Black-Scholes-Merton Derivation (Part 2: Option Value Evolution)

This is a continuation of Black-Scholes-Merton Derivation (Part 1: Portfolio Value Evolution).

Let c(t,x) denote the value of a European call option at time t, where x=S(t) is the stock price at that time.

According to the Ito-Doeblin formula, the differential of c(t,S(t)) is

\displaystyle\begin{aligned}dc(t,S(t))&=c_t(t,S(t))\, dt+c_x(t,S(t))\, dS(t)+\frac{1}{2}c_{xx}(t,S(t))\, dS(t)\, dS(t)\\&=c_t(t,S(t))\, dt+c_x(t,S(t))(\alpha S(t)\, dt+\sigma S(t)\, dW(t))+\frac{1}{2}c_{xx}(t,S(t))\sigma^2 S^2(t)\, dt\\&=\left[ c_t(t,S(t))+\alpha S(t) c_x(t,S(t))+\frac{1}{2}\sigma^2 S^2(t)c_{xx}(t,S(t))\right]\, dt\\&\quad+\sigma S(t)c_x(t,S(t))\, dW(t)\end{aligned}

 

The second equality uses the definition of the stock modeled by geometric Brownian motion dS(t)=\alpha S(t)\, dt+\sigma S(t)\, dW(t), as well as the identities dW(t)\, dW(t)=dt, dt\, dW(t)=dW(t)\, dt=0, and dt\, dt=0.

Next, we compute the differential of the discounted option price e^{-rt}c(t,S(t)). Let f(t,x)=e^{-rt}x. According to the Ito-Doeblin formula, we have

\displaystyle\begin{aligned}d(e^{-rt}c(t,S(t)))&=df(t,c(t,S(t)))\\&=f_t(t,c(t,S(t)))\, dt+f_x(t,c(t,S(t)))\, dc(t,S(t))\\&\quad+\frac{1}{2}f_{xx}(t,c(t,S(t)))\, dc(t,S(t))\, dc(t,S(t))\\&=-re^{-rt}c(t,S(t))\,dt+e^{-rt}\, dc(t,S(t))\\&=e^{-rt}[-rc(t,S(t))+c_t(t,S(t))+\alpha S(t)c_x(t,S(t))\\&\quad+\frac{1}{2}\sigma^2S^2(t)c_{xx}(t,S(t))]\, dt+e^{-rt}\sigma S(t)c_x(t,S(t))\, dW(t).\end{aligned}

 

The third equality is due to f_t(t,x)=-re^{-rt}x, f_x(t,x)=e^{-rt}, and f_{xx}(t,x)=0.

Reference

Shreve, Steven E. Stochastic calculus for finance II: Continuous-time models. Vol. 11. New York: Springer, 2004.

One thought on “Black-Scholes-Merton Derivation (Part 2: Option Value Evolution)”

Leave a Reply

Your email address will not be published. Required fields are marked *