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RIEMANNIAN GEOMETRY OF SYMMETRIC POSITIVE DEFINITE
MATRICES VIA CHOLESKY DECOMPOSITION\ast 

ZHENHUA LIN\dagger 

Abstract. We present a new Riemannian metric, termed Log-Cholesky metric, on the manifold
of symmetric positive definite (SPD) matrices via Cholesky decomposition. We first construct a
Lie group structure and a bi-invariant metric on Cholesky space, the collection of lower triangular
matrices whose diagonal elements are all positive. Such group structure and metric are then pushed
forward to the space of SPD matrices via the inverse of Cholesky decomposition that is a bijective map
between Cholesky space and SPD matrix space. This new Riemannian metric and Lie group structure
fully circumvent swelling effect, in the sense that the determinant of the Fr\'echet average of a set
of SPD matrices under the presented metric, called Log-Cholesky average, is between the minimum
and the maximum of the determinants of the original SPD matrices. Comparing to existing metrics
such as the affine-invariant metric and Log-Euclidean metric, the presented metric is simpler, more
computationally efficient, and numerically stabler. In particular, parallel transport along geodesics
under Log-Cholesky metric is given in a closed and easy-to-compute form.
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1. Introduction. Symmetric positive definite (SPD) matrices emerge in vast
scientific applications such as computer vision [9, 35], elasticity [18, 31], signal pro-
cessing [3, 21], medical imaging [11, 13, 14, 27, 39], and neuroscience [15]. A concrete
example is analysis of functional connectivity between brain regions. Such connectiv-
ity is often characterized by the covariance of blood-oxygen-level dependent signals
[22] generated by brain activities from different regions. The covariance is mathemat-
ically defined by a covariance matrix which is an SPD matrix. Another application
is diffusion tensor imaging [25], which is extensively used to obtain high-resolution
information of internal structures of certain tissues or organs, such as hearts and
brains. For each tissue voxel, there is a 3 \times 3 SPD matrix to describe the shape of
local diffusion. Such information has clinical applications; for example, it can be used
to discover pathological area surrounded by healthy tissues.

The space of SPD matrices of a fixed dimension m, denoted by \scrS +
m in this article,

is a convex smooth submanifold of the Euclidean space \BbbR m(m+1)/2. The inherited
Euclidean metric further turns \scrS +

m into a Riemannian manifold. However, as pointed
out in [4], this classic metric is not adequate in many applications for two reasons.
First, the distance between SPD matrices and symmetric matrices with zero or nega-
tive eigenvalues is finite, which implies that, in the context of diffusion tensor imaging,
small diffusion is more likely than large diffusion. Second, the Euclidean average of
SPD matrices suffers from swelling effect, i.e., the determinant of the average is larger
than any of the original determinants. When SPD matrices are covariance matrices,
as in the application of diffusion tensor imaging, determinants correspond to over-
all dispersion of diffusion. Inflated determinants amount to extra diffusion that is
artificially introduced in computation.
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To circumvent the problems of the Euclidean metric for SPD matrices, various
metrics have been introduced in the literature, such as the affine-invariant metric
[30, 34] and the Log-Euclidean metric [4]. These metrics keep symmetric matrices
with some nonpositive eigenvalues at an infinite distance away from SPD matrices and
are not subject to swelling effect. In addition, the Log-Euclidean framework features a
closed form of the Fr\'echet average of SPD matrices. It also turns \scrS +

m into a Lie group
endowed with a bi-invariant metric. However, computation of Riemannian exponential
and logarithmic maps requires evaluating a series of an infinite number of terms; see
(2.1) and (3.4) in [4]. Comparing to the Log-Euclidean metric, the affine-invariant one
not only possesses easy-to-compute exponential and logarithmic maps but also enjoys
a closed form for parallel transport along geodesics; see Lemma 3 of [36]. However,
to the best of our knowledge, no closed form is found for the Fr\'echet average of SPD
matrices under the affine-invariant metric. The Fr\'echet average of SPD matrices is
also studied in the literature for distance functions or Riemannian metrics arising
from perspectives other than swelling effect, such as the Bures--Wasserstein metric
that is related to the theory of optimal transport [7] and the S-divergence studied
in both [10] and [37]. Other related works include Riemannian geometry for positive
semidefinite matrices [38, 28] and Riemannian structure for correlation matrices [17].

In addition to the above Riemannian frameworks, it is also common to approach
SPD matrices via Cholesky decomposition in practice for efficient computation, such
as [12, 32, 39]. Distance on SPD matrices based on Cholesky decomposition has
also been explored in the literature. For example, in [11] the distance between two
SPD matrices P1 and P2 with Cholesky decomposition P1 = L1L

\top 
1 and P2 = L2L

\top 
2

is defined by \| L1  - L2\| F, where each of L1 and L2 is a lower triangular matrix
whose diagonal elements are positive, and \| \cdot \| F denotes Frobenius matrix norm.
Although this distance is simple and easy to compute, it suffers from swelling effect,
as demonstrated by the following example.

Example 1. One first notes that, under the Cholesky distance, the geodesic inter-
polation between P1 and P2 is given by P\rho := \{ \rho L1 + (1 - \rho )L2\} \{ \rho L1 + (1 - \rho )L2\} \top 
for \rho \in [0, 1]. For any \epsilon > 0, consider matrices

P1 =

\biggl( 
\epsilon 2 0
0 1

\biggr) 
, P2 =

\biggl( 
1 0
0 \epsilon 2

\biggr) 
, L1 =

\biggl( 
\epsilon 0
0 1

\biggr) 
, L2 =

\biggl( 
1 0
0 \epsilon 

\biggr) 
.

It is clear that L1L
\top 
1 = P1 and L2L

\top 
2 = P2. When \rho = 1/2,

P\rho =
1

4
(L1 + L2)(L1 + L2)

\top =

\Biggl( 
(1+\epsilon )2

4 0

0 (1+\epsilon )2

4

\Biggr) 
,

whose determinant is det(P\rho ) = (1 + \epsilon )4/16. However, det(P1) = det(P2) = \epsilon 2 <
(1 + \epsilon )4/16, or equivalently, max\{ det(P1),det(P2)\} < det(P\rho ), whenever \epsilon \not = 1.

In this work, we propose a new Riemannian metric on SPD matrices via Cholesky
decomposition. The basic idea is to introduce a new metric for the space of lower tri-
angular matrices with positive diagonal elements and then push it forward to the space
of SPD matrices via Cholesky decomposition. The metric, termed Log-Cholesky met-
ric, has the advantages of the aforementioned affine-invariant metric, Log-Euclidean
metric and Cholesky distance. First, it is as simple as the Cholesky distance but
not subject to swelling effect. Second, like the Log-Euclidean metric, the presented
metric enjoys Lie group bi-invariance as well as a closed form for the Log-Cholesky
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average of SPD matrices. This bi-invariant Lie group structure seems not shared by
the aforementioned works other than [4] in the literature. Third, it features simple
and easy-to-compute expressions for Riemannian exponential and logarithmic maps,
in contrast with the Log-Euclidean metric. Finally, like the affine-invariant metric, the
expression for parallel transport along geodesics is simple and easy-to-compute under
the presented metric. Parallel transport is important in applications like regression
methods on Riemannian manifolds, such as [36, 40, 41].

It is noted that Cholesky decomposition is also explored in [17] for a Riemannian
geometry of correlation matrices with rank no larger than a fixed bound. Despite
certain similarity in the use of Cholesky decomposition, this work is fundamentally
different from ours. First, it studies correlation matrices rather than SPD matrices.
For a correlation matrix, its diagonal elements are restricted to be one. Second, the
Riemannian structures considered in [17] and our work are different. For example,
the so-called Cholesky manifold in [17] is a Riemannian submanifold of a Euclidean
space, while our Riemannian manifold to be proposed is not. Finally, Cholesky de-
composition is utilized in [17] as a way to parameterize correlation matrices, rather
than push forward a new manifold structure to correlation matrices.

We structure the rest of this article as follows. Some notations and basic proper-
ties of lower triangular and SPD matrices are collected in section 2. In section 3, we
introduce a new Lie group structure on SPD matrices and define the Log-Cholesky
metric on the group. Basic features such as Riemannian exponential/logarithmic
maps, geodesics, and parallel transport are also characterized. Section 4 is devoted to
the Log-Cholesky mean/average of distributions on SPD matrices. We then conclude
the article in section 5.

2. Lower triangular matrices and SPD matrices. We start with introduc-
ing some notations and recalling some basic properties of lower triangular and SPD
matrices. Cholesky decomposition is then shown to be a diffeomorphism between
lower triangular matrix manifolds and SPD manifolds. This result serves as a corner-
stone of our development: it enables us to push forward a Riemannian metric defined
on the space of triangular matrices to the space of SPD matrices.

2.1. Notations and basic properties. Throughout this paper, m is a fixed
positive integer that represents the dimension of matrices under consideration. For a
matrix A, we use Aij or A(i, j) to denote its element on the ith row and jth column.
The notation \lfloor A\rfloor denotes an m \times m matrix whose (i, j) element is Aij if i > j and
is zero otherwise, while \BbbD (A) denotes an m\times m diagonal matrix whose (i, i) element
is Aii. In other words, \lfloor A\rfloor is the strictly lower triangular part, while \BbbD (A) is the
diagonal part of A. The trace of a matrix A is denoted by tr(A), and the determinant
is denoted by det(A). For two square matrices A and B, \langle A,B\rangle F :=

\sum 
ij AijBij

denotes the Frobenius inner product between them, and the induced norm is denoted

by \| A\| F := \langle A,A\rangle 1/2F .
The matrix exponential map of a real matrix is defined by exp(A) =

\sum \infty 
k=0A

k/k!,
and its inverse, the matrix logarithm, whenever it exists and is real, is denoted by
log(A). It is noted that the exponential of a lower triangular matrix is also lower
triangular. In addition, the matrix exponential of a diagonal matrix can be obtained
by applying the exponential function to each diagonal element. The matrix logarithm
of a diagonal matrix with positive diagonal elements can be computed in a similar
way. Thus, the matrix exponential/logarithmic map of a diagonal matrix is diagonal.

The space of m\times m lower triangular matrices is denoted by \scrL , and the subset of
\scrL whose diagonal elements are all positive is denoted by \scrL +. It is straightforward to
check the following properties of lower triangular matrices.
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\bullet X = \lfloor X\rfloor + \BbbD (X) for X \in \scrL .
\bullet X1 +X2 \in \scrL and X1X2 \in \scrL for X1, X2 \in \scrL .
\bullet L1 + L2 \in \scrL + and L1L2 \in \scrL + if L1, L2 \in \scrL +.
\bullet If L \in \scrL +, then the inverse L - 1 exists and belongs to \scrL +.
\bullet For X1, X2 \in \scrL , \BbbD (X1+X2) = \BbbD (X1)+\BbbD (X2) and \BbbD (X1X2) = \BbbD (X1)\BbbD (X2).
\bullet \BbbD (L - 1) = \BbbD (L) - 1 for L \in \scrL +.
\bullet det(X) =

\prod m
j=1Xjj for X \in \scrL .

These properties show that both \scrL and \scrL + are closed under matrix addition and
multiplication and that the operator \BbbD interacts well with these operations.

Recall that \scrS +
m is defined as the collection of m \times m SPD matrices. We denote

the space of m\times m symmetric space by \scrS m. Symmetric matrices and SPD matrices
possess numerous algebraic and analytic properties that are well documented in [6].
Below are some of them to be used in what follows.

\bullet All eigenvalues \lambda 1, . . . , \lambda m of an SPD P are positive, and det(P ) =
\prod m

j=1 \lambda j .
Therefore, the determinant of an SPD matrix is positive.

\bullet For any invertible matrix X, the matrix XX\top is an SPD matrix.
\bullet exp(S) is an SPD matrix for a symmetric matrix S, while log(P ) is a sym-

metric metric for an SPD matrix P .
\bullet Diagonal elements of an SPD matrix are all positive. This can be seen from
the fact that Pjj = e\top j Pej > 0 for P \in \scrS +

m, where ej is the unit vector with
1 at the jth coordinate and 0 elsewhere.

2.2. Cholesky decomposition. Cholesky decomposition, named after Andr\'e-
Louis Cholesky, represents a real m \times m SPD matrix P as a product of a lower
triangular matrix L and its transpose, i.e., P = LL\top . If the diagonal elements of L
are restricted to be positive, then the decomposition is unique according to Theorem
4.2.5 of [16]. Such lower triangular matrix, denoted by L (P ), is called the Cholesky
factor of P . Since in addition L = L (LL\top ) for each L \in \scrL +, the map L : \scrS +

m \rightarrow \scrL +

is bijective. In other words, there is one-to-one correspondence between SPD matrices
and lower triangular matrices whose diagonal elements are all positive.

The space \scrL +, called the Cholesky space in this paper, is a smooth submanifold
of \scrL that is identified with the Euclidean space \BbbR m(m+1)/2. Similarly, the space \scrS +

m

of SPD matrices is a smooth submanifold of the space \scrS m of symmetric matrices
identified with vectors in \BbbR m(m+1)/2. As a manifold map between smooth manifolds
\scrL + and \scrS +

m, the map L is indeed a diffeomorphism. This fact will be explored to
endow \scrS +

m with a new Riemannian metric that to be presented in subsection 3.2.

Proposition 2. The Cholesky map L is a diffeomorphism between smooth man-
ifolds \scrL + and \scrS +

m.

Proof. We have argued that L is a bijection. To see that it is also smooth, for
P = LL\top with L \in \scrL +, we write\left(     

P11 P12 \cdot \cdot \cdot P1m

P21 P22 \cdot \cdot \cdot P2m

...
...

. . .
...

Pm1 Pm2 \cdot \cdot \cdot Pmm

\right)     =

\left(     
L11 0 \cdot \cdot \cdot 0
L21 L22 \cdot \cdot \cdot 0
...

...
. . .

...
Lm1 Lm2 \cdot \cdot \cdot Lmm

\right)     
\left(     
L11 L21 \cdot \cdot \cdot Lm1

0 L22 \cdot \cdot \cdot Lm2

...
...

. . .
...

0 0 \cdot \cdot \cdot Lmm

\right)     

=

\left(     
L2
11 L21L11 \cdot \cdot \cdot Lm1L11

L21L11 L2
21 + L2

22 \cdot \cdot \cdot Lm1L21 + Lm2L22

...
...

. . .
...

Lm1L11 Lm1L21 + Lm2L22 \cdot \cdot \cdot 
\sum m

k=1 L
2
mk

\right)     ,
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from which we deduce that

(2.1)

\left\{   Lii =
\sqrt{} 
Pii  - 

\sum i - 1
k=1 L

2
ik,

Lij =
1

Ljj

\Bigl( 
Pij  - 

\sum j - 1
k=1 LikLjk

\Bigr) 
for i > j.

The existence of a unique Cholesky factor for every SPD matrix suggests that Pii  - \sum i - 1
k=1 L

2
ik > 0 for all i. Thus, L11 =

\surd 
P11, as well as its reciprocal 1/L11, is smooth.

Now assume Lij and 1/Ljj are smooth for i = 1, . . . , i0 and j = 1, . . . , j0 \leq i0.
As we just showed, this hypothesis is true for i0 = 1 and j0 = 1. If j0 = i0, from
(2.1) we see that Li0+1,1 = (1/L11)Pi0+1,1 is smooth. If j0 < i0  - 1, then Li0,j0+1

results from a sequence of elementary operations, such as multiplication, addition,
and subtraction, of maps Li01, . . . , Li0,j0 , Lj0+1,1, . . . , Lj0+1,j0 , and 1/Lj0+1,j0+1 that
are all smooth according to the induction hypothesis. As these elementary operations
are all smooth, Li0,j0+1 is also smooth. If j0 = i0  - 1, then Li0,j0+1 = Li0,i0 , as
well as 1/Li0,i0 , is smooth via similar reasoning based on the additional fact that

Pi0,i0  - 
\sum i0 - 1

k=1 L
2
ik > 0 and the square-root operator

\surd 
is smooth on the set of positive

real numbers. The above derivation then shows that the induction hypothesis is also
true for i = i0, j = j0 + 1 if j0 < i0 and i = i0 + 1, j = 1 if j0 = i0.

Consequently, by mathematical induction, the hypothesis is true for all pairs of i
and j \leq i. In other words, L is a smooth manifold map. Its inverse, denoted by S ,
is given by S (L) = LL\top and clearly smooth. Therefore, L and its inverse S are
diffeomorphisms.

3. Lie group structure and bi-invariant metric. In this section, we first
construct a group structure and a bi-invariant metric on the manifold \scrL + and then
push them forward to the manifold \scrS +

m via the Cholesky map. Parallel transport on
SPD manifolds is also investigated. For a background of Riemannian geometry and
Lie group, we recommend monographs [19, 24].

3.1. Riemannian geometry on Cholesky spaces. For matrices in \scrL +, as
off-diagonal elements in the lower triangular part are unconstrained while diagonal
ones are restricted to be positive, \scrL + can be parameterized by \scrL \ni X :\rightarrow \varphi (X) \in \scrL +

in the way that (\varphi (X))ij = Xij if i \not = j and (\varphi (X))jj = exp(Xjj). This motivates
us to, respectively, endow the unconstrained part \lfloor \cdot \rfloor and the positive diagonal part
\BbbD (\cdot ) with a different metric and then combine them into a Riemannian metric on
\scrL + as follows. First, we note that the tangent space of \scrL + at a given L \in \scrL + is
identified with the linear space \scrL . For such tangent space, we treat the strict lower
triangular space \lfloor \scrL \rfloor := \{ \lfloor X\rfloor : X \in \scrL \} as the Euclidean space \BbbR m(m - 1)/2 with the
usual Frobenius inner product \langle X,Y \rangle F =

\sum m
i,j=1XijYij for all X,Y \in \lfloor \scrL \rfloor . For the

diagonal part \BbbD (\scrL ) := \{ \BbbD (Z) : Z \in \scrL \} , we equipped it with a different inner product
defined by \langle \BbbD (L) - 1\BbbD (X),\BbbD (L) - 1\BbbD (Y )\rangle F. Finally, combining these two components
together, we define a metric \~g for tangent spaces TL\scrL + (identified with \scrL ) by

\~gL(X,Y ) = \langle \lfloor X\rfloor , \lfloor Y \rfloor \rangle F + \langle \BbbD (L) - 1\BbbD (X),\BbbD (L) - 1\BbbD (Y )\rangle F

=
\sum 
i>j

XijYij +

m\sum 
j=1

XjjYjjL
 - 2
jj .

It is straightforward to show that the space \scrL +, equipped with the metric \~g, is a
Riemannian manifold. We begin with geodesics on the manifold (\scrL +, \~g) to investigate
its basic properties.
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Proposition 3. On the Riemannian manifold (\scrL +, \~g), the geodesic starting at
L \in \scrL + with direction X \in TL\scrL + is given by

\~\gamma L,X(t) = \lfloor L\rfloor + t\lfloor X\rfloor + \BbbD (L) exp\{ t\BbbD (X)\BbbD (L) - 1\} .

Proof. Clearly, \~\gamma L,X(0) = L and \~\gamma \prime L,X(0) = \lfloor X\rfloor + \BbbD (X) = X. Now, we use

vec(L) to denote the vector in \BbbR m(m+1)/2 such that the first m elements of vec(L)
correspond to the diagonal elements of L. Define the map x : \scrL + \rightarrow \BbbR by

xi(L) =

\Biggl\{ 
log vec(L)i if 1 \leq i \leq m,

vec(L)i, otherwise,

where xi denotes the ith component of x. It can be checked that (\scrL +, x) is a chart for
the manifold \scrL +. Let ei be the m(m+ 1)/2 dimensional vector whose ith element is
one and other elements are all zero. For 1 \leq i \leq m, we define \partial i = vec(L)iei, and for
i > m, define \partial i = ei. The collection \{ \partial 1, . . . , \partial m(m+1)/2\} is a frame. One can check

that \~gij := \~gL(\partial i, \partial j) = 0 if i \not = j, and \~gii = 1. This implies that \partial \~gjk/\partial x
l = 0, and

hence all Christoffel symbols are zero, as

\Gamma i
kl =

1

2
\~gij
\biggl( 
\partial \~gjk
\partial xl

+
\partial \~gjl
\partial xk

 - \partial \~gkl
\partial xj

\biggr) 
= 0,

where Einstein summation convention is assumed. It can be checked that the ith
coordinate \~\gamma i(t) = xi \circ \~\gamma L,X(t) of the curve \~\gamma L,X is given by \~\gamma i(t) = log vec(L)i +
tvec(X)i/vec(L)i when i \leq m and \~\gamma i(t) = vec(L)i + tvec(X)i if i > m. Now, it is an
easy task to verify the following geodesic equations

d2\~\gamma i

dt2
+ \Gamma i

jk

d\~\gamma j

dt

d\~\gamma k

dt
= 0

for i = 1, . . . ,m(m+ 1)/2. Therefore, \~\gamma L,X(t) is the claimed geodesic.

Given the above proposition, we can immediately derive the Riemannian expo-
nential map \widetilde Exp at L \in \scrL +, which is given by

\widetilde ExpLX = \~\gamma L,X(1) = \lfloor L\rfloor + \lfloor X\rfloor + \BbbD (L) exp\{ \BbbD (X)\BbbD (L) - 1\} .

Also, for L,K \in \scrL +, with X = \lfloor K\rfloor  - \lfloor L\rfloor + \{ log\BbbD (K) - log\BbbD (L)\} \BbbD (L), one has

\~\gamma L,X(t) = \lfloor L\rfloor + t\{ \lfloor K\rfloor  - \lfloor L\rfloor \} + \BbbD (L) exp[t\{ log\BbbD (K) - log\BbbD (L)\} ].

Since \~\gamma L,X(0) = L and \~\gamma L,X(1) = K, \~\gamma L,X is the geodesic connecting L and K.
Therefore, the distance function on \scrL + induced by \~g, denoted by d\scrL + , is given by

d\scrL +
(L,K) = \{ \~gL(X,X)\} 1/2 =

\left\{   \sum 
i>j

(Lij  - Kij)
2 +

m\sum 
j=1

(logLjj  - logKjj)
2

\right\}   
1/2

,

where X is the same as the above. The expression for the distance function can be
equivalently and more compactly written as

d\scrL +
(L,K) = \{ \| \lfloor L\rfloor  - \lfloor K\rfloor \| 2F + \| log\BbbD (L) - log\BbbD (K)\| 2F\} 1/2.

Table 1 summarizes the above basic properties of the manifold (\scrL +, \~g).
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Table 1
Basic properties of Riemannian manifolds (\scrL +, \~g).

tangent space at L

\scrL 

Riemannian metric

\~gL(X,Y ) =
\sum 

i>j XijYij +
\sum m

j=1 XjjYjjL
 - 2
jj

geodesic emanating from L with direction X

\~\gamma L,X(t) = \lfloor L\rfloor + t\lfloor X\rfloor + \BbbD (L) exp\{ t\BbbD (X)\BbbD (L) - 1\} 

Riemannian exponential map at L\widetilde ExpLX = \lfloor L\rfloor + \lfloor X\rfloor + \BbbD (L) exp\{ \BbbD (X)\BbbD (L) - 1\} 

Riemannian logarithmic map at L\widetilde LogLK = \lfloor K\rfloor  - \lfloor L\rfloor + \BbbD (L) log\{ \BbbD (L) - 1\BbbD (K)\} 

geodesic distance between L and K

d\scrL +
(L,K) = \{ \| \lfloor L\rfloor  - \lfloor K\rfloor \| 2F + \| log\BbbD (L) - log\BbbD (K)\| 2F\} 

1/2

3.2. Riemannian metric for SPD matrices. As mentioned previously, the
space \scrS +

m of SPD matrices is a smooth submanifold of the space \scrS m of symmetric
matrices, whose tangent space at a given SPD matrix is identified with \scrS m. We
also showed that the map S : \scrL + \rightarrow \scrS +

m by S (L) = LL\top is a diffeomorphism
between \scrL + and \scrS +

m. For a square matrix S, we define a lower triangular matrix
S 1

2
= \lfloor S\rfloor + \BbbD (S)/2. In other words, the matrix S 1

2
is the lower triangular part of S

with the diagonal elements halved. The differential of S is given in the following.

Proposition 4. The differential DLS : TL\scrL + \rightarrow TLL\top \scrS +
m of S at L is given

by
(DLS )(X) = LX\top +XL\top .

Also, the inverse (DLS ) - 1 : TLL\top \scrS +
m \rightarrow TL\scrL + of DLS exists for all L \in \scrL + and is

given by
(DLS ) - 1(W ) = L(L - 1WL - \top ) 1

2

for W \in \scrS m.

Proof. Let X \in \scrL and L \in \scrL +. Then \~\gamma L(t) = L+ tX is a curve passing through
L if t \in ( - \epsilon , \epsilon ) for a sufficiently small \epsilon > 0. Note that for every such t, \~\gamma L(t) \in \scrL +.
Then \gamma LL\top (t) = S (\~\gamma L(t)) is a curve passing through LL\top . The differential is then
derived from

(DLS )(X) = (S \circ \~\gamma L)
\prime (0) =

d

dt
S (\~\gamma L(t)) | t=0= LX\top +XL\top .

On the other hand, if W = LX\top +XL\top , then since L is invertible, we have

L - 1WL - \top = X\top L - \top + L - 1X = L - 1X + (L - 1X)\top .

Note that L - 1X is also a lower triangular matrix, and the matrix on the left-hand
side is symmetric, we deduce that (L - 1WL - \top ) 1

2
= L - 1X, which gives rise to X =

L(L - 1WL - \top ) 1
2
. The linear map (DLS )(X) = LX\top +XL\top is one-to-one, since from

the above derivation, (DLS )(X) = 0 if and only if X = 0.
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Given the above proposition, the manifold map S , which is exactly the inverse
of the Cholesky map L discussed in subsection 2.2, induces a Riemannian metric on
\scrS +
m, denoted by g and called Log-Cholesky metric, given by

(3.1) gP (W,V ) = \~gL

\Bigl( 
L(L - 1WL - \top ) 1

2
, L(L - 1V L - \top ) 1

2

\Bigr) 
,

where L = S  - 1(P ) = L (P ) is the Cholesky factor of P \in \scrS +
m, and W,V \in \scrS m are

tangent vectors at P . This implies that

\~gL(X,Y ) = gS (L)

\bigl( 
(DLS )(X), (DLS )(Y )

\bigr) 
for all L and X,Y \in TL\scrL +. According to Definition 7.57 of [26], the map S is an
isometry between (\scrL +, \~g) and (\scrS +

m, g). A Riemannian isometry provides correspon-
dence of Riemannian properties and objects between two Riemannian manifolds. This
enables us to study the properties of (\scrS +

m, g) via the manifold (\scrL +, \~g) and the isometry
S . For example, we can obtain geodesics on \scrS +

m by mapping geodesics on \scrL +. More
precisely, the geodesic emanating from P = LL\top with L = L (P ) is given by

\gamma P,W (t) = S (\~\gamma L,X(t)) = \~\gamma L,X(t)\~\gamma \top L,X(t),

where X = L(L - 1WL - \top ) 1
2
and W \in TP\scrS +

m. Similarly, the Riemannian exponential
at P is given by

ExpPW = S (\widetilde ExpLX) = (\widetilde ExpLX)(\widetilde ExpLX)\top ,

while the geodesic between P and Q is characterized by

\gamma P,W (t) = \~\gamma L,X(t)\~\gamma \top L,X(t),

with L = L (P ), K = L (Q), X = \lfloor K\rfloor  - \lfloor L\rfloor + \{ log\BbbD (K)  - log\BbbD (L)\} \BbbD (L), and
W = LX\top +XL\top . Also, the geodesic distance between P and Q is

d\scrS +
m
(P,Q) = d\scrL +(L (P ),L (Q)).

Moreover, the Levi--Civita connection \nabla of (\scrS +
m, g) can be obtained by the Levi--

Civita connection \~\nabla of (\scrL +, \~g). To see this, let W and V be two smooth vector
fields on \scrS +

m. Define vector fields X and Y on \scrL + by X(L) = (DLL\top L )W (LL\top )
and Y (L) = (DLL\top L )V (LL\top ) for all L \in \scrL +. Then \nabla WV = (DS )( \~\nabla XY ), and
the Christoffel symbols to compute the connection \~\nabla has been given in the proof of
Proposition 3.

Table 2 summarizes some basic properties of the manifold (\scrS +
m, g). Note that

the differential DPL can be computed efficiently, since it only involves Cholesky
decomposition and the inverse of a lower triangular matrix, for both of which there
exist efficient algorithms. Consequently, all maps in Table 2 can be evaluated in
an efficient way. In contrast, computation of Riemannian exponential/logarithmic
maps for the Log-Euclidean metric [4] requires evaluation of some series of an infinite
number of terms; see (2.1) and Table 4.1 of [4].

3.3. Lie group structure and bi-invariant metrics . We define an operator
� on \scrL by

X � Y = \lfloor X\rfloor + \lfloor Y \rfloor + \BbbD (X)\BbbD (Y ).

Note that \scrL + \subset \scrL . Moreover, if L,K \in \scrL +, then L �K \in \scrL +. It is not difficult to
see that � is a smooth commutative group operation on the manifold \scrL +, where the
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Table 2
Properties of Riemannian manifold (\scrS +

m, g).

tangent space at P

\scrS m

differential of S at L

DLS : X \mapsto  - \rightarrow LX\top +XL\top 

differential of L at P

DP L : W \mapsto  - \rightarrow L (P )(L (P ) - 1WL (P ) - \top ) 1
2

Riemannian metric

gP (W,V ) = \~gL (P )((DP L )(W ), (DP L )(V ))

geodesic emanating from P with direction W

\gamma P,W (t) = \~\gamma L (P ),(DP L )(W )(t)\~\gamma 
\top 
L (P ),(DP L )(W )

(t)

Riemannian exponential map at P

ExpPW = \widetilde ExpL (P )(DP L )(W ))\{ \widetilde ExpL (P )(DP L )(W )\} \top 

Riemannian logarithmic map at P

LogPQ = (DL (P )S )(\widetilde LogL (P )L (Q))

geodesic distance between P and Q

d\scrS +
m
(P,Q) = d\scrL +

(L (P ),L (Q)).

inverse of L, denoted by L - 1
� , is \BbbD (L) - 1  - \lfloor L\rfloor . The left translation by A \in \scrL + is

denoted by \ell A : B \mapsto \rightarrow A�B. One can check that the differential of this operation at
L \in \scrL + is

(3.2) DL\ell A : X \mapsto \rightarrow \lfloor X\rfloor + \BbbD (A)\BbbD (X),

where it is noted that the differential DL\ell A does not depend on L. Given the above
expression, one can find that

\~gA�L((DL\ell A)(X), (DL\ell A)(Y ))

= \~gA�L(\lfloor X\rfloor + \BbbD (A)\BbbD (X), \lfloor Y \rfloor + \BbbD (A)\BbbD (Y ))

= \~gL(X,Y ).

Similar observations are made for right translations. Thus, the metric \~g is a bi-
invariant metric that turns (\scrL +,�) into a Lie group.

The group operator � and maps S and L together induce a smooth operation
� on \scrS +

m, defined by

P �Q = S (L (P ) � L (Q))

= (L (P ) � L (Q))(L (P ) � L (Q))\top for P,Q \in \scrS +
m.

In addition, both L and S are Riemannian isometries and group isomorphisms
between Lie groups (\scrL +, \~g,�) and (\scrS +

m, g,�).

Theorem 5. The space (\scrS +
m,�) is an abelian Lie group. Moreover, the metric g

defined in (3.1) is a bi-invariant metric on (\scrS +
m,�).
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Proof. It is clear that \scrS +
m is closed under the operation �, and the identity

element is the identity matrix. For P \in \scrS +
m, the inverse under � is given by

(L (P ) - 1
� )(L (P ) - 1

� )\top . For associativity, we first observe that L (P �Q) = L (P ) �
L (Q), based on which we further deduce that

(P �Q) � S = (L (P �Q) � L (S))(L (P �Q) � L (S))\top 

= (L (P ) � L (Q) � L (S))(L (P ) � L (Q) � L (S))\top 

= (L (P ) � L (Q� S))(L (P ) � L (Q� S))\top 

= P � (Q� S).

Therefore, (\scrS +
m,�) is a group. The commutativity and smoothness of � stem from the

commutativity and smoothness of �, respectively. It can be checked that S is a group
isomorphism and isometry between Lie groups (\scrL +,�) and (\scrS +

m,�), respectively,
endowed with Riemannian metrics \~g and g. Then, the bi-invariance of g follows from
the bi-invariance of \~g.

3.4. Parallel transport along geodesics on \scrS +
m. In some applications like

statistical analysis or machine learning on Riemannian manifolds, parallel transport
of tangent vectors along geodesics is required. For instance, in [40] that studies
regression on SPD-valued data, tangent vectors are transported to a common place
to derive statistical estimators of interest. Also, optimization in the context of sta-
tistics for manifold-valued data often involves parallel transport of tangent vectors.
Examples include Hamiltonian Monte Carlo algorithms [23] as well as optimization
algorithms [20] to train manifold-valued Gaussian mixture models. In these scenar-
ios, Riemannian metrics on SPD matrices that result in efficient computation for
parallel transport are attractive, in particular in the era of big data. In this regard,
as discussed in the introduction, evaluation of parallel transport along geodesics for
the affine-invariant metric is simple and efficient in computation, while the one for
the Log-Euclidean metric is computationally intensive. Below we show that parallel
transport for the presented metric also has a simple form, starting with a lemma.

Lemma 6. Let (\scrG , \cdot ) be an abelian Lie group with a bi-invariant metric. The
parallel transporter \tau p,q that transports tangent vectors at p to tangent vectors at q
along the geodesic connecting p and q is given by \tau p,q(u) = (Dp\ell q\cdot p - 1)u for u \in Tp\scrG .

Proof. For simplicity, we abbreviate p \cdot q as pq. Let g denote the Lie algebra
associated with the Lie group \scrG , and \nabla the Levi--Civita connection on \scrG . Note that
we identify elements in g with left-invariant vector fields on \scrG . We shall first recall
that \nabla Y Z = [Y, Z]/2 for Y,Z \in g (see the proof of Theorem 21.3 in [29]), where [\cdot , \cdot ]
denotes the Lie bracket of \scrG . As \scrG is abelian, the Lie bracket vanishes everywhere,
and hence \nabla Y Z = 0 if Y, Z \in g.

Let \gamma p(t) = \ell p(exp(tY )) for Y \in g such that exp(Y ) = p - 1q, where exp denotes
the Lie group exponential map. Recall that for a bi-invariant Lie group, the group
exponential map coincides with the Riemannian exponential map at the group identity
e, and left translations are isometries. Thus, \gamma p is a geodesic. Using the fact \gamma e(t +
s) = \gamma e(t)\gamma e(s) = \ell \gamma e(t)(\gamma e(s)) according to Lemma 21.2 of [29], by the chain rule of
differential, we have

\gamma \prime e(t) =
d

dt
\gamma e(t+ s) | s=0= (De\ell \gamma e(t)) (\gamma 

\prime 
e(0)) = (De\ell \gamma e(t)) (Y (e)) = Y (\gamma e(t)),

from which we further deduce that

\gamma \prime p(t) = (D\gamma e(t)\ell p)\gamma 
\prime 
e(t) = (D\gamma e(t)\ell p)Y (\gamma e(t)) = Y (p\gamma e(t)).
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Now define a vector field Z(q) := (Dp\ell qp - 1)u. We claim that Z is a left-invariant
vector field on \scrG and hence belongs to g, since

Z(hq) = (Dp\ell hqp - 1)u = \{ Dp(\ell h \circ \ell qp - 1)\} u
= (Dq\ell h)(Dp\ell qp - 1)u = (Dq\ell h)(Z(q)),

where the third equality is obtained by the chain rule of differential. Consequently,
\nabla \gamma \prime 

p
Z = 0 since \gamma \prime p(t) = Y (p\gamma e(t)) and \nabla Y Z = 0 for Y, Z \in g. As additionally

Z(\gamma p(0)) = Z(p) = u, transportation of u along the geodesic \gamma p is realized by the left-
invariant vector field Z. Since \gamma p is a geodesic with \gamma p(0) = p and \gamma p(1) = \ell pexp(Y ) =
p(p - 1q) = q, we have that

\tau p,q(u) = Z(\gamma p(1)) = Z(q) = (Dp\ell qp - 1)u,

as claimed.

Proposition 7. A tangent vector X \in TL\scrL + is parallelly transported to the tan-
gent vector \lfloor X\rfloor + \BbbD (K)\BbbD (L) - 1\BbbD (X) at K. For P,Q \in \scrS +

m and W \in \scrS m,

\tau P,Q(W ) = K\{ \lfloor X\rfloor + \BbbD (K)\BbbD (L) - 1\BbbD (X)\} \top + \{ \lfloor X\rfloor + \BbbD (K)\BbbD (L - 1)\BbbD (X)\} K\top ,

where L = L (P ), K = L (Q) and X = L(L - 1WL - \top ) 1
2
.

Proof. By Lemma 6, it is seen that \tau L,K(X) = (DL\ell K�L - 1
�
)X. According to

(3.2),

(DL\ell K�L - 1
�
)X = \lfloor X\rfloor + \BbbD (K � L - 1

� )\BbbD (X) = \lfloor X\rfloor + \BbbD (K)\BbbD (L) - 1\BbbD (X).

The statement for P,Q,W follows from the fact that S and L are an isometries.

The above proposition shows that parallel transport for the presented Log-Cholesky
metric can be computed rather efficiently. In fact, the only nontrivial steps in com-
putation are to perform Cholesky decomposition of two SPD matrices and to invert a
lower triangular matrix, for both of which there exist efficient algorithms. It is numer-
ically faster than the affine-invariant metric and Log-Euclidean metric. For instance,
for 5 \times 5 SPD matrices, in a MATLAB computational environment, on average it
takes 9.3 ms (Log-Euclidean), 0.85 ms (affine-invariant) and 0.2 ms (Log-Cholesky)
on an Intel(R) Core i7-4500U (1.80 GHz) to perform a parallel transport. We see that,
to do parallel transport, the Log-Euclidean metric is about 45 times slower than the
Log-Cholesky metric, since it has to evaluate the differential of a matrix logarithmic
map that is expressed as a convergent series of infinite terms of products of matrices.
In practice, only a finite leading terms are evaluated. However, in order to avoid
significant loss of precision, a large number of terms are often needed. For instance,
for a precision of the order of 10 - 12, typically approximately 300 leading terms are
required. The affine-invariant metric, despite having a simple form for parallel trans-
port, is still about 4 times slower than our Log-Cholesky metric, partially due to that
more matrix inversion and multiplication operations are needed.

4. Mean of distributions on \scrS +
m. In this section we study the Log-Cholesky

mean of a random SPD matrix and the Log-Cholesky average of a finite number of
SPD matrices. We first establish the existence and uniqueness of such quantities. A
closed and easy-to-compute form for Log-Cholesky averages is also derived. Finally,
we show that determinants of Log-Cholesky averages are bounded by determinants
of SPD matrices being averaged. This property suggests that Log-Cholesky averages
are not subject to swelling effect.
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4.1. Log-Cholesky mean of a random SPD matrix. For a random element
Q on a Riemannian manifold \scrM , we define a function F (x) = \BbbE d2\scrM (x,Q), where d\scrM 
denotes the geodesic distance function on \scrM , and \BbbE denotes expectation of a random
number. If F (x) <\infty for some x \in \scrM ,

x = argmin
z\in \scrM 

F (z),

and F (z) \geq F (x) for all z \in \scrM , then x is called a Fr\'echet mean of Q, denoted
by \BbbE Q. In general, Fr\'echet mean might not exist, and when it exists, it might not
be unique; see [1] for conditions of the existence and uniqueness of Fr\'echet means.
However, for \scrS +

m endowed with Log-Cholesky metric, we claim that if F (S) < \infty for
some S \in \scrS +

m, then the Fr\'echet mean exists and is unique. Such Fr\'echet mean is
termed Log-Cholesky mean in this paper. To prove the claim, we first notice that,
similar to the Log-Euclidean metric [4], the manifold (\scrS +

m, g) is a ``flat"" space.

Proposition 8. The sectional curvature of (\scrL +, \~g) and (\scrS +
m, g) is constantly

zero.

Proof. For (\scrL +, \~g), in the proof of Proposition 3, it has been shown that all
Christoffel symbols are zero under the selected coordinate. This implies that the
Riemannian curvature tensor is identically zero and hence so is the sectional curvature.
The case of (\scrS +

m, g) follows from the fact that S is an isometry that preserves sectional
curvature.

Proposition 9. If L is a random element on (\scrL +, \~g) and \BbbE d2\scrL +
(A,L) < \infty for

some A \in \scrL +. Then the Fr\'echet mean \BbbE L exists and is unique. Similarly, the Log-
Cholesky mean of a random SPD matrix P exists and is unique if \BbbE d2\scrS +

m
(S, P ) < \infty 

for some SPD matrix S.

Proof. In the case of (\scrL +, \~g), we define \psi (L) = \lfloor L\rfloor + log\BbbD (L). It can be shown
that \psi is a diffeomorphism (and hence also a homeomorphism) between \scrL + and \scrL .
Therefore, \scrL + is simply connected since \scrL is. In Proposition 8 we have shown that
\scrL + has zero sectional curvature. Thus, the existence and uniqueness of Fr\'echet mean
follows from Theorem 2.1 of [8]. The case of (\scrS +

m, g) follows from the isometry of S .

The next result shows that the Log-Cholesky mean of a random SPD matrix is
computable from the Fr\'echet mean of its Cholesky factor. Also, it characterizes the
Fr\'echet mean of a random Cholesky factor, which is important for us to derive a
closed form for the Log-Cholesky average of a finite number of matrices in the next
subsection.

Proposition 10. Suppose L is a random element on \scrL + and P is a random
element on \scrS +

m. Suppose for some fixed A \in \scrL + and B \in \scrS +
m such that \BbbE d2\scrL +

(A,L) <

\infty and \BbbE d2\scrS +
m
(B,P ) <\infty . Then the Fr\'echet mean of L is given by

(4.1) \BbbE L = \BbbE \lfloor L\rfloor + exp \{ \BbbE log\BbbD (L)\} ,

and the Log-Cholesky mean of P is given by

(4.2) \BbbE P = \{ \BbbE L (P )\} \{ \BbbE L (P )\} \top .

Proof. Let F (R) = \BbbE d2\scrL +
(R,L). Then

F (R) = \BbbE \| \lfloor R\rfloor  - \lfloor L\rfloor \| 2F + \BbbE \| log\BbbD (R) - log\BbbD (L)\| 2F := F1(\lfloor R\rfloor ) + F2(\BbbD (R)).
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To minimize F , we can separately minimize F1 and F2, due to two reasons: (1) F1

involves \lfloor R\rfloor only while F2 involves \BbbD (R), and (2) \lfloor R\rfloor and \BbbD (R) are disjoint and can
vary independently. For F1, we first note that the condition \BbbE d2\scrL +

(A,L) <\infty ensures

that \BbbE \| \lfloor L\rfloor \| 2F <\infty , and hence the mean \BbbE \lfloor L\rfloor is well defined. Also, it can be checked
that this mean minimizes F1.

For F2, we note that

F2(\BbbD (R)) =
m\sum 
j=1

\BbbE (log\BbbD (R) - log\BbbD (L))2jj

=

m\sum 
j=1

\BbbE \{ logRjj  - logLjj\} 2 :=

m\sum 
j=1

F2j(Rjj).

Again, these m components F2j can be optimized separately. From the condition
\BbbE d2\scrL +

(A,L) < \infty we deduce that \BbbE (logLjj)
2 < \infty . Thus, \BbbE logLjj is well defined

and minimizes F2j(e
x) with respect to x. Therefore, exp \{ \BbbE logLjj\} minimizes F2j(x)

for each j = 1, . . . ,m. In matrix form, this is equivalent to that exp \{ \BbbE log\BbbD (L)\} 
minimizes F2(D) when D is constrained to be diagonal. Thus, combined with the
optimizer for F1, it establishes (4.1). Then (4.2) follows from the fact that S (L) =
LL\top is an isometry.

Finally, we establish the following useful relation between the determinant of the
Log-Cholesky mean and the mean of the logarithmic determinant of a random SPD
matrix.

Proposition 11. If the Fr\'echet mean of a random element Q on (\scrL +, \~g) or
(\scrS +

m, g) exists, then log det(\BbbE Q) = \BbbE log(detQ).

Proof. For the case that Q is a random element on (\scrL +, \~g), we denote it by L
and observe that in (4.1) \BbbE L is a lower triangular matrix and exp \{ \BbbE log\BbbD (L)\} is its
diagonal part. For a triangular matrix, its determinant is the product of diagonal
elements. Thus,

detL =

m\prod 
j=1

Ljj = exp[tr\{ log\BbbD (L)\} ],

or equivalently, log detL = tr\{ log\BbbD (L)\} . The above observations imply that

det\BbbE L = exp [tr \{ log\BbbD (\BbbE L)\} ] = exp [tr \{ \BbbE log\BbbD (L)\} ]
= exp [\BbbE tr \{ log\BbbD (L)\} ] = exp \{ \BbbE log(detL)\} ,

which proves the case of (\scrL +, \~g).
For the case that Q is a random element on (\scrS +

m, g), we denote it by P and observe
that det(AB) = (detA)(detB) for any square matrices A and B. Let L = L (P ).
Then, one has

det\BbbE P = det\{ (\BbbE L)(\BbbE L)\top \} 
= \{ det(\BbbE L)\} \{ det(\BbbE L)\top \} 
= exp \{ \BbbE log(detL)\} exp

\bigl\{ 
\BbbE log(detL\top )

\bigr\} 
= exp

\bigl\{ 
\BbbE (log detL+ log detL\top )

\bigr\} 
= exp

\bigl[ 
\BbbE log\{ (detL) det(L\top )\} 

\bigr] 
,
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= exp
\bigl\{ 
\BbbE log det(LL\top )

\bigr\} 
= exp \{ \BbbE log det(P )\} ,

which establishes the statement for the case of (\scrS +
m, g).

4.2. Log-Cholesky average of finite SPD matrices. Let Q1, . . . , Qn be n
points on a Riemannian manifold \scrM . The Fr\'echet average of these points, denoted by
\BbbE n(Q1, . . . , Qn), is defined to be the minimizer of function Fn(x) =

\sum n
i=1 d

2
\scrM (x,Qi) if

such minimizer exists and is unique. Clearly, this concept is analogous to the Fr\'echet
mean of a random element discussed above. In fact, the set of the elementsQ1, . . . , Qn,
always corresponds to a random element Q with the uniform distribution on the set
\{ Q1, . . . , Qn\} . With this correspondence, the Fr\'echet average of Q1, . . . , Qn is simply
the Fr\'echet mean of Q, i.e., \BbbE n(Q1, . . . , Qn) = \BbbE Q. The following result is a corollary
of Proposition 10 in conjunction with the above correspondence.

Corollary 12. For L1, . . . , Ln \in \scrL +, one has

(4.3) \BbbE n(L1, . . . , Ln) =
1

n

n\sum 
i=1

\lfloor Li\rfloor + exp

\Biggl\{ 
n - 1

n\sum 
i=1

log\BbbD (Li)

\Biggr\} 
,

and for P1, . . . , Pn \in \scrS +
m, one has

(4.4) \BbbE n(P1, . . . , Pn) = \BbbE n\{ L (P1), . . . ,L (Pn)\} \BbbE n\{ L (P1), . . . ,L (Pn)\} \top .

For a general manifold, Fr\'echet averages often do not admit a closed form. For
example, no closed form of affine-invariant averages has been found. Strikingly, Log-
Euclidean averages admit a simple and closed form which is attractive in applications.
The above corollary shows that Log-Cholesky averages enjoy the same nice property
of their Log-Euclidean counterparts. The following is a consequence of Proposition 11
and the aforementioned principle of correspondence between a set of objects and a
random object with the discrete uniform probability distribution on them.

Corollary 13. For L1, . . . , Ln \in \scrL + and P1, . . . , Pn \in \scrS +
m, one has

(4.5) det\BbbE n(L1, . . . , Ln) = exp

\Biggl( 
1

n

n\sum 
i=1

log detLi

\Biggr) 

and

(4.6) det\BbbE n(P1, . . . , Pn) = exp

\Biggl( 
1

n

n\sum 
i=1

log detPi

\Biggr) 
.

Equation (4.6) shows that the determinant of the Log-Cholesky average of n SPD
matrices is the geometric mean of their determinants. Consequently, the Log-Cholesky
average can be considered as a generalization of the geometric mean of SPD matrices
[2], since according to [4], this property is ``the common property that should have all
generalizations of the geometric mean to SPD matrices."" Note that the Log-Cholesky
average is also a Fr\'echet mean which is a generalization of the Euclidean mean and
has applications in statistics on Riemannian manifolds [33], while the geometric mean
[2] is algebraically constructed and not directly related to Riemannian geometry.

Corollary 13 also suggests that the determinant of the Log-Cholesky average is
equal to the determinant of the Log-Euclidean and affine-invariant averages. Thus,
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like these two averages, the Log-Cholesky average does not suffer from swelling effect.
In fact, as a consequence of the above corollary, one has that

(4.7) inf
1\leq i\leq n

detLi \leq det\BbbE n(L1, . . . , Ln) \leq sup
1\leq i\leq n

detLi

and

(4.8) inf
1\leq i\leq n

detPi \leq det\BbbE n(P1, . . . , Pn) \leq sup
1\leq i\leq n

detPi.

To see so, we first observe that, for positive numbers x1, . . . , xn, one has

inf
1\leq i\leq m

log xi \leq n - 1
n\sum 

i=1

log xi \leq sup
1\leq i\leq m

log xi.

Then, the monotonicity of exp(x) implies that

inf
1\leq i\leq m

xi \leq exp

\Biggl( 
n - 1

n\sum 
i=1

log xi

\Biggr) 
\leq sup

1\leq i\leq m
xi,

and both (4.7) and (4.8) follow from Corollary 13.
As argued in [4], proper interpolation of SPD matrices is of importance in diffu-

sion tensor imaging. The analogy of linear interpolation for Riemannian manifolds
is geodesic interpolation. Specifically, if P and Q are two points on a manifold and
\gamma (t) is a geodesic connecting them such that \gamma (0) = P and \gamma (1) = Q, then we say
that \gamma geodesically interpolates P and Q. This notion of linear interpolation via
geodesics can be straightforwardly generalized to bilinear or higher dimensional lin-
ear interpolation of points on a manifold. In Figure 1, we present an illustration of
such geodesic interpolation for SPD matrices under the Euclidean metric, Cholesky
distance [11], affine-invariant metric, Log-Euclidean metric, and Log-Cholesky metric.
The Euclidean case exhibits significant swelling effect. Comparing to the Euclidean
case, the Cholesky distance [11] substantially alleviates the effect but still suffers
from noticeable swelling effect. In contrast, the Log-Cholesky metric, as well as the
affine-invariant metric and Log-Euclidean metric, is not subject to any swelling effect.
In addition, the affine-invariant, Log-Euclidean, and Log-Cholesky geodesic interpola-
tions showed in Figure 1 are visibly indifferent. In fact, numerical simulations confirm
that these three metrics often yield a similar Fr\'echet average of SPD matrices. For
example, for a set of 20 randomly generated SPD matrices of dimension m = 3,
the expected relative difference in terms of squared Frobenius norm between the Log-
Cholesky average and the affine-invariant(or Log-Euclidean) average is approximately
3.3\times 10 - 2.

The computation of geodesic interpolation for the Log-Cholesky metric is as effi-
cient as the one for the Log-Euclidean metric, since both metrics enjoy a simple closed
form for the Fr\'echet average of finite SPD matrices. Moreover, it is even numerically
stabler than the Log-Euclidean metric which is in turn stabler than the affine-invariant
metric. On synthetic examples of 3\times 3 SPD matrices with the largest eigenvalue 1010

(resp., 1015) times larger than the smallest eigenvalue, the Log-Cholesky metric is still
stable, while the Log-Euclidean one starts to deteriorate (resp., numerically collapse).
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Fig. 1. Interpolation of SPD matrices. Top: Euclidean linear interpolation. The associ-
ated determinants are 5.40, 17.92, 27.68, 34.69, 38.93, 40.41, 39.14, 35.11, 28.32, 18.77, 6.46.
Clearly, Euclidean interpolation exhibits significant swelling effect. Second row: Cholesky in-
terpolation. 5.40, 9.31, 13.12, 16.29, 18.43, 19.30, 18.80, 17.00, 14.08, 10.40, 6.46. The
swelling effect in this case is reduced compared to the Euclidean interpolation. Third row:
affine-invariant interpolation. Fourth row: Log-Euclidean interpolation. Bottom: Log-Cholesky
geometric interpolation. The associated determinants for the last three interpolations are the same:
5.40, 5.50, 5.60, 5.70, 5.80, 5.91, 6.01, 6.12, 6.23, 6.34, 6.46. There is no swelling effect observed
for affine-invariant, Log-Euclidean, and Log-Cholesky interpolation.

5. Concluding remark. We have constructed a new Lie group structure on
SPD matrices via Cholesky decomposition and a bi-invariant metric on it, termed
Log-Cholesky metric. Such structure and metric have the advantages of the Log-
Euclidean metric and affine-invariant metric. In addition, it has a simple and closed
form for Fr\'echet averages and parallel transport along geodesics. For all of these
metrics, Fr\'echet averages have the same determinant and do not have swelling effect
to which both the Euclidean metric and the classic Cholesky distance are subject.
Computationally, it is much faster than its two counterparts, the Log-Euclidean metric
and the affine-invariant metric. For computation of parallel transport, it could be
approximately 45 times faster than the Log-Euclidean metric and 4 times faster than
the affine-invariant one. The Log-Cholesky metric is also numerically stabler than
these two metrics.

In practice, which metric to choose may depend on the context of applications
while the presented Log-Cholesky metric offers a choice alternative to existing metrics
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like the Log-Euclidean metric and the affine-invariant metric. For big data sets,
the advantage of the Log-Cholesky metric in computation is attractive. However,
for applications like [5] to which the congruence invariance property is central, the
affine-invariant metric is recommended, since numerical experiments suggest that both
the Log-Euclidean and Log-Cholesky metrics do not have the congruence invariance
property that is enjoyed by the affine-invariant metric.

One shall also note that the Log-Cholesky metric can be equivalently formulated
in terms of upper triangular matrices. In the future, we plan to investigate other
properties of Log-Cholesky means, e.g., their anisotropy and relation to other geo-
metric means or Fr\'echet means. We also plan to compare the performance of various
metrics in the study of brain functional connectivities which are often characterized
by SPD matrices.

Acknowledgment. The author thanks Dr. Peng Ding and Dr. Qiang Sun for
providing a potential application of the proposed Log-Cholesky framework when the
latter approached the author for a geometric interpretation of their statistical model.
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