}) = 0.

• if X ≤ Y a.s., then EX ≤ EY

� if X ≥ 0 a.s., then EX ≥ 0

� |EX| ≤ E|X|

• If X ≥ 0 a.s., and EX = 0, then X = 0 a.s.

� If X = Y a.s., then EX = EY

Theorem 1.19. Let f1, . . . be a sequence of Borel functions on (Ω,F , ν).

• Fatou's lemma: If fn ≥ 0, then∫
lim inf

n
fndν ≤ lim inf

n

∫
fndν.

• Dominated convergence theorem: If limn→∞ fn = f a.e. and there exists an integrable func-

tion g such that |fn| ≤ g a.e., then∫
lim
n
fndv = lim

n

∫
fndν.

• Monotone convergence theorem: If 0 ≤ f1 ≤ · · · and limn fn = f a.e., then∫
lim
n
fndν = lim

n

∫
fndν.

Theorem 1.20 (Fubini). Let νi be a σ-�nite measure on (Ωi,Fi),i = 1, 2, and let f be a Borel

function on
∏2
i=1 Ωi endowed with the product σ-�eld. Suppose that either f ≥ 0 or

∫
|f |d(ν1×ν2) <

∞. Then

g(ω2) =

∫
Ω1

f(ω1, ω2)dν1(ω1)

exists ν2-a.e. and is a Borel function on Ω2 whose integral exists, and∫
Ω1×Ω2

fd(ν1 × ν2) =

∫
Ω2

[∫
Ω1

f(ω1, ω2)dν1(ω1)

]
dν2(ω2)

=

∫
Ω1

[∫
Ω2

f(ω1, ω2)dν2(ω2)

]
dν1(ω1).

Example 1.21. Let Ω1 = Ω2 = {1, 2, . . .},and ν1 = ν2 be the counting measure. A function a on

Ω1 × Ω2 de�nes a double sequence, and a(i, j) is often denoted by aij . If either aij ≥ 0 for all i, j

or
∫
|a|d(ν1 × ν2) =

∑
ij |aij | <∞, then

∑
ij

aij =

∞∑
i=1

∞∑
j=1

aij =

∞∑
j=1

∞∑
i=1

aij .
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1.4 Radon-Nikodym derivative and probability density

• We learned PDF (probability density function) as the derivative of CDF (cummulative dis-

tribution function) of a random variable

• This is a special case of Radon-Nikodym derivative

• Let λ and ν be two measures on a measurable space (Ω,F)

• We say λ is absolutely continuous w.r.t. ν and write λ� ν i�

ν(A) = 0 implies λ(A) = 0.

Exercise 1.22. Check that the measure λ de�ned by

λ(A) :=

∫
A

fdν,A ∈ F

for a nonegative Borel function f is absolutely continuous w.r.t. ν.

• Conversely, if λ� ν, then there exists a Borel function f such that λ(A) =
∫
A
fdν, A ∈ F .

Theorem 1.23 (Radon-Nikodym). Let ν and λ be two measures on (Ω,F) and ν be σ-�nite. If

λ� ν, then there exists a nonnegative Borel function f on Ω such that

λ(A) =

∫
A

fdν, A ∈ F .

In addition, f is unique ν-a.e., i.e., if λ(A) =
∫
A
gdν for any A ∈ F , then f = g ν-a.e.

• The function f above is called the Radon-Nikodym derivative or density of λ w.r.t. ν, and

denoted by dλ
dν .

Example 1.24 (Probability density). Let λ = F be a probability measure on R, i.e., a probability
distribution/law of a random variable, and ν = m the Lebesgue measure. If F � m, then it has a

probability density f w.r.t. m. Such f is called PDF of F . In particular, when F has a derivative

in the usual sense of calculus, then

F (x) =

∫ x

−∞
f(y)dm(y) =

∫ x

−∞
f(y)dy.

In this case, Radon-Nikodym derivative is the same as the usual derivative in calculus.

• A PDF w.r.t. Lebesgue measure is called a Lebesgue PDF.

Example 1.25 (Discrete CDF and PDF). Let a1 < a2 < · · · be a sequence of real numbers and

X a random variable that X ∈ Λ = {a1, . . .}. Let pn = P (X = an). Then the CDF of X is

F (x) =


∑n
i=1 pi an ≤ x < an+1,

0 −∞ < x < a1.
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This CDF is a stepwise function, and called a discrete CDF. The corresponding probability measure

on Λ is given by

PX(A) =
∑
i:ai∈A

pi, A ∈ F = {B : B ⊂ Λ} (power set ofΛ).

Suppose ν is the counting measure on F . Then

PX(A) =

∫
A

fdν

with f(ai) = pi. Here f is de�ned on Λ. This f is the PDF of P w.r.t. the counting measure ν.

• Any discrete CDF has a PDF w.r.t. the counting measure, and such PDF is called discrete

PDF (or PMF, probability mass function).

• Properties of Radon-Nikodym derivatives: Let ν be a σ-�nite measure on a measurable space

(Ω,F). Suppose all other measures discussed below are also de�ned on (Ω,F)

� If λ� ν and f ≥ 0, then ∫
fdλ =

∫
f

dλ

dν
dν.

� If λi � ν, then λ1 + λ2 � ν and

d(λ1 + λ2)

dν
=

dλ1

dν
+

dλ2

dν
ν-a.e.

� Chain rule: If λ is σ-�nite and τ � λ� ν, then

dτ

dν
=

dτ

dλ

dλ

dν
ν-a.e.

In particular, if λ� ν and ν � λ,then let τ = ν in the above, and we have

dλ

dν
=

(
dν

dλ

)−1

ν or λ-a.e.

1.5 Moment Inequalities

• In (mathematical) statistics, we often need to control the tail of the distribution of random

variables

• e.g. no too heavy probability mass is placed on very �large� values of a random variable

• This intuition is sometimes expressed as a condition on the �moment� of a random variable

We have following de�nitions of moments of a random variable X:
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• If E|X|p <∞ for some real number p, then E|X|p is called the pth absolute moment of X or

its law PX

• If EXk is �nite, where k is a positive integer, then EXk is called the kth moment of X or

PX

� when k = 1, it is the expectation of X we introduced previously

• If µ = EX and E(X −µ)k are �nite for a positive integer k, then E(X −µ)k is called the kth

central moment of X or PX

� When k = 2, it is called the variance of X or PX , and denoted by Var(X) or σ2
X

� The square-root of Var(X) is called the standard deviation of X, often denoted by σX

We have similar de�nitions for a random vector X ∈ Rd or a random matrix X ∈ Rd1×d2

• Notation:

� (a1, a2, . . . , ad) denotes a row vector, and (a1, a2, . . . , ad)
> denotes its transport, which

is a column vector

� For a random vector X = (X1, . . . , Xd)
>, we use EX to denote (EX1, . . . ,EXd)

>

� Similarly, for a random matrix

X =


X11 X21 · · · X1d

X21 X22 · · · X2d

...
...

. . .
...

Xd1 Xd2 · · · Xdd


we denote

EX =


EX11 EX21 · · · EX1d

EX21 EX22 · · · EX2d

...
...

. . .
...

EXd1 EXd2 · · · EXdd


• For a random vector X ∈ Rd, Var(X) = E{(X − EX)(X − EX)> is called the covariance

matrix of X

� note that, Var(X) is a matrix when X = (X1, . . . , Xn)> is a random vector. Its (i, j)th

element is E{(Xi − EXi)(Xj − EXj)}.

• For two random variables X and Y , the quantity E{(X − EY )(X − EY )}, denoted by

Cov(X,Y ), is called the covariance of X and Y

� If Cov(X,Y ) = 0, then we say X and Y are uncorrelated

� The standardized covariance, Cov(X,Y )/(σXσY ), is called the correlation of X and Y
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Some basic properties:

• Symmetry of covariance: Cov(X,Y ) = Cov(Y,X)

• If X is a random matrix, then E(AXB) = AE(X)B for non-random matrices A and B

• For some non-random vector a ∈ Rd, we have

� E(a>X) = a>EX

� Var(a>X) = a>Var(X)a

• For a random vector X, Var(X) is a symmetric positive semi-de�nite (SPSD) matrix

� a matrix M is symmetric if M = M>

� a d× d square matrix M is positive semi-de�nite (PSD) if for any v ∈ Rd, v>Mv ≥ 0.

� A simple proof: Let M = Var(X).

∗ symmetry: Mij = Cov(Xi, Xj) = Cov(Xj , Xi) = Mji.

∗ positive semi-de�nite:

v>Mv = v>E{(X − EX)(X − EX)>}v
= E{v>(X − EX)(X − EX)>v}.

Let Y = v>(X−EX). Not ethat Y is a scalar. Then v>Mv = E(Y Y >) = E(Y 2) ≥
0.

Chebyshev's and Jensen's inequalities

Theorem 1.26 (Chebyshev). Let X be a random variable and ϕ a nonnegative and nondecreasing

function on [0,∞) and ϕ(−t) = ϕ(t) for all real t. Then, for each constant t ≥ 0,

ϕ(t)P (|X| ≥ t) ≤
∫
{|X|≥t}

ϕ(X)dP ≤ Eϕ(X).

• when ϕ(t) > 0, we have

P (|X| ≥ t) ≤
∫
{|X|≥t}

ϕ(X)

ϕ(t)
dP ≤ Eϕ(X)

ϕ(t)
.

• when ϕ(t) = t, we have Markov's inequality

P (|X| ≥ t) ≤ Eϕ(X)

t
.

• when ϕ(t) = t2 andX is replaced withX−µ where µ = EX, we obtain the classic Chebyshev'

inequality:

P (|X − µ| ≥ t2) ≤ σ2
X

t2
.
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Theorem 1.27 (Jensen). For a random vector and a convex function ϕ,

ϕ(EX) ≤ Eϕ(X).

• If ϕ is di�erentiable, then the convexity of ϕ is implied by the positive semi-de�niteness of

its Hessian (or second derivative if ϕ is univariate) ϕ′′.

• Intutition illustrated graphically (from Wikipedia)

� the dashed curve along the X axis is the hypothetical distribution of X

� the dashed curve along Y axis is the corresponding distribution of Y = ϕ(X)

� the convexity of ϕ increasingly �stretches� the distribution for increasing values of X

∗ the distribution of Y is broader in the interval corresponding to X > x0 and nar-

rower in the region X < x0 for any x0

∗ in particular, this is true for x0 = EX, so the expectation of Y = ϕ(X) is shifted

upwards and hence Eϕ(X) ≥ ϕ(EX)

� keep this graph in mind and you won't make mistake on the direction of the inequality

X

Y

E{  }Y

E{  }X

X

Y

{  }E

( )

 ( )XY=φ

X

Y

E{  }Y

E{  }X

X

Y

{  }E

( )

 ( )XY=φ

• Many well known elementary inequalities can be derived from Jensen's inequality

� E.g: Let X ∈ {a1, . . . , an} and P (X = ai) = 1/n. Let ϕ(x) = x2 which is clearly

convex. Then (
1

n

n∑
i=1

ai

)2

≤ 1

n

n∑
i=1

a2
i .

• (EX)−1 < E(X−1) for a nonconstant positive random variable X
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Lp spaces

To prepare for the discussion of Hölder's inequality, we introduce Lp spaces.

De�nition 1.28 (Lp spaces). Fix a measure space (Ω,F , ν). For a real-valued measurable function

f on Ω, for p ∈ (0,∞), de�ne

‖f‖p =

(∫
Ω

|f |pdν
)1/p

.

For p =∞, de�ne

‖f‖∞ = inf{c ≥ 0 : |f(x)| ≤ c for almost every x}.

The Lp(Ω,F , ν) space is the collection of measurable functions f such that ‖f‖p <∞.

• If f = g ν-a.e., then ‖f − g‖p = 0: we can not distinguish functions that are identical almost

everywhere in terms of ‖ · ‖p

• In this course, we always identify f with g if f = g a.e.

� we essentially treat them as the same function

� the relation f = g a.e. is an equivalence relation:

∗ if f = g a.e. and g = h a.e., then f = h a.e.

� therefore, we can treat Lp space as a space of such equivalance classes

• One can check that Lp spaces (note that Ω,F , ν are often omitted when there are clear from

the context) are linear spaces:

� f, g ∈ Lp, then af + bg ∈ Lp for real numbers a and b

• ‖ · ‖p is a norm on Lp (of equivalance classes), and Lp is a Banach space [see Chapter 5 of

Rudin (1986) for more information about Banach spaces]

� a norm ‖ · ‖ on Lp must satisfy the following three conditions

∗ triangle inequality: ‖f + g‖ ≤ ‖f‖+ ‖g‖
∗ absolutely scalable: ‖af‖ = |a| · ‖f‖ for all real a
∗ ‖f‖ = 0 if and only if f = 0 a.e.

� we can check that ‖ · ‖p satis�es the above conditions.

• See Chapter 3 of Rudin (1986) for more about Lp spaces

• For L2 spaces, we have additional structure:

� De�ne

〈f, g〉 =

∫
fgdν.
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� This is called the inner product or scalar product of L2 space, and turn L2 into a Hilbert

space [Rudin (1986) for more about Hilbert spaces]

� It is seen that ‖f‖22 = 〈f, f〉.
� We say f is orthogonal to g if 〈f, g〉 = 0.

Hölder's inequality

Theorem 1.29 (Hölder). Let (Ω,F , ν) be a measure space and p, q ∈ [1,∞] satisfying 1/p+1/q =

1. Then ‖fg‖1 ≤ ‖f‖p‖g‖q.

• if 1/p+ 1/q = 1, then we say p and q are Hölder conjugate of each other.

• in a probability space, it is written as

E|XY | ≤ (E|X|p)1/p(E|Y |q)1/q

• Cauchy-Schwarz inequality : when p = q = 2, we have ‖fg‖1 ≤ ‖f‖2‖g‖2, or more explicitly,∫
|fg|dν ≤

√∫
|f |dν

√∫
|g|dν,

or in probability theory,

E|XY | ≤
√
EX2

√
EY 2.

� this also implies that |Cov(XY )| ≤ σXσY and hence the correlation between X and Y

are between −1 and 1

• Minkowski's inequality : ‖f+g‖p ≤ ‖f‖p+‖g‖p. Proof: let q = p/(p−1) so that 1/p+1/q = 1.

‖f + g‖pp =

∫
|f + g|pdν

=

∫
|f + g| · |f + g|p−1dν

≤
∫

(|f |+ |g|)|f + g|p−1dν

=

∫
|f | · |f + g|p−1dν +

∫
|g| · |f + g|p−1dν

≤
(∫
|f |pdν

)1/p(∫
|f + g|(p−1) p

p−1 dν

)(p−1)/p

+

(∫
|g|pdν

)1/p(∫
|f + g|(p−1) p

p−1 dν

)(p−1)/p

= (‖f‖p + ‖g‖p)‖f + g‖p−1
p .

Then divide both sides by ‖f + g‖p−1
p .
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• Lyapunov's inequality : for a random variable X, for 0 < s ≤ t,

(E|X|s)1/s ≤ (E|X|t)1/t.

• Proof: for 1 ≤ s ≤ t, use Hölder's inequality E|XY | ≤ (E|X|p)1/p(E|Y |q)1/q:

� Let Y ≡ 1 and p = t/s ≥ 1, then E|X| ≤ (E|X|t/s)s/t. Replace |X| by |X|s, and we

have E|X|s ≤ (E|X|t)s/t and raise the power of both sides to 1/s to get the Lyapunov's

inequality.

• for the case 0 < s ≤ t < 1, use Jensen's inequality: since p = t/s ≥ 1, ϕ(x) = xp is convex

on [0,∞). By Jensen's inequality, with Y = |X|s,

ϕ(EY ) ≤ Eϕ(Y )

=⇒(E|X|s)t/s ≤ E(|X|s·t/s) = E(|X|t)
=⇒(E|X|s)1/s = (E|X|t)1/t.

1.6 Independence and conditioning

• We want to study relations between two or more random variables X1, . . . , Xn.

� e.g. are they correlated?

� e.g. are they �dependent�: does knowing some of them give us information about the

others?

• The last one is captured by the concepts �independence� and condititioning in probability

theory

L2 conditional expectation

Let (Ω,F , P ) be a measure space, X a random variable de�ned on (Ω,F), i.e., X is F-B measurable.

Let G be a sub-σ-�eld of F .

• Here, recall that B denotes the standard Borel σ-�eld on the real line R.

• Suppose X ∈ L2(F) = L2(Ω,F , P ), i.e., EX2 <∞.

• Now we interpret G as a kind of information available (observable) to us, i.e., we know that

events to happen fall into G.

• Given the information G, we want to construct a random variable Y that approximates X

• This Y must be G-measurable, since we can only based on the information we know
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• We want the approximation to be optimal in the sense that the �mean squared error� E(X −
Y )2 sis minimized (among all L2(G) random variables)

• Note that L2(G) ⊂ L2(F), i.e., a linear subspace of L2(F) endowed with the scalar product

〈X,Y 〉 = E(XY ).

• The �best� approximation of X from L2(G) is the orthogonal projection of X on to L2(G)

� recall that L2 spaces are Hilbert spaces and thus orthogonal projection is de�ned.

De�nition 1.30 (Conditional expection in L2 sense). Let (Ω,F , P ) be a probability space and

G a sub-σ-�eld of F . For any real random variable X ∈ L2(Ω,F , P ), the conditional expectation

of X given G, denoted by E(X | G), is de�ned as the orthogonal projection of X onto the closed

subspace L2(Ω,G, P ).

• Orthogonal projection means: 〈X − E(X | G), Z〉 = 0 for all Z ∈ L2(G)

• Covariance matching: E(X | G) is the unique random variable Y ∈ L2(G) such that for every

Z ∈ L2(G),

E(XZ) = E(Y Z)

� this is a re-statement of orthogonal projection: 〈X −E(X | G), Z〉 = 0 implies 〈X,Z〉 =

〈E(X | G), Z〉.

L1 conditional expectation

• The previous de�nition of conditional expectation requires square-integrability

• However, we also want conditional expectation for integrable random variables which might

not be square-integrable.

• In short, we want conditional expectation in L1 sense, but L1 is not a Hilbert space (and no

orthogonality)

• We use the covariance matching as a basis for de�nition of conditional expectation for L1

random variables

De�nition 1.31 (Conditional expectation). Let (Ω,F , P ) be a probability space and G a sub-σ-

�eld of F . The conditional expectation of a random variable X ∈ L1(F), denoted by E(X | G), is

de�ned to be the unique random variable Y ∈ L1(G) such that, for every bounded G-measurable

random variable Z,

E(XZ) = E(Y Z).

• Such random variable Y exists and is unique (a.s.)

• By de�nition, E(X | G) is measurable from (Ω,G) to (R,B)
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• If Z = IA for A ∈ G, then E(XZ) = E(Y Z) becomes
∫
A
E(X | G)dP =

∫
A
XdP .

• The last properties can also be used as a de�nition of conditional expectation

De�nition 1.32 (Conditional expectation). Let X be an integrable random variable on a measure

space (Ω,F , P ). The conditional expectation of X given a sub-σ-�eld G of F ,denoted by E(X | G)

is the a.s.-unique random variable satisfying the following two conditions:

1. E(X | G) is measurable from (Ω,G) to (R,B);

2.
∫
A
E(X | G)dP =

∫
A
XdP for any A ∈ G.

• Note: E(X | G) is a G − B measurable function, and thus a random variable!

• The conditional expectation of X given Y is de�ned to be E(X | Y ) = E{X | σ(Y )}, where

� σ(X) = {X−1(B) : B ∈ B} where B is the Borel σ-�eld of R.
� We call σ(X) the σ-�eld generated by X. It is a sub σ-�eld of E , i.e. σ(X) ⊂ E .

• E(X | Y ) is a function of Y .

• Conditional probability: P (A | G) = E(IA | G)

• When X is a L2 random variable, then all these three de�nitions coincide.

Properties of conditional expectation

• linearity: E(aX + bY | G) = aE(X | G) + bE(X | G) a.s.

• If X = c a.s. for a constant c, then E(X | G) = c a.s.

• monotonicity: if X ≤ Y , then E(X | G) ≤ E(Y | G) a.s.

• if G = {∅,Ω} (a trivial σ-�eld), then E(X | G) = E(X)

• tower property: if H ⊂ G is a σ-�eld, (so that H ⊂ G ⊂ F), then

E(X | H) = E{E(X | G) | H}.

� if H = {∅,Ω}, then E(X) = E{E(X | G)}.

• if σ(Y ) ⊂ G and E|XY | <∞, then E(XY | G) = Y E(X | G)

� since σ(Y ) ⊂ G, information about Y is contained in G, and thus, Y is kind of �known�

given the information G.

• if EX2 <∞, then {E(X | G)}2 ≤ E(X2 | G) a.s.
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Independence

De�nition 1.33. Let (Ω, E , P ) be a probability space.

• (Independent events) The events in a subset C ⊂ E are said to be independent i� for any

positive n and distinct events A1, . . . , An ∈ C,

P (A1 ∩ · · · ∩An) = P (A1) · · ·P (An).

• (Independent collections) Collections Ci ⊂ E , i ∈ I (the index set I could be uncountable)

are independent if events in a collection of the form {Ai ∈ Ci : i ∈ I} are independent.

• (Independent random variables): random variables X1, . . . , Xn are said to be independent i�

σ(X1), . . . , σ(Xn) are independent.

• If X ⊥ Y (that denotes X and Y are independent), then E(X | Y ) = EX and E(XY ) =

(EX)(EY )

1.7 Convergence modes

• In statistics, we often need to assess the quality of an estimator for some unknown quantity

� e.g. how good is X as an estimator for the mean µ = EX, where X is the sample mean

of a sample X1, . . . , Xn?

• There are many way to quantify the estimation quality, one of them is asymptotic convergence

rate

� intuitively, for a good estimator, it becomes closer to the true quantity if we collect

more and more data

� e.g., X gets closer to µ if n is large

� in math language, X converges to µ �in some sense�

� how to de�ne �convergence� properly?

• There are at least four popular de�nitions of �convergence� in statistics

� almost sure convergence (or convergence with probability 1)

� convergence in probablity

� convergence in Lp

� convergence in distribution (also called weak convergence)
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Almost sure convergence

De�nition 1.34. We say a sequence of random elements X1, X2, . . . converges almost surely to a

random element X, denoted by Xn
a.s.→ X if

P
(

lim
n→∞

Xn = X
)

= 1.

• Notation: P (limn→∞Xn = X) is a shorthand of the following

P
({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
• Note that is a type of pointwise convergence, but allow an exceptional set of probability zero

• Note that we assume a common probability space (Ω,F , P ) for X, X1, . . .

• How to show almost sure convergence in practice?

� one way is to do it via Borel-Cantelli lemma

• In�nitely often:

� Let {An}∞n=1 be an in�nite sequence of events

� For an outcome ω ∈ Ω, we say A holds true or A happens if x ∈ A
� For an outcome ω ∈ Ω, we say the events in the sequence {An}∞n=1 happen �in�nitely

often� if Ai happens for an in�nite number of indices i.

� {Ai i.o.} = {ω ∈ Ω : ω ∈ Ai for an in�nite number of indices i} is the collection of

outcomes that make the events in the sequence {An}∞n=1 happen in�nitely often.

� If {Ai i.o.} happens, then in�nitely many of {An}∞n=1 happen

� mathematically,

{Ai i.o.} =
⋂
n≥1

⋃
j≥n

Aj ≡ lim sup
n→∞

An

� this also shows that {Ai i.o.} is measurable

Lemma 1.35 (First Borel-Cantelli). For a sequence of events {An}∞n=1, if
∑∞
n=1 P (An) < ∞,

then P (An i.o.) = 0.

• Intuition: because
∑∞
n=1 P (An) <∞, P (An) must be very small for large n, and we cannot

�nd a su�ciently number of ω that make in�nitely many An happen

• In fact,
∑
j≥n P (Aj) → 0 as n → ∞. So P (

⋃
j≥nAj) ≤

∑
j≥n P (Aj) → 0 and

⋃
j≥nAj

becomes too small for su�ciently large n.

Lemma 1.36 (Second Borel-Cantelli). For a sequence of pairwisely independent events {An}∞n=1,

if
∑∞
n=1 P (An) =∞, then P (An i.o.) = 1.
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Theorem 1.37. Let X,X1, X2, . . . be a sequence of random variables. For a constant ε > 0,

de�ne the sequence of events {An(ε)}∞n=1 to be An(ε) = {ω ∈ Ω : |Xn(ω) − X(ω)| > ε}. If∑∞
n=1 P{An(ε)} <∞ for all ε > 0, then Xn

a.s.→ X.

• According to the �rst Borel-Cantelli lemma, if A(ε) denotes the collection of ω that makes

{An(ε)}∞n=1 happen �nite times, then P{A(ε)} = 1.

• This implies that, for all ω ∈ A(ε), |Xn(ω)−X(ω)| < ε for su�ciently large n

• This holds for all ε > 0, so Xn converges to X on a set of probablity 1

Convergence in Lp

• In statistics, mean squared error (MSE) is a popular measure for esitmation quality

� e.g. E(X − µ)2 becomes small if n is large

� This is indeed the convergence in L2 for random variables (treat µ as a degenerate

random variable)

• more generally, we can consider convergence in Lp for p > 0

De�nition 1.38. A sequene {Xn}∞n=1 of random variables converges to a random variable X in

the Lp sense (or Lp-norm when p ≥ 1) for some p > 0 if E|X|p <∞ and E|Xn|p <∞, and

lim
n→∞

E|Xn −X|p = 0.

• denoted by Xn
Lp→ X

• For L2, it is also called convergence in mean square.

• By Lyapunov's inequality, convergence in Lp sense implies convergence in Lq sense if q ≤ p.

• This is not a pointwise convergence.

Convergence in probability

• We might say that, an estimator behaves well at ω if it converges to its target, and say that

it behaves badly if it does not converge to the target.

• Likely almost sure convergence, we might allow the estimator to behave badly at some out-

comes ω

• However, the collection of such outcomes shall be �small� in some sense

� in almost sure convergence, such set has zero probablity
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� we wan to relax it a little bit, for example, the probability of such set shall decrease to

zero as we get more and more samples

De�nition 1.39. A sequene {Xn}∞n=1 of random variables converges to a random variable X in

probability if for all ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0.

• denoted by Xn
P→ X

Convergence in distribution

• Under certain conditions, CLT implies that
√
nX converges to N(µ, σ2) where σ2 = EXn

• This is indeed convergence in distribution

• There are several de�nitions that agree wit each other

De�nition 1.40. A sequene {Xn}∞n=1 of random variables converges to a random variable X in

distribution (or in law or weakly), if

lim
n→∞

Fn(x) = F (x)

for every x ∈ R at which F is continuous, where Fn and F are CDF of Xn and X, respectively.

• denoted by Xn
D→ X or Fn ⇒ F

• the requirement that only the continuity points of F should be considered is to make the

de�nition agree with other de�nitions of weak convergence

• this is the elementary version learned perhaps in undergraduate courses

• observation: it is about the convergence of CDFs, not really about random variables (they

are dummy variables, indeed)

• CDFs are indeed probability measures

• Convergence of probability measures: A sequence of probability measures νn converges weakly

to ν if
∫
fdνn →

∫
fdν for every bounded and continuous real function f

� if you know Riesz representation theorem for Borel measures, then this de�ntion justi�es

the term �weak convergence�.

• It can be shown that the above weak convergence of probability measures is equivalent to

the convergence in distribution for Ω = R.

• More about weak convergence of measures can be bounded in:
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� Chapter 5 of Billingsley (2012)

� Chapter 1 & 2 of Billingsley (1999) (quite advanced topics on weak convergence)

� Billingsley (1971) (quite advanced topics on weak convergence)

• convergence in distribution can be characterized by characteristic functions.

• characteristic function ϕ of a random vector X is φX(t) = Eeit>X , where i =
√
−1 and

eit
>X = cos(t>X) +

√
−1 sin(t>X).

• a similar but di�erent concept is moment generating function (MGF): ψX(t) = Eet>X .

• these functions determine distributions uniquely in the sense that

� if φX(t) = φY (t) for all t, then PX = PY

� if ψX(t) = ψY (t) <∞ for all t in a neighborhood of 0, then PX = PY .

Theorem 1.41 (Lévy continuity). {Xn} converges in distribution to X i� the corresponding

characteristic functions {φn} converges pointwise to φX .

• If the CDF Fn of Xn, then there is another way to check convergence in distribution

Theorem 1.42 (Sche�é). Let {fn} be a sequence of PDF on Rk with respect to a measure ν.

Suppose that limn→∞ fn(x) = f(x) ν-a.e. and f is a PDF with respect to ν. Then

lim
n→∞

∫
|fn(x)− f(x)|dν = 0.

• If fn is the PDF/PMF of Xn and f is the PDF/PMF of X, and if fn(x) → f(x) a.e., then

Xn
D→ X.

� proof: for any Borel A ⊂ R,∣∣∣∣∫
A

fndν −
∫
A

fdν

∣∣∣∣ ≤ ∫ |fn − f |dν → 0.

This is in particular true forA = (−∞, x], and the above implies that |Fn(x)−F (x)| → 0.

� ν could be the Lebesgue measure or counting measure

� e.g. Xn ∼ binom(n, p) and np→ λ, then Xn
D→ X ∼ Poisson(λ)

Properties and relations

Theorem 1.43 (Continuous mapping). Let {Xn}∞n=1 be a sequence of random k-vectors and X is

a random vector in the same probability space. Let g : Rk → R be continuous.

• If Xn
a.s.→ X, then g(Xn)

a.s.→ g(X).
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• If Xn
P→ X, then g(Xn)

P→ g(X).

• If Xn
D→ X, then g(Xn)

D→ g(X).

• Uniqueness of the limit

� If Xn
∗→ X and Xn

∗→ Y , then X = Y a.s., where ∗ could be a.s., P or Lp

� If Fn ⇒ F and Fn ⇒ P , and F = P

Remark. For those who know topology, it can be shown that there is a topology on the space of

all probability distributions on a common metric space, and the convergence in distribution is the

same as the convergence in such topology. Similarly, there is a topology on the space of all random

variables residing on the sample probability space, and the convergence in probability is the same

as the convergence in such topoloyg. However, there is no topology for almost sure convergence.

• Concatenation:

� If Xn
D→ X and Yn

D→ c, then (Xn, Yn)
D→ (X, c) for a constant c

� If Xn
∗→ X and Yn

∗→ Y , then (Xn, Yn)
∗→ (X,Y ) where ∗ is either P or a.s.

• Linearity

� If Xn
∗→ X and Yn

∗→ Y , then aXn + bYn
∗→ aX + bY , where ∗ could be a.s., P or Lp,

and a and b are real numbers

� When ∗ is P or a.s., it is the consequence of continuous mapping theorem and concate-

nation property

� Note that the above statements are NOT true for convergence in distribution

• Cramér-Wold device Xn
D→ X i� c>Xn

D→ c>X for every c ∈ Rk

We have the following relations between di�erent modes of convergence

Lp

=⇒
p > q ≥ 0

Lq

=⇒

Pa.s.
=⇒ =⇒

D
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• If Xn
D→ c for a constant c, then Xn

P→ c. In general, convergence in distribution does not

imply convergence in probability

• Slutsky's theorem: if Xn
D→ X and Yn

D→ c for a constant c, then

� Xn + Yn
D→ X + c

� XnYn
D→ cX

� Xn/Yn
D→ X/c if c 6= 0

• Slutsky's theorem is a consequence of continuous mapping theorem and concatenation prop-

erty

Stochastic order

• In calculus, for two sequences of real numbers, {an} and {bn}

� an = O(bn) i� |an| ≤ c|bn| for a constant c and all n

� an = o(bn) i� an/bn → 0 as n→∞

• For two sequences of random variables, {Xn} and {Yn}, we have similar notations

� Xn = Oa.s.(Yn) i� P{|Xn| = O(|Yn|)} = 1

∗ in other words, there is a subset A ⊂ Ω such that P (A) = 1, and for each ω ∈ A,
there exists a constant c (depending on ω), and for all n, |Xn(ω)| ≤ c|Yn(ω)|

� Xn = oa.s.(Yn) i� Xn/Yn
a.s.→ 0

� Xn = OP (Yn) i�, for any ε > 0, there is a constant Cε > 0 such that the events

An(ε) = {ω ∈ Ω : |Xn(ω)| ≥ Cε|Yn(ω)|} satis�es lim supn P{An(ε)} < ε

∗ in the textbook, lim supn is replaced with supn. I believe it is a typo: stochast

order is an asymptotic relation

· Let Xn = 1 and Xn = −1 with probability 1/2, and Y1 = 0 and Yn = 1, then

we still think of Xn = OP (Yn), but supn P{An(ε)} = 1 for any ε > 0.

∗ in most cases, Yn = an for a sequence of real numbers, e.g., X − µ = OP (1/
√
n)

∗ If Xn = OP (1), we say {Xn} is bounded in probability

� Xn = oP (Yn) i� Xn/Yn
P→ 0

• Some properties

� if Xn = OP (Yn) and Yn = OP (Zn), then Xn = OP (Zn)

� if Xn = OP (Zn), then XnYn = OP (YnZn)

� if Xn = OP (Zn) and Yn = OP (Zn), then Xn + Yn = OP (Zn)

� same conclusion for Oa.s.
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• For weak convergence:

� If Xn
D→ X for a random variable, then Xn = OP (1)

� If E|Xn| = O(an), then Xn = OP (an), according to Chebyshev's inequality

� If Xn
a.s.→ X, then supn |Xn| = OP (1)

1.8 Law of large numbers and CLT

• In statistics, we often need to quantify the stochastic order of a random variable that is the

sum/average of a sequence of other random variables, or study its stochastic limit if we push

n to ∞

� e.g. µ̂n = X = n−1
∑n
i=1Xi

• This often involves law of large numbers

WLLN

• weak law of large numbers concerns the limiting behavior in probability

Theorem 1.44 (WLLN). Let {Xn} be IID random variables. If nP (|X1| > n)→ 0, then

1

n

n∑
i=1

Xi − E(X1I{|X1|≤n})
P→ 0.

• a more familiar condition is E|X1| <∞, in this case

� nP (|X1| > n) ≤
∫∞
n
|x|dF|X1|(x) ≤ E{I[n,∞)(|X1|)|X1|} → 0 (by DCT)

� E(X1I{|Xi|≤n})→ EX1 (again by DCT)

� so, n−1
∑n
i=1Xi

P→ EX1

• conditions in terms of �niteness of certain order of moments are quite common in statistics

• for independent but not identically distributed random variables, we have

Theorem 1.45 (WLLN). If there is a constant p ∈ [1, 2] such that limn→∞ n−p
∑n
i=1 E|Xi|p = 0,

then
1

n

n∑
i=1

(Xi − EXi)
P→ 0.
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SLLN

• strong law of large numbers concerns the limiting behavior in �almost sure� sense

Theorem 1.46 (SLLN). Let {Xi} be IID random variables. If E|X1| <∞, then

1

n

n∑
i=1

Xi
a.s.→ EX1

and
1

n

n∑
i=1

ci(Xi − EXi)
a.s.→ 0

for any bounded sequence of real numbers {ci}.

• under the IID assumption and the condition E|X1| <∞, we can indeed show that the average

converges almost surely, not just in probability

• for independent but not identically distributed case, we have

Theorem 1.47 (SLLN). Let {Xi} be independent random variables with �nite expections, i.e.,

EXi <∞ for all i. If there is a constant p ∈ [1, 2] such that
∑∞
i=1 i

−pE|Xi|p <∞, then

1

n

n∑
i=1

(Xi − EXi)
a.s.→ 0.

• note that this condition is stronger than the condition for WLLN (Kronecker's Lemma)

Example 1.48. Let Sn =
∑n
i=1Xi, where {Xi} are independent and P (Xi = ±iθ) = 1/2 and

θ > 0 is a constant. We claim that Sn/n
a.s.→ 0 when θ < 1/2. This because, when θ < 1/2,

∞∑
i=1

EX2
i

i2
=

∞∑
i=1

i2θ

i2
<∞.

Then the claim follows from SLLN.

CLT

• The limits in WLLN and SLLN are constants

• Sometimes, we also want asymptotic distributions of the (normalized) sum/average

� e.g. asymptotic hypothesis test, con�dence intervals
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Theorem 1.49 (Lindeberg's CLT). Let {Xnj , j = 1, . . . , kn} be row independent array of random

variables with kn →∞ as n→∞ and

0 < σ2
n = Var

 kn∑
j=1

Xnj

 <∞, n = 1, 2, . . . .

If

1

σ2
n

kn∑
j=1

E
{

(Xnj − Enj)2I{|Xnj−EXnj |>εσn
}
→ 0 (1.3)

for any ε > 0, then

1

σn

kn∑
j=1

(Xnj − EXnj)
D→ N(0, 1).

• (1.3) controls the tails of Xnj

• The condition (1.3) is implied by the Lyapunov condition:

1

σ2+δ
n

kn∑
j=1

E|Xnj − EXnj |2+δ → 0 for some δ > 0.

• It is also implied by the condition of uniform boundedness: if |Xnj | ≤M for all n and j and

σ2
n =

∑kn
j=1 Var(Xnj)→∞.

• IID case: kn = n andXnj = Xj and {Xj} are IID with Var(Xj) > 0. In this case, Lindeberg's

condition holds.

Theorem 1.50 (Multivariate CLT). For IID random k-vectors {Xi} with Σ = Var(X1), we have

1√
n

n∑
i=1

(Xi − EX1)
D→ N(0,Σ).

• This is a consequence of Lindeberg's CLT and Cramér-Wold device

1.9 δ-Method

• Motivating example

� Suppose X1, . . . , Xn ∼ X ∼ Exp(λ) IID with PDF

fX(x) = λe−λx, x ∈ [0,∞)

� the parameter λ > 0 is called the rate

� one can check that µ = EX = 1/λ. Or λ = µ−1.
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� by CLT, we know µ̂ = X ≈ N(µ, σ2/n) where σ2 = Var(X1).

� what's the approximate distribution of λ̂ = µ̂−1?

• More generally, if we know the approximate distribution of θ̂ (often by CLT), what is the

approximate distribution of g(θ̂) for a �well behaved� function g?

• Suppose an(θ̂n − θ) D→ Z

� when θ̂n ≈ θ, and g is di�erentiable, then by Taylor expansion

g(θ̂n)− g(θ)

θ̂n − θ
≈ g′(θ)

or
g(θ̂n)− g(θ)

g′(θ)
≈ θ̂n − θ

and further

an
g(θ̂n)− g(θ)

g′(θ)
≈ an(θ̂n − θ) D→ Z.

Theorem 1.51 (δ-method, univariate). Let Y1, . . . and Z be random variable such that an(Yn −
c)

D→ Z for a constant c and a sequence of positive numbers {an} satisfying limn→∞ an =∞. For

a function g that is di�erentiable at c, we have

an{g(Yn)− g(c)} D→ g′(c)Z. (1.4)

More generally, if g has continuous derivatives of order m > 1 in a neighborhood of c, g(j)(c) = 0

for 1 ≤ j ≤ m− 1, and g(m)(c) 6= 0. Then

amn {g(Yn)− g(c)} D→ 1

m!
g(m)(c)Zm.

• e.g. X1, . . . , Xn IID with Var(X1) = 1, Yn = X = n−1
∑n
i=1Xi, c = EX1, an =

√
n, and

Z ∼ N(0, 1)

� if g(x) = x−1 and c 6= 0, then
√
n(Y −1

n − c−1)
D→ N(0, 1/c4), since g′(c) = −c−2.

� if g(x) = x2, then
√
n(Y 2

n − c2)
D→ N(0, 4c2) since g′(c) = 2c.

∗ if c = 0, then g′(c) = 0 but g′′(c) = 2 6= 0, so we have (
√
n)2(Y 2

n − 0)
D→ Z2 ∼ χ2

1

• go back to our example on exponential distribution

� c = µ, g(µ) = µ−1 = λ, g′(µ) = −µ−2 = −λ2

�
√
n(µ̂− µ)

D→ Z ∼ N(0, σ2) = N(0, µ2) = N(0, λ−2)

�
√
n(λ̂− λ)

D→ −λ2Z ∼ N(0, λ2).
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Proof of (1.4). By Taylor expansion

g(Yn)− g(c) = g′(c)(Yn − c) +Qn,

or

an{g(Yn)− g(c)} = ang
′(c)(Yn − c) +Rn

where Rn is the residual and is random. By assumption, an(Yn − c) D→ Z. Further, by Cramér-

Wold device, ang
′(c)(Yn− c) D→ g′(c)Z. If we can show that Rn = oP (1), then by Slutsky's lemma,

we have an{g(Yn)− g(c)} D→ g′(c)Z.

• how to show Rn = oP (1), or equivalently, Rn
P→ 0? By de�ntion, for any η > 0, limn P (|Rn| >

η) = 0.

Note that Rn = an{g(Yn)− g(c)}− ang′(c)(Yn− c). The di�erentiability of g at c implies that, for

any ε > 0, there is a δε > 0 such that

|g(x)− g(c)− g′(c)(x− c)| ≤ ε|x− c|

whenever |x− c| < δε. Then for a �xed η > 0, we have

P (|Rn| > η) ≤ P (|Yn − c| ≥ δε) + P (an|Yn − c| ≥ η/ε).

• P (|Rn| > η) = P (|Rn| > η, |Yn − c| ≥ δε) + P (|Rn| > η, |Yn − c| < δε)

• for ω ∈ Aε ≡ {ω ∈ Ω : |Rn(ω)| > η, |Yn(ω)− c| < δε}, we have

|g(Yn(ω))− g(c)− g′(c)(Yn(ω)− c)| ≤ ε|Yn(ω)− c|

and

|an{g(Yn(ω))− g(c)} − ang′(c)(Yn(ω)− c)| > η.

This implies that, if ω ∈ Aε, then

η ≤ εan|Yn(ω)− c|, or equivalently, an|Yn(ω)− c| ≥ η/ε.

• Let Bε = {ω ∈ Ω : an|Yn(ω)− c| ≥ η/ε}

• We just show that if ω ∈ Aε, then ω ∈ Bε. What does this mean? Aε ⊂ Bε! and therefore

P (Aε) ≤ P (Bε)

• So

P (|Rn| > η) = P (|Yn − c| ≥ δε) + P (Aε)

≤ P (|Yn − c| ≥ δε) + P (Bε)

= P (|Yn − c| ≥ δε) + P (an|Yn − c| ≥ η/ε)
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• now we only need to show that

� P (|Yn − c| ≥ δε) → 0: Intuitively, this must be true: by assumption, an(Yn − c) D→ Z

implies that an(Yn−c) = OP (1). Then (multiply both sides by a−1
n ) Yn−c = OP (a−1

n ) =

oP (1).

� P (an|Yn − c| ≥ η/ε)→ 0: This is also intuitively true: an(Yn − c) ≈ OP (1) and ε could

be arbitrarily small.

Formal argument: By continuous mapping theorem, an|Yn − c| D→ |Z|. Then

lim
n
P (an|Yn − c| ≥ η/ε) = 1− F|Z|(η/ε)→ 0

since ε is arbitrary.

Theorem 1.52 (δ-method, multivariate). Let Y1, . . . and Z be random k-vectors such that an(Yn−
c)

D→ Z for a constant k-vector c and a sequence of positive numbers {an} satisfying limn→∞ an =

∞. For a function g that is di�erentiable at c, we have

an{g(Yn)− g(c)} D→ {∇g(c)}>Z.

Example 1.53. Let X1, . . . , Xn be IID such that EX4
1 < ∞. Let X = n−1

∑n
i=1Xi and σ̂2 =

n−1
∑n
i=1(Xi − X)2. Denote σ2 = Var(X1), µ = EX1, and m2 = EX2

1 . Now we derive the

asymptotic distribution of
√
n(σ̂2 − σ2).

We �rst note that σ̂2 = m̂2−µ̂2, where m̂2 = n−1
∑n
i=1X

2
i . This motivates us to de�ne g(y1, y2) =

y2 − y2
1 . We observe that ∇g(y1, y2) = (−2y1, 1)> 6= 0. To apply the δ-method, we also need to

observe that, by multivariate CLT, for Yn = (X, m̂2)>, we have
√
n(Yn − c) D→ N(0,Σ), where

c = (µ,m2) and Σ = Cov(X1, X
2
1 ).

By δ-method, we then have

√
n(σ̂2 − σ2)

D→ N
(
0, (−2µ, 1)Σ(−2µ, 1)>

)
.

• the asymptotic distribution of σ̂2 depends on µ! this is because µ is known

• if µ is known, we shall estimate σ̂2 by n−1
∑n
i=1(Xi−µ)2. What is the asymptotic distribution

for this estimator?
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Lecture 2: Basic concepts, Exponential families and Su�cient statistics

Lecturer: LIN Zhenhua ST5215 AY2019/2020 Semester I

2.1 Populations, samples, and models

• A typical statistical problem

� one or a series of random experiments is performed

� some data are generated and collected from the experiments

� extract information from the data

� interpret results and draw conclusions

Example 2.1 (Measurement problems). Suppose we want to measure an unknown quantity θ,

e.g., weight of some object.

• n measurements x1, . . . , xn are taken in an experiment of measuring θ.

• data are (x1, . . . , xn)

• information to extract: some estimator for θ

• draw conclusion: what is the possible range of θ (con�dence interval)?

• In mathematical statistics, we only focus on statistical analysis of data; we assume data are

given.

• In order to analyze data (mathematically/statistically), we need a model for the data

� in physics, one requires a mathematical model to describe what are observed

∗ F = ma, for example

� models are (mathematicl) approximation of our reality

∗ only approximation

� good models approximate the reality well

∗ Newton's physics is good for low-speed motion

∗ For high-speed motion, we needs speical relativity or even general relativity

• In statistics, we use models to approximate the mechanism that generates the observed data

� �All models are wrong.� � George Box. But some are useful.

• In the measurement example: xi = θ + εi for εi ∼ N(0, σ2) IID

38
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� in reality: ε ∼ N(0, σ2) might not be true

� IID might not be true: in the scale of subatomic particle, measurement performed on

the particle might change its status � by quantum physics

� linearity might not be true

� But this model might provide a good approximation to the measurement experiment

well in some (most) cases

∗ i.e. measure the weight of a baby

• Let us �x some terminology

� the data set is viewed as a realization or observation of a random element de�ned on a

probability space (Ω, E , P ) related to the random experiment (or observational studies).

� The probability measure P is called the population

� The random element that produces the data is called a sample from P

� The data set is also often called a sample from P

� The size of the data set is called the sample size

� A population P is known i� P (A) is known for very event A ∈ E .

• In statistics, P is at least partially unknown. Otherwise, no statistical analysis is required.

• Statisticians are to deduce some properties of P based on the available sample based on some

statistical models for the data

• A statistical model is a set of assumptions on the population P

� a statistical model = {P : P satis�es a set of assumptions}

• A statistical model is also a set of probability measures on the space (Ω, E)

Example 2.2 (Measurement problems). Suppose we want to measure an unknown quantity θ,

e.g., weight of some object.

• n measurements x1, . . . , xn are taken in an experiment of measuring θ.

• If no measurement error, then x1 = · · · = xn = θ.

• Otherwise, xi are not the same due to measurement errors

• the data set (x1, . . . , xn), is viewed as an outcome of the experiment

� the sample space in this case is Ω = Rn

� E = Bn, the Borel σ-�eld of Rn

� and P is a probability measure on Rn

� sample size is n
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� the random element X = (X1, . . . , Xn) is a random n-vector de�ned on Rn, i.e., X :

Rn → Rn

• a statistical model here is a set of joint distribution of X1, . . . , Xn

� not just the marginal distributions, since marginal distributions do not specify relations

among X1, . . . , Xn and thus can not fully specify the probability measure P

� when X1, . . . , Xn are IID, then P = Pn0 .

∗ still, rigorously speaking, the model is a set of Pn0 , not simply P0, although in this

case, sometimes we say the model is a set of P0.

∗ Xi = θ + εi ∼ N(θ, σ2), so P0 = N(θ, σ2) in this case (with IID assumption)

� P is partially unknown, since θ (and perhaps σ2) are unknown. But we know it is a

multivariate Guassian distribution (by assumption, of course)

� Statisticians are to deduce θ (and also σ2)

� a statistical model: {N(θ1n, σ
2In) : θ, σ2 ∈ (0,∞)} � a set of probability distributions

∗ well, we assume the weight is positive

∗ we can consider a larger model like {N(θ1n, σ
2In) : θ ∈ R, σ2 ∈ (0,∞)}, but this is

not as good as the previous one, since we know the weight is positive

De�nition 2.3. A set of probability measures Pθ on (Ω, E) indexed by a parameter θ ∈ Θ is said

to be a parametric family if and only if Θ ⊂ Rd for some �xed d > 0 and each Pθ is a known

probability measure when θ is known. The set Θ is called the parameter space and d is called the

dimension.

• In a statistical model, if the set of probability measures is a parametric familiy, then we say

the model is a parametric model.

• Otherwise, we say the model is a nonparametric model

• A parametric family {Pθ : θ ∈ Θ} is said to be identi�able if and only if θ1 6= θ2 and θ1, θ2 ∈ Θ

imply Pθ1 6= Pθ2

� identi�able within the family

• Let P be a family of populations (they are probability measures) and ν a σ-�nite measure

on (Ω, E)

� if P � ν for all P ∈ P,then we say P is dominated by ν

� in this case, P can be identi�ed by the family of densities {dP
dν : P ∈ P}.

� in statistics, the measure ν is often the Lebesgue measure (for continuous random vari-

ables) or the counting measure (for discrete random variables)
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2.2 Statistics

• Let X be a sample (a random vector) from an unknown population P on a probability space

• A measurable function T (X) of X is called a statistic if T (X) is a known value whenever X

is known

• Statistical analyses are based on various statistics, for various purposes

• Examples:

� T (X) = X: this is a trivial statistic

� T (X) = n−1
∑n
i=1Xi for X = (X1, . . . , Xn)

� Suppose P = {Pθ : θ ∈ Θ}. Then T (X) = θX, for example, is not a statistic

• One can easily show that σ(T (X)) ⊂ σ(X), and these two σ-�elds are the same i� T is

one-to-one

� the information contained in T (X) is often less than X

� T (X) compresses the information provided by X (often in a good way if T is well chosen

for the problem of interest)

� Sometimes, T (X) is simplier than X but still contains all information we need: su�-

ciency and completeness

2.3 Exponential families

• These are important parametric families in statistical applications, like GLM

De�nition 2.4. A parametric family {Pθ : θ ∈ Θ} dominated by a σ-�nite measure ν on (Ω, E) is

called an exponential family i�

fθ(ω) =
dPθ
dν

(ω) = exp
{

[η(θ)]>T (ω)− ξ(θ)
}
h(ω), ω ∈ Ω,

where T is a random p-vector, η is a function from Θ to Rp, h is a nonnegative Borel function on

(Ω, E), and

ξ(θ) = log

{∫
Ω

exp{[η(θ)]>T (ω)}h(ω)dν(ω)

}
.

• T and h are functions of ω only

• ξ and η are functions of θ only

• These functions are not identi�able
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� η̃ = Dη(θ) for a p×p nonsingular matrix D and T̃ = D−>T give another representation

for the same family

� another measure that dominates the family also changes the representation

• we can reparametrize the family by η = η(θ), so that

fη(ω) = exp{η>T (ω)− ζ(η)}h(ω)

where ζ(η) = log
{∫

Ω
exp{η>T (ω)}h(ω)dν(ω)

}
.

• This is the canonical form for the family � still not unique

• η is called the natural parameter

• the new parameter space is Ξ = {η(θ) : θ ∈ Θ} ⊂ Rp: natural parameter space

• An exponential family in its canonical form is called a natural exponential family

• Full rank : if Ξ contains an open set

Example 2.5 (Binomial distribution). The Binomial distribution Binom(θ, n) is an exponential

family.

• Ω = {0, 1, . . . , n} and ν = counting measure

• the density is for x ∈ Ω,

fθ(x) =
dPθ
dν

(x) =

(
n

x

)
θx(1− θ)n−θ

= exp

{
x log

θ

1− θ + n log(1− θ)
}(

n

x

)
• T (x) = x

• η(θ) = log θ
1−θ

• ξ(θ) = −n log(1− θ)

• h(x) =
(
n
x

)
• Θ = (0, 1)

• This is not in its canonical form. Now make it a natural exponential family

� η = log θ
1−θ

� Ξ = R and

fη(x) = exp{ηx− n log(1 + eη)}
(
n

x

)
, ∀x ∈ Ω = {0, 1, . . . , n}
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Example 2.6 (Exponential distribution). The exponential distribution with the density

fθ(x) = θ−1 exp{−(x− a)/θ}, for x > a

for a �xed a ∈ R is an exponential family.

• We can write it in the form that

fθ(x) = exp{−x/θ + a/θ − log θ}I(a,∞)(x)

• T (x) = x

• η(θ) = −1/θ

• ξ(θ) = −a/θ + log θ

• h(x) = I(a,∞)(x).

• Note: if a is not �xed, then it is not an exponential family: h depends on a

• To turn it into a natural family, reparametrize η = −1/θ and Ξ = (−∞, 0).

Properties

• For an exponential family Pθ, there is a nonzero measure λ such that dPθ
dλ (ω) > 0 for all ω

(λ-a.e.) and θ.

• Use this property to show that some families of distributions are not exponential families.

Example 2.7 (Uniform distribution). Let U(0, θ) denote the uniform distribution on (0, θ). Let

P = {U(0, θ) : θ ∈ R}. Show that this family is not an exponential family.

• Note that Ω = R (or [0,∞))

• If this is an exponential family, then dPθ
dλ (ω) > 0 for all θ, all ω ∈ R for some measure λ.

• For any t > 0, there is a θ < t such that Pθ([t,∞)) = 0

• Then λ([ε,∞)) = 0 for any ε > 0, or further λ((0,∞)) = 0

• Also, for any t ≤ 0, Pθ((−∞, t]) = 0, which implies λ((−∞, 0]) = 0

• Then λ(R) = 0.

Suppose Xi ∼ fi independently and each fi is in an exponential family, what can we say about

the joint distribution of X1, . . . , Xn?

• it is still in an exponential family
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Here are some other properties of exponential families

Theorem 2.8. Let P be a natural exponential family with PDF

fη(x) = exp{η>T (x)− ζ(η)}h(x)

• Let T = (Y,U) and η = (ϑ, ϕ), where Y and ϑ have the same dimension. Then Y has the

PDF

fη(y) = exp{ϑ>y − ζ(η)}

w.r.t. a σ-�nite measure depending on ϕ.

• If η0 is an interior point of the natural parameter space, then the MGF ψη0 of Pη0 ◦ T−1 is

�nite in a neighborhood of 0 and is given by

ψη0(t) = exp{ζ(η0 + t)− ζ(η0)}.

Example 2.9 (MGF of binomial distribution). Recall that

• the canonical form is given by

fη(x) = exp{ηx− n log(1 + eη)}
(
n

x

)
, ∀x ∈ Ω = {0, 1, . . . , n}

• ζ(η) = n log(1 + eη)

• T (x) = x

ψη0(t) = exp{n log(1 + eη0+t)− n log(1 + eη0)}

=

(
1 + eη0et

1 + eη0

)n
= (1− θ + θet)n

since θ = eη/(1 + eη).

2.4 Location-scale families

• sometimes, we want a model that is invariant to translation and scaling

De�nition 2.10 (Location-scale families). Let P be a known probability measure on (Rk,Bk),

V ⊂ Rk, andMk be a collection of k × k symmetric positive de�ntie matrices. The family

{P(µ,Σ) : µ ∈ V,Σ ∈Mk}

is called a location-scale family on Rk, where

P(µ,Σ)(B) = P
(

Σ−1/2(B − µ)
)
, B ∈ Bk.

The parameter µ is called the location parameter, and Σ is called the scale parameter.
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• location family: {P(µ,Ik) : µ ∈ Rk}, where Ik is the k × k identity matrix

• scale family: {P(0,Σ) : Σ ∈Mk}

• location with homogeneous scaling: {P(µ,σ2Ik) : µ ∈ V, σ ∈ R++}, where R++ = {x ∈ R :

x > 0}.

• If F is the CDF of P , then F (Σ−1/2(x− µ)) is the CDF of P(µ,Σ)

• Examples

� exponential distributions Exp(a, θ)

� uniform distributions U(0, θ)

� k-dimensional normal distributions

2.5 Su�ciency

Recall that

• A sample is a random vector on a probability space

• A measurable function T (X) of X is called a statistic if T (X) is a known value whenever X

is known

• A statistic often compresses the information contained in a sample σ(T (X)) ⊂ σ(X)

• Compression might lead to loss of information

De�nition 2.11 (Su�ciency). Let X be sample from an unknown population P ∈ P, where P
is a family of populations. A statistic T (X) is said to be su�cient for P ∈ P if and only if the

conditional distribution of X given T is known (does not depend on P )

• When P is a parametric family indexed by θ ∈ Θ, we say T (X) is su�cient for θ if the

conditional distribution of X given T does not depend on θ.

• Interpretation: once we observe X and compute T (X), the original data X do not contain

further information about the unknown population P or parameter θ

• No loss of informaiton due to compression by T (X) if θ is of concern

• This concept depends on the family P.

• Su�ciency passes over to smaller classes, but not larger

� If T (X) is su�cient for P ∈ P, then it is also su�cient for P ∈ P0 ⊂ P, but not

necessarily for P ∈ P1 ⊃ P
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Example 2.12 (Sum of Bernoulli trials). Let X = (X1, . . . , Xn) and X1, . . . , Xn be IID from the

Bernoulli distribution with PDF (w.r.t. the counting measure)

fθ(z) = θz(1− θ)1−zI{0,1}(z), z ∈ R, θ ∈ (0, 1).

• P = {∏n
i=1 fθ(xi) : θ ∈ (0, 1)}

• Take T (X) =
∑n
i=1Xi: the number of ones in X

• Once we know T (X), other information in X is about the positions of these ones

� but they are not useful for estimating θ which is the probability of getting a one

� they are redundant for θ

• Formally, we compute the conditional distribution of X given T . Note that

P (X = x | T = t) =
P (X = x, T = t)

P (T = t)

and P (T = t) =
(
n
t

)
θt(1− θ)n−tI{0,1,...,n}(t), for x = (x1, . . . , xn).

� If t 6= ∑n
i=1 xi, then P (X = x, T = t) = 0.

� If t =
∑n
i=1 xi, then

P (X = x, T = t) = P (X = x)

=

n∏
i=1

P (Xi = xi)

= θt(1− θ)n−t
n∏
i=1

I{0,1}(xi)

Then

P (X = x | T = t) =
1(
n
t

) ∏n
i=1 I{0,1}(xi)

I{0,1,...,n}(t)

does not depend on θ.

Theorem 2.13 (Factorization). Suppose that X is a sample from P ∈ P and P is a family of

probability measures on (Rn,Bn) dominated by a σ-�nite measure ν. Then T (X) is su�cient for

P ∈ P if and only if there are nonnegative Borel functions h (which does not depend on P ) on

(Rn,Bn) and gP (which depends on P ) on the range of T such that

dP

dν
(x) = gP (T (x))h(x). (2.5)

• Intuition: the unknown part gP involve T only

• Application: the T in an exponential family

fθ(ω) =
dPθ
dν

(ω) = exp
{

[η(θ)]>T (ω)− ξ(θ)
}
h(ω), ω ∈ Ω,

is su�cient for θ
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• Application: in the example of sum of Bernoulli trials, the joint distribution of X1, . . . , Xn

is in an exponential family with T (X) =
∑n
i=1Xi

Example 2.14 (Truncation families). Let φ(x) be a positive Borel function on (R,B) such that∫ b
a
φ(x)dx <∞ for any a and b, −∞ < a < b <∞. Let θ = (a, b), Θ = {(a, b) ∈ R2 : a < b}, and

fθ(x) = c(θ)φ(x)I(a,b)(x),

where c(θ) = [
∫ b
a
φ(x)dx]−1.

• {fθ : θ ∈ Θ} is called a truncation family. This is a parametric family.

• It is dominated by Lebesgue measure

• Suppose X1, . . . , Xn are IID sampled from fθ

• The joint PDF of X = (X1, . . . , Xn) is

n∏
i=1

fθ(xi) = [c(θ)]n

[
n∏
i=1

φ(xi)

][
n∏
i=1

I(a,b)(xi)

]

• ∏n
i=1 I(a,b)(xi) = I(a,∞)(x(1))I(−∞,b)(x(n)).

• So T (X) = (X(1), X(n)) is su�cient for θ = (a, b).

Proof of Factorization Theorem. We require the following lemma.

Lemma 2.15. Let {ci} be a sequence of nonnegative numbers satisfying
∑∞
i=1 ci = 1 and let {Pi}

be a sequence of probability measures on a common measurable space. De�ne P =
∑∞
i=1 ciPi.

1. P is a probability measure;

2. Let ν be a σ-�nite measure. Then Pi � ν for all i if and only if P � ν. When P � ν,

dP

dν
=

∞∑
i=1

ci
dPi
dν

.

3. If a family P is dominated by a σ-�nite measure, then P is dominated by a probability measure

Q =
∑∞
i=1 ciPi where Pi ∈ P.

Now we begin the proof of Factorization Theorem. Let us do the �only if � part �rst. To this end,

we shall assume T is su�cient and then try to establish Eq 2.5, which amounts to prove that

P (A) =

∫
A

gP
(
T (x)

)
h(x)dx ∀A ∈ Bn.

Before we dive into the details, let us take a look at the overview of the proof. We have

P (A) =

∫
P (A|T )dP =

∫
EP (IA|T )dP.



Lecture 2: Basic concepts, Exponential families and Su�cient statistics 48

Since EP (IA|T ) = P (A|T ) does not depend on P , we hope that a common measure Q can be found

such that EP (IA|T ) = EQ(IA|T ) where Q does not depend on P but dominates P for all P . Then

we will have

P (A) =

∫
P (A|T )dP =

∫
EQ(IA|T )

dP

dQ
dQ.

If, further, dPdQ is measurable in T and Q << ν, we will have

P (A) =

∫
EQ[IA

dP

dQ
|T ]dQ =

∫
IA
dP

dQ
dQ =

∫
A

dP

dQ

dQ

dν
dν

Then, we can take g
P

(T ) = dP
dQ and h = dQ

dν .

Now here are the details. Let Q be the probability measure in Lemma 2.15. By Fubini's theorem

and Lemma 2.15, for any B ∈ σ(T ),

Q(A ∩B) =

∞∑
j=1

cjPj(A ∩B) =

∞∑
j=1

cj

∫
B

P (A|T )dPj

=

∫
B

∞∑
j=1

cjP (A|T )dPj =

∫
B

P (A|T )dQ,

where the second equality holds since P (A|T ) does not depend on P ∈ P. Hence, P (A|T ) =

EQ(IA|T ) a.s. Q, where EQ(IA|T ) denotes the conditional expectation of IA given T w.r.t. Q. Let

dP/dQ be the Radon-Nikodym derivative of P with respect to Q on the space (Rn, σ(T ), Q). Then

dP/dQ is measurable on (Rn, σ(T ), Q) and hence there is a measurable function g
P

(T ) of T such

that g
P

(T ) = dP/dQ. Then

P (A) =

∫
P (A|T )dP =

∫
EQ(IA|T )dP =

∫
EQ(IA|T )g

P
(T )dQ

=

∫
EQ[IAgP (T )|T ]dQ =

∫
IAgP (T )dQ =

∫
A

g
P

(T )
dQ

dν
dν

for any A ∈ Bn. Hence,
dP

dν
(x) = g

P

(
T (x)

)
h(x) (2.6)

holds with h = dQ/dν. This establishes the �only if� part of the theorem.

Now we move to the �if � part. Suppose that (2.6) holds. By Chain rule, dPdν = dQ
dν

dP
dQ . Hence

dP

dQ
=
dP

dν

/
dQ

dν
=
dP

dν

/ ∞∑
i=1

ci
dPi
dν

= g
P

(T )

/ ∞∑
i=1

cigPi(T ), (2.7)

a.s. Q, where the second equality follows from Lemma 2.15.

Let A ∈ σ(X) and P ∈ P. It su�ces to show

P (A|T ) = EQ(IA|T ) a.s. P , (2.8)
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where EQ(IA|T ) denotes the conditional expectation of IA given T w.r.t. Q. This is because

EQ(IA|T ) does not vary with P ∈ P, and result (2.8) and Theorem 1.7 (of the textbook) imply

that the conditional distribution of X given T is determined by EQ(IA|T ), A ∈ σ(X).

By (2.7), dP/dQ is a Borel function of T . For any B ∈ σ(T ),∫
B

EQ(IA|T )dP =

∫
B

EQ(IA|T )
dP

dQ
dQ

=

∫
B

EQ
(
IA
dP

dQ

∣∣∣∣T) dQ =

∫
B

IA
dP

dQ
dQ =

∫
B

IAdP.

This proves (2.8) and completes the proof.

De�nition 2.16 (Minimal su�ciency). Let T be a su�cient statistic for P ∈ P. T is called a

minimal su�cient statistic if and only if, for any other statistic S su�cient for P ∈ P, there is a
measurable function ψ such that T = ψ(S) P-a.s. (P -a.s. for all P ∈ P).

• Minimal su�cient statistics are unique (almost surely): If both T and S are minimal su�cient

statistics (for a family P), then there is a one-to-one measurable function ψ such that T =

ψ(S) P-a.s.

• Minimal su�cient statistics exist under weak conditions, e.g., P contains distributions on Rk
dominated by a σ-�nite measure.

Example 2.17. Let X1, . . . , Xn ∼ Pθ = U(θ, θ + 1) for θ ∈ R. Suppose n > 1.

• This is a location family, with the location parameter θ

• The joint PDF is

fθ(x) =

n∏
i=1

I(θ,θ+1)(xi) = I(x(n)−1,x(1))(θ), x = (x1, . . . , xn) ∈ Rn.

� note that θ < x(1) ≤ · · · ≤ x(n) < θ + 1 i� I(x(n)−1,x(1))(θ) = 1

• By Factorization Theorem, T = (X(1), X(n)) is su�cient for θ

• To see T is minimal, we note that for any joint density fθ,

x(1) = sup{θ : fθ(x) > 0}
x(n) = 1 + inf{θ : fθ(x) > 0}

• Suppose S(X) is another su�cient statistic for θ.
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• By Factorization Theorem, there are Borel functions h and gθ such that

fθ(x) = gθ(S(x))h(x)

• For x with h(x) > 0,

x(1) = sup{θ : gθ(S(x)) > 0}
x(n) = 1 + inf{θ : gθ(S(x)) > 0}

which are functions of S!

• So, T (x) = ψ(S(x)) when h(x) for a measurable function ψ.

• Note that h > 0 P-a.s.

• Therefore, T is minimal.

Theorem 2.18. Let P be a family of distributions on Rk.

1. Suppose P0 ⊂ P and P0-a.s. implies P-a.s. If T is su�cient for P ∈ P and minimal

su�cient for P ∈ P0, then T is minimal su�cient for P ∈ P.
Proof: If S is su�cient for P, then it is also su�cient for P0. Thus, T = ψ(S) P0-a.s. for

a measurable function ψ. Then T = ψ(S) P-a.s. since P0-a.s. implies P-a.s by assumption.

2. Suppose that P contains only PDF f0, f1, . . . w.r.t. a σ-�nite measure. De�ne f∞(x) =∑∞
i=0 cifi(x), where ci > 0 and

∑∞
i=0 ci = 1. Let Ti(x) = fi(x)/f∞(x) when f∞(x) > 0.

Then T (X) = (T0(X), T1(X), . . .) is minimal su�cient for P. If {x : fi(x) > 0} ⊂ {x :

f0(x) > 0} for all i, then f∞ can be replace with f0, in which case T (X) = (T1, T2, . . .) is

minimal su�cient for P.
Proof: The construction of f∞ assures that f∞ > 0 P-a.s. Let gi(T ) = Ti. Then fi(x) =

gi(T (x))f∞(x). By Factorization theorem, T is su�cient for P. Suppose S(X) is another

su�cient statistic. By Factorization theorem, fi(x) = g̃i(S(x))h(x) for all i and some g̃ and

h. Then

Ti(x) = g̃i(S(x))/

∞∑
j=0

cj g̃j(S(x))

when f∞(x) > 0. Thus, T is minimal su�cient for P.

3. Suppose that P contains PDF fP w.r.t. a σ-�nite measure and that there exists a su�cient

statistic T (X) such that, for any possible values x and y of X, fP (x) = fP (x)φ(x, y) for all

P implies T (x) = T (y), where φ is a measurable function. Then T (X) is minimal su�cient

for P.
Proof: See the textbook.
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Example 2.19. Let P = {fθ : θ ∈ Θ} be a p-dimensional exponential family with PDFs

fθ(x) = exp{[η(θ)]τT (x)− ξ(θ)}h(x).

By Factorization Theorem, T (X) is su�cient for θ ∈ Θ. Suppose that there exists Θ0 = {θ0, θ1, . . . , θp} ⊂
Θ such that the vectors ηi = η(θi) − η(θ0), i = 1, . . . , p, are linearly independent in Rp. (This is

true if the exponential family is of full rank). Then T is also minimal su�cient.

• Method A: To use Theorem 2.18(1). Let P0 = {fθ : θ ∈ Θ0}. Note that the set {x : fθ(x) >

0} does not depend on θ. It follows from Theorem 2.3(ii) with f∞ = fθ0 that

S(X) =
(

exp{ητ1T (x)− ξ1}, . . . , exp{ητpT (x)− ξp}
)

is minimal su�cient for θ ∈ Θ0. Since ηi's are linearly independent, there is a one-to-one

measurable function ψ such that T (X) = ψ(S(X)) a.s. P0. Hence, T is minimal su�cient

for θ ∈ Θ0. It is easy to see that a.s. P0 implies a.s. P. Thus, by Theorem 2.18(1), T is

minimal su�cient for θ ∈ Θ.

• Method B: To use Theorem 2.18(3). Let φ(x, y) = h(x)/h(y). Then

fθ(x) = fθ(y)φ(x, y)

⇒ exp{[η(θ)]τ [T (x)− T (y)} = 1

⇒ T (x) = T (y).

Since T is su�cient, by Theorem 2.18 (3), T is also minimal su�cient.

Example 2.20 (revisited). Let X1, . . . , Xn ∼ Pθ = U(θ, θ + 1) for θ ∈ R. Suppose n > 1.

• This is a location family, with the location parameter θ

• The joint PDF is

fθ(x) =
n∏
i=1

I(θ,θ+1)(xi) = I(x(n)−1,x(1))(θ), x = (x1, . . . , xn) ∈ Rn.

• Another way to show that T = (X(1), X(n)) is minimal su�cient:

Let φ(x, y) = 1. Then

fθ(x) = fθ(y), for all θ

⇒ I(x(n)−1,x(1))(θ) = I(y(n)−1,y(1))(θ) for all θ

⇒ (x(1), x(n)) = (y(1), y(n)).

By Theorem 2.18 (3), T = (X(1), X(n)) is minimal su�cient.

• Note that su�ciency depends on the family P, or equivalently, our statistical model, which

could (likely) be wrong.
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• In this case, the concept of su�ciency might not be useful

• However, some statistics, like sample mean, sample variance, minimum and maximum statis-

tics, are su�cient for many models

• They are still useful even we don't know the correct model

2.6 Completeness

• A minimal su�cient statistic might not be �minimal� in some sense � not always the �simplest

su�cient statistic�

• May still contain redundant information

• e.g. if X is minimal su�cient, then so is (X, exp(X))

• A statistic V (X) is said to be ancillary if its distribution does not depend on the population

P

• V (X) is called �rst-order ancillary if EPV (X) is independent of P

• e.g. trivial ancillary statistic: V (X) = c

• Note that σ(V (X)) ⊂ σ(X).

� If V (X) is a nontrivial ancillary statistic, then σ(V (X)) is a nontrivial σ-�eld thap.d.f.'st

does not contain any information about P .

• Similary, σ(V (S(X))) ⊂ σ(S(X))

� if V (S(X)) is ancillary, then σ(S(X)) contains a nontrivial σ-�eld that does not contain

any information about P

� �data� S(X) may be further compressed

� Some su�cient statistics can not be further compressed in this sense

De�nition 2.21 (Completeness). A statistic T (X) is said to be complete for P ∈ P if and only

if, for any Borel function f , EP f(T ) = 0 for all P ∈ P implies that f(T ) = 0 P-a.s. T is said to be

boundedly complete if and only if the previous statement holds for any bounded Borel functions

f .

• A complete statistic contains �completely� useful information about P

� no redundance

• Clearly, a complete statistic is boundedly complete.

• If T is complete and S = ψ(T ) for a measurable function, then S is complete
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• Similar result holds for bounded completeness

• A complete and su�cient statistic is minimial su�cient

Proposition 2.22. If P is in an exponential family of full rank with PDFs given by

fη(x) = exp
{
ητT (x)− ζ(η)

}
h(x),

then T (X) is complete and su�cient for η ∈ Ξ.

Proof. We have shown that T is su�cient. We now show that T is complete. Suppose that there

is a function f such that E[f(T )] = 0 for all η ∈ Ξ.∫
f(t) exp{ητ t− ζ(η)}dλ = 0 for all η ∈ Ξ,

where λ is a measure on (Rp,Bp). Let η0 be an interior point of Ξ. Then∫
f+(t)eη

τ tdλ =

∫
f−(t)eη

τ tdλ for all η ∈ N(η0), (2.9)

where N(η0) = {η ∈ Rp : ‖η − η0‖ < ε} for some ε > 0. In particular,∫
f+(t)eη

τ
0 tdλ =

∫
f−(t)eη

τ
0 tdλ = c.

If c = 0, then f = 0 a.e. λ. If c > 0, then c−1f+(t)eη
τ
0 t and c−1f−(t)eη

τ
0 t are p.d.f.'s w.r.t. λ and

result (2.9) implies that their m.g.f.'s are the same in a neighborhood of 0. By Theorem 1.6(ii) (of

the textbook), c−1f+(t)eη
τ
0 t = c−1f−(t)eη

τ
0 t, i.e., f = f+−f− = 0 a.e. λ. Hence T is complete.

Example 2.23. Suppose that X1, . . . , Xn are IID random variables having the N(µ, σ2) distribu-

tion, µ ∈ R, σ > 0.

• It is easy to check that the joint PDF is

(2π)−n/2 exp {η1T1 + η2T2 − nζ(n)} ,

where

� T1 =
∑n
i=1Xi

� T2 = −∑n
i=1X

2
i

� η = (η1, η2) = (µ/σ2, 1/(2σ2))

• This is a natural exponential familyof full rank: Ξ = R× (0,∞) is an open set of R2

• So T (X) = (T1(X), T2(X)) is complete and su�cient for η

• There is a one-to-one correspondence between η and θ = (µ, σ2)

� T is also complete and su�cient for θ
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• There is a one-to-one correspondence between (X,S2) and (T1, T2)

� (X,S2) is complete and su�cient for θ

Example 2.24. Let X1, . . . , Xn ∼ Pθ = U(0, θ) be IID for θ > 0. The largest order statistic,

X(n), is complete and su�cient for θ.

• The su�ciency follows from Factorization theorem: the joint PDF is θ−nI(0,θ)(x(n))

• The CDF of X(n) is

Fn(x) = P (X(n) ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x)

=

n∏
i=1

P (Xi ≤ x) =
xn

θn
I(0,θ)(x).

• The PDF is then

f(x) =
nxn−1

θn
I(0,θ)(x).

• Let g be a Borel function on [0,∞) s.t. E[g(X(n))] = 0 for all θ > 0. Then∫ θ

0

g(x)xn−1dx = 0

for all θ > 0.

• Di�erentiate the above w.r.t. θ

g(θ)θn−1 = 0

• Thus, g(θ) = 0 for all θ > 0.

• By de�nition, X(n) is complete for θ

Theorem 2.25 (Basu). Let V and T be two statistics of X from a population P ∈ P. If V is

ancillary and T is boundedly complete and su�cient for P ∈ P, then V and T are independent

w.r.t. any P ∈ P.

• Intuition: V does not contain information about P , while T carries non-redundant and

su�cient information about P . This suggests that σ(V ) and σ(T ) are independent.

Proof: Let B be an event on the range of V . Since V is ancillary, P (V −1(B)) is a constant. As T

is su�cient, E[IB(V )|T ] is a function of T (not dependent on P ). Because

E{E[IB(V )|T ]− P (V −1(B))} = 0 for all P ∈ P,

by the bounded completeness of T ,

P (V −1(B)|T ) = E[IB(V )|T ] = P (V −1(B)) a.s. P



Let A be an event on the range of T . Then

P (T−1(A) ∩ V −1(B))=E{E[IA(T )IB(V )|T ]} = E{IA(T )E[IB(V )|T ]}

= E{IA(T )P (V −1(B))} = P (T−1(A))P (V −1(B)).

Hence T and V are independent w.r.t. any P ∈ P.

Example 2.26. Show that the sample mean and sample variance of an IID sample of normally

distributed random variables are independent.

• Let X1, . . . , Xn be IID ∼ N(µ, σ2)

• Suppose σ2 is known

• We can easily show that the family {N(µ, σ2) : µ ∈ R} is an exponential family of full rank

• Natural parameter: η = µ/σ2

• Then X is complete and su�cient for η and µ, according to Proposition 2.22

• Note that S2 = (n− 1)−1
∑n
i=1(Zi − Z)2, where Zi = Xi − µ ∼ N(0, σ2)

• S2 is ancillary w.r.t. µ, since its distribution does not depend on µ

• By Basu's theorem, X and S2 are independent w.r.t. N(µ, σ2) for any µ ∈ R

• Since σ2 is arbitrary, X and S2 are independent w.r.t. N(µ, σ2) for any µ and σ2 > 0

55
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Lecture 3: Statistical Decision Theory

Lecturer: LIN Zhenhua ST5215 AY2019/2020 Semester I

3.1 Decision rules, loss functions and risks

Consider the estimation problem. Let X = (X1, . . . , Xn) be a sample from a population Pθ ∈ P,
where θ ∈ Θ. Suppose EθXi ≡ θ. We estimate θ by θ̂(X) = X = n−1

∑n
i=1Xi. This means, if we

observe X = x, we estimate θ by θ̂(x).

View this problem in the following way:

• After we observe X = x, we take an action: θ̂(x) = x

• The set of allowable actions is Θ: action space, denoted by A and endowed with a σ-�eld FA

• θ̂ is a decision rule: a measurable function from the range of X to (A,FA)

• A statistical decision is an action that we take after we observe X

• For a problem, there are many decision rules: θ̂(X) =
∑n−1
i=2 X(i)

• How to measure quality of decision rules?

� loss function: a function L : P × A→ [0,∞), Borel for each �xed P ∈ P
� When P is parametric and θ is the parameter, L : Θ× A→ [0,∞)

� For a decision rule, L(P, T (x)) is the �loss� if we take the action T (x) after observe

X = x

� The �average� loss, called risk, for a rule is de�ned by

RT (P ) = EPL(P, T (X)) =

∫
L(P, T (X))dP

• Note that the risk depends on both T and P (also the loss function which is often predeter-

mined and �xed)

Now we can quantify the quality of a decision rule

• T1 is as good as T2 if

RT1
(P ) ≤ RT2

(P ), ∀P ∈ P

• We say T1 is better than T2, if T1 is as good as T2 and RT1(P ) < RT2(P ) for some P ∈ P

� we also say T2 is dominated by T1 in this case
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• T1 and T2 are equivalent (equivalently good) if and only RT1(P ) = RT2(P ) for all P ∈ P

• Let J be the collection of decision rules under consideration

• T∗ is called an J-optimal rule if T∗ is as good as any other rule in J

� T∗ is optimal if J contains all possible rules

Example 3.1 (Measurement problem revisited). Recall that we are to measure a quantity θ of an

object. We take multiple measurements of the object and record the results X1, . . . , Xn.

• Action space A = Θ the set of all possible values of θ

• (A,FA) = (Θ,BΘ)

• A simple decision rule: T (X) = X

• A common loss function: squared error loss L(Pθ, a) = (θ − a)2 for θ ∈ Θ and a ∈ A

� risk function with the squared error loss is called the mean squared error (MSE)

• Suppose X1, . . . , Xn are IID with mean θ and known variance σ2

• The risk of T is

RT (θ) = Eθ(θ −X)

= (θ − EθX)2 + Eθ(EθX −X)2

= (θ − θ)2 + Var(X)2

= σ2/n

� the risk decrease as sample size n increases (variability of the estimator decreases as

sample becomes larger)

� it increases with σ2 (problem with large variance is harder)

• This kind of problem is called estimation

• The decision rule here is called an estimator

Example 3.2 (Hypothesis test). Let P be a family of distributions, P0 ⊂ P and P1 = {P ∈
P : P ∈ P0}. A general hypothesis testing problem can be formulated as deciding which of the

following statements is true:

H0 : P ∈ P0 versus H1 : P ∈ P1.

• H0 is called the null hypothesis

• H1 is called the alternative hypothesis

• The action space A = {0, 1}
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• A decision rule in this case is called a test

• T : X → {0, 1}, so mut be in the form IC(X) for some C ⊂ X

• C is called the rejection region or critical region for testing H0 versus H1

• A common loss function: 0-1 loss, L(P, j) = 0 for P ∈ Pj and L(P, j) = 1 otherwise, j = 0, 1.

• The risk is

RT (P ) =

P (T (X) = 1) = P (X ∈ C) when P ∈ P0, [Type I error ]

P (T (X) = 0) = P (X 6∈ C) when P ∈ P1, [Type II error]

3.2 Admissibility and optimality

De�nition 3.3 (Admissibility). Let J be a class of decision rules. A decision rule T ∈ J is called

J-admissible (or admissible if J contains all possible rules) if and only if there does not exist any

S ∈ J that is better than T (in terms of the risk with respect to a loss function).

• In principle, inadmissible rule shall not be used

• Relationship between admissibility and optimality

� If T∗ is J-optimal, then it is J-admissible

� If T∗ is J-optimal and T0 is J-admissible, then T0 is also J-optimal and is equivalent to

T∗

� If there are two J-admissible rules that are not equivalent, then there does not exist any

J-optimal rule

For convex loss function, admissible rules are functions of su�cient statistics

Theorem 3.4 (Rao-Blackwell). Let T be a su�cient statistic for P ∈ P, T0 ∈ Rk be a decision

rule satisfying EP ‖T0‖ <∞ for all P ∈ P. Let T1 = E{T0(X) | T}. Then RT1
(P ) ≤ RT0

(P ) when

the loss function L(P, a) is convex in a. If L is strictly convex in a and T0 is not a function of T ,

then T0 is inadmissible.

Example 3.5 (Poisson process). Phone calls arrive at a switchboard according to a Poisson process

at an average rate of λ per minute. This rate is not observable, but the numbers X1, . . . , Xn of

phone calls that arrived during n successive one-minute periods are observed. It is desired to

estimate the probability e−λ that the next one-minute period passes with no phone calls.

• Start with the following (extremely) naive estimator

T0 =

1 if X1 = 0

0 otherwise
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• Possion distributions form an exponential family

• By Factorization theorem, T = Tn =
∑n
i=1Xi is a su�cient statistic

• Let T1(t) = E{T0 | T = t}

T1(t) = E{IX1=0 | T = t}

= P

(
X1 = 0 |

n∑
i=1

Xi = t

)

= P

(
X1 = 0,

n∑
i=2

Xi = t

)
/P

(
n∑
i=1

Xi = t

)

= P (X1 = 0)P

(
n∑
i=2

Xi = t

)
/P

(
n∑
i=1

Xi = t

)

= e−λ
((n− 1)λ)te−(n−1)λ

t!

t!

(nλ)te−nλ

=

(
1− 1

n

)t
.

• For big n, T ≈ nλ in high probability, and thus

T1 ≈
(

1− 1

n

)nλ
≈ e−λ.

3.3 Unbiasedness

• Optimal rule often does not exist

• We often restrict us to a certain class of decision rules and try to �nd the best among the

class

De�nition 3.6 (Unbiasedness). In an estimation problem, the bias of an estimator T (X) of a real-

valued parameter θ of the unknown population is de�ned to be bT (P ) = EP (T (X)) − θ (denoted

by bT (θ) for a parametric family indexed by θ). An estimator T (X) is said to be unbiased for θ if

and only if bT (P ) = 0 for all P ∈ P.

Example 3.7 (Measurement problem revisited). Recall that we are to measure a quantity θ of an

object. We take multiple measurements of the object and record the results X1, . . . , Xn.

• Suppose X1, . . . , Xn are IID with mean θ and known variance σ2

• Consider the class J = {T (X) =
∑n
i=1 ciXi :

∑n
i=1 ci = 1}

• Then Eθ(T (X)) = θ so all estimators in J is unbiased.
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• The risk under squared error loss is

RT (θ) = Eθ(T (X)− θ)2

= Eθ

(
n∑
i=1

ciXi − θ
)2

= Varθ

(
n∑
i=1

ciXi

)

= σ2
n∑
i=1

c2i

This is minimized when ci = 1/n for all i

• So T (X) = X is the J-optimal estimator

• The MSE of an estimator can always be divided into two compnents: (square of) bias and

variance

MSE(θ̂) = Eθ(θ̂ − θ)2

= (Eθ θ̂ − θ)2 + Eθ(θ̂ − Eθ θ̂)

= bias2 + Var(θ̂).

• Bias and variance ofte compete with each other

• Trade-o� often must be made

3.4 Consistency

• It is hard to compute the exact risk in practice, in particular when the model is nonparametric

• When the sample size is large (well, not too small, I mean), we shall resort to asymptotic

criteria

� by using CLT, SLLN, WLLN, etc

• We treat a sample X = (X1, . . . , Xn) as a member of a sequence corresponding to n = 1, 2, . . .

• Similarly, a statistic T (X), often denoted by Tn to emphasize its dependence on the sample

size n, is viewed as a member of a sequence T1, T2, . . .

• Weakness: it is hard to deterimine whether the sample size n is large enough...

� so we complement asymptotic analysis by numerical studies

• Recently, nonasymptotic bounds are also popular to characterize a statistic/estimator (maybe

to be covered in the second part of this course...)
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• Intuitively, a good estimator shall be close to its target parameter when n is large in some

sense

De�nition 3.8 (Consistency of point estimators). Let X = (X1, . . . , Xn) be a sample from P ∈ P
and Tn(X) be an estimator of θ for every n.

1. Tn(X) is called consistent for θ if and only if Tn(X)
P→ θ w.r.t. any P ∈ P.

2. Let {an} be a sequence of positive constants diverging to ∞. Tn(X) is called an-consistent

for θ if and only if an{Tn(X)− θ} = OP (1) w.r.t. any P ∈ P.

3. Tn(X) is called strongly consistent for θ if and only if Tn(X)
a.s.→ θ w.r.t. any P ∈ P

4. Tn(X) is called Lr-consistent for θ if and only if Tn(X)
Lr→ θ w.r.t. any P ∈ P for some �xed

r > 0.

Note that,

• �consistent� in (1) is the weakest one among these concepts of consistency

� but the most common one in statistics

� also the most basic requirement for an estimator

• In an-consistency, an =
√
n is often the case

• Example: the sample mean is strongly consistent for the population mean by SLLN

• A more interesting example: X
2
is
√
n-consistent for µ2 under the assumption that P has a

�nite variance.

� note that
√
n(X

2 − µ2) =
√
n(X − µ)(X + µ)

� X is
√
n-consistent for µ by CLT

� X + µ = OP (1)

� If Yn = OP (bn) and Zn = OP (cn), then YnZn = OP (bncn)

3.5 Asymptotic unbiasedness

• Unbiasedness is a good property

• However, in some cases, it is impossible to have an unbiased estimator

• Moreover, a slight bias might not be a bad thing

� trade for signi�cantly reduced variability
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• Nevertheless, asymptotically, the bias shall be small

De�nition 3.9 (Asymptotic unbiasedness). An estimator Tn(X) for θ is called asymptotically

unbiased if bTn(θ) ≡ EθTn(X)− θ → 0 as n→∞.

• Note that the de�nition in the textbook is more general than here

• Any consistent estimator is asymptotically unbiased

• If Tn is consistent for θ, then g(Tn) is asymptotically unbiased for g(θ) for any continuous g
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4.1 UMVUE

• For squred error loss, the risk of an unbiased estimator is equal to its variance

• We can compare unbiased estimators by their variance

De�nition 4.1 (UMVUE). An unbiased estimator T (X) of θ is called the uniformly minimum

variance unbiased estimator (UMVUE) if and only if Var(T (X)) ≤ Var(U(X)) for any P ∈ P and

any other unbiased estimator U(X) of θ.

• �uniformly� refers to �for any P ∈ P�

• RT (θ) ≤ RU (θ) under squared error loss

• a UMVUE estimator is J-optimal in MSE with J being the class of all unbiased estimators.

Theorem 4.2 (Lehmann-Sche�é). Suppose that there exists a su�cient and complete statistic

T (X) for P ∈ P. If there exists an unbiased estimator for θ, then there is a unique unbiased

estimator of θ that is of the form h(T ) with a Borel function h. Furthermore, h(T ) is the unique

UMVUE of θ.

Proof:

• By assumption, there is an unbiased estimator θ̂ for θ.

• Let h(T ) = E(θ̂ | T ). Then Eh(T ) = Eθ̂ = θ.

� h(T ) is unbiased for θ

• Suppose g(T ) is another unbiased estimator of θ

• E{h(T )− g(T )} = 0

• The completeness of T implies that h− g = 0 P-a.s.

• The squared error loss is strictly convex. So any admissible estimator must be of the form

h(T ), by Rao-Blackwell theorem

• h(T ) is the only (possible) admissible unbiased estimator, and thus UMVUE.

63
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Example 4.3. Let X1, ..., Xn be i.i.d. from the uniform distribution on (0, θ), θ > 0. In previous

lectures, we have shown that the order statistic X(n) is su�cient and complete with Lebesgue p.d.f.

nθ−nxn−1I(0,θ)(x).

• We observe that

EX(n) = nθ−n
∫ θ

0

xndx =
n

n+ 1
θ.

• E{(n+ 1)X(n)/n} = θ

• By Lehmann-Sche�é theorem, θ̂ = (n+ 1)X(n)/n is the UMVUE for θ

Example 4.4. Let X1, ..., Xn be i.i.d. from an unknown population P in a nonparametric family

P.

• In many cases, the vector of order statistics, T = (X(1), ..., X(n)), is su�cient and complete

for P ∈ P. (For example, P is the collection of all Lebesgue p.d.f.'s.)

• An estimator ϕ(X1, ..., Xn) is a function of T i� the function ϕ is symmetric in its n argu-

ments.

• A symmetric unbiased estimator h(T (X)) of any estimable θ is the UMVUE. This is because,

due to symmetry, h(T (X)) is a function of the order statistic T , and T is su�cient and

complete for many nonparametric families.

The following are some examples:

• X̄ is the UMVUE of θ = EX1;

• S2 is the UMVUE of Var(X1);

• n−1
∑n
i=1X

2
i − S2 is the UMVUE of (EX1)2;

• Fn(t) is the UMVUE of P (X1 ≤ t) for any �xed t.

The previous conclusions are not true if T is not su�cient and complete for P ∈ P. For example,

if n > 2 and P contains all symmetric distributions having Lebesgue p.d.f.'s and �nite means, then

below we show that there is no UMVUE for µ = EX1.

Proof.

• Suppose that T is a UMVUE of µ.

• Let P1 = {N(µ, 1) : µ ∈ R}. Since the sample mean X̄ is UMVUE when P1 is considered,

and the Lebesgue measure is dominated by any P ∈ P1, we conclude that T = X̄ a.e.

Lebesgue measure.
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• Let P2 be the family of uniform distributions on (θ1 − θ2, θ1 + θ2), θ1 ∈ R, θ2 > 0. Then

(X(1) +X(n))/2 is the UMVUE when P2 is considered, where X(j) is the jth order statistic.

• Then X̄ = (X(1) +X(n))/2 a.s. P for any P ∈ P2, which is impossible if n > 2. Hence, there

is no UMVUE of µ.

4.2 How to Find UMVUE?

• First method: solving equations for h

� Find a su�cient and complete statistic T and its distribution.

� Try some function h to see if Eh(T ) is related to θ.

� Solve for h such that Eh(T ) = θ for all P

Example 4.5. Let X1, ..., Xn be i.i.d. from the uniform distribution on (0, θ), θ > 0. The order

statistic X(n) is su�cient and complete with Lebesgue p.d.f. nθ−nxn−1I(0,θ)(x). Consider η =

g(θ), where g is a di�erentiable function on (0,∞).

• An unbiased estimator h(X(n)) of η must satisfy

θng(θ) = n

∫ θ

0

h(x)xn−1dx for all θ > 0.

• Di�erentiating both sizes of the previous equation and applying the result of di�erentiation

of an integral lead to

nθn−1g(θ) + θng′(θ) = nh(θ)θn−1.

• Hence, the UMVUE of η is

h(X(n)) = g(X(n)) + n−1X(n)g
′(X(n)).

• In particular, if η = θ, then the UMVUE of θ is (1 + n−1)X(n).

Example 4.6. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ) with an unknown θ > 0.

• T (X) =
∑n
i=1Xi is su�cient and complete for θ > 0 and has the Poisson distribution P (nθ).

• Suppose that η = g(θ), where g is a smooth function such that g(x) =
∑∞
j=0 ajx

j , x > 0.
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• An unbiased estimator h(T ) of η must satisfy (for any θ > 0):

∞∑
t=0

h(t)nt

t!
θt = enθg(θ)

=

∞∑
k=0

nk

k!
θk
∞∑
j=0

ajθ
j

=

∞∑
t=0

 ∑
j,k:j+k=t

nkaj
k!

 θt.

• A comparison of coe�cients in front of θt leads to

h(t) =
t!

nt

∑
j,k:j+k=t

nkaj
k!

,

i.e., h(T ) is the UMVUE of η.

• In particular, if η = θr for some �xed integer r ≥ 1, then ar = 1 and ak = 0 if k 6= r and

h(t) =

{
0 t < r

t!
nr(t−r)! t ≥ r

• Second approach

� Find an unbiased estimator of θ, say U(X).

� Conditioning on a su�cient and complete statistic T (X): E(U | T ) is the UMVUE of θ.

� The distribution of T is not needed. We only need to work out the conditional expec-

tation E(U | T ).

� From the uniqueness of the UMVUE, it does not matter which U(X) is used.

� Thus, U(X) should be chosen so as to make the calculation of E(U | T ) as easy as

possible.

Example 4.7. Let X1, . . . , Xn be IID sampled from Exp(θ). Let Fθ be the CDF and t > 0. Find

a UMVUE for the tail probability p = 1− Fθ(t).

• X = n−1
∑n
i=1 is su�cient and complete, since Exp(θ) is an exponential family of full rank

• I(t,∞)(X1) is unbiased: EI(t,∞)(X1) = Pθ(X1 > t) = 1− Fθ(t).

• E(I(t,∞)(X1) | X) is a UMVUE

• Note that the distribution of X1/X does not depend on θ � ancillary for θ

• By Basu's theorem, X1/X and X are independent

Pθ(X1 > t | X = x̄) = Pθ(X1/X > t/X | X = x̄)

= P (X1/X > t/x̄).
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• We need the unconditional distribution of X1/X.

P (X1/X > t/x̄) = P

(
X1∑n
i=1Xi

>
t

nx̄

)
• X1 ∼ gamma(k = 1, θ)

• ∑n
i=2Xi ∼ gamma(k = n− 1, θ)

• X1

X1+
∑n
i=2Xi

∼ beta(1, n− 1), the PDF is (n− 1)(1− x)n−2I(0,1)(x)

� the PDF of beta(a, b) is xa−1(1−x)b−1I(0,1)(x)/B(a, b), where B(a, b) = Γ(a)Γ(b)/Γ(a+

b) and Γ(a) is the gamma function

� Γ(n) = (n− 1)!

• Thus

P

{
X1∑n
i=1Xi

>
t

nx̄

}
= (n− 1)

∫ 1

t/(nx̄)

(1− x)n−2dx =

(
1− t

nx̄

)n−1

• So the UMVUE is

T (X) =

(
1− t

nX

)n−1

Example 4.8. Let X1, ..., Xn be i.i.d. with Lebesgue p.d.f. fθ(x) = θx−2I(θ,∞)(x), where θ > 0 is

unknown. Suppose that η = P (X1 > t) for a constant t > 0. Find a UMVUE of η

• The smallest order statistic X(1) is su�cient and complete for θ.

• Hence, the UMVUE of η is

P (X1 > t|X(1)) = P (X1 > t|X(1) = x(1))

= P

(
X1

X(1)
>

t

X(1)

∣∣∣∣X(1) = x(1)

)
= P

(
X1

X(1)
>

t

x(1)

∣∣∣∣X(1) = x(1)

)
= P

(
X1

X(1)
> s

)
(Basu's theorem), where s = t/x(1).

• If s ≤ 1, this probability is 1.
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• Consider s > 1 and assume θ = 1 in the calculation:

P

(
X1

X(1)
> s

)
=

n∑
i=1

P

(
X1

X(1)
> s,X(1) = Xi

)

=

n∑
i=2

P

(
X1

X(1)
> s,X(1) = Xi

)
= (n− 1)P

(
X1

X(1)
> s,X(1) = Xn

)
= (n− 1)P (X1 > sXn, X2 > Xn, ..., Xn−1 > Xn)

= (n− 1)

∫
x1>sxn,x2>xn,...,xn−1>xn

n∏
i=1

1

x2
i

dx1 · · · dxn

= (n− 1)

∫ ∞
1

[∫ ∞
sxn

n−1∏
i=2

(∫ ∞
xn

1

x2
i

dxi

)
1

x2
1

dx1

]
1

x2
n

dxn

= (n− 1)

∫ ∞
1

1

sxn+1
n

dxn =
(n− 1)x(1)

nt

• This shows that the UMVUE of P (X1 > t) is

h(X(1)) =

{
(n−1)X(1)

nt X(1) < t

1 X(1) ≥ t

4.3 A Necessary and Su�cient Condition for UMVUE

Theorem 4.9. Let U be the set of all unbiased estimators of 0 with �nite variances and T be an

unbiased estimator of η with E(T 2) <∞.

(i) A necessary and su�cient condition for T (X) to be a UMVUE of η is that E[T (X)U(X)] = 0

for any U ∈ U and any P ∈ P.

(ii) Suppose that T = h(T̃ ), where T̃ is a su�cient statistic for P ∈ P and h is a Borel function.

Let UT̃ be the subset of U consisting of Borel functions of T̃ . Then a necessary and su�cient

condition for T to be a UMVUE of η is that E[T (X)U(X)] = 0 for any U ∈ UT̃ and any

P ∈ P.

• Use of this theorem:

� �nd a UMVUE

� check whether a particular estimator is a UMVUE

� show the nonexistence of any UMVUE
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Proof: (i) Suppose that T is a UMVUE of η. Then Tc = T + cU , where U ∈ U and c is a �xed

constant, is also unbiased for η and, thus,

Var(Tc) ≥ Var(T ) c ∈ R, P ∈ P,

which is the same as

c2Var(U) + 2cCov(T,U) ≥ 0 c ∈ R, P ∈ P.

This is impossible unless Cov(T,U) = E(TU) = 0 for any P ∈ P.

Suppose now E(TU) = 0 for any U ∈ U and P ∈ P. Let T0 be another unbiased estimator of η

with Var(T0) <∞. Then T − T0 ∈ U and, hence,

E[T (T − T0)] = 0 P ∈ P,

which with the fact that ET = ET0 implies that

Var(T ) = Cov(T, T0) P ∈ P.

Note that [Cov(T, T0)]2 ≤ Var(T )Var(T0). Hence Var(T ) ≤ Var(T0) for any P ∈ P.

(ii) It su�ces to show that E(TU) = 0 for any U ∈ UT̃ and P ∈ P implies that E(TU) = 0 for

any U ∈ U and P ∈ P Let U ∈ U . Then E(U |T̃ ) ∈ UT̃ and the result follows from the fact that

T = h(T̃ ) and

E(TU) = E[E(TU |T̃ )] = E[E(h(T̃ )U |T̃ )] = E[h(T̃ )E(U |T̃ )].

Corollary 4.10. (i) Let Tj be a UMVUE of ηj, j = 1, ..., k, where k is a �xed positive integer.

Then
∑k
j=1 cjTj is a UMVUE of η =

∑k
j=1 cjηj for any constants c1, ..., ck.

(ii) Let T1 and T2 be two UMVUE's of η. Then T1 = T2 a.s. P for any P ∈ P.

Example 4.11. Let X1, ..., Xn be i.i.d. from the uniform distribution on the interval (0, θ). In

Example 4.5 we have shown that (1 + n−1)X(n) is the UMVUE for θ when the parameter space is

Θ = (0,∞). Suppose now that Θ = [1,∞). Then X(n) is not complete, although it is still su�cient

for θ. Thus, Lehmann-Sche�é theorem does not apply to X(n).

We now use Theorem 4.9(ii) to �nd a UMVUE of θ. Let U(X(n)) be an unbiased estimator of 0.

Since X(n) has the Lebesgue p.d.f. nθ
−nxn−1I(0,θ)(x),

0 =

∫ 1

0

U(x)xn−1dx+

∫ θ

1

U(x)xn−1dx for all θ ≥ 1.

This implies that U(x) = 0 a.e. Lebesgue measure on [1,∞) and∫ 1

0

U(x)xn−1dx = 0.

Consider T = h(X(n)). To have E(TU) = 0, we must have∫ 1

0

h(x)U(x)xn−1dx = 0.



Thus, we may consider the following function:

h(x) =

{
c 0 ≤ x ≤ 1

bx x > 1,

where c and b are some constants.

From the previous discussion,

E[h(X(n))U(X(n))] = 0, θ ≥ 1.

Since E[h(X(n))] = θ, we obtain that

θ = cP (X(n) ≤ 1) + bE[X(n)I(1,∞)(X(n))]

= cθ−n + [bn/(n+ 1)](θ − θ−n).

Thus, c = 1 and b = (n+ 1)/n. The UMVUE of θ is then

h(X(n)) =

{
1 0 ≤ X(n) ≤ 1

(1 + n−1)X(n) X(n) > 1.

This estimator is better than (1 + n−1)X(n), which is the UMVUE when Θ = (0,∞) and does not

make use of the information about θ ≥ 1. When Θ = (0,∞), this estimator is not unbiased.

In fact, h(X(n)) is complete and su�cient for θ ∈ [1,∞). It su�ces to show that

g(X(n)) =

{
1 0 ≤ X(n) ≤ 1

X(n) X(n) > 1.

is complete and su�cient for θ ∈ [1,∞). The su�ciency follows from the fact that the joint p.d.f.

of X1, ..., Xn is
1

θn
I(0,θ)(X(n)) =

1

θn
I(0,θ)(g(X(n))).

If E[f(g(X(n))] = 0 for all θ > 1, then

0 =

∫ θ

0

f(g(x))xn−1dx =

∫ 1

0

f(1)xn−1dx+

∫ θ

1

f(x)xn−1dx

for all θ > 1. Letting θ → 1 we obtain that f(1) = 0. Then

0 =

∫ θ

1

f(x)xn−1dx

for all θ > 1, which implies f(x) = 0 a.e. for x > 1. Hence, g(X(n)) is complete.

70
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Lecture 4: UMVUE

Lecturer: LIN Zhenhua ST5215 AY2019/2020 Semester I

4.1 UMVUE

• For squred error loss, the risk of an unbiased estimator is equal to its variance

• We can compare unbiased estimators by their variance

De�nition 4.1 (UMVUE). An unbiased estimator T (X) of θ is called the uniformly minimum

variance unbiased estimator (UMVUE) if and only if Var(T (X)) ≤ Var(U(X)) for any P ∈ P and

any other unbiased estimator U(X) of θ.

• �uniformly� refers to �for any P ∈ P�

• RT (θ) ≤ RU (θ) under squared error loss

• a UMVUE estimator is J-optimal in MSE with J being the class of all unbiased estimators.

Theorem 4.2 (Lehmann-Sche�é). Suppose that there exists a su�cient and complete statistic

T (X) for P ∈ P. If there exists an unbiased estimator for θ, then there is a unique unbiased

estimator of θ that is of the form h(T ) with a Borel function h. Furthermore, h(T ) is the unique

UMVUE of θ.

Proof:

• By assumption, there is an unbiased estimator θ̂ for θ.

• Let h(T ) = E(θ̂ | T ). Then Eh(T ) = Eθ̂ = θ.

� h(T ) is unbiased for θ

• Suppose g(T ) is another unbiased estimator of θ

• E{h(T )− g(T )} = 0

• The completeness of T implies that h− g = 0 P-a.s.

• The squared error loss is strictly convex. So any admissible estimator must be of the form

h(T ), by Rao-Blackwell theorem

• h(T ) is the only (possible) admissible unbiased estimator, and thus UMVUE.
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Example 4.3. Let X1, ..., Xn be i.i.d. from the uniform distribution on (0, θ), θ > 0. In previous

lectures, we have shown that the order statistic X(n) is su�cient and complete with Lebesgue p.d.f.

nθ−nxn−1I(0,θ)(x).

• We observe that

EX(n) = nθ−n
∫ θ

0

xndx =
n

n+ 1
θ.

• E{(n+ 1)X(n)/n} = θ

• By Lehmann-Sche�é theorem, θ̂ = (n+ 1)X(n)/n is the UMVUE for θ

Example 4.4. Let X1, ..., Xn be i.i.d. from an unknown population P in a nonparametric family

P.

• In many cases, the vector of order statistics, T = (X(1), ..., X(n)), is su�cient and complete

for P ∈ P. (For example, P is the collection of all Lebesgue p.d.f.'s.)

• An estimator ϕ(X1, ..., Xn) is a function of T i� the function ϕ is symmetric in its n argu-

ments.

• A symmetric unbiased estimator h(T (X)) of any estimable θ is the UMVUE. This is because,

due to symmetry, h(T (X)) is a function of the order statistic T , and T is su�cient and

complete for many nonparametric families.

The following are some examples:

• X̄ is the UMVUE of θ = EX1;

• S2 is the UMVUE of Var(X1);

• n−1
∑n
i=1X

2
i − S2 is the UMVUE of (EX1)2;

• Fn(t) is the UMVUE of P (X1 ≤ t) for any �xed t.

The previous conclusions are not true if T is not su�cient and complete for P ∈ P. For example,

if n > 2 and P contains all symmetric distributions having Lebesgue p.d.f.'s and �nite means, then

below we show that there is no UMVUE for µ = EX1.

Proof.

• Suppose that T is a UMVUE of µ.

• Let P1 = {N(µ, 1) : µ ∈ R}. Since the sample mean X̄ is UMVUE when P1 is considered,

and the Lebesgue measure is dominated by any P ∈ P1, we conclude that T = X̄ a.e.

Lebesgue measure.
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• Let P2 be the family of uniform distributions on (θ1 − θ2, θ1 + θ2), θ1 ∈ R, θ2 > 0. Then

(X(1) +X(n))/2 is the UMVUE when P2 is considered, where X(j) is the jth order statistic.

• Then X̄ = (X(1) +X(n))/2 a.s. P for any P ∈ P2, which is impossible if n > 2. Hence, there

is no UMVUE of µ.

4.2 How to Find UMVUE?

• First method: solving equations for h

� Find a su�cient and complete statistic T and its distribution.

� Try some function h to see if Eh(T ) is related to θ.

� Solve for h such that Eh(T ) = θ for all P

Example 4.5. Let X1, ..., Xn be i.i.d. from the uniform distribution on (0, θ), θ > 0. The order

statistic X(n) is su�cient and complete with Lebesgue p.d.f. nθ−nxn−1I(0,θ)(x). Consider η =

g(θ), where g is a di�erentiable function on (0,∞).

• An unbiased estimator h(X(n)) of η must satisfy

θng(θ) = n

∫ θ

0

h(x)xn−1dx for all θ > 0.

• Di�erentiating both sizes of the previous equation and applying the result of di�erentiation

of an integral lead to

nθn−1g(θ) + θng′(θ) = nh(θ)θn−1.

• Hence, the UMVUE of η is

h(X(n)) = g(X(n)) + n−1X(n)g
′(X(n)).

• In particular, if η = θ, then the UMVUE of θ is (1 + n−1)X(n).

Example 4.6. Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ) with an unknown θ > 0.

• T (X) =
∑n
i=1Xi is su�cient and complete for θ > 0 and has the Poisson distribution P (nθ).

• Suppose that η = g(θ), where g is a smooth function such that g(x) =
∑∞
j=0 ajx

j , x > 0.
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• An unbiased estimator h(T ) of η must satisfy (for any θ > 0):

∞∑
t=0

h(t)nt

t!
θt = enθg(θ)

=

∞∑
k=0

nk

k!
θk
∞∑
j=0

ajθ
j

=

∞∑
t=0

 ∑
j,k:j+k=t

nkaj
k!

 θt.

• A comparison of coe�cients in front of θt leads to

h(t) =
t!

nt

∑
j,k:j+k=t

nkaj
k!

,

i.e., h(T ) is the UMVUE of η.

• In particular, if η = θr for some �xed integer r ≥ 1, then ar = 1 and ak = 0 if k 6= r and

h(t) =

{
0 t < r

t!
nr(t−r)! t ≥ r

• Second approach

� Find an unbiased estimator of θ, say U(X).

� Conditioning on a su�cient and complete statistic T (X): E(U | T ) is the UMVUE of θ.

� The distribution of T is not needed. We only need to work out the conditional expec-

tation E(U | T ).

� From the uniqueness of the UMVUE, it does not matter which U(X) is used.

� Thus, U(X) should be chosen so as to make the calculation of E(U | T ) as easy as

possible.

Example 4.7. Let X1, . . . , Xn be IID sampled from Exp(θ). Let Fθ be the CDF and t > 0. Find

a UMVUE for the tail probability p = 1− Fθ(t).

• X = n−1
∑n
i=1 is su�cient and complete, since Exp(θ) is an exponential family of full rank

• I(t,∞)(X1) is unbiased: EI(t,∞)(X1) = Pθ(X1 > t) = 1− Fθ(t).

• E(I(t,∞)(X1) | X) is a UMVUE

• Note that the distribution of X1/X does not depend on θ � ancillary for θ

• By Basu's theorem, X1/X and X are independent

Pθ(X1 > t | X = x̄) = Pθ(X1/X > t/X | X = x̄)

= P (X1/X > t/x̄).
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• We need the unconditional distribution of X1/X.

P (X1/X > t/x̄) = P

(
X1∑n
i=1Xi

>
t

nx̄

)
• X1 ∼ gamma(k = 1, θ)

• ∑n
i=2Xi ∼ gamma(k = n− 1, θ)

• X1

X1+
∑n
i=2Xi

∼ beta(1, n− 1), the PDF is (n− 1)(1− x)n−2I(0,1)(x)

� the PDF of beta(a, b) is xa−1(1−x)b−1I(0,1)(x)/B(a, b), where B(a, b) = Γ(a)Γ(b)/Γ(a+

b) and Γ(a) is the gamma function

� Γ(n) = (n− 1)!

• Thus

P

{
X1∑n
i=1Xi

>
t

nx̄

}
= (n− 1)

∫ 1

t/(nx̄)

(1− x)n−2dx =

(
1− t

nx̄

)n−1

• So the UMVUE is

T (X) =

(
1− t

nX

)n−1

Example 4.8. Let X1, ..., Xn be i.i.d. with Lebesgue p.d.f. fθ(x) = θx−2I(θ,∞)(x), where θ > 0 is

unknown. Suppose that η = P (X1 > t) for a constant t > 0. Find a UMVUE of η

• The smallest order statistic X(1) is su�cient and complete for θ.

• Hence, the UMVUE of η is

P (X1 > t|X(1)) = P (X1 > t|X(1) = x(1))

= P

(
X1

X(1)
>

t

X(1)

∣∣∣∣X(1) = x(1)

)
= P

(
X1

X(1)
>

t

x(1)

∣∣∣∣X(1) = x(1)

)
= P

(
X1

X(1)
> s

)
(Basu's theorem), where s = t/x(1).

• If s ≤ 1, this probability is 1.
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• Consider s > 1 and assume θ = 1 in the calculation:

P

(
X1

X(1)
> s

)
=

n∑
i=1

P

(
X1

X(1)
> s,X(1) = Xi

)

=

n∑
i=2

P

(
X1

X(1)
> s,X(1) = Xi

)
= (n− 1)P

(
X1

X(1)
> s,X(1) = Xn

)
= (n− 1)P (X1 > sXn, X2 > Xn, ..., Xn−1 > Xn)

= (n− 1)

∫
x1>sxn,x2>xn,...,xn−1>xn

n∏
i=1

1

x2
i

dx1 · · · dxn

= (n− 1)

∫ ∞
1

[∫ ∞
sxn

n−1∏
i=2

(∫ ∞
xn

1

x2
i

dxi

)
1

x2
1

dx1

]
1

x2
n

dxn

= (n− 1)

∫ ∞
1

1

sxn+1
n

dxn =
(n− 1)x(1)

nt

• This shows that the UMVUE of P (X1 > t) is

h(X(1)) =

{
(n−1)X(1)

nt X(1) < t

1 X(1) ≥ t

4.3 A Necessary and Su�cient Condition for UMVUE

Theorem 4.9. Let U be the set of all unbiased estimators of 0 with �nite variances and T be an

unbiased estimator of η with E(T 2) <∞.

(i) A necessary and su�cient condition for T (X) to be a UMVUE of η is that E[T (X)U(X)] = 0

for any U ∈ U and any P ∈ P.

(ii) Suppose that T = h(T̃ ), where T̃ is a su�cient statistic for P ∈ P and h is a Borel function.

Let UT̃ be the subset of U consisting of Borel functions of T̃ . Then a necessary and su�cient

condition for T to be a UMVUE of η is that E[T (X)U(X)] = 0 for any U ∈ UT̃ and any

P ∈ P.

• Use of this theorem:

� �nd a UMVUE

� check whether a particular estimator is a UMVUE

� show the nonexistence of any UMVUE
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Proof: (i) Suppose that T is a UMVUE of η. Then Tc = T + cU , where U ∈ U and c is a �xed

constant, is also unbiased for η and, thus,

Var(Tc) ≥ Var(T ) c ∈ R, P ∈ P,

which is the same as

c2Var(U) + 2cCov(T,U) ≥ 0 c ∈ R, P ∈ P.

This is impossible unless Cov(T,U) = E(TU) = 0 for any P ∈ P.

Suppose now E(TU) = 0 for any U ∈ U and P ∈ P. Let T0 be another unbiased estimator of η

with Var(T0) <∞. Then T − T0 ∈ U and, hence,

E[T (T − T0)] = 0 P ∈ P,

which with the fact that ET = ET0 implies that

Var(T ) = Cov(T, T0) P ∈ P.

Note that [Cov(T, T0)]2 ≤ Var(T )Var(T0). Hence Var(T ) ≤ Var(T0) for any P ∈ P.

(ii) It su�ces to show that E(TU) = 0 for any U ∈ UT̃ and P ∈ P implies that E(TU) = 0 for

any U ∈ U and P ∈ P Let U ∈ U . Then E(U |T̃ ) ∈ UT̃ and the result follows from the fact that

T = h(T̃ ) and

E(TU) = E[E(TU |T̃ )] = E[E(h(T̃ )U |T̃ )] = E[h(T̃ )E(U |T̃ )].

Corollary 4.10. (i) Let Tj be a UMVUE of ηj, j = 1, ..., k, where k is a �xed positive integer.

Then
∑k
j=1 cjTj is a UMVUE of η =

∑k
j=1 cjηj for any constants c1, ..., ck.

(ii) Let T1 and T2 be two UMVUE's of η. Then T1 = T2 a.s. P for any P ∈ P.

Example 4.11. Let X1, ..., Xn be i.i.d. from the uniform distribution on the interval (0, θ). We

have shown that (1 + n−1)X(n) is the UMVUE for θ when the parameter space is Θ = (0,∞).

Suppose now that Θ = [1,∞). Then X(n) is not complete, although it is still su�cient for θ. Thus,

Lehmann-Sche�é theorem does not apply to X(n).

We now use Theorem 4.9(ii) to �nd a UMVUE of θ. Let U(X(n)) be an unbiased estimator of 0.

Since X(n) has the Lebesgue p.d.f. nθ
−nxn−1I(0,θ)(x),

0 =

∫ 1

0

U(x)xn−1dx+

∫ θ

1

U(x)xn−1dx for all θ ≥ 1.

This implies that U(x) = 0 a.e. Lebesgue measure on [1,∞) and∫ 1

0

U(x)xn−1dx = 0.

Consider T = h(X(n)). To have E(TU) = 0, we must have∫ 1

0

h(x)U(x)xn−1dx = 0.
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Thus, we may consider the following function:

h(x) =

{
c 0 ≤ x ≤ 1

bx x > 1,

where c and b are some constants.

From the previous discussion,

E[h(X(n))U(X(n))] = 0, θ ≥ 1.

Since E[h(X(n))] = θ, we obtain that

θ = cP (X(n) ≤ 1) + bE[X(n)I(1,∞)(X(n))]

= cθ−n + [bn/(n+ 1)](θ − θ−n).

Thus, c = 1 and b = (n+ 1)/n. The UMVUE of θ is then

h(X(n)) =

{
1 0 ≤ X(n) ≤ 1

(1 + n−1)X(n) X(n) > 1.

This estimator is better than (1 + n−1)X(n), which is the UMVUE when Θ = (0,∞) and does not

make use of the information about θ ≥ 1. When Θ = (0,∞), this estimator is not unbiased.

In fact, h(X(n)) is complete and su�cient for θ ∈ [1,∞). It su�ces to show that

g(X(n)) =

{
1 0 ≤ X(n) ≤ 1

X(n) X(n) > 1.

is complete and su�cient for θ ∈ [1,∞). The su�ciency follows from the fact that the joint p.d.f.

of X1, ..., Xn is
1

θn
I(0,θ)(X(n)) =

1

θn
I(0,θ)(g(X(n))).

If E[f(g(X(n))] = 0 for all θ > 1, then

0 =

∫ θ

0

f(g(x))xn−1dx =

∫ 1

0

f(1)xn−1dx+

∫ θ

1

f(x)xn−1dx

for all θ > 1. Letting θ → 1 we obtain that f(1) = 0. Then

0 =

∫ θ

1

f(x)xn−1dx

for all θ > 1, which implies f(x) = 0 a.e. for x > 1. Hence, g(X(n)) is complete.

Example 4.12. Let X be a sample (of size 1) from the uniform distribution U(θ − 1
2 , θ + 1

2 ),

θ ∈ R. There is no UMVUE of η = g(θ) for any nonconstant function g. Note that an unbiased

estimator U(X) of 0 must satisfy∫ θ+ 1
2

θ− 1
2

U(x)dx = 0 for all θ ∈ R.
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Di�erentiating both sides of the previous equation and applying the result of di�erentiation of an

integral lead to

U(x) = U(x+ 1) a.e. m,

where m is the Lebesgue measure on R.

If T is a UMVUE of g(θ), then T (X)U(X) is unbiased for 0 and, hence,

T (x)U(x) = T (x+ 1)U(x+ 1) a.e. m,

where U(X) is any unbiased estimator of 0.

Since this is true for all U ,

T (x) = T (x+ 1) a.e. m.

Since T is unbiased for g(θ),

g(θ) =

∫ θ+ 1
2

θ− 1
2

T (x)dx for all θ ∈ R.

Di�erentiating both sides of the previous equation and applying the result of di�erentiation of an

integral, we obtain that

g′(θ) = T
(
θ + 1

2

)
− T

(
θ − 1

2

)
= 0 a.e. m.

4.4 Information Inequality

• What is the lower bound of the variance of an unbiased estimator?

For certain distribution families, a quantity called Fisher information, which measures the amount

of information about an unknown parameter contained in the data, can be de�ned.

The families must satisfy the following regularity conditions:

(i) The family has p.d.f.s, i.e., P = {p(x, θ) : θ ∈ Θ} where p(x, θ) is a p.d.f.

(ii) The set A = {x : p(x, θ) > 0} does not depend on θ.

(iii) For all x ∈ A and θ ∈ Θ, ∂p(x,θ)∂θ exists and is �nite.

(iv) If T is any statistic such that Eθ|T | <∞ for all θ ∈ Θ, then

∂

∂θ

∫
T (x)p(x, θ)dx =

∫
T (x)

∂p(x, θ)

∂θ
dx,

whenever the right hand side is �nite.

• Examples:
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� The uniform distributions U(0, θ) and the exponential distributions E(a, θ) with un-

known a and θ do not satisfy the regularity conditions.

� Any exponential family satis�es the conditions. In particular, the Normal, Gamma,

Beta, Binormail, Poisson distributions, etc. satisfy the regularity conditions.

Let X be a single sample from P ∈ P = {p(x, θ) : θ ∈ Θ}, where Θ is an open set in R. Suppose
that the regularity conditions hold. The Fisher information number is de�ned as

I(θ) = E
(
∂

∂θ
ln p(X, θ)

)2

=

∫ (
∂

∂θ
ln p(x, θ)

)2

p(x, θ)dx.

• The greater I(θ) is, the easier it is to distinguish θ from neighboring values and, therefore,

the more accurately θ can be estimated.

• I(θ) is a measure of the information that X contains about θ.

• Note that I(θ) depends on the particular parameterization.

• If θ = ψ(η) and ψ is di�erentiable, then the Fisher information that X contains about η is(
∂ψ(η)

∂η

)2

I(ψ(η)),

where I(ψ(η)) is the Fisher information number about θ.

• Extension to multi-parameter case

Let X = (X1, ..., Xn) be a sample from P ∈ P = {p(x,θ) : θ ∈ Θ}, where Θ is an open set in Rk.
The k × k matrix

I(θ) = E

{
∂

∂θ
log fθ(X)

[
∂

∂θ
log fθ(X)

]>}
is called the Fisher information matrix, where

∂

∂θ
log fθ(X) =

(
∂

∂θ1
log fθ(X), . . . ,

∂

∂θk
log fθ(X)

)>
• Properties of Fisher information number

(i) If X and Y are independent with Fisher information numbers IX(θ) and IY (θ), respec-

tively, then I(X,Y )(θ) = IX(θ) + IY (θ). In particular, if X = (X1, ..., Xn) where Xi's are

i.i.d. and I1(θ) is the Fisher information number of a single Xi, then IX(θ) = nI1(θ).
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(ii) Suppose that the p.d.f. p(x, θ) is twice di�erentiable in θ and that

∂

∂θ

∫
∂p(x, θ)

∂θ>
dx =

∫
∂

∂θ

∂p(x, θ)

∂θ>
dx, θ ∈ Θ.

Then

I(θ) = −E
[

∂2

∂θ∂θ>
log p(X, θ)

]
.

Example 4.13. Suppose (X1, . . . , Xn) is a sample from a Poisson distribution P(λ). Then

∂

∂θ
ln p(x, λ) =

∑n
i=1 xi
λ

− n

and I(λ) = Var

(∑n
i=1 xi
λ

)
=
nλ

λ2
=
n

λ
.

Example 4.14. Let X1, ..., Xn be i.i.d. ∼ N(µ, ν). Let θ = (µ, ν). Then

ln p(x, θ) = − 1

2ν

n∑
i=1

(xi − µ)2 − n

2
ln ν.

It can be calculated that

∂2

∂µ2
ln p(x, θ) = −n

ν
,

∂2

∂ν2
ln p(x, θ) = −

∑n
i=1(xi − µ)2

ν3
+

n

2ν2
,

∂2

∂ν∂µ
ln p(x, θ) = −

∑n
i=1(xi − µ)

ν2
.

Thus, the Fisher information matrix about θ contained in X1, ..., Xn is

I(θ) =

(
n
ν 0

0 n
2ν2

)
.

Example 4.15. Let X1, ..., Xn be i.i.d. with the Lebesgue p.d.f. 1
σf
(
x−µ
σ

)
, where f(x) > 0 and

f ′(x) exists for all x ∈ R, µ ∈ R, and σ > 0 (a location-scale family). Let θ = (µ, σ). Then, the

Fisher information about θ contained in X1, ..., Xn is (exercise)

I(θ) =
n

σ2

( ∫ [f ′(x)]2

f(x) dx
∫ f ′(x)[xf ′(x)+f(x)]

f(x) dx∫ f ′(x)[xf ′(x)+f(x)]
f(x) dx

∫ [xf ′(x)+f(x)]2

f(x) dx

)
.

Theorem 4.16 (Cramér-Rao lower bound). Suppose that T (X) is an estimator with E[T (X)] =

g(θ) being a di�erentiable function of θ; Pθ has a p.d.f. fθ w.r.t. a measure ν for all θ ∈ Θ; and

fθ is di�erentiable as a function of θ and satis�es

∂

∂θ

∫
h(x)fθ(x)dν =

∫
h(x)

∂

∂θ
fθ(x)dν, θ ∈ Θ, (4.10)

for h(x) ≡ 1 and h(x) = T (x). Then

Var(T (X)) ≥
[
∂

∂θ
g(θ)

]>
[I(θ)]−1 ∂

∂θ
g(θ). (4.11)
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• The inequality in (4.11) is called information inequality.

• If there is an unbiased estimator T of g(θ) whose variance is always the same as the lower

bound, then T is the UMVUE.

Proof: We consider the case k = 1 only. When k = 1, (4.11) reduces to

Var(T (X)) ≥ [g′(θ)]2

E
[
∂
∂θ log fθ(X)

]2 .
From the Cauchy-Schwartz inequality, we only need to show that

E
[
∂

∂θ
log fθ(X)

]2

= Var

(
∂

∂θ
log fθ(X)

)
(4.12)

g′(θ) = Cov

(
T (X),

∂

∂θ
log fθ(X)

)
. (4.13)

From condition (4.10), we have

E
[
∂

∂θ
log fθ(X)

]
=

∫
∂

∂θ
fθ(X)dν =

∂

∂θ

∫
fθ(X)dν = 0.

E
[
T (X)

∂

∂θ
log fθ(X)

]
=

∫
T (x)

∂

∂θ
fθ(X)dν=

∂

∂θ

∫
T (x)fθ(X)dν = g′(θ).

Thus (4.12) and (4.13) are veri�ed.

• The general case follows from the inequality

max
c

[
Cov(T, c> ∂ ln fθ(X)

∂θ )
]2

Var(T )Var(c> ∂ ln fθ(X)
∂θ )

≤ 1.

� The above inequality can be proved using the same idea for proving the univariate case

of Cramér�Rao theorem.

� But why this implies the multi-parameter case of the Cramér�Rao theorem?

� The trick is to use = [I(θ)]−1 ∂
∂θg(θ).

� Use a = Cov(T, ∂∂θg(θ)) to simplify notations

� Then the numerator is (c>a)2 while the denominator is Var(T )c>I(θ)c

� Replace c with [I(θ)]−1a

• The Cramér-Rao lower bound in (4.11) is not a�ected by any one-to-one reparameterization.

• If we use inequality (4.11) to �nd a UMVUE T (X), then we obtain a formula for Var(T (X))

at the same time.

• On the other hand, the Cramér-Rao lower bound in (4.11) is typically not sharp.
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• Under some regularity conditions, the Cramér-Rao lower bound is attained i� fθ is in an

exponential family; see Propositions 3.2 and 3.3 and the discussion in Lehmann (1983, p.

123).

Example 4.17. Let X1, ..., Xn be i.i.d. from the N(µ, σ2) distribution with an unknown µ ∈ R
and a known σ2. Let fµ be the joint distribution of X = (X1, ..., Xn). Then

∂

∂µ
log fµ(X) =

n∑
i=1

(Xi − µ)/σ2.

Thus, I(µ) = n/σ2.

Consider the estimation of µ. It is obvious that Var(X̄) attains the Cramér-Rao lower bound in

(4.11).

Consider now the estimation of η = µ2. Since EX̄2 = µ2 + σ2/n, the UMVUE of η is h(X̄) =

X̄2 − σ2/n. A straightforward calculation shows that

Var(h(X̄)) =
4µ2σ2

n
+

2σ4

n2
.

On the other hand, the Cramér-Rao lower bound in this case is 4µ2σ2/n. Hence Var(h(X̄)) does

not attain the Cramér-Rao lower bound. The di�erence is 2σ4/n2.

Fisher information and exponential families

Proposition 4.18. Suppose that the distribution of X is from an exponential family {fθ : θ ∈ Θ},
i.e., the p.d.f. of X w.r.t. a σ-�nite measure is

fθ(x) = exp
{

[η(θ)]>T (x)− ξ(θ)
}
c(x), (4.14)

where Θ is an open subset of Rk.

(i) The regularity condition (4.10) is satis�ed for any h with E|h(X)| <∞ and

I(θ) = −E
[

∂2

∂θ∂θ>
log fθ(X)

]
.

(ii) If I(η) is the Fisher information matrix for the natural parameter η, then the variance-

covariance matrix Var(T ) = I(η).

(iii) If I(ψ) is the Fisher information matrix for the parameter ψ = E[T (X)], then Var(T ) =

[I(ψ)]−1.

Proof:
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(i) This is a direct consequence of Theorem 2.1 (of the textbook).

(ii) The p.d.f. under the natural parameter η is

fη(x) = exp
{
η>T (x)− ζ(η)

}
c(x).

From Theorem 2.1 of (the textbook), E[T (X)] = ∂
∂η ζ(η). The result follows from

∂

∂η
log fη(x) = T (x)− ∂

∂η
ζ(η).

(iii) Since ψ = E[T (X)] = ∂
∂η ζ(η),

I(η) =
∂ψ>

∂η
I(ψ)

(
∂ψ>

∂η

)>
=

∂2

∂η∂η>
ζ(η)I(ψ)

[
∂2

∂η∂η>
ζ(η)

]>
.

By Theorem 2.1 (of the textbook) and the result in (ii),

∂2

∂η∂η>
ζ(η) = Var(T ) = I(η).

Hence

I(ψ) = [I(η)]−1I(η)[I(η)]−1 = [I(η)]−1 = [Var(T )]−1.

• Condition (4.10) is a key regularity condition for the results in Cramér-Rao lower bound

• If fθ is not in an exponential family, then (4.10) has to be checked.

• Typically, it does not hold if the set {x : fθ(x) > 0} depends on θ

4.5 Asymptotic properties of UMVUE's

• Asymptotic normality

Let Tn = T (Xn) be an estimator based on a sample Xn of size n. Let µn(θ) and σ2
n(θ) be two

sequences of constants which might depend on θ. If

Tn − µn(θ)

σn(θ)
→d N(0, 1),

then Tn is said to be asymptotically normal with asymptotic mean and variance µn(θ) and σ2
n(θ)

respectively.

• Asymptotic unbiasedness
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Suppose that Tn = T (Xn) is asymptotically normal with asymptotic mean µn(θ) and asymptotic

variance σ2
n(θ). If

µn(θ)− q(θ)
σn(θ)

→ 0,

then Tn is said to be asymptotically unbiased for q(θ).

• Asymptotic relative e�ciency

Let T (1) = {T (1)
n } and T (2) = {T (2)

n } be two sequences of estimators which are asymptotically

unbiased for q(θ) and whose asymptotic variances σ2
n1 and σ2

n2 satisfy nσ2
ni → σ2

i , i = 1, 2. The

asymptotic relative e�ciency of T (1) to T (2) is de�ned by

e(θ, T (1), T (2)) =
σ2

2

σ2
1

.

• Asymptotic e�cient estimator

Suppose that Tn = T (Xn) is asymptotically normal with asymptotic mean µn(θ) and asymptotic

variance σ2
n(θ). If

nσ2
n(θ)→ σ2(θ) > 0,

√
n(µn(θ)− q(θ))→ 0,

σ2(θ) =
[q′(θ)]2

I1(θ)
,

then Tn is said to be asymptotically e�cient (or best asymptotically normal).

Example 4.19. Under the assumption of Hardy-Weinberg equilibrium,

p1 = θ2, p2 = 2θ(1− θ), p3 = (1− θ)2.

Consider two estimators of θ:

T1 =

√
N1

n
, T2 = 1−

√
N3

n
.

• By the CLT,

√
n(N1/n− p1)√
p1(1− p1)

→ N(0, 1) and

√
n(N3/n− p3)√
p3(1− p3)

→ N(0, 1).

• By the δ-method and slutsky's theorem,

√
n(T1 − θ)√
1
4 (1− θ2)

→ N(0, 1) and

√
n(T2 − θ)√

1
4 [1− (1− θ)2]

→ N(0, 1).

• Both T1 and T2 are asymptotically normal and both are asymptotically unbiased.
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• The asymptotic variances of T1 and T2 are, respectively, 1−θ2
4n and 1−(1−θ)2

4n and σ2
1 = 1−θ2

4 ,

σ2
2 = 1−(1−θ)2

4 .

• Asymptotic relative e�ciency of T1 to T2 is

e(θ, T1, T2) =
1− (1− θ)2

1− θ2
.

• It can be concluded that T2 is better than T1 for θ > 1/2 and the two are equally e�cient

for θ = 1/2. But none of the two is uniformly better than the other.

Consider another estimator of θ: T3 = N1

n + N2

2n .

• By multiple CLT,

√
n

(
N1

n − p1

N2

n − p2

)
→
(
X

Y

)
∼ N(0,Σ),

where Σ =

(
p1(1− p1) −p1p2

−p1p2 p2(1− p2)

)
.

• By either the δ-method or continuous mapping theorem,

√
n(T3 − θ) =

√
n(
N1

n
− p1) +

1

2

√
n(
N2

n
− p2)

→ X + Y/2 ∼ N(0, σ2),

where

σ2 = p1(1− p1) +
1

4
p2(1− p2)− p1p2 =

θ(1− θ)
2

.

• Hence, T3 is asymptotically normal, asymptotically unbiased and its asymptotic variance is

σ2
n3 = θ(1−θ)

2n . Thus nσ2
n3 → σ2 = θ(1−θ)

2 .

• The asymptotic relative e�ciency of T3 to T1 and T2 are:

e(θ, T3, T1) =
(1− θ2)/4

θ(1− θ)/2 =
1 + θ

2θ
,

e(θ, T3, T2) =
{1− (1− θ)2}/4

θ(1− θ)/2 =
2− θ
2− 2θ

.

• T3 is uniformly better than both T1 and T2.

• Indeed, T3 is asymptotically e�cient, which is veri�ed by showing that In(θ) = 2n
θ(1−θ) .

• The log p.d.f. of (N1, N2, N3) is

ln p(N, θ) = N1 ln p1 +N2 ln p2 +N3 ln p3 + C

= (2N1 +N2) ln θ + (N2 + 2N3) ln(1− θ) + C,

where C is a generic constant.
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• The derivatives of ln p(N, θ):

∂

∂θ
ln p(N, θ) =

2N1 +N2

θ
− N2 + 2N3

1− θ
∂2

∂θ2
ln p(N, θ) = −2N1 +N2

θ2
− N2 + 2N3

(1− θ)2
.

• The Fisher information number

In(θ) = −E
[
∂2

∂θ2
ln p(N, θ)

]
= n

[
(2p1 + p2)

θ2
+

(p2 + 2p3)

(1− θ)2

]
= n

[
2θ

θ2
+

2(1− θ)
(1− θ)2

]
=

2n

θ(1− θ) .
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5.1 U-Statistics

• It is known that, if the order statistic (X(1), . . . , X(n)) is su�cient and complete, then a

symmetric unbiased estimator of an estimable ϑ is the UMVUE of ϑ.

• In many problems, parameters to be estimated are of the form

ϑ = E[h(X1, ..., Xm)]

with a positive integer m and a Borel function h that is symmetric in its arguments.

• It is easy to see that a symmetric unbiased estimator of ϑ is

Un =

(
n

m

)−1∑
c

h(Xi1 , ..., Xim),

where
∑
c denotes the summation over the

(
n
m

)
combinations ofm distinct elements {i1, ..., im}

from {1, ..., n}.

De�nition 5.1 (U-Statistics). The statistic

Un =

(
n

m

)−1∑
c

h(Xi1 , ..., Xim),

is called a U -statistic with kernel h of order m.

• The use of U-statistics is an e�ective way of obtaining useful unbiased estimators.

• In nonparametric problems, U-statistics are often UMVUE's, whereas in parametric prob-

lems, U-statistics can be used as initial estimators to derive more e�cient estimators.

• If m = 1, a U-statistic is simply a type of sample mean. Examples include the empirical c.d.f.

evaluated at a particular t and the sample moments n−1
∑n
i=1X

k
i for a positive integer k.

Example 5.2.

• Consider the estimation of ϑ = µm, where µ = EX1 and m is a positive integer. Using

h(x1, ..., xm) = x1 · · ·xm, we obtain the following U-statistic unbiased for ϑ = µm:

Un =

(
n

m

)−1∑
c

Xi1 · · ·Xim .

88
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• Consider the estimation of ϑ = σ2 = Var(X1). Since

σ2 = [Var(X1) + Var(X2)]/2 = E[(X1 −X2)2/2],

we obtain the following U-statistic with kernel h(x1, x2) = (x1 − x2)2/2:

Un =
2

n(n− 1)

∑
1≤i<j≤n

(Xi −Xj)
2

2
=

1

n− 1

(
n∑
i=1

X2
i − nX̄2

)
= S2,

which is the sample variance.

• In some cases, we would like to estimate ϑ = E|X1−X2|, a measure of concentration. Using

kernel h(x1, x2) = |x1−x2|, we obtain the following U-statistic unbiased for ϑ = E|X1−X2|:

Un =
2

n(n− 1)

∑
1≤i<j≤n

|Xi −Xj |,

which is known as Gini's mean di�erence.

• Let ϑ = P (X1 +X2 ≤ 0). Using kernel h(x1, x2) = I(−∞,0](x1 + x2), we obtain the following

U-statistic unbiased for ϑ:

Un =
2

n(n− 1)

∑
1≤i<j≤n

I(−∞,0](Xi +Xj),

which is known as the one-sample Wilcoxon statistic.

• Variance of a U-statistic

� For k = 1, ...,m, let

hk(x1, ..., xk) = E[h(X1, ..., Xm)|X1 = x1, ..., Xk = xk]

= E[h(x1, ..., xk, Xk+1, ..., Xm)].

Note that hm = h. It can be shown that

hk(x1, ..., xk) = E[hk+1(x1, ..., xk, Xk+1)].

De�ne

h̃k = hk − E[h(X1, ..., Xm)],

k = 1, ...,m, and h̃ = h̃m.

� For any U-statistic

Un =

(
n

m

)−1∑
c

h(Xi1 , ..., Xim),

it can be represented by

Un − E(Un) =

(
n

m

)−1∑
c

h̃(Xi1 , ..., Xim). (5.15)
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Theorem 5.3 (Hoe�ding). For a U-statistic Un with E[h(X1, ..., Xm)]2 <∞,

Var(Un) =

(
n

m

)−1 m∑
k=1

(
m

k

)(
n−m
m− k

)
ζk,

where

ζk = Var(hk(X1, ..., Xk)).

Proof: Consider two sets {i1, ..., im} and {j1, ..., jm} of m distinct integers from {1, ..., n} with

exactly k integers in common. The number of distinct choices of two such sets is
(
n
m

)(
m
k

)(
n−m
m−k

)
.

By the symmetry of h̃m and independence of X1, ..., Xn,

E[h̃(Xi1 , ..., Xim)h̃(Xj1 , ..., Xjm)] = ζk

for k = 1, ...,m. Then, by (5.15),

Var(Un) =

(
n

m

)−2∑
c

∑
c

E[h̃(Xi1 , ..., Xim)h̃(Xj1 , ..., Xjm)]

=

(
n

m

)−2 m∑
k=1

(
n

m

)(
m

k

)(
n−m
m− k

)
ζk.

This proves the result.

Proposition 5.4. Under the condition of Hoe�ding's theorem,

(a) ζ1 ≤ . . . ≤ ζm.

(b) (n+ 1)Var(Un+1) ≤ nVar(Un) for any n > m.

(c) For any �xed m and k = 1, ...,m, if ζj = 0 for j < k and ζk > 0, then

Var(Un) =
k!
(
m
k

)2
ζk

nk
+O

(
1

nk+1

)
.

(d) m2

n ζ1 ≤ Var(Un) ≤ m
n ζm.

Proof: (a) Let W = hk+1(X1, . . . , Xk, Xk+1) and Y = (X1, . . . , Xk). Then ζk+1 = Var(W ) and

ζk = Var(E(W |Y )) since hk(X1, . . . , Xk) = E{hk+1(X1, . . . , Xk+1)|X1, . . . , Xk}. Now we observe

that ζk = Var(E(W |Y )) = Var(W )− E(Var(W |Y )) ≤ Var(W ) = ζk+1.

(b) The proof of this one requires Hoe�ding's representation of the statistic Un − EUn and is

omitted here.

(c) By Hoe�ding's theorem,

Var(Un) =

m∑
j=1

(
m
j

)(
n−m
m−j

)(
n
m

) ζj .
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For any j = 1, . . . ,m,(
m
j

)(
n−m
m−j

)(
n
m

) = j!

(
m

j

)2
(n−m) · · · [n−m− (m− j − 1)]

n · · · (n−m+ 1)

= j!

(
m

j

)2 [
1

nj
+O

(
1

nj+1

)]
= O

(
1

nj

)
.

If ζj = 0 for j < k and ζk > 0, then

Var(Un) =

m∑
j=k

(
m
j

)(
n−m
m−j

)(
n
m

) ζj

=

(
m
k

)(
n−m
m−k

)(
n
m

) ζk +

m∑
j=k+1

(
m
j

)(
n−m
m−j

)(
n
m

) ζj

= k!

(
m

k

)2

ζk
1

nk
+O

(
1

nk+1

)
+

m∑
j=k+1

O

(
1

nj

)

= k!

(
m

k

)2

ζk
1

nk
+O

(
1

nk+1

)
.

(d) From (b), nVar(Un) is non increasing. Thus, nVar(Un) ≤ (n−1)Var(Un−1) ≤ · · · ≤ mVar(Um) =

mζm. The �rst inequality is trivial if ζ1 = 0. Otherwise, from (c), nVar(Un) ≥ limn[nVar(Un)] =

m2ζ1.

• It follows from the Corollary that a U-statistic Un as an estimator of its mean, its MSE

converges to 0 (under the �nite second moment assumption on h).

• In fact, for any �xed k, if ζj = 0 for j < k and ζk > 0, then the MSE of Un is of the order

n−k.

• In particular, the above results imply that Un is consistent.

Example 5.5.

• Consider �rst h(x1, x2) = x1x2, which leads to a U-statistic unbiased for µ2, where µ = EX1.

Note that h1(x1) = µx1, h̃1(x1) = µ(x1 − µ), ζ1 = E[h̃1(X1)]2 = µ2Var(X1) = µ2σ2,

h̃(x1, x2) = x1x2 − µ2, and ζ2 = Var(X1X2) = E(X1X2)2 − µ4 = (µ2 + σ2)2 − µ4. By

Hoe�ding's theorem, for

Un =

(
n

2

)−1 ∑
1≤i<j≤n

XiXj ,
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Var(Un) =

(
n

2

)−1 [(
2

1

)(
n− 2

1

)
ζ1 +

(
2

2

)(
n− 2

0

)
ζ2

]
=

2

n(n− 1)

[
2(n− 2)µ2σ2 + (µ2 + σ2)2 − µ4

]
=

4µ2σ2

n
+

2σ4

n(n− 1)
.

Comparing Un with X̄2 − σ2/n which is the UMVUE under the normality and known σ2 assump-

tion, we �nd that

Var(Un)−Var(X̄2 − σ2/n) =
2σ4

n2(n− 1)
.

• Next, consider h(x1, x2) = I(−∞,0](x1+x2), which leads to the one-sample Wilcoxon statistic.

Note that h1(x1) = P (x1 + X2 ≤ 0) = F (−x1), where F is the c.d.f. of P . Then ζ1 =

Var(F (−X1)). Let ϑ = E[h(X1, X2)]. Then ζ2 = Var(h(X1, X2)) = ϑ(1− ϑ). Hence, for Un

being the one-sample Wilcoxon statistic,

Var(Un) =
2

n(n− 1)
[2(n− 2)ζ1 + ϑ(1− ϑ)] .

Finally, consider h(x1, x2) = |x1 − x2|, which leads to Gini's mean di�erence.

• Note that h1(x1) = E|x1 −X2| =
∫
|x1 − y|dP (y), hence

ζ1 = Var(h1(X1)) =

∫ [∫
|x− y|dP (y)

]2

dP (x)− ϑ2,

where ϑ = E|X1 −X2|.

• Note that h2(x1, x2) = |x1 − x2| and

ζ2 = Var(h2(X1, X2)) = E|X1 −X2|2 − (E|X1 −X2|)2 = 2σ2 − ϑ2.

• Hence, for Un being the Gini's mean di�erence,

Var(Un) =
2

n(n− 1)
[2(n− 2)

∫ (∫
|x− y|dP (y)

)2

dP (x)

+2σ2 − (2n− 1)ϑ2].

5.2 The projection method

Suppose P is nonparametric. In this case, the exact distribution of any U-statistic is hard to derive.

We study asymptotic distributions of U-statistics by using the method of projection.
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De�nition 5.6 (Projection). Let Tn be a given statistic based on X1, ..., Xn. The projection of

Tn on kn random elements Y1, ..., Ykn is de�ned to be

Ťn = E(Tn) +

kn∑
i=1

[E(Tn|Yi)− E(Tn)].

Let ψn(Xi) = E(Tn|Xi). If Tn is symmetric (as a function of X1, ..., Xn), then ψn(X1), ..., ψn(Xn)

are i.i.d. with mean E[ψn(Xi)] = E[E(Tn|Xi)] = E(Tn) and

E(Ťn) = E(Tn)

If E(T 2
n) <∞ and Var(ψn(Xi)) > 0, then

1√
nVar(ψn(X1))

n∑
i=1

[ψn(Xi)− E(Tn)]→d N(0, 1) (5.16)

by the CLT. Let Ťn be the projection of Tn on X1, ..., Xn. Then

Tn − Ťn = Tn − E(Tn)−
n∑
i=1

[ψn(Xi)− E(Tn)]. (5.17)

If we can show that Tn− Ťn has a negligible order of magnitude, then we can derive the asymptotic

distribution of Tn by using (5.16)-(5.17) and Slutsky's theorem. The order of magnitude of Tn− Ťn
can be obtained with the help of the following lemma.

Lemma 5.7. Let Tn be a symmetric statistic with Var(Tn) < ∞ for every n and Ťn be the

projection of Tn on X1, ..., Xn. Then E(Tn) = E(Ťn) and

E(Tn − Ťn)2 = Var(Tn)−Var(Ťn).

Proof: Since E(Tn) = E(Ťn),

E(Tn − Ťn)2 = Var(Tn) + Var(Ťn)− 2Cov(Tn, Ťn)

Cov(Tn, Ťn) = E(TnŤn)− [E(Tn)]2

= nE[TnE(Tn|Xi)]− n[E(Tn)]2

= nE{E[TnE(Tn|Xi)|Xi]} − n[E(Tn)]2

= nE{[E(Tn|Xi)]
2} − n[E(Tn)]2

= nVar(E(Tn|Xi))

= Var(Ťn)

by De�nition 5.6 with Yi = Xi and kn = n.

• This method of deriving the asymptotic distribution of Tn is known as the method of projec-

tion and is particularly e�ective for U-statistics. Now let Tn = Un for a U-statistic Un and
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set kn = n. Let us compute ψn(Xi) = E(Un | Xi):

ψn(Xi) = E(Un | Xi)

=

(
n

m

)−1∑
c

E{h(Xi1 , . . . , Xim)|Xi}

For the term E{h(Xi1 , . . . , Xim)|Xi},

� if i 6∈ {i1, . . . , im}, then E{h(Xi1 , . . . , Xim)|Xi} = Eh(X1, . . . , Xm) = EUn due to the

symmetry of h and IID of X1, . . . , Xn. In total, there are
(
n−1
m

)
such terms.

� if i ∈ {i1, . . . , im}, then E{h(Xi1 , . . . , Xim)|Xi} = h1(Xi), and there are
(
n−1
m−1

)
such

terms.

Thus,

ψn(Xi) =
m

n
{h1(Xi)− EUn}+ EUn

Let Ǔn = EUn +
∑n
i=1{ψn(X−)− EUn} = EUn +

∑n
i=1

m
n {h1(Xi)− EUn}. Set

h̃1(x) = h1(x)− E[h(X1, ..., Xm)].

Then Ǔn = EUn +
∑n
i=1

m
n h̃1(Xi). Hence

Var(Ǔn) = m2ζ1/n

and, by Proposition 4 and Lemma 5.7,

E(Un − Ǔn)2 = O(n−2).

• If ζ1 > 0, then

1√
nVar(mh1(X1))

n∑
i=1

m[h1(Xi)− E(Un)]→d N(0, 1),

which leads to the result in Theorem 5.8(i) stated later.

• If ζ1 = 0, then h̃1 ≡ 0 and we have to use another projection of Un. Suppose that ζ1 = · · · =
ζk−1 = 0 and ζk > 0 for an integer k > 1. Consider the projection Ǔkn of Un on

(
n
k

)
random

vectors {Xi1 , ..., Xik}, 1 ≤ i1 < · · · < ik ≤ n. We can establish a result similar to that in

Lemma 5.7 and show that

E(Un − Ǔn)2 = O(n−(k+1)).

Also, see Ser�ing (1980, �5.3.4).

Theorem 5.8. Let Un be a U-statistic with E[h(X1, ..., Xm)]2 <∞.

(i) If ζ1 > 0, then √
n[Un − E(Un)]→d N(0,m2ζ1).
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(ii) If ζ1 = 0 but ζ2 > 0, then

n[Un − E(Un)]→d
m(m− 1)

2

∞∑
j=1

λj(χ
2
1j − 1), (5.18)

where χ2
1j's are i.i.d. random variables having the chi-square distribution χ2

1 and λj's are

some constants (which may depend on P ) satisfying
∑∞
j=1 λ

2
j = ζ2.

Proof: We have actually proved (i). A proof for 3.5(ii) is given in Ser�ing (1980, �5.5.2).

• One may derive results for the cases where ζ2 = 0, but the case of either ζ1 > 0 or ζ2 > 0 is

the most interesting case in applications.

We now apply Theorem 5.8 to the U-statistics in Example 2.

• Consider

Un =
2

n(n− 1)

∑
1≤i<j≤n

XiXj

Note that ζ1 = µ2σ2. Thus, if µ 6= 0, the result in Theorem 5.8(i) holds with ζ1 = µ2σ2. If

µ = 0, then ζ1 = 0, ζ2 = σ4 > 0, and Theorem 5.8(ii) applies.

• For the one-sample Wilcoxon statistic, ζ1 = Var(F (−X1)) > 0 unless F is degenerate.

Theorem 5.8(i) applies.

• Similarly, for Gini's mean di�erence, ζ1 > 0 unless F is degenerate. Theorem 5.8(i) applies.
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6.1 Linear Models

A linear model is given below:

Xi = Z>i β + εi, i = 1, ..., n,

• Xi is the value of a response variable observed on the ith individual;

• Zi is the value of a p-vector of explanatory variables (non-random covariates) observed on

the ith individual;

• β is a p-vector of unknown parameters (main parameters of interest), p < n;

• εi is a random error (not observed) associated with the ith individual.

Let X = (X1, ..., Xn)>, ε = (ε1, ..., εn)> Z = the n × p matrix whose ith row is the vector Z>i ,

i = 1, ..., n. A matrix form of the model is

X = Zβ + ε. (6.19)

• Suppose that the range of β in model (6.19) is B ⊂ Rp.

A LSE (least squares estimator) of β is de�ned to be any β̂ ∈ B such that

‖X − Zβ̂‖2 = min
b∈B
‖X − Zb‖2.

For any a ∈ Rp, a>β̂ is called an LSE of a>β.

• ‖A‖ =
(∑

ij a
2
ij

)1/2

is the Frobenius norm of a matrix A

Assume B = Rp unless otherwise stated. Di�erentiating ‖X−Zb‖2 w.r.t. b, we obtain the normal

equation

Z>Zb = Z>X.

Any solution of the normal equation is an LSE of β.

• g(b) = ‖X − Zb‖2 = (X − Zb)>(X − Zb) is a quadratic form

96
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• ∂
∂b (b>Ab) = 2Ab and ∂

∂b (b>Ac) = Ac

• The case of full rank Z: If the rank of the matrix Z is p, in which case (Z>Z)−1 exists

and Z is said to be of full rank, then there is a unique LSE, which is

β̂ = (Z>Z)−1Z>X.

• The case of non full rank Z: If Z is not of full rank, then there are in�nitely many LSE's

of β. Any LSE of β is of the form

β̂ = (Z>Z)−Z>X,

where (Z>Z)− is called a generalized inverse of Z>Z and satis�es

Z>Z(Z>Z)−Z>Z = Z>Z.

Generalized inverse matrices are not unique unless Z is of full rank, in which case (Z>Z)− =

(Z>Z)−1.

Some properties of general inverse

• [Z(Z>Z)−Z>]2 = Z(Z>Z)−Z>.

• Z(Z>Z)−Z>Z = Z.

• The rank of Z(Z>Z)−Z> is tr(Z(Z>Z)−Z>) = r.

6.2 Properties of LSE's of β

To study properties of LSE's of β, we need some assumptions on the distribution of X or ε

(conditional on Z if Z is random).

A1: (Gaussian noise) ε is distributed as Nn(0, σ2In) with an unknown σ2 > 0.

A2: (homoscedastic noise) E(ε) = 0 and Var(ε) = σ2In with an unknown σ2 > 0.

A3: (general noise) E(ε) = 0 and Var(ε) is an unknown matrix.

• We have mentioned that, if the matrix Z is not of full rank, then the model is not identi�able.

• Suppose that the rank of Z is r ≤ p. Then there is an n × r submatrix Z∗ of Z such that

Z = Z∗Q and Z∗ is of rank r, where Q is a �xed r × p matrix. The model is identi�able if

we consider the reparameterization β̃ = Qβ.
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• In many applications, we are interested in estimating ϑ = l>β for some l ∈ Rp. But,

estimation of l>β is meaningless unless l = Q>c for some c ∈ Rr so that

l>β = c>Qβ = c>β̃.

Theorem 6.1 (Theorem 3.6 of the textbook). Assume model (6.19) with assumption A3.

(i) A necessary and su�cient condition for l ∈ Rp being Q>c for some c ∈ Rr is l ∈ R(Z) =

R(Z>Z), where Q is given above and R(A) is the smallest linear subspace containing all

rows of A.

(ii) If l ∈ R(Z), then the LSE l>β̂ is unique and unbiased for l>β.

(iii) If l 6∈ R(Z) and assumption A1 holds, then l>β is not estimable.

Proof (i) Note that a ∈ R(A) i� a = A>b for some vector b. If l = Q>c, then

l = Q>c = Q>Z>∗ Z∗(Z
>
∗ Z∗)

−1c = Z>[Z∗(Z
>
∗ Z∗)

−1c].

Hence l ∈ R(Z). If l ∈ R(Z), then l = Z>ζ for some ζ and

l = (Z∗Q)>ζ = Q>c, c = Z>∗ ζ.

(ii) If l ∈ R(Z) = R(Z>Z), then l = Z>Zζ for some ζ. Since β̂ = (Z>Z)−Z>X, we have

E(l>β̂) = E[l>(Z>Z)−Z>X] = ζ>Z>Z(Z>Z)−Z>Zβ

= ζ>Z>Zβ = l>β.

If β̄ is any other LSE of β, then, by Z>Zβ̄ = Z>X,

l>β̂ − l>β̄ = ζ>(Z>Z)(β̂ − β̄) = ζ>(Z>X − Z>X) = 0.

(iii) Proof via Contraposition: Under A1, if there is an estimator h(X,Z) unbiased for l>β, then

l>β =

∫
Rn

h(x, Z)(2π)−n/2σ−n exp
{
− 1

2σ2 ‖x− Zβ‖2
}
dx.

Di�erentiating w.r.t. β and applying Theorem 2.1 lead to

l> = Z>
∫
Rn

h(x, Z)(2π)−n/2σ−n−2(x− Zβ) exp
{
− 1

2σ2 ‖x− Zβ‖2
}
dx,

which implies l ∈ R(Z).

Example 6.2 (Example 3.13 of the textbook). Suppose that n =
∑m
j=1 nj withm positive integers

n1, ..., nm and that Consider the model:

Xij = µi + εik, j = 1, . . . , ni, i = 1, . . . ,m,
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where εij are i.i.d random errors with mean 0 and variance σ2. This model is called a one-way

ANOVA model. Let Xi = (Xi1 . . . , Xini)
> and X = (X>1 , . . . ,X

>
m)>. Let Jk be the k-vector of

ones and

Z =

 Jn1
· · · 0

0 · · · 0

0 · · · Jnm

 .

Let β = (µ1, ..., µm)> and ε = (ε11, . . . , ε1n1
, . . . , εm1, . . . , εmnm)>. Then the one-way ANOVA

model can be expressed as

X = Zβ + ε

Since Z>Z = Diag(n1, . . . , nm), (Z>Z)−1 = Diag(n−1
1 , . . . , n−1

m ). Hence the unique LSE of β is

β̂ = (Z>Z)−1Z>X = (X̄1·, . . . , X̄m·)
>,

where X̄i· = 1
ni

∑ni
j=1Xij . Sometimes the model is expressed as

Xij = µ+ αi + εij , j = 1, ..., ni, i = 1, ...,m, (6.20)

with constraint
∑
αi = 0. Let β = (µ, α1, . . . , αm)>. The LSE of β is given by

β̂ =
(
X̄, X̄1· − X̄, ..., X̄m· − X̄

)
,

where X̄ is total sample mean.

6.2.1 The properties under assumption A1

Theorem 6.3 (Theorem 3.7, 3.8 of the textbook). Assume model X = Zβ + ε with assumption

A1: ε is distributed as Nn(0, σ2In) with an unknown σ2 > 0.

(i) The LSE l>β̂ is the UMVUE of l>β for any estimable l>β.

(ii) The UMVUE of σ2 is σ̂2 = (n− r)−1‖X − Zβ̂‖2, where r is the rank of Z.

(iii) For any estimable parameter l>β, the UMVUE's l>β̂ and σ̂2 are independent; the distribution

of l>β̂ is N(l>β, σ2l>(Z>Z)−l); and (n− r)σ̂2/σ2 has the chi-square distribution χ2
n−r.

Proof of (i) Let β̂ be an LSE of β. By Z>Zβ̂ = Z>X,

(X − Zβ̂)>Z(β̂ − β) = (X>Z −X>Z)(β̂ − β) = 0.

Hence,

‖X − Zβ‖2 = ‖X − Zβ̂ + Zβ̂ − Zβ‖2

= ‖X − Zβ̂‖2 + ‖Zβ̂ − Zβ‖2

= ‖X − Zβ̂‖2 − 2β>Z>X + ‖Zβ‖2 + ‖Zβ̂‖2.
Using this result and assumption A1, we obtain the following joint Lebesgue p.d.f. of X:
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(2πσ2)−n/2exp
{
β>Z>x
σ2 − ‖x−Zβ̂‖

2+‖Zβ̂‖2
2σ2 − ‖Zβ‖

2

2σ2

}
.

By Proposition 2.1 and the fact that Zβ̂ = Z(Z>Z)−Z>X is a function of Z>X, the statistic

(Z>X, ‖X − Zβ̂‖2) is complete and su�cient for θ = (β, σ2). Note that β̂ is a function of Z>X

and, hence, a function of the complete su�cient statistic. If l>β is estimable, then l>β̂ is unbiased

for l>β (Theorem 3.6) and, hence, l>β̂ is the UMVUE of l>β.

Proof of (ii) Since ‖X − Zβ‖2 = ‖X − Zβ̂‖2 + ‖Zβ̂ − Zβ‖2 and E(Zβ̂) = Zβ,

E‖X − Zβ̂‖2 = E(X − Zβ)>(X − Zβ)− E(β − β̂)>Z>Z(β − β̂)

= tr
(

Var(X)−Var(Zβ̂)
)

= σ2[n− tr
(
Z(Z>Z)−Z>Z(Z>Z)−Z>

)
]

= σ2[n− tr
(
(Z>Z)−Z>Z

)
].

Since for each row of Z ∈ R(Z), Zβ̂ does not depend on the choice of (Z>Z)− in β̂ = (Z>Z)−Z>X

(Theorem 3.6). Hence, we can evaluate tr
(
(Z>Z)−Z>Z

)
using a particular (Z>Z)−.

From the theory of linear algebra, there exists a p× p matrix C such that CC> = Ip and

C>(Z>Z)C =

(
Λ 0

0 0

)
,

where Λ is an r×r diagonal matrix whose diagonal elements are positive. Then, a particular choice

of (Z>Z)− is

(Z>Z)− = C

(
Λ−1 0

0 0

)
C> (6.21)

and

(Z>Z)−Z>Z = C

(
Ir 0

0 0

)
C>

whose trace is r.

Hence σ̂2 is the UMVUE of σ2, since it is a function of the complete su�cient statistic and

Eσ̂2 = (n− r)−1E‖X − Zβ̂‖2 = σ2.

Before we prove (iii), we need the following supplementary results:

• Cochran's Theorem: Suppose that X ∼ N(µ, σ2In) and X>X = X>A1X + · · · + X>AkX,

where In is the n×n identity matrix and Aj is an n×n symmetric matrix with rank nj , j =

1, . . . , k. A necessary and su�cient condition that 1
σ2X

>AjX has the non-central chi-square

distribution χ2
nj (δj), j = 1, . . . , k, and X>AjX's are independent is that n = n1 + · · · + nk

and in which case δj = 1
σ2µ

>Ajµ and
∑k
j=1 δj = 1

σ2µ
>µ.



Lecture 6: Linear Models and LSE 101

• A non-central chi-square distribution χ2
n(δ) has p.d.f. given by

e−δ/2
∞∑
i=0

(δ/2)i

i!
f2i+n(x),

where fk(x) is the p.d.f. of the chi-square distribution χ2
k.

• If Xi ∼ N(µi, σ
2), i = 1, . . . , n, are independent, then 1

σ2

∑n
i=1X

2
i ∼ χ2

n( 1
σ2

∑n
i=1 µ

2
i ).

Proof of (iii)

• The estimator σ̂2 = ‖X − Zβ̂‖2/(n − r) where X − Zβ̂ = [In − Z(Z>Z)−Z>]X which is

linear in X, and l>β̂ = l>(Z>Z)−Z>X, a function of (Z>Z)−Z>X which is linear in X

as well. Under assumption A1, both [In − Z(Z>Z)−Z>]X and (Z>Z)−Z>X are normally

distributed.

• Since [In − Z(Z>Z)−Z>]Z(Z>Z)− = 0, [In − Z(Z>Z)−Z>]X and (Z>Z)−Z>X are inde-

pendent. Hence l>β̂ and σ̂2 are independent.

• Since l>β is estimable, l>β̂ ∼ N(l>β, σ2l>(Z>Z)−l).

• From X>X = X>[Z(Z>Z)−Z>]X+X>[In−Z(Z>Z)−Z>]X and Cochran's theorem, (n−
r)σ̂2/σ2 has the chi-square distribution χ2

n−r(δ) with

δ = σ−2β>Z>[In − Z(Z>Z)−Z>]Zβ = 0.

6.2.2 Properties under assumption A2

• A linear estimator for the linear model

X = Zβ + ε, (6.22)

is a linear function of X, i.e., c>X for some �xed vector c.

• l>β̂ is a linear estimator, since l>β̂ = l>(Z>Z)−Z>X with c = Z(Z>Z)−l.

• The variance of c>X is given by c>Var(X)c = c>Var(ε)c.

• In particular, if Var(ε) = σ2In and l ∈ R(Z),

Var(l>β̂) = l>(Z>Z)−Z>Var(ε)Z(Z>Z)−l = σ2l>(Z>Z)−l.

Theorem 6.4 (Theorem 3.9). Assume model X = Zβ + ε with assumption A2: E(ε) = 0 and

Var(ε) = σ2In with an unknown σ2 > 0.

(i) A necessary and su�cient condition for the existence of a linear unbiased estimator of l>β

(i.e., an unbiased estimator that is linear in X) is l ∈ R(Z).
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(ii) (Gauss-Markov theorem). If l ∈ R(Z), then the LSE l>β̂ is the best linear unbiased estimator

(BLUE) of l>β in the sense that it has the minimum variance in the class of linear unbiased

estimators of l>β.

Proof: (i) The su�ciency is established in Theorem 3.6. Now let c>X be unbiased for l>β. Then

l>β = E(c>X) = c>EX = c>Zβ.

Since this equality holds for all β, l = Z>c, i.e., l ∈ R(Z).

(ii) Let l ∈ R(Z) = R(Z>Z). Then l = (Z>Z)ζ for some ζ and l>β̂ = ζ>(Z>Z)β̂ = ζ>Z>X by

Z>Zβ̂ = Z>X. Let c>X be any linear unbiased estimator of l>β. From the proof of (i), Z>c = l.

Then Hence
Var(c>X) = Var(c>X − ζ>Z>X + ζ>Z>X)

= Var(c>X − ζ>Z>X) + Var(ζ>Z>X)

+ 2Cov(ζ>Z>X, c>X − ζ>Z>X)

= Var(c>X − ζ>Z>X) + Var(l>β̂)

≥ Var(l>β̂).

(ii, another proof) Under A1, l>β̂ is the UMVUE. In particular, it has the smallest variance

among all linear unbiased estimators. However, as long as Var(ε) = σ2I, the variances of the linear

unbiased estimators do not depend on the the particular assumption A1. Hence l>β̂ is the BLUE

under A2.

6.2.3 Properties under assumption A3

Theorem 6.5 (Theorem 3.10). Assume model X = Zβ + ε with assumption A3: E(ε) = 0 and

Var(ε) is an unknown matrix. The following are equivalent.

(a) l>β̂ is the BLUE of l>β for any l ∈ R(Z).

(b) E(l>β̂η>X) = 0 for any l ∈ R(Z) and any η such that E(η>X) = 0.

(c) Z>Var(ε)U = 0, where U is a matrix such that Z>U = 0 and R(U>) +R(Z>) = Rn.

(d) Var(ε) = ZΛ1Z
> + UΛ2U

> for some Λ1 and Λ2.

(e) The matrix Z(Z>Z)−Z>Var(ε) is symmetric.

Corollary 6.6 (Corollary 3.3 of the textbook). Consider model X = Zβ + ε with a full rank Z,

ε ∼ Nn(0,Σ), where Σ is an unknown positive de�nite matrix. Then l>β̂ is a UMVUE of l>β for

any l ∈ Rp i� one of (b)-(e) in Theorem 3.10 holds.
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Roadmap of proof: (a) ⇔ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (b). (a) ⇔ (b). We �rst show that (a) and

(b) are equivalent, which is an analogue of Theorem 3.2(i). Suppose that (b) holds. Let l ∈ R(Z).

If c>X is unbiased for l>β, then E(η>X) = 0 with η = c − Z(Z>Z)−l. Hence, (b) implies (a)

because
Var(c>X) = Var(c>X − l>β̂ + l>β̂)

= Var(c>X − l>(Z>Z)−Z>X + l>β̂)

= Var(η>X + l>β̂)

= Var(η>X) + Var(l>β̂) + 2Cov(η>X, l>β̂)

= Var(η>X) + Var(l>β̂) + 2E(l>β̂η>X)

= Var(η>X) + Var(l>β̂)

≥ Var(l>β̂).

Suppose now that there are l ∈ R(Z) and η such that E(η>X) = 0 but δ = E(l>β̂η>X) 6= 0. Let

ct = tη + Z(Z>Z)−l. From the previous proof,

Var(c>t X) = t2Var(η>X) + Var(l>β̂) + 2δt.

As long as δ 6= 0, there exists a t such that Var(c>t X) < Var(l>β̂). This shows that l>β̂ cannot be

a BLUE and hence implies (b).

(b) ⇒ (c). Suppose that (b) holds. Since l ∈ R(Z), l = Z>γ for some γ. Let η ∈ R(U>). Then

E(η>X) = η>Zβ = 0 and, hence,

0 = E(l>β̂η>X) = E[γ>Z(Z>Z)−Z>XX>η] = γ>Z(Z>Z)−Z>Var(ε)η.

Since this equality holds for all l ∈ R(Z), it holds for all γ.

Thus,

Z(Z>Z)−Z>Var(ε)U = 0,

which implies

Z>Z(Z>Z)−Z>Var(ε)U = Z>Var(ε)U = 0,

since Z>Z(Z>Z)−Z> = Z>. Thus, (c) holds.

(c) ⇒ (d). We need to use the following facts from the theory of linear algebra: there exists a

nonsingular matrix C such that Var(ε) = CC> and C = ZC1 + UC2 for some matrices Cj (since

R(U>) +R(Z>) = Rn). Let Λ1 = C1C
>
1 , Λ2 = C2C

>
2 , and Λ3 = C1C

>
2 .

Then

Var(ε) = ZΛ1Z
> + UΛ2U

> + ZΛ3U
> + UΛ>3 Z

> (6.23)

and Z>Var(ε)U = Z>ZΛ3U
>U , which is 0 if (c) holds. Hence, (c) implies

0 = Z(Z>Z)−Z>ZΛ3U
>U(U>U)−U> = ZΛ3U

>,

which with (6.23) implies (d).
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(d) ⇒ (e). If (d) holds, then Z(Z>Z)−Z>Var(ε) = ZΛ1Z
>, which is symmetric.

To complete the proof, we need to show that (e) implies (b), which is left as an exercise.

6.3 Asymptotic Properties of LSE

Theorem 6.7 (Theorem 3.11 (Consistency) of the textbook). Consider model X = Zβ + ε under

assumption A3, i.e., E(ε) = 0 and Var(ε) is an unknown matrix. Consider the LSE l>β̂ with

l ∈ R(Z) for every n. Suppose that supn λ+[Var(ε)] < ∞, where λ+[A] is the largest eigenvalue

of the matrix A, and that limn→∞ λ+[(Z>Z)−] = 0. Then l>β̂ is consistent in MSE for any

l ∈ R(Z), i.e., l>β̂ → l>β in L2.

Proof: The result follows from the fact that l>β̂ is unbiased and

Var(l>β̂) = l>(Z>Z)−Z>Var(ε)Z(Z>Z)−l

≤ λ+[Var(ε)]l>(Z>Z)−l ≤ λ+[Var(ε)]λ+((Z>Z)−)l>l.

Theorem 6.8 (Theorem 3.12 (Asymptotic Normality) of the textbook). Consider model X =

Zβ + ε under assumption A3. Suppose that 0 < infn λ−[Var(ε)], where λ−[A] is the smallest

eigenvalue of the matrix A, and that

lim
n→∞

max
1≤i≤n

Z>i (Z>Z)−Zi = 0. (6.24)

Suppose further that n =
∑k
j=1mj for some integers k, mj, j = 1, ..., k, with mj's bounded by a

�xed integer m, ε = (ξ1, ..., ξk), ξj ∈ Rmj , and ξj's are independent.

(i) If supiE|εi|2+δ <∞, then for any l ∈ R(Z),

l>(β̂ − β)

/√
Var(l>β̂)→d N(0, 1). (6.25)

(ii) Result (6.25) holds for any l ∈ R(Z) if, when mi = mj, 1 ≤ i < j ≤ k,
ξi and ξj have the same distribution.

Proof: For l ∈ R(Z),

l>(Z>Z)−Z>Zβ − l>β = 0

and

l>(β̂ − β) = l>(Z>Z)−Z>ε =

k∑
j=1

c>njξj ,

where cnj is the mj-vector whose components are l>(Z>Z)−Zi, i = kj−1 + 1, ..., kj , k0 = 0, and

kj =
∑j
t=1mt, j = 1, ..., k. Note that

k∑
j=1

‖cnj‖2 = l>(Z>Z)−Z>Z(Z>Z)−l = l>(Z>Z)−l. (6.26)
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Also,

max
1≤j≤k

‖cnj‖2 ≤ m max
1≤i≤n

[l>(Z>Z)−Zi]
2

≤ ml>(Z>Z)−l max
1≤i≤n

Z>i (Z>Z)−Zi,

which, together with (6.26) and condition (6.24), implies that

lim
n→∞

 max
1≤j≤k

‖cnj‖2
/ k∑

j=1

‖cnj‖2
 = 0.

The results then follow from Corollary 1.3 of the textbook.

• Under the conditions of Theorem 3.12, Var(ε) is a diagonal block matrix with Var(ξj) as the

jth diagonal block, which includes the case of independent εi's as a special case.

Condition (6.24) is almost necessary for the consistency of the LSE.

Exercise 6.9. Let X̂i = Z>i β̂ and hi = Z>i (Z>Z)−Zi. Suppose assumption A2 holds.

(a) For any δ > 0,

P (|X̂i − EX̂i| ≥ δ) ≥ min{P (εi ≥ δ/hi), P (εi ≤ −δ/hi)}.

(b) X̂i − EX̂i
P→ 0 if and only if hi → 0.

Lemma 6.10 (Lemma 3.3 of the textbook). The following are su�cient conditions for (6.24).

(a) λ+[(Z>Z)−]→ 0 and Z>n (Z>Z)−Zn → 0, as n→∞.

(b) There is an increasing sequence {an} such that an → ∞, an/an+1 → 1, and Z>Z/an con-

verges to a positive de�nite matrix.

Proof: (a) Since Z>Z depends on n, we denote (Z>Z)− by An. Let in be the integer such that

hin = max1≤i≤n hi. If limn→∞ in =∞, then

lim
n→∞

hin = lim
n→∞

Z>inAnZin ≤ lim
n→∞

Z>inAinZin = 0,

where the inequality follows from in ≤ n and, thus, Ain −An is nonnegative de�nite. If in ≤ c for
all n, then

lim
n→∞

hin = lim
n→∞

Z>inAnZin ≤ lim
n→∞

λn max
1≤i≤c

‖Zi‖2 = 0.

Therefore, for any subsequence {jn} ⊂ {in} with limn→∞ jn = a ∈ (0,∞], limn→∞ hjn = 0. This

shows that limn→∞ hin = 0.

(b) We show that (b) implies (a). Let A be the limit of Z>Z/an. Let λ−(A) > 0 be the small-

est eigenvalue of A. Then λ−(Z>Z/an) ≥ λ−(A)/2 for all su�ciently large n, or equivalently,
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λ+[(Z>Z)−] ≤ 2/(anλ−(A)) → 0. Note that, the diagonal element
∑n
i=1 Z

2
ik/an of Z>Z con-

verges to a �xed constant C for su�ciently large n. Then Z2
nk/an → 0 for all k = 1, . . . , p and

further ‖Zn‖2/an =
∑p
k=1 Z

2
nk/an → 0. Together with λ−[(Z>Z)−] ≤ 2/(anλ−(A)), we conclude

that Z>n (Z>Z)−Zn → 0. [Note that, for su�ciently large n, Z>Z is invertible by the assumption

of (b)].

Example 6.11 (Simple linear models). In Example 3.12,

Xi = β0 + β1ti + εi, i = 1, ..., n.

If n−1
∑n
i=1 t

2
i → c and n−1

∑n
i=1 ti → d where c is positive and c > d2, then condition (b) in

Lemma 3.3 is satis�ed with an = n and, therefore, Theorem 3.12 applies.

Example 6.12 (One-way ANOVA). In the one-way ANOVA model (Example 3.13),

Xi = µj + εi, i = kj−1 + 1, ..., kj , j = 1, ...,m,

where k0 = 0, kj =
∑j
l=1 nl, j = 1, ...,m, and (µ1, ..., µm) = β,

max
1≤i≤n

Z>i (Z>Z)−Zi = λ+[(Z>Z)−] = max
1≤j≤m

n−1
j .

Conditions related to Z in Theorem 3.12 are satis�ed i� minj nj →∞.



Lecture 7: Asymptotically Unbiased Estimators

Lecturer: LIN Zhenhua ST5215 AY2019/2020 Semester I

7.1 Asymptotic MSE, variance and e�ciency: revisited

Recall:

• Asymptotic normality: Let Tn = T (Xn) be an estimator based on a sample Xn of size n.

Let µn(θ) and σ2
n(θ) be two sequences of constants which might depend on θ. If

Tn − µn(θ)

σn(θ)
→d N(0, 1),

then Tn is said to be asymptotically normal with asymptotic mean and variance µn(θ) and

σ2
n(θ) respectively.

• Asymptotic unbiasedness:

� When E|Tn| <∞, Tn is asymptotically unbiased for q(θ) if bTn(θ) = ETn − q(θ)→ 0.

� When ETn is not de�ned: Suppose that Tn = T (Xn) is asymptotically normal with

asymptotic mean µn(θ) and asymptotic variance σ2
n(θ). If

µn(θ)− q(θ)
σn(θ)

→ 0,

then Tn is said to be asymptotically unbiased for q(θ).

� these two concepts of asymptotic unbiasedness are di�erent. The latter is stronger than

the former.

� More generally, if anTn
D→ T and E|T | < ∞, then ET/a2

n is called the asymptotic

expectation of Tn. When Tn is an estimator of θ, then an asymptotic expectation of

Tn − θ is called an asymptotic bias of Tn, and is denoted by b̃Tn(θ). We say Tn is

asymptotically unbiased if b̃Tn(θ)→ 0 for all θ.

� For a given Tn, its asymptotic expectations are essentially the same.

• Asymptotic relative e�ciency: Let T (1) = {T (1)
n } and T (2) = {T (2)

n } be two sequences of

estimators which are asymptotically unbiased for q(θ) and whose asymptotic variances σ2
n1

and σ2
n2 satisfy nσ2

ni → σ2
i , i = 1, 2. The asymptotic relative e�ciency of T (1) to T (2) is

de�ned by

e(θ, T (1), T (2)) =
σ2

2

σ2
1

.

107
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• Asymptotic e�cient estimator: Suppose that Tn = T (Xn) is asymptotically normal with

asymptotic mean µn(θ) and asymptotic variance σ2
n(θ). If

nσ2
n(θ)→ σ2(θ) > 0,

√
n(µn(θ)− q(θ))→ 0,

σ2(θ) =
[q′(θ)]2

I1(θ)
,

then Tn is said to be asymptotically e�cient (or best asymptotically normal).

Like the bias, MSETn(P ) = E(Tn − ϑ)2, is not well de�ned if the second moment of Tn does not

exist. We now de�ne a version of asymptotic mean squared error (amse) and a measure of assessing

di�erent point estimators of a common parameter.

De�nition 7.1 (De�nition 2.12). Let Tn be an estimator of ϑ for every n and {an} be a sequence
of positive numbers satisfying an → ∞ or an → a > 0. Assume that an(Tn − ϑ)

D→ Y with

0 < EY 2 <∞.

(i) The asymptotic mean squared error of Tn, denoted by amseTn(P ) or amseTn(θ) if P is in a

parametric family indexed by θ, is de�ned to be the asymptotic expectation of (Tn−ϑ)2, i.e.,

amseTn(P ) = EY 2/a2
n. The asymptotic variance of Tn is de�ned to be σ2

Tn
(P ) = Var(Y )/a2

n.

(ii) Let T ′n be another estimator of ϑ. The asymptotic relative e�ciency of T ′n w.t.r. Tn is de�ned

to be eT ′n,Tn(P ) = amseTn(P )/amseT ′n(P ).

(iii) Tn is said to be asymptotically more e�cient than T ′n i� lim supn eT ′n,Tn(P ) ≤ 1 for any P

and < 1 for some P .

• The amse and asymptotic variance are the same i� EY = 0.

• By Proposition 2.3, the amse or the asymptotic variance of Tn is essentially unique and,

therefore, the concept of asymptotic relative e�ciency in De�nition 2.12(ii)-(iii) is well de-

�ned.

When both MSETn(P ) and MSET ′n(P ) exist, one may compare Tn and T
′
n by evaluating the relative

e�ciency MSETn(P )/MSET ′n(P ). However, this comparison may be di�erent from the one using

the asymptotic relative e�ciency in De�nition 2.12(ii), since the mse and amse of an estimator

may be di�erent (Exercise 115 in �2.6). The following result shows that when the exact mse of Tn

exists, it is no smaller than the amse of Tn. It also provides a condition under which the exact mse

and the amse are the same.

Proposition 7.2 (Proposition 2.4). Let Tn be an estimator of ϑ for every n and {an} be a

sequence of positive numbers satisfying an → ∞ or an → a > 0. Suppose that an(Tn − ϑ)
D→ Y

with 0 < EY 2 <∞. Then

(i) EY 2 ≤ lim infnE[a2
n(Tn − ϑ)2] and
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(ii) EY 2 = limn→∞E[a2
n(Tn − ϑ)2] if and only if {a2

n(Tn − ϑ)2} is uniformly integrable.

Proof:

(i) By Theorem 1.10(iii),

min{a2
n(Tn − ϑ)2, t} D→ min{Y 2, t} for any t > 0.

Since min{a2
n(Tn − ϑ)2, t} is bounded by t, by Theorem 1.8(viii),

lim
n→∞

E(min{a2
n(Tn − ϑ)2, t}) = E(min{Y 2, t})

Then
EY 2 = lim

t→∞
E(min{Y 2, t})

= lim
t→∞

lim
n→∞

E(min{a2
n(Tn − ϑ)2, t})

= lim inf
t,n

E(min{a2
n(Tn − ϑ)2, t})

≤ lim inf
n

E[a2
n(Tn − ϑ)2],

where the third equality follows from the fact that E(min{a2
n(Tn − ϑ)2, t}) is nondecreasing in t

for any �xed n. (ii) The result follows from Theorem 1.8(viii).

Example 7.3 (Example 2.36). Let X1, ..., Xn be i.i.d. from the Poisson distribution P (θ) with an

unknown θ > 0. Consider the estimation of ϑ = P (Xi = 0) = e−θ.

• Let T1n = Fn(0), where Fn is the empirical c.d.f.

� Then T1n is unbiased and has MSET1n
(θ) = e−θ(1− e−θ)/n.

� Also,
√
n(T1n − ϑ)

D→ N(0, e−θ(1− e−θ)) by the CLT.

� Thus, in this case amseT1n
(θ) = MSET1n

(θ).

• Consider T2n = e−X̄ .

� Note that ET2n = enθ(e
−1/n−1) (follows from the m.g.f ψ(t) = eθ(e

t−1)).

� Hence bT2n
(θ)→ 0.

� Using the CLT and the δ-method, we can show that
√
n(T2n − ϑ)

D→ N(0, e−2θθ).

� By De�nition 2.12(i), amseT2n
(θ) = e−2θθ/n.

• Thus, the asymptotic relative e�ciency of T1n w.r.t. T2n is

eT1n,T2n
(θ) = θ/(eθ − 1) < 1

This shows that T2n is asymptotically more e�cient than T1n.

The result for T2n in Example 2.36 is a special case (with Un = X̄) of the following general result.
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Theorem 7.4 (Theorem 2.6). Let g be a function on Rk that is di�erentiable at θ ∈ Rk and let Un

be a k-vector of statistics satisfying an(Un−θ) D→ Y for a random k-vector Y with 0 < E‖Y ‖2 <∞
and a sequence of positive numbers {an} satisfying an → ∞. Let Tn = g(Un) be an estimator of

ϑ = g(θ). Then, the amse and asymptotic variance of Tn are, respectively,

amseTn(P ) = E{[∇g(θ)]>Y }2/a2
n

and

σ2
Tn(P ) = [∇g(θ)]>Var(Y )∇g(θ)/a2

n.

7.2 Method of moment estimators

• An exactly unbiased estimator may not exist, or is hard to obtain. We often derive asymp-

totically unbiased estimators.

• The method of moments is the oldest method of deriving asymptotically unbiased estimators,

although they may not be the best estimators.

• Consider a parametric problem where X1, ..., Xn are i.i.d. random variables from Pθ, θ ∈ Θ ⊂
Rk, and E|X1|k <∞. Let µj = EXj

1 be the jth moment of P and let

µ̂j =
1

n

n∑
i=1

Xj
i

be the jth sample moment, which is an unbiased estimator of µj , j = 1, ..., k.

• Typically,

µj = hj(θ), j = 1, ..., k, (7.27)

for some functions hj on Rk. By substituting µj 's on the left-hand side of (7.27) by the

sample moments µ̂j , we obtain a moment estimator θ̂, i.e., θ̂ satis�es

µ̂j = hj(θ̂), j = 1, ..., k,

which is a sample analogue of (7.27). This method of deriving estimators is called the method

of moments.

• Let µ̂ = (µ̂1, ..., µ̂k) and h = (h1, ..., hk). Then µ̂ = h(θ̂). If the inverse function h−1 exists,

then the unique moment estimator of θ is θ̂ = h−1(µ̂).

• When h−1 does not exist (i.e., h is not one-to-one), any solution of µ̂ = h(θ̂) is a moment

estimator of θ. If possible, we always choose a solution θ̂ in the parameter space Θ. In some

cases, however, a moment estimator does not exist (see Exercise 111).
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• Assume that θ̂ = g(µ̂) for a function g. If h−1 exists, then g = h−1. If g is continuous

at µ = (µ1, ..., µk), then θ̂ is strongly consistent for θ, since µ̂j
a.s.→ µj by the SLLN. If g

is di�erentiable at µ and E|X1|2k < ∞, then θ̂ is asymptotically normal, by the CLT and

Theorem 1.12, and

amseθ̂(θ) = n−1[∇g(µ)]>Vµ∇g(µ),

where Vµ is a k × k matrix whose (i, j)th element is µi+j − µiµj .

Example 7.5 (Example 3.24). Let X1, ..., Xn be i.i.d. from a population Pθ indexed by the

parameter θ = (µ, σ2), where µ = EX1 ∈ R and σ2 = Var(X1) ∈ (0,∞). This includes cases such

as the family of normal distributions, double exponential distributions, or logistic distributions

(Table 1.2, page 20).

• Since EX1 = µ and EX2
1 = Var(X1) + (EX1)2 = σ2 + µ2, setting µ̂1 = µ and µ̂2 = σ2 + µ2

we obtain the moment estimator

θ̂ =

(
X̄,

1

n

n∑
i=1

(Xi − X̄)2

)
=

(
X̄,

n− 1

n
S2

)
.

Note that X̄ is unbiased, but n−1
n S2 is not.

• If Xi is normal, then θ̂ is su�cient and is nearly the same as an optimal estimator such as

the UMVUE. On the other hand, if Xi is from a double exponential or logistic distribution,

then θ̂ is not su�cient and can often be improved.

• Consider now the estimation of σ2 when we know that µ = 0.

� Obviously we cannot use the equation µ̂1 = µ to solve the problem.

� Using µ2 = σ2, we obtain the moment estimator

σ̂2 = µ̂2 = n−1
n∑
i=1

X2
i .

� This is still a good estimator when Xi is normal, but is not a function of su�cient

statistic when Xi is from a double exponential distribution.

� For the double exponential case one can argue that we should �rst make a transformation

Yi = |Xi| and then obtain the moment estimator based on the transformed data. The

moment estimator of σ2 based on the transformed data is

Ȳ 2 =

(
1

n

n∑
i=1

|Xi|
)2

,

which is su�cient for σ2. Note that this estimator can also be obtained based on absolute

moment equations.

Example 7.6 (Example 3.25). Let X1, ..., Xn be i.i.d. from the uniform distribution on (θ1, θ2),

−∞ < θ1 < θ2 <∞.
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• Note that

EX1 = (θ1 + θ2)/2 and EX2
1 = (θ2

1 + θ2
2 + θ1θ2)/3.

• Setting µ̂1 = EX1 and µ̂2 = EX2
1 and substituting θ1 in the second equation by 2µ̂1 − θ2

(the �rst equation), we obtain that

(2µ̂1 − θ2)2 + θ2
2 + (2µ̂1 − θ2)θ2 = 3µ̂2,

which is the same as

(θ2 − µ̂1)2 = 3(µ̂2 − µ̂2
1).

• Since θ2 > EX1, we obtain that

θ̂2 = µ̂1 +
√

3(µ̂2 − µ̂2
1) = X̄ +

√
3(n−1)
n S2

θ̂1 = µ̂1 −
√

3(µ̂2 − µ̂2
1) = X̄ −

√
3(n−1)
n S2.

• These estimators are not functions of the su�cient and complete statistic (X(1), X(n)).

Example 7.7 (Example 3.26). Let X1, ..., Xn be i.i.d. from the binomial distribution Bi(p, k) with

unknown parameters k ∈ {1, 2, ...} and p ∈ (0, 1).

• Since

EX1 = kp

and

EX2
1 = kp(1− p) + k2p2,

we obtain the moment estimators

p̂ = (µ̂1 + µ̂2
1 − µ̂2)/µ̂1 = 1− n−1

n S2/X̄

and

k̂ = µ̂2
1/(µ̂1 + µ̂2

1 − µ̂2) = X̄/(1− n−1
n S2/X̄).

• The estimator p̂ is in the range of (0, 1). But k̂ may not be an integer. It can be improved

by an estimator that is k̂ rounded to the nearest positive integer.

7.3 Weighted LSE

In the linear model X = Zβ + ε, the unbiased LSE of l>β may be improved by a slightly biased

estimator when V = Var(ε) is not σ2In and the LSE is not BLUE.

• Assume that Z is of full rank so that every l>β is estimable.
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• If V is known, then the BLUE of l>β is l>β̆, where

β̆ = (Z>V −1Z)−1Z>V −1X (7.28)

• If V is unknown and V̂ is an estimator of V , then an application of the substitution principle

leads to a weighted least squares estimator

β̂w = (Z>V̂ −1Z)−1Z>V̂ −1X. (7.29)

• The weighted LSE is not linear in X and not necessarily unbiased for β. If the distribution of

ε is symmetric about 0 and V̂ remains unchanged when ε changes to −ε, then the distribution

of β̂w − β is symmetric about 0 and, if Eβ̂w is well de�ned, β̂w is unbiased for β.

• If the weighted LSE l>β̂w is unbiased, then it may be a better estimator than the LSE l>β̂,

since Var(l>β̂w) may be smaller than Var(l>β̂).

• Asymptotic properties of the weighted LSE depend on the asymptotic behavior of V̂ . We

say that V̂ is consistent for V i�

‖V̂ −1V − In‖max
P→ 0, (7.30)

where ‖A‖max = maxi,j |aij | for a matrix A = (aij).

Theorem 7.8 (Theorem 3.17). Consider model X = Zβ + ε with a full rank Z. Let β̆ and

β̂w be de�ned by (7.28) and (7.29), respectively, with a V̂ consistent in the sense of (7.30). Under

the conditions in Theorem 3.12,

l>(β̂w − β)/an
D→ N(0, 1),

where l ∈ Rp, l 6= 0, and

a2
n = Var(l>β̆) = l>(Z>V −1Z)−1l.

Proof:

Using the same argument as in the proof of Theorem 3.12, we obtain that

l>(β̆ − β)/an
D→ N(0, 1).

By Slutsky's theorem, the result follows from

l>β̂w − l>β̆ = op(an).

De�ne

ξn = l>(Z>V̂ −1Z)−1Z>(V̂ −1 − V −1)ε

and

ζn = l>[(Z>V̂ −1Z)−1 − (Z>V −1Z)−1]Z>V −1ε.

Then

l>β̂w − l>β̆ = ξn + ζn.

The result follows from ξn = op(an) and ζn = op(an) (details are in the textbook).
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• Theorem 3.17 shows that as long as V̂ is consistent in the sense of (7.30), the weighted LSE

β̂w is asymptotically as e�cient as β̆, which is the BLUE if V is known.

• By Theorems 3.12 and 3.17, the asymptotic relative e�ciency of the LSE l>β̂ w.r.t. the

weighted LSE l>β̂w is
l>(Z>V −1Z)−1l

l>(Z>Z)−1Z>V Z(Z>Z)−1l
(7.31)

which is always less than 1 and equals 1 if l>β̂ is a BLUE (in which case β̂ = β̆).

� To see so, we note that l = (Z>Z)ζ as l ∈ R(Z>Z). So (7.31) becomes

ζ>(Z>Z)(Z>V −1Z)−1(Z>Z)ζ

ζ>Z>V Zζ

� Let γ = Zζ, then it becomes

γ>Z(Z>V −1Z)−1Z>γ

γ>V γ

� Let η = V 1/2γ (so that γ = V 1/2η) it becomes

η>V −1/2Z(Z>V −1Z)−1Z>V −1/2η

η>η
=
η>A(A>A)−1A>η

η>η

where A = V −1/2Z.

� Note that the matrix A(A>A)−1A> is symmetric and positive-de�nite, due to the full

rank of Z and V .

� Thus, η>A(A>A)−1A>η ≤ largest eigenvalue of A(A>A)−1A>.

� The eigen-equation is A(A>A)−1A>v = λv for eigenvector v and eigenvalue λ, which

implies A>v = λA>v. This is possible only if λ = 1. (note that λ > 0 and v 6= 0)

� So, the largest eigenvalue of A(A>A)−1A> is 1.

� Indeed, Q = A(A>A)−1A> is idempotent, i.e., Q2 = Q. The eigenvalues of an idempo-

tent matrix is either 0 or 1.

• Finding a consistent V̂ is possible when V has a certain type of structure, see Examples 3.29,

3.30 and 3.31 in the text book.

7.4 V-statistics

Let X1, ..., Xn be i.i.d. from P . For every U-statistic Un as an estimator of ϑ = E[h(X1, ..., Xm)],

there is a closely related V-statistic de�ned by

Vn =
1

nm

n∑
i1=1

· · ·
n∑

im=1

h(Xi1 , ..., Xim). (7.32)

As an estimator of ϑ, Vn is biased; but the bias is small asymptotically as the following results

show. For a �xed sample size n, Vn may be better than Un in terms of their mse's.
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Proposition 7.9 (Proposition 3.5). Let Vn be de�ned by (7.32).

(i) Assume that E|h(Xi1 , ..., Xim)| < ∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m. Then the bias of Vn

satis�es

bVn(P ) = O(n−1).

(ii) Assume that E[h(Xi1 , ..., Xim)]2 < ∞ for all 1 ≤ i1 ≤ · · · ≤ im ≤ m. Then the variance of

Vn satis�es

Var(Vn) = Var(Un) +O(n−2),

where Un is the U-statistic corresponding to Vn.

Theorem 7.10 (Theorem 3.16). Let Vn be given by (7.32) with E[h(Xi1 , ..., Xim)]2 < ∞ for all

1 ≤ i1 ≤ · · · ≤ im ≤ m.

(i) If ζ1 = Var(h1(X1)) > 0, then

√
n(Vn − ϑ)

D→ N(0,m2ζ1).

(ii) If ζ1 = 0 but ζ2 = Var(h2(X1, X2)) > 0, then

n(Vn − ϑ)
D→ m(m− 1)

2

∞∑
j=1

λjχ
2
1j ,

where χ2
1j's and λj's are the same as those in Theorem 3.5.

• Note that the asymptotic distribution of the corresponding U -statistic in (ii) is

n[Un − ϑ]
D→ m(m− 1)

2

∞∑
j=1

λj(χ
2
1j − 1).

• Theorem 3.16 shows that

� if ζ1 > 0, then the amse's of Un and Vn are the same.

� If ζ1 = 0 but ζ2 > 0, then

amseVn(P ) =
m2(m− 1)2ζ2

2n2
+
m2(m− 1)2

4n2

 ∞∑
j=1

λj

2

= amseUn(P ) +
m2(m− 1)2

4n2

 ∞∑
j=1

λj

2

Hence Un is asymptotically more e�cient than Vn, unless
∑∞
j=1 λj = 0.
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7.5 Maximum likelihood estimators

The maximum likelihood method is the most popular method for deriving estimators in statistical

inference.

De�nition 7.11. Let X ∈ X be a sample with a p.d.f. fθ w.r.t. a σ-�nite measure ν, where

θ ∈ Θ ⊂ Rk.

(i) For each x ∈ X , fθ(x) considered as a function of θ is called the likelihood function and

denoted by `(θ).

(ii) Let Θ̄ be the closure of Θ. A θ̂ ∈ Θ̄ satisfying `(θ̂) = maxθ∈Θ̄ `(θ) is called a maximum

likelihood estimate (MLE) of θ. If θ̂ is a Borel function of X a.e. ν, then θ̂ is called a

maximum likelihood estimator (MLE) of θ.

(iii) Let g be a Borel function from Θ to Rp, p ≤ k. If g is not one-to-one and θ̂ is an MLE of θ,

then ϑ̂ = g(θ̂) is de�ned to be an MLE of ϑ = g(θ). [If g is one-to-one, then ϑ̂ = g(θ̂), which

is referred to as the invariant property of MLE].

• Note that Θ̄ instead of Θ is used in the de�nition of an MLE.

This is because a maximum of `(θ) may not exist when Θ is an open set.

In some textbooks, Θ is used, instead of Θ̄

• There may be multiple MLE's.

• An MLE may not have an explicit form.

• In terms of their mse's, MLE's are not necessarily better than UMVUE's.

• MLE's are frequently inadmissible. This is not surprising, since MLE's are not derived under

any given loss function.

• The main theoretical justi�cation for MLE's is provided in the theory of asymptotic e�ciency

considered later.

• If Θ contains �nitely many points, an MLE exists and can always be obtained by comparing

�nitely many values `(θ), θ ∈ Θ.

• The log-likelihood function log `(θ) is often more convenient to work with.

• If `(θ) is di�erentiable on Θ◦, the interior of Θ, then possible candidates for MLE's are the

values of θ ∈ Θ◦ satisfying the likelihood equation ∂ log `(θ)
∂θ = 0. A root of the likelihood

equation may be local or global minima or maxima, or simply stationary points. Extrema

may also occur at the boundary of Θ or when ‖θ‖ → ∞.

• Furthermore, if `(θ) is not di�erentiable, then extrema may occur at nondi�erentiable or

discontinuity points of `(θ). Hence, it is important to analyze the entire likelihood function

to �nd its maxima.
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Example 7.12 (Example 3.3). Let X1, ..., Xn be i.i.d. binary random variables with P (X1 = 1) =

p ∈ Θ = (0, 1). When (X1, ..., Xn) = (x1, ..., xn) is observed, the likelihood function is

`(p) =

n∏
i=1

pxi(1− p)1−xi = pnx̄(1− p)n(1−x̄),

where x̄ = n−1
∑n
i=1 xi.

• Note that Θ̄ = [0, 1] and Θ◦ = Θ.

• The likelihood equation is
nx̄

p
− n(1− x̄)

1− p = 0.

• If 0 < x̄ < 1, then this equation has a unique solution x̄. The second-order derivative of

log `(p) is

−nx̄
p2
− n(1− x̄)

(1− p)2
,

which is always negative. When p tends to 0 or 1 (the boundary of Θ), `(p)→ 0. Thus, x̄ is

the unique MLE of p.

• When x̄ = 0, `(p) = (1− p)n is a strictly decreasing function of p and, therefore, its unique

maximum is 0. Similarly, the MLE is 1 when x̄ = 1.

• Combining these results, we conclude that the MLE of p is x̄. When x̄ = 0 or 1, a maximum

of `(p) does not exist on Θ = (0, 1), although supp∈(0,1) `(p) = 1; the MLE takes a value

outside of Θ and, hence, is not a reasonable estimator.

• However, if p ∈ (0, 1), the probability that x̄ = 0 or 1 tends to 0 quickly as n→∞.

Example 3.3 indicates that, for small n, a maximum of `(θ) may not exist on Θ and an MLE may

be an unreasonable estimator; however, this is unlikely to occur when n is large. A rigorous result

of this sort will be given later, where we study asymptotic properties of MLE's.

Example 7.13 (Example 3.4). Let X1, ..., Xn be i.i.d. from N(µ, σ2) with unknown θ = (µ, σ2),

n ≥ 2. Consider �rst the case where Θ = R× (0,∞).

• The log-likelihood function

log `(θ) = − 1

2σ2

n∑
i=1

(xi − µ)2 − n

2
log σ2 − n

2
log(2π).

• The likelihood equation is

1

σ2

n∑
i=1

(xi − µ) = 0 and
1

σ4

n∑
i=1

(xi − µ)2 − n

σ2
= 0.
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• Solving the equations, we obtain θ̂ = (x̄, σ̂2) where x̄ = n−1
∑n
i=1 xi, σ̂

2 = n−1
∑n
i=1(xi−x̄)2.

• To show that θ̂ = (x̄, σ̂2) is an MLE, �rst note that Θ is an open set and `(θ) is di�erentiable

everywhere; as θ tends to the boundary of Θ or ‖θ‖ → ∞, `(θ) tends to 0; and

∂2 log `(θ)

∂θ∂θ>
= −

(
n
σ2

1
σ4

∑n
i=1(xi − µ)

1
σ4

∑n
i=1(xi − µ) 1

σ6

∑n
i=1(xi − µ)2 − n

2σ4

)

This matrix is negative de�nite when µ = x̄ and σ2 = σ̂2. Hence θ̂ is the unique MLE.

• Sometimes we can avoid the calculation of the second-order derivatives. For instance, in this

example we know that `(θ) is bounded and `(θ)→ 0 as ‖θ‖ → ∞ or θ tends to the boundary

of Θ; hence the unique solution to the likelihood equation must be the MLE.

Consider next the case where Θ = (0,∞)× (0,∞), i.e., µ is known to be positive.

• The likelihood function is di�erentiable on Θ◦ = Θ and Θ̄ = [0,∞)× [0,∞).

• If x̄ > 0, then the same argument for the previous case can be used to show that (x̄, σ̂2) is

the MLE.

• If x̄ ≤ 0, then the �rst equation in the likelihood equation does not have a solution in Θ.

However, the function log `(θ) = log `(µ, σ2) is strictly decreasing in µ for any �xed σ2.

� Hence, a maximum of log `(µ, σ2) is µ = 0, which does not depend on σ2.

� Then, the MLE is (0, σ̃2), where σ̃2 is the value maximizing log `(0, σ2) over σ2 ≥ 0.

� Maximizing log `(0, σ2) leads to σ̃2 = n−1
∑n
i=1 x

2
i .

� Thus, the MLE is

θ̂ =

{
(x̄, σ̂2) x̄ > 0

(0, σ̃2) x̄ ≤ 0.

� Again, the MLE in this case is not in Θ if x̄ ≤ 0: a maximum of `(θ) does not exist on

Θ when x̄ ≤ 0.

Example 7.14 (Example 3.5). Let X1, ..., Xn be i.i.d. from the uniform distribution on an interval

Iθ with an unknown θ.

• First, consider the case where Iθ = (0, θ) and θ > 0, Θ◦ = (0,∞). The likelihood function is

`(θ) = θ−nI(x(n),∞)(θ),

where x(n) = max(x1, ..., xn). On (0, x(n)), ` ≡ 0 and on (x(n),∞), `′(θ) = −nθn−1 < 0 for

all θ. `(θ) is not di�erentiable at x(n) and the method of using the likelihood equation is

not applicable. Since `(θ) is strictly decreasing on (x(n),∞) and is 0 on (0, x(n)), a unique

maximum of `(θ) is x(n), which is a discontinuity point of `(θ). This shows that the MLE of

θ is X(n).
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• Next, consider the case where Iθ = (θ − 1
2 , θ + 1

2 ) with θ ∈ R. The likelihood function is

`(θ) = I(x(n)− 1
2 ,x(1)+

1
2 )(θ),

where x(1) = min(x1, ..., xn). Again, the method of using the likelihood equation is not appli-

cable. However, it follows from De�nition 4.3 that any statistic T (X) satisfying x(n) − 1
2 ≤ T (x) ≤ x(1) + 1

2

is an MLE of θ.

This example indicates that MLE's may not be unique and can be unreasonable.

Example 7.15 (Example 3.6). Let X be an observation from the hypergeometric distribution

HG(r, n, θ−n) (Table 1.1, page 18) with known r, n, and an unknown θ = n+ 1, n+ 2, .... In this

case, the likelihood function is de�ned on integers and the method of using the likelihood equation

is certainly not applicable. Note that

`(θ)

`(θ − 1)
=

(θ − r)(θ − n)

θ(θ − n− r + x)
,

which is larger than 1 if and only if θ < rn/x and is smaller than 1 if and only if θ > rn/x. Thus,

`(θ) has a maximum θ = the integer part of rn/x, which is the MLE of θ.

In applications, MLE's typically do not have analytic forms and some numerical methods have to

be used to compute MLE's.

• The Newton-Raphson iteration method repeatedly computes

θ̂(t+1) = θ̂(t) −
[
∂2 log `(θ)

∂θ∂θ>

∣∣∣∣
θ=θ̂(t)

]−1
∂ log `(θ)

∂θ

∣∣∣∣
θ=θ̂(t)

,

t = 0, 1, ..., where θ̂(0) is an initial value and ∂2 log `(θ)/∂θ∂θ> is assumed of full rank for

every θ ∈ Θ.

• If ∂2 log `(θ)
∂θ∂θ>

∣∣∣∣
θ=θ̂(t)

is replaced by by
{
E
(
∂2 log `(θ)
∂θ∂θ>

)} ∣∣∣∣
θ=θ̂(t)

, where the expectation is taken

under Pθ, then the method is known as the Fisher-scoring method.

• If the iteration converges, then θ̂(∞) or θ̂(t) with a su�ciently large t is a numerical approxi-

mation to a solution of the likelihood equation.

Suppose that X has a distribution from a natural exponential family so that the likelihood function

is

`(η) = exp{η>T (x)− ζ(η)}h(x),

where η ∈ Ξ is a vector of unknown parameters.

• The likelihood equation is then

∂ log `(η)

∂η
= T (x)− ∂ζ(η)

∂η
= 0,

which has a unique solution T (x) = ∂ζ(η)/∂η, assuming that T (x) is in the range of ∂ζ(η)/∂η.
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• Note that
∂2 log `(η)

∂η∂η>
= −∂

2ζ(η)

∂η∂η>
= −Var(T )

Since Var(T ) is positive de�nite, − log `(η) is convex in η and T (x) is the unique MLE of the

parameter µ(η) = ∂ζ(η)/∂η.

• Also, the function µ(η) is one-to-one so that µ−1 exists. By the de�nition, the MLE of η is

η̂ = µ−1(T (x)).

• If the distribution of X is in a general exponential family and the likelihood function is

`(θ) = exp{[η(θ)]>T (x)− ξ(θ)}h(x),

then the MLE of θ is θ̂ = η−1(η̂), if η−1 exists and η̂ is in the range of η(θ).

• Of course, θ̂ is also the solution of the likelihood equation

∂ log `(θ)

∂θ
=
∂η(θ)

∂θ
T (x)− ∂ξ(θ)

∂θ
= 0.

7.6 Asymptotic properties of MLE's

• Let {θ̂n} be a sequence of estimators of θ based on a sequence of samples {X = (X1, ..., Xn) :

n = 1, 2, ...}.

• Suppose that as n→∞, θ̂n is asymptotically normal (AN) in the sense that

[Vn(θ)]−1/2(θ̂n − θ) D→ Nk(0, Ik),

where, for each n, Vn(θ) is a k × k positive de�nite matrix depending on θ.

• If θ is one-dimensional (k = 1), then Vn(θ) is the asymptotic variance as well as the amse of

θ̂n (�2.5.2).

• When k > 1, Vn(θ) is called the asymptotic covariance matrix of θ̂n and can be used as a

measure of asymptotic performance of estimators.

• If θ̂jn is AN with asymptotic covariance matrix Vjn(θ), j = 1, 2, and V1n(θ) ≤ V2n(θ) (in

the sense that V2n(θ) − V1n(θ) is nonnegative de�nite) for all θ ∈ Θ, then θ̂1n is said to be

asymptotically more e�cient than θ̂2n.

• Since the asymptotic covariance matrices are unique only in the limiting sense, we have to

make our comparison based on their limits.

• When Xi's are i.i.d., Vn(θ) is usually of the form n−δV (θ) for some δ > 0 (= 1 in the majority

of cases) and a positive de�nite matrix V (θ) that does not depend on n.
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Information inequality:

• If θ̂n is AN, it is asymptotically unbiased.

• If Vn(θ) = Var(θ̂n), then, under some regularity conditions, it follows from Theorem 3.3 that

we have the following information inequality

Vn(θ) ≥ [In(θ)]−1,

where, for every n, In(θ) is the Fisher information matrix for X of size n. The information

inequality may lead to an optimal estimator.

• When Vn(θ) is an asymptotic covariance matrix, the information inequality may not hold

(even in the limiting sense), even if the regularity conditions in Theorem 3.3 are satis�ed.

Example 7.16 (Example 4.38). Let X1, ..., Xn be i.i.d. from N(θ, 1), θ ∈ R. Then In(θ) = n.

For a �xed constant t, de�ne

θ̂n =

{
X̄ |X̄| ≥ n−1/4

tX̄ |X̄| < n−1/4,

By Proposition 3.2, all conditions in Theorem 3.3 are satis�ed. It can be shown (by using Slutsky's

theorem) that θ̂n is AN with Vn(θ) = V (θ)/n, where V (θ) = 1 if θ 6= 0 and V (θ) = t2 if θ = 0.

If t2 < 1, the information inequality does not hold when θ = 0.

Theorem 7.17 (Theorem 4.16). Let X1, ..., Xn be i.i.d. from a p.d.f. fθ w.r.t. a σ-�nite measure

ν on (R,B), where θ ∈ Θ and Θ is an open set in Rk. Suppose that for every x in the range of

X1, fθ(x) is twice continuously di�erentiable in θ and satis�es

∂

∂θ

∫
ψθ(x)dν =

∫
∂

∂θ
ψθ(x)dν

for ψθ(x) = fθ(x) and = ∂fθ(x)/∂θ; the Fisher information matrix

I1(θ) = E

{
∂

∂θ
log fθ(X1)

[
∂

∂θ
log fθ(X1)

]>}

is positive de�nite; and for any given θ ∈ Θ, there exists a positive number cθ and a positive

function hθ such that E[hθ(X1)] <∞ and

sup
γ:‖γ−θ‖<cθ

∥∥∥∥∂2 log fγ(x)

∂γ∂γ>

∥∥∥∥ ≤ hθ(x)

for all x in the range of X1, where ‖A‖ =
√
tr(A>A) for any matrix A.

If θ̂n is an estimator of θ (based on X1, ..., Xn) and is AN with Vn(θ) = V (θ)/n, then there is a

Θ0 ⊂ Θ with Lebesgue measure 0 such that the information inequality holds if θ 6∈ Θ0.

• Points at which the information inequality does not hold are called points of supere�ciency.
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• Motivated by the fact that the set of supere�ciency points is of Lebesgue measure 0 under

regularity conditions, we have the following de�nition.

De�nition 7.18 (Asymptotic e�ciency). Assume that the Fisher information matrix In(θ) is well

de�ned and positive de�nite for every n. A sequence of estimators {θ̂n} that is AN is said to be

asymptotically e�cient or asymptotically optimal if and only if Vn(θ) = [In(θ)]−1.

• Suppose that we are interested in estimating ϑ = g(θ), where g is a di�erentiable function

from Θ to Rp, 1 ≤ p ≤ k.

• If θ̂n is AN, then, by Theorem 1.12(i), ϑ̂n = g(θ̂n) is asymptotically distributed asNp(ϑ, [∇g(θ)]>Vn(θ)∇g(θ)).

• Thus, the information inequality becomes

[∇g(θ)]>Vn(θ)∇g(θ) ≥ [Ĩn(ϑ)]−1,

where Ĩn(ϑ) is the Fisher information matrix about ϑ contained in X.

• If p = k and g is one-to-one, then

[Ĩn(ϑ)]−1 = [∇g(θ)]>[In(θ)]−1∇g(θ)

and, therefore, ϑ̂n is asymptotically e�cient if and only if θ̂n is asymptotically e�cient.

• For this reason, in the case of p < k, ϑ̂n is considered to be asymptotically e�cient if and

only if θ̂n is asymptotically e�cient, and we can focus on the estimation of θ only.

Under some regularity conditions, a root of the likelihood equation (RLE), which is a candidate

for an MLE, is asymptotically e�cient.

Theorem 7.19 (Theorem 4.17). Assume the conditions of Theorem 4.16.

(i) There is a sequence of estimators {θ̂n} such that

P
(
sn(θ̂n) = 0

)
→ 1 and θ̂n

P→ θ,

where sn(γ) = ∂ log `(γ)/∂γ.

(ii) Any consistent sequence θ̃n of RLE's is asymptotically e�cient.

Proof:

(i) Let Bn(c) = {γ : ‖[In(θ)]1/2(γ − θ)‖ ≤ c} for c > 0. Since Θ is open, for each c > 0, Bn(c) ⊂ Θ

for su�ciently large n. Since Bn(c) shrinks to {θ} as n → ∞, the asymptotic existence of θ̂n is

implied by the fact that for any ε > 0, there exists n0 > 1 such that

P
(
log `(γ)− log `(θ) < 0 for all γ ∈ ∂Bn(c)

)
≥ 1− ε, n ≥ n0, (7.33)

where c = 4
√

2k/ε and ∂Bn(c) is the boundary of Bn(c). The measurability of θ̂n can be safely

assumed; see Ser�ing (1980, p147).
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For γ ∈ ∂Bn(c), the Taylor expansion gives

log `(γ)− log `(θ) = cλ>[In(θ)]−1/2sn(θ) (7.34)

+ (c2/2)λ>[In(θ)]−1/2∇sn(γ∗)[In(θ)]−1/2λ,

where λ = [In(θ)]1/2(γ − θ)/c satisfying ‖λ‖ = 1, ∇sn(γ) = ∂sn(γ)/∂γ, and γ∗ lies between γ and

θ.

Note that

E
‖∇sn(γ∗)−∇sn(θ)‖

n
≤ E max

γ∈Bn(c)

‖∇sn(γ)−∇sn(θ)‖
n

≤ E max
γ∈Bn(c)

∥∥∥∥∂2 log fγ(X1)

∂γ∂γ>
− ∂2 log fθ(X1)

∂θ∂θ>

∥∥∥∥
→ 0,

which follows from

(a) ∂2 log fγ(x)/∂γ∂γ> is continuous in a neighborhood of θ for any �xed x;

(b) Bn(c) shrinks to {θ}; and

(c) for su�ciently large n,

max
γ∈Bn(c)

∥∥∥∥∂2 log fγ(X1)

∂γ∂γ>
− ∂2 log fθ(X1)

∂θ∂θ>

∥∥∥∥ ≤ 2hθ(X1)

under the regularity condition.

By the SLLN (Theorem 1.13) and Proposition 3.1, n−1∇sn(θ)
a.s.→ −I1(θ) (i.e., ‖n−1∇sn(θ) +

I1(θ)‖ a.s.→ 0). These results, together with (7.34), imply that

log `(γ)− log `(θ) = cλ>[In(θ)]−1/2sn(θ)− [1 + op(1)]c2/2. (7.35)

Note that maxλ{λ>[In(θ)]−1/2sn(θ)} = ‖[In(θ)]−1/2sn(θ)‖. Hence, (7.33) follows from (7.35) and

P
(
‖[In(θ)]−1/2sn(θ)‖ < c/4

)
≥ 1− (4/c)2E‖[In(θ)]−1/2sn(θ)‖2

= 1− k(4/c)2 = 1− ε/2

This completes the proof of (i).

(ii) Let Aε = {γ : ‖γ − θ‖ ≤ ε} for ε > 0. Since Θ is open, Aε ⊂ Θ for su�ciently small ε. Let

{θ̃n} be a sequence of consistent RLE's, i.e., P (sn(θ̃n) = 0 and θ̃n ∈ Aε)→ 1 for any ε > 0. Hence,

we can focus on the set on which sn(θ̃n) = 0 and θ̃n ∈ Aε. Using the mean-value theorem for

vector-valued functions, we obtain

−sn(θ) =

[∫ 1

0

∇sn
(
θ + t(θ̃n − θ)

)
dt

]
(θ̃n − θ).
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Note that
1

n

∥∥∥∥∫ 1

0

∇sn
(
θ + t(θ̃n − θ)

)
dt−∇sn(θ)

∥∥∥∥ ≤ max
γ∈Aε

‖∇sn(γ)−∇sn(θ)‖
n

.

Using the argument in proving (7.35) and the fact that P (θ̃n ∈ Aε) → 1 for arbitrary ε > 0, we

obtain that
1

n

∥∥∥∥ ∫ 1

0

∇sn
(
θ + t(θ̃n − θ)

)
dt−∇sn(θ)

∥∥∥∥ P→ 0.

Since n−1∇sn(θ)
a.s.→ −I1(θ) and In(θ) = nI1(θ),

−sn(θ) = −In(θ)(θ̃n − θ) + op
(
‖In(θ)(θ̃n − θ)‖

)
.

This and Slutsky's theorem (Theorem 1.11) imply that
√
n(θ̃n − θ) has the same asymptotic

distribution as

√
n[In(θ)]−1sn(θ) = n−1/2[I1(θ)]−1sn(θ)

D→ Nk
(
0, [I1(θ)]−1

)
by the CLT (Corollary 1.2), since Var(sn(θ)) = In(θ).

• Part (i) is asymptotic existence and consistency.

• If the RLE is unique, then it is consistent and asymptotically e�cient, whether or not it is

MLE.

• If there are more than one sequences of RLE, the theorem does not tell which one is consistent

and asymptotically e�cient.

• An MLE sequence is often consistent, but this needs to be veri�ed.


