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SUMMARY

Posterior computation for high-dimensional data with many parameters can be challenging.

This article focuses on a new method for approximating posterior distributions of a low- to

moderate-dimensional parameter in the presence of a high-dimensional or otherwise computa-

tionally challenging nuisance parameter. The focus is on regression models and the key idea is 15

to separate the likelihood into two components through a rotation. One component involves only

the nuisance parameters, which can then be integrated out using a novel type of Gaussian approx-

imation. We provide theory on approximation accuracy that holds for a broad class of forms of

the nuisance component and priors. Applying our method to simulated and real data sets shows

that it can outperform state-of-the-art posterior approximation approaches. 20

Some key words: Bayesian statistics; Dimensionality reduction; Marginal inclusion probability; Nuisance parameter;
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1. INTRODUCTION

Consider the regression model

y ∼ N
(

Xβ + η, σ2In
)

, (1)

where y is an n-dimensional vector of observations, X is an n× p design matrix, β is a p- 25

dimensional parameter of interest, η is an n-dimensional nuisance parameter, and σ2 is the error

variance. The nuisance parameter can for instance capture the effect of a large set of covariates

not included in X, or of non-Gaussian errors. Our goal is Bayesian inference on the model in (1)

when p is of moderate size such that p≪ n− p with the focus on the posterior

π(β | y) =

∫

π(β, η | y) dη =
1

π(y)

∫

π(y | β, η)π(β, η) dη. (2)

The integrals in (2) and π(y) are intractable to approximate accurately for certain priors π(β, η), 30

with direct approximations such as Laplace’s method producing inaccurate results and Monte

Carlo sampling being daunting computationally. Our key idea is to transform the hard problem

with nuisance parameter η in a principled way to a p-dimensional one which can be written as

C© 2017 Biometrika Trust
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a linear model including only β. Then, a low-dimensional inference technique can be applied

to this p-dimensional model. The transformation uses a novel type of Gaussian approximation35

using a data rotation to integrate out η from (1).

Section 3 discusses special cases of the model in (1). Applications include epidemiology stud-

ies in which y is a health outcome, X consists of exposures and key clinical or demographic

factors of interest, and η is the effect of high-dimensional biomarkers. The goal is inference

on the effect of the exposures and the clinical or demographic covariates, but adjusting for the40

high-dimensional biomarkers. For example, η may result from genetic factors, such as single-

nucleotide polymorphisms (SNPs), and we want to control for these in identifying an environ-

mental main effect. It is often impossible to isolate the impact of individual genetic factors so

we consider these effects as nuisance parameters. Another use of (1) is computation of posterior

inclusion probabilities in high-dimensional Bayesian variable selection as detailed in § 3·2.45

Data with a complex component η that is not of primary interest and only a moderate number

p of parameters of interest, are more and more common. Unfortunately, the complexity of η
can make accurate approximation of π(β | y) in (2) challenging even when p = 1. One naive

approach is to ignore the nuisance parameter η by setting it to zero. The result can be problematic

as omitting η changes the interpretation of the parameter of interest β, which therefore might take50

on a different value. For example, η might capture the effect of covariates with it being important

to adjust for them to avoid misleading conclusions on β.

Many posterior approximation methods exist, including Monte Carlo (George & McCul-

loch, 1993, 1997; O’Hara & Sillanpää, 2009), variational Bayes (Carbonetto & Stephens, 2012;

Ormerod et al., 2017), integrated nested Laplace approximations (Rue et al., 2009), and expecta-55

tion propagation (Hernández-Lobato et al., 2015). However, these methods can be computation-

ally expensive, do not apply to our setting, or lack theoretical results regarding approximation

accuracy. A notable exception to the latter is the fast posterior approximation algorithm of Hug-

gins et al. (2017) which comes with bounds on the approximation error under conditions on the

prior such as log-concavity, Gaussianity, and smoothness. The class of priors that we allow on β60

and η is much larger. Our method and its analysis for instance apply to dimensionality reduction

and shrinkage priors such as spike-and-slab, horseshoe, and Laplace distributions.

The main computational bottleneck of our method is calculation of the mean and variance of

a nuisance term, for which one can choose any suitable algorithm. As a result, the computational

cost of our method is comparable to that of the fast algorithm chosen for this step.65

2. INTEGRATED ROTATED GAUSSIAN APPROXIMATION

2·1. Notation and assumptions

Denote the multivariate Gaussian distribution with mean µ and covariance Σ byN(µ, Σ), and

its density function evaluated at a by N(a | µ, Σ). Denote the distribution of a conditional on b
by Π(a | b) and its density, with respect to some dominating measure, evaluated at a by π(a | b).70

We assume that β and η are a priori independent so that Π(β, η) = Π(β)Π(η). We treat X and

σ2 as known constants unless otherwise noted. Assume that p ≤ n. We assume that X is full

rank to simplify the exposition, but our method also applies to rank deficient X.

2·2. Description of the method

We integrate out η from (1) by splitting the model into two parts, one of which does not75

involve β. A data rotation provides such a model split. Specifically, consider as rotation matrix

the n× n orthogonal matrix Q from the QR decomposition of X. Define the n× p matrix M
and the n× (n− p) matrix S by (M, S) = Q. Then, the columns of M form an orthonormal
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basis for the column space of X since X is full rank by assumption (Golub & Van Loan, 1996,

§ 5.2). Since Q is orthogonal, the columns of S form an orthonormal basis for the orthogonal 80

complement of the column space of X. Therefore, STX = 0(n−p)×p, an (n− p)× p matrix of

zeros, which can also be derived from the fact that QTX is upper triangular.

By the rotational invariance of the Gaussian distribution and QTQ = In, QTy ∼
N
(

QTXβ +QTη, σ2In
)

is distributionally equivalent to (1). This rotated model splits as

MTy ∼ N
(

MTXβ +MTη, σ2Ip
)

, (3a) 85

STy ∼ N
(

STη, σ2In−p

)

; (3b)

using STX = 0(n−p)×p. This transformation motivates a two-stage approach in which one first

computes Π(η | STy) from submodel (3b) and then uses this distribution as an updated prior for

the projected nuisance term MTη in submodel (3a). Following this approach, the posterior of β
can be expressed as Π(β | y) ∝ Π(β)

∫

N(MTy |MTXβ +MTη, σ2Ip) dΠ(M
Tη | STy). 90

In practice, Π(MTη | STy) may be intractable to compute exactly because of the complexity

of Π(η). To alleviate this challenge, we consider an approximation Π̂(MTη | STy), which then

leads to an approximation for the posterior of β:

Π̂(β | y) ∝ Π(β)

∫

N(MTy |MTXβ +MTη, σ2Ip) dΠ̂(MTη | STy). (4)

All distributions, densities, and probabilities resulting from this approximation carry a hat to 95

distinguish them from their exact counterparts.

A Gaussian approximation is analytically convenient:

Π̂(MTη | STy) = N(µ̂, Σ̂), (5)

where µ̂ and Σ̂ are estimates of the mean and covariance of Π(MTη | STy), respectively. In this

case, (4) simplifies as

Π̂(β | y) ∝ Π(β)N(MTy |MTXβ + µ̂, σ2Ip + Σ̂). (6) 100

Only β is unknown such that the computational problems with (1) resulting from the complexity

of Π(η) have been resolved in (6). Furthermore, (6) is equivalent to a Gaussian linear model

with observations MTy − µ̂, design matrix MTX, and parameter β. We have reduced a model

with a potentially challenging nuisance parameter to a low-dimensional one with the nuisance

integrated out while controlling for the effect of the nuisance parameter in a principled manner. 105

Algorithm 1 summarizes our method when the Gaussian approximation from (5) is used.

Algorithm 1. Integrated rotated Gaussian approximation.

Input: Data (y, X)

1. Compute the QR decomposition of X to obtain the rotation matrix Q = (M, S).

2. Compute the estimates µ̂ and Σ̂ for the mean and covariance of Π(MTη | STy) based on 110

submodel (3b) using an algorithm of choice.

3. Approximate the posterior Π(β | y) according to (6).

Output: The approximate posterior Π̂(β | y)

2·3. Relation to other methods

Algorithm 1 has resemblances with other approximation methods. Integrated nested Laplace 115

approximations (Rue et al., 2009) also approximate a nested part of a Bayesian model by a Gaus-

sian distribution but with important differences. A Laplace approximation is applied without a
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data rotation and is done at two, rather than one, nested levels of the model. Moreover, a Laplace

approximation matches the mode and curvature of the approximating Gaussian while (5) matches

the moments. Laplace’s method (Tierney & Kadane, 1986) requires a continuous target distri-120

bution and integrated nested Laplace approximations assume a conditionally Gaussian prior on

some parameters. Our Gaussian approximation needs no such conditions on priors but assumes

a Gaussian error distribution. For instance, § 3 considers examples of priors on η that are not

continuous or are non-Gaussian.

The approximation in (5) aims to match the first two moments of the exact Π(MTη | STy).125

Such matching is the principle behind expectation consistent inference (Opper & Winther, 2005).

Our method matches moments for the nuisance parameter but not for the parameter of interest β.

This differs from applications of the expectation consistent framework in which moment match-

ing is pervasive such as in expectation propagation (Hernández-Lobato et al., 2015). Implemen-

tations of expectation propagation are usually not able to capture dependence among dimensions130

of the posterior while our method allows for dependence in the p-dimensional β.

Effectively, our method integrates out the nuisance parameter η approximately. Integrating out

nuisance parameters from the likelihood is not new (Berger et al., 1999), including doing so

approximately (Severini, 2011). Previous approximations, however, do not apply a data rotation

and consider cases where the distribution on the nuisance parameter is regular enough so that a135

Laplace approximation can be applied. Our method does not need such regularity conditions.

The rotation Q is similar to the projection in the Frisch-Waugh-Lovell theorem (Stachurski,

2016, Theorem 11.2.1) for least-squares estimation of a parameter subset. Our method applies be-

yond least squares. Also, our estimation of the nuisance parameter through the rotation is merely

an intermediate step for inference on β. Our method reduces to the algorithm from van den Boom140

et al. (2015) when considering the example in § 3·2 with p = 1.

2·4. Estimating σ2 and hyperparameters

So far, we have treated σ2 as fixed and known. In practice, σ2 usually needs to be estimated,

as well as any unknown parameters in the prior on η. This estimation fits naturally into Step 2 of

Algorithm 1 as the methods that can be used there frequently come with such estimation proce-145

dures: See for instance §S5·3 and §S6 of the Supplementary Material. The resulting estimates

can then be plugged into Step 3. By doing so, only the (n− p)-dimensional submodel (3b) in-

forms the estimates of these parameters and not the p-dimensional submodel (3a). We expect (3b)

to contain the vast majority of information on the unknown parameters if (n− p) ≫ p, which is

often the case in scenarios of interest.150

3. EXAMPLES OF NUISANCE PARAMETERS η

3·1. Adjusting for high-dimensional covariates

Section 3 provides examples of the general setting of model (1) that demonstrate the utility

of the integrated rotated Gaussian approximation in Algorithm 1. As a first example, consider

η = Zα with Z a known n× q feature matrix and α an unknown q-dimensional parameter with155

q ≫ n. Then, the model in (1) becomes y ∼ N
(

Xβ + Zα, σ2In
)

, so that we are adjusting for

high-dimensional covariates Z in performing inference on the coefficients β on the predictors X
of interest. One way to deal with the fact that the number of covariates q exceeds the number of

observations n is by inducing sparsity in α via its prior Π(α). We consider the spike-and-slab

prior, αj ∼ λN(0, ψ) + (1− λ) δ(0) independently for j = 1, . . . , q, where λ = pr(αj 6= 0) is160

the prior inclusion probability, ψ the slab variance, and δ(0) a point mass at zero. By specifying

Π(α), we have also defined Π(η) = Π(Zα). Since each Π(αj) is a mixture of a point mass and a
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Gaussian, Π(α) and thus Π(η) are mixtures of 2q Gaussians. As a result, computation of π(β | y)
in (2) involves summing over these 2q components. This is infeasible for large q.

Algorithm 1 provides an approximation Π̂(β | y) while avoiding the exponential compu- 165

tational cost. Step 2 in Algorithm 1 requires choice of an estimation algorithm. Substituting

η = Zα into (3b) yields STy ∼ N(STZα, σ2In−p), which is a linear model with (n − p) ob-

servations and design matrix STZ . As such, methods for linear regression with spike-and-slab

priors can produce an approximation to Π(α | STy) and thus the estimates µ̂ and Σ̂ in (5). We

choose vector approximate message passing (Rangan et al., 2017), detailed in §S5 of the Sup- 170

plementary Material, to approximate Π(α | STy) because of its computational scalability and

accuracy. The computational scalability limits the size of q. For instance, § 5·3 considers a sub-

set of q = 10, 000 SNPs as using all SNPs was computationally infeasible. As a more scalable

alternative, we consider the debiased lasso (Javanmard & Montanari, 2013) in § 5·2 as it can

also approximate Π(α | STy) as detailed in §S6 of the Supplementary Material. A q in the mil- 175

lions is feasible with embarrassingly parallel split-and-merge strategies (Song & Liang, 2014).

The q-dimensional distribution Π(α | STy) is possibly highly non-Gaussian, being a mixture of

Gaussians. At the same time, the p-dimensional distribution Π(MTZα | STy) = Π(MTη | STy)
can be nearly Gaussian such that the approximation in (5) is accurate as discussed in § 4·2.

3·2. Bayesian variable selection 180

For a second application of (1), consider the linear model y ∼ N(Aθ, σ2In) where A is

a known n× r design matrix and θ an unknown r-dimensional parameter. Variable selec-

tion is the problem of determining which entries of θ are non-zero. Modeling the data in a

Bayesian fashion provides a natural framework to evaluate statistical evidence via the poste-

rior Π(θ | y). A standard variable selection prior Π(θ) is the spike-and-slab prior defined by 185

θj ∼ λN(0, ψ) + (1− λ) δ(0) independently for j = 1, . . . , p. As in § 3·1, the cost of comput-

ing the exact posterior with a spike-and-slab prior grows exponentially in r. Therefore, compu-

tation of Π(θ | y) is infeasible for r beyond moderate size. A variety of approximation methods

exist for larger r including Monte Carlo (George & McCulloch, 1993, 1997; O’Hara & Sillanpää,

2009), variational Bayes (Carbonetto & Stephens, 2012; Ormerod et al., 2017), and expectation 190

propagation (Hernández-Lobato et al., 2015).

Monte Carlo methods do not scale well with the number of predictors r. For r even moder-

ately large, the 2r possible non-zero subsets of θ is so huge that there is no hope of visiting more

than a vanishingly small proportion of models. The result is high Monte Carlo error in estimating

posterior probabilities, with almost all models assigned zero probability as they are never visited. 195

As an alternative to Monte Carlo sampling, fast approximation approaches for Bayesian variable

selection include variational Bayes (Carbonetto & Stephens, 2012; Ormerod et al., 2017) and ex-

pectation propagation (Hernández-Lobato et al., 2015). Their accuracy, however, does not come

with theory guarantees. Our method, which applies to variable selection as detailed in the next

paragraph, allows for theoretical analysis as § 4 shows. 200

In variable selection, often the main question asked is whether θj 6= 0 (j = 1, . . . , r) as

measured by the posterior inclusion probability pr(θj 6= 0 | y). Algorithm 1 can estimate

pr(θj 6= 0 | y): Let p < r elements from θ constitute β and let the other q = r − p elements

in θ constitute α. Then, Aθ = Xβ + Zα where X and Z consist of the respective columns in

A, and Π(α, β) = Π(α)Π(β) since Π(θ) =
∏r

j=1Π(θj). This set-up is the same as in § 3·1 and 205

Algorithm 1 approximates Π(β | y) as in § 3·1. Assuming θj is contained in β, an approxima-

tion of Π(θj | y) can be obtained as a marginal distribution of Π̂(β | y). Repeating Algorithm 1

with different splits of θ into β and α provides estimates of all pr(θj 6= 0 | y) (j = 1, . . . , r).
Computations for these different splits can run in parallel.
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The approximation accuracy is not very sensitive to how θ is split into α and β, and to p210

per §S9 of the Supplementary Material. We therefore use simple sequential splitting, where

the first p elements of θ constitute β in the first split, and recommend choosing p based on

computational complexity. Assume that the number of CPU cores is less than the number of

variables r. Then, computation time to obtain all p̂r(θj 6= 0 | y) is a trade-off between the length

p of β, which affects the cost of each execution of Algorithm 1, and the number r/p of executions215

of Algorithm 1. The order of r is limited by the order of q, which is again limited by the algorithm

chosen for Step 2 of Algorithm 1 as discussed in § 3·1. The complexity in terms of p and r of

computing all p̂r(θj 6= 0 | y) is O(r2 log2 r) if p = O(log r) and vector approximate message

passing is used as detailed in the next paragraph.

Step 1 of Algorithm 1 is the QR decomposition of an n× p matrix which has com-220

plexity O(np2) (Golub & Van Loan, 1996, § 5.2). Step 2 involves vector approximate

message passing on n− p observations and q parameters, which has a complexity of

O{(n − p+K) qmin(n− p, q)} where K is the number of message passing iterations as de-

tailed in §S5·2 of the Supplementary Material. Additionally for Step 2, computation of STy and

STZ , which are the observations and design matrix in (3b), and computing µ̂ and Σ̂ in (5) from225

the message passing output is O(n2q). Computing Step 3 with the spike-and-slab prior Π(β) is

O(2p p3), ignoring dependence on n. The complexity of obtaining all p̂r(θj 6= 0 | y) by apply-

ing Algorithm 1 r/p times is thus O{(r/p)(q + 2p p3)} = O{(r/p)(r − p+ 2p p3)}, ignoring

dependence on n and K . For p = O(log r), this complexity reduces to O(r2 log2 r).

3·3. Non-parametric adjustment for covariates230

As a last example, let ηi = (g ◦ f)(zi) (i = 1, . . . , n) where g : R → R is a known, differen-

tiable, non-linear function, f : Rq → R is an unknown function, g ◦ f : Rq → R is g composed

with f , and zi is a q-dimensional feature vector. Then, ηi provides a non-parametric adjust-

ment for the covariate zi in performing inferences on the effect of xi on yi. Take f ’s prior as

a Gaussian process that induces a prior Π(η). Algorithm 1 applies if a Gaussian approxima-235

tion Π̂(MTη | STy) is available: Submodel (3b) reduces to STy ∼ N{STG(F ), σ2In−p} where

F = {f(z1), . . . , f(zn)}
T and G(F ) = {g(F1), . . . , g(Fn)}

T, which is a non-linear Gaussian

model as studied in Steinberg & Bonilla (2014). Linearizing G using a first-order Taylor se-

ries yields a Gauss-Newton algorithm for a Laplace approximation of Π(F | STy) as detailed in

§S7 of the Supplementary Material. Based on that approximation, compute µ̂ and Σ̂ in (5), for240

instance by sampling F from a Laplace approximation Π̂(F | STy) and computing the sample

mean and covariance of MTG(F ) since MTη =MTG(F ).

4. ANALYSIS OF INTEGRATED ROTATED GAUSSIAN APPROXIMATION

4·1. Approximation accuracy

This section provides theoretical guarantees on the accuracy of our posterior approximation245

framework. We begin with a general upper bound in terms of the accuracy of the approximation

for the projected nuisance parameter. For this, denote the distribution of the p-dimensional a+ b
where b ∼ N(0, σ2Ip) by Π(a) ∗Nσ2 . Define the Kullback-Leibler divergence from Π(b) to

Π(a) as D{Π(a) ‖ Π(b)} =
∫

log{π(a)/π(b)}dΠ(a).

At a high level, it is clear that the accuracy of the approximation Π̂(β | y) defined in (4) de-250

pends on the accuracy of the approximation Π̂(MTη | STy). The following result quantifies the

nature of this dependence in the setting where the data are generated from the prior predictive dis-
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tribution. This result applies generally for any approximation Π̂(MTη | STy) and thus includes

the Gaussian approximation (5) used in Algorithm 1 as a special case.

THEOREM 1. Let y be distributed according to the model in (1) with β ∼ Π(β) and η ∼ 255

Π(η) distributed according to their priors. Conditional on any realization STy, the posterior

approximation Π̂(β | y) described in (4) satisfies

E
[

D
{

Π(β | y) ‖ Π̂(β | y)
}
∣

∣

∣
STy

]

≤ D
{

Π(MTη | STy) ∗Nσ2 ‖ Π̂(MTη | STy) ∗Nσ2

}

,

where the expectation on the left is with respect to the conditional distribution of y given STy.

A particularly useful property of Theorem 1 is that the upper bound does not depend in any

way on the prior Π(β). This differs from some of the related work on posterior approxima- 260

tion, such as Huggins et al. (2017), which requires additional smoothness constraints, and thus

excludes certain priors such as the spike-and-slab prior in § 3·1. Another useful property of The-

orem 1 is that it does not require any assumptions about the extent to which the exact posterior

Π(MTη | STy) is concentrated about the ground truth. As a consequence, this result is relevant

for non-asymptotic settings where there may be high uncertainty about η. 265

4·2. Accuracy of the Gaussian approximation

Next, we provide theoretical justification for a Gaussian approximation to Π(MTη | STy) by

showing that such an approximation can be accurate even when the prior on η is highly non-

Gaussian. Without loss of generality, we focus on the set-up of § 3·1 where the nuisance term

has the form η = Zα with a known n× q feature matrix Z and unknown parameter vector α. In 270

this setting, the projected nuisance parameter MTη can be expressed as MTZα where MTZ is

a p× q matrix with p≪ q. There are no constraints on the dimension n other than n ≥ p.

As motivation for a Gaussian approximation to the projected nuisance term, consider the spe-

cial case where the conditional distribution Π(α | STy) is a product measure with uniformly

bounded second moments. Under regularity assumptions on the columns of MTZ , the multivari- 275

ate central limit theorem combined with the assumption p≪ q implies that the distribution of the

projection MTZα is close to the Gaussian distribution with the same mean and covariance. By

contrast, the unprojected n-dimensional nuisance term η = Zα can be very far from Gaussian,

particularly if n is of a similar order to q.

More realistically, one may envision settings where the entries of Π(α | STy) are not inde- 280

pendent but are weakly correlated on average. In this case, the usual central limit theorem does

not hold because one can construct counterexamples in which the normalized sum of dependent

but uncorrelated variables is far from Gaussian. Nevertheless, a classic result due to Diaconis &

Freedman (1984) suggests that these counterexamples are atypical. Specifically, if one consid-

ers a weighted linear combination of the entries in α, then approximate Gaussianity holds for 285

most choices of the weights, where most is quantified with respect to the uniform measure on

the sphere. The implications of this phenomenon have been studied extensively in the context

of statistical inference (Hall & Li, 1993; Leeb, 2013), and Meckes (2012) and Reeves (2017)

provide approximation bounds for the setting of multidimensional linear projections.

In the context of our approximation framework, these results imply that a Gaussian approxima- 290

tion is accurate for most, but not necessarily all, instances of the p× q feature matrix MTZ . To

make this statement mathematically precise, we consider the expected behavior when the rows

of Z are drawn independently from the q-dimensional Gaussian distribution N(0, Λ) where Λ is

positive definite. As in the rest of the paper, we assume that X is fixed and arbitrary. Under these
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assumptions, the rows of the projected matrices MTZ and STZ are independent with the same295

distribution as in Z .

Our results depend on certain properties of the conditional distribution Π(α | STy, STZ). Let

ξ and Ψ denote the mean and covariance of Π(α | STy, STZ), respectively. Define

m1 = E

{
∣

∣

∣

∣

∣

‖Λ
1

2 (α− ξ)‖2

tr(ΛΨ)
− 1

∣

∣

∣

∣

∣

∣

∣ STy, STZ

}

, m2 =
tr{(ΛΨ)2}

tr(ΛΨ)2
.

The term m1 provides a measure of the concentration of ‖Λ1/2(α− ξ)‖2 about its mean and

satisfies 0 ≤ m1 ≤ 2. The term m2 provides a measure of the average correlation between the300

entries of Λ1/2α and satisfies 1/q ≤ m2 ≤ 1 with equality on the left when ΛΨ is proportional

to the identity matrix and equality on the right when ΛΨ has rank one.

Given estimates ξ̂ and Ψ̂ that are functions of STy and STZ , we consider the Gaussian ap-

proximation

Π̂(MTη | STy, STZ) = N{MTZξ̂, tr(ΛΨ̂)Ip}. (7)305

The covariance is chosen independently of MTZ and depends only on a scalar summary of the

estimated covariance. The following result bounds the accuracy of this approximation in terms

of the terms m1 and m2 and the accuracy of the estimated mean and covariance.

THEOREM 2. Conditional on any STy and STZ , the Gaussian approximation in (7) satisfies

EMTZ

[

D
{

Π(MTη | STy, STZ) ∗Nσ2 ‖ Π̂(MTη | STy, STZ) ∗Nσ2

}]

≤ δ1 + δ2,310

where the expectation is with respect to MTZ and

δ1 = 3p

[

m1 log

{

1 +
tr(ΛΨ)

σ2

}

+m
1

4

2 +m
1

2

2

{

1 +
3 tr(ΛΨ)

σ2

}
p

4

]

,

δ2 =
p ‖Λ

1

2 (ξ − ξ̂)‖2

2σ2
+

p

2σ2

{

tr(ΛΨ)
1

2 − tr(ΛΨ̂)
1

2

}2
.

This result is meaningful when p≪ q and the noise variance is non-negligible compared to

the covariance of the nuisance term such the ratio tr(ΛΨ)/σ2 is bounded from above. Then, δ1315

converges to zero as m1 and m2 become small. The term δ2 quantifies the effect of mismatch

between the first and second moments of Π(α | STy, STZ) and their approximations. The depen-

dence on the second moments appears only in the terms tr(ΛΨ) and tr(ΛΨ̂). Thus, this bound

can be small even if the approximation Ψ̂ is very different from the true covariance Ψ.

To illustrate the significance of our results, consider two scaling regimes. First, if n≪ q then320

the same arguments used in the proof of Theorem 2 can be used to show that the distribution

of the n-dimensional nuisance term η is also approximately Gaussian. Then, our approximation

framework is well motivated, but does not differ fundamentally from existing approaches that

apply a Laplace approximation directly on the unrotated data. The second, and more interesting,

regime occurs when n ≈ q or n≫ q. Then, the n-dimensional nuisance term is non-Gaussian in325

general, because there exists a near isometry between η and α. Our approximation framework

can provide significant gains by taking this non-Gaussianity into account when estimating the

mean and covariance. Moreover, combining Theorems 1 and 2 provides an upper bound on the

error of the approximation to the posterior of β described in Algorithm 1. In particular, if the

approximations of the mean and covariance are accurate enough, then this approximation error330

converges to zero as the terms m1 and m2 become small.
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4·3. Variable selection consistency

Finally, we provide guarantees for variable selection consistency of (6), which only considers

β in contrast to § 3·2. Let the set γ ⊂ {1, . . . , p} contain all indices j such that βj 6= 0. Define γ0

analogously for a non-random β0. Variable selection consistency as in Fernández et al. (2001) 335

and Liang et al. (2008) means that, for y ∼ N(Xβ0 + η0, σ2In), the posterior probability of the

true model γ0 converges to one, pr(γ = γ0 | y) → 1 as n→ ∞ where p does not change with n.

It is desirable for a posterior approximation to inherit this property. Monte Carlo approximations

do, but only if they are run for an infinite amount of time. Our approximation bypasses the

need for such sampling, instead requiring mean and variance estimation for (5), while inheriting 340

the consistency property if Π̂(MTη | STy) concentrates appropriately. Relatedly, Ormerod et al.

(2017) established such consistency for their variational Bayes algorithm. More recently, K. Ray

and B. Szabó (arXiv:1904.07150) showed optimal convergence rates of variable selection using

variational Bayes with different priors than we consider here.

Let the |γ|-dimensional vector βγ consist of the elements in β with indices in γ, and the n× |γ| 345

matrix Xγ consist of the columns of X with indices in γ. Then, specifying Π(γ) and Π(βγ | γ)
defines Π(β). We consider g-priors (Zellner, 1986):

βγ | γ ∼ N
{

0, σ2gn
(

XT

γXγ

)

−1
}

, gn ∈ (0, ∞). (8)

Liang et al. (2008) showed variable selection consistency for priors of this form. Our approx-

imation inherits this property under the additional assumption (9) on Π̂(MTη | STy) and gn.

This is an assumption on gn and σ2 jointly since Π̂(MTη | STy) depends on σ2. Otherwise, the 350

sensitivity on σ2 is limited since the property considers the asymptotic regime n→ ∞, when the

signal-to-noise ratio goes to infinity regardless of σ2.

THEOREM 3. Let Π(βγ) be the g-prior on βγ from (8). Assume that gn in (8), Π(γ), and

X satisfy pr(γ = γ0) > 0, limn→∞ ‖{In −Xγ(X
T

γXγ)
−1XT

γ }Xβ
0‖/n > 0 for any γ not con-

taining γ0, gn → ∞, and log(gn)/n → 0, which are standard assumptions used in Fernández 355

et al. (2001) and Liang et al. (2008) as detailed in § S4 of the Supplementary Material. Let y
be distributed according to the data-generating model in (1) with β and η fixed to β0 and η0,

respectively. Assume that Π̂(MTη | STy) concentrates appropriately in that

‖MTη −MTη0‖2

log gn
→ 0, (9)

in probability with respect to MTη ∼ Π̂(MTη | STy) and y. Let Π̂(β | y) be as in (4). Then,

p̂r(γ = γ0 | y) → 1 in probability with respect to y as n→ ∞. 360

5. SIMULATION STUDIES AND APPLICATIONS

5·1. Non-parametric adjustment for covariates

Consider the set-up from § 3·3 with g(a) = a2 and q = 1. We assign f : R → R a zero-

mean Gaussian process prior with a squared exponential covariance function such that

cov{f(zi), f(zj)} = exp{−(zi − zj)
2/10} (i, j = 1, . . . , n), and β ∼ N(0, 16Ip). Set n = 365

100, p = 3, and σ2 = 1. We draw the rows of X independently from N(0p×1,Φ) where Φ is

a Toeplitz matrix defined so that its first row equals (0.90, . . . , 0.9p). Then, the columns of X are

correlated. The features zi (i = 1, . . . , n) equal the ith element of the first column ofX. Generate

y according to (1) with f equal to a draw from its prior distribution and β = (4,−4, 4)T.
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Fig. 1. Marginal posterior density estimates from the simulation in § 5·1 with the solid line representing the Gibbs
estimate π(βj | y), the thick dotted line the estimate π̂(βj | y) from Algorithm 1, and the thin dotted line the estimate

resulting from ignoring the nuisance parameter.

We approximate the posterior Π(β | y) using a random walk Metropolis-Hastings algorithm370

on f with 10,000 burnin and 90,000 recorded iterations. We marginalize out β since Π(β | f, y)
is analytically available, allowing approximation of π(β | y) with samples from Π(f | y). Algo-

rithm 1 also provides Π̂(β | y) per § 3·3. Lastly, ignoring the non-parametric nuisance parameter

by setting ηi = (g ◦ f)(zi) = 0 yields a simpler approximation. The Metropolis-Hastings algo-

rithm took 6 minutes while our method finished in 2 seconds. The resulting posterior density375

estimates for βj (j = 1, . . . , p) are in Fig. 1. Taking the Metropolis-Hastings estimate as the

gold standard, our method yields an approximation that matches the location and spread of the

posterior better than the result from ignoring the non-parametric nuisance term η.

5·2. Bayesian variable selection

We consider the diabetes data from Efron et al. (2004) as it is a popular example of variable380

selection with collinear predictors (Park & Casella, 2008; Polson et al., 2013). The outcome y
measures disease progression one year after baseline for n = 442 patients with diabetes. The

r = 64 predictors come from 10 covariates with their squares and interactions. The outcome and

predictors are standardized to have zero mean and unit norm. Consider the variable selection

set-up from § 3·2 with prior inclusion probability λ = 1/2 and ψ = 1. Usually, one would not385

use scalable approximations for such a moderate-dimensional problem as a Gibbs sampler can

provide accurate estimates. The latter is why we include it here as these accurate estimates enable

assessment of the approximation accuracy of scalable methods.

We estimate the posterior inclusion probabilities pr(θj 6= 0 | y) (j = 1, . . . , r) using 1) a

Gibbs sampler with 10,000 burnin and 90,000 recorded iterations, Algorithm 1 as described in390

§ 3·2 using 2) vector approximate message passing and 3) the debiased lasso in Step 2 with

p = 4 as suggested by p = O(log r) and parallelization across 8 CPU cores, 4) expectation

propagation as in Hernández-Lobato et al. (2015), and 5) variational Bayes as in Carbonetto

& Stephens (2012). To implement expectation propagation and variational Bayes, we used the R

code from https://jmhl.org/publications/ dated January 2010 and the R package395

‘varbvs’ version 2.5-7, respectively. Results from the variational Bayes algorithm by Ormerod

et al. (2017) are omitted as the method from Carbonetto & Stephens (2012) outperforms it

in the scenarios that we consider. Since the error variance is unknown, we assign it the prior

1/σ2 ∼ Ga(1, 1), a gamma distribution with unit shape and rate parameter. The Gibbs sampler

incorporates this prior. Algorithm 1 estimates σ2 as described in § 2·4, and §S5·3 and §S6 of the400

Supplementary Material. Expectation propagation estimates σ2 by maximizing approximate ev-
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Table 1. Summary statistics of the absolute difference between the Gibbs sampler estimates and

the approximations of the posterior log odds of inclusion for the application in § 5·2 with compu-

tation times. IRGA and VAMP stand for integrated rotated Gaussian approximation and vector

approximate message passing, respectively.

Method Min Q1 Median Q3 Max Mean Computation

time (seconds)

IRGA with VAMP 0.003 0.036 0.076 0.133 10.7 0.599 4.1

IRGA with the debiased lasso 0.003 0.100 0.142 0.199 7.85 0.470 3.8

Expectation propagation 0.003 0.061 0.109 0.168 11.9 0.666 0.8

Variational Bayes 0.002 0.093 0.124 0.166 11.6 0.667 1.0

idence (Hernández-Lobato et al., 2015). The R package ‘varbvs’ (Carbonetto & Stephens, 2012)

uses approximate maximum likelihood for σ2 within the variational Bayes method.

As discussed in § 3·2, determining whether posterior inclusion probabilities from a Gibbs sam-

pler are accurate is non-trivial. Overlapping batch means (Flegal & Jones, 2010, § 3) estimates 405

their average Monte Carlo standard error as 0.0015 in this application.

Table 1 focuses on the errors in the posterior inclusion probability estimates. An approxi-

mation error of 0.01 is worse when the inclusion probability is 0.01 versus 0.5. We therefore

transform the probabilities to log odds. Our method with vector approximate message pass-

ing outperforms expectation propagation and variational Bayes as its error is lowest in Table 1, 410

though at a higher computational cost. Our method is slowest but still considerably faster than

the Gibbs sampler which took 11 minutes to run. Since the debiased lasso yielded the worst

approximation, we do not consider it in the remainder of this article.

5·3. Controlling for single-nucleotide polymorphisms

The Geuvadis dataset from Lappalainen et al. (2013), available at https://www.ebi.ac. 415

uk/Tools/geuvadis-das, contains gene expression data from lymphoblastoid cell lines of

n = 462 individuals from the 1000 Genomes Project along with roughly 38 million SNPs. We

focus on the gene E2F2, ensemble ID ENSG00000007968, as it plays a key role in the cell cycle

(Attwooll et al., 2004). Our focus is on assessing whether expression differs between populations,

even after adjusting for genetic variation between individuals. Specifically, we compare people 420

from British descent with the four other populations given in Table 2. If such differences occur,

they can be presumed to be due to environmental factors that differ between these populations

and that relate to E2F2 expression. We therefore consider the set-up from § 3·1 with y the E2F2

gene expressions, X demographic factors, and Z containing SNPs we would like to control for.

The demographics in X are gender and the 4 populations with British as the reference group. 425

The matrix X thus has p = 5 columns. The covariates Z consist of q = 10, 000 SNPs selected

using sure independence screening (Fan & Lv, 2008) as vector approximate message passing on

all 38 million SNPs was infeasible. We standardize y and the columns of X and Z to have zero

mean and unit variance. To complete the set-up from § 3·1, set λ = n/(10 q) and ψ = 1/n for

the spike-and-slab prior on α while Π(β) is a spike-and-slab with prior inclusion probability 1/2 430

and slab variance 1 such that, a priori, the SNPs do not capture more variation in the outcome

than the demographic factors. This may provide a reasonable default for SNP data, but in other

settings, hyperparameter values should be reconsidered. Vector approximate message passing

estimates σ2 using the prior 1/σ2 ∼ Ga(1, 1) and employs damping to achieve convergence in

this application, as described in §S5·3 and §S5·4 of the Supplementary Material, respectively. 435
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Table 2. Posterior inclusion probabilities for the demographic factors from the application in

§ 5·3. IRGA stands for integrated rotated Gaussian approximation.

Population

Method Gender Utahn of European ancestry Finnish Tuscan Yoruba

IRGA 0.83 0.96 0.96 0.92 0.00

Ignoring the SNPs 0.73 0.07 0.04 0.20 0.49

Table 2 contains the resulting posterior inclusion probabilities for the demographic factors,

also when not controlling for the SNPs. The results vary hugely by whether SNPs are controlled

for, with more evidence of a difference in the expression of gene E2F2 by population when

controlling for SNPs using Algorithm 1. Section S10 of the Supplementary Material contains

additional comparisons with other high-dimensional inference methods.440

Section S8 of the Supplementary Material contains additional simulation studies. They further

show that integrated rotated Gaussian approximation outperforms variational Bayes and either

beats or is on par with expectation propagation in terms of approximation accuracy. This im-

proved accuracy comes with increased computational cost for our method in certain scenarios.

6. DISCUSSION445

Although our focus was Bayesian inference, our method marginalizes out nuisance parameters

from the likelihood for β as an intermediate step. This approximate likelihood from (6) can be

useful in frequentist inference. It is well known that priors used in Bayesian inference correspond

to penalties in frequentist inference. One can think of the log prior for the nuisance parameter η as

a penalty on η. An L2 penalty might not be ideal due to the complex or high-dimensional nature450

of η. Instead, one might want to use sparsity-inducing penalties, such as L1 or the non-convex

smoothly clipped absolute deviation, which come with attractive theoretical properties (Pötscher

& Leeb, 2009) but can be computationally challenging. Our method obtains the marginal likeli-

hood for β with such penalties on η, resolving the main computational bottleneck for frequentist

inference on β in the model of interest in (1).455
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S1. PROOF OF THEOREM 1

LEMMA S1. Let P (a, b) and Q(a, b) be probability measures defined on the same space that

have the same a-marginal, that is, P (a) = Q(a). Then,

EP (b)[D{P (a | b) ‖ Q(a | b)}] ≤ EP (a)[D{P (b | a) ‖ Q(b | a)}].

Proof. Using the chain rule for Kullback-Leibler divergence (Cover & Thomas, 2006, Theo- 15

rem 2.5.3) two different ways leads to

D{P (a, b) ‖ Q(a, b)} = EP (b)[D{P (a | b) ‖ Q(a | b)}] +D{P (b) ‖ Q(b)}

= EP (a)[D{P (b | a) ‖ Q(b | a)}] +D{P (a) ‖ Q(a)}.

Hence, the desired result follows from the fact that D{P (b) ‖ Q(b)} is non-negative, and the

assumption P (a) = Q(a) which implies that D{P (a) ‖ Q(a)} = 0. � 20

Proof of Theorem 1. The distributions Π(β,MTy | STy) = Π(MTy | STy, β) Π(β | STy)

and Π̂(β,MTy | STy) = Π̂(MTy | STy, β) Π(β | STy) have the same β-marginal Π(β | STy).
Hence, we can apply Lemma S1 with P (a, b) = Π(β,MTy | STy) and Q(a, b) =

Π̂(β,MTy | STy):
25

E
[

D
{

Π(β | y) ‖ Π̂(β | y)
} ∣
∣
∣ STy

]

= EΠ(MTy|STy)

[

D
{

Π(β |MTy, STy) ‖ Π̂(β |MTy, STy)
}]

≤ EΠ(β|STy)

[

D
{

Π(MTy | β, STy) ‖ Π̂(MTy | β, STy)
}]

,

Let Π(a) ∗ Π(b) denote the distribution of a+ b. Then, (3a) provides

Π(MTy | β, STy) = Π(MTη | STy) ∗N(MTXβ, σ2Ip),

Π̂(MTy | β, STy) = Π̂(MTη | STy) ∗N(MTXβ, σ2Ip). 30

C© 2017 Biometrika Trust
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Combining the last two displays yields

E
[

D
{

Π(β | y) ‖ Π̂(β | y)
} ∣
∣
∣ STy

]

≤

EΠ(β|STy)

[

D
{

Π(MTη | STy) ∗N(MTXβ, σ2Ip) ‖ Π̂(M
Tη | STy) ∗N(MTXβ, σ2Ip)

}]

.

Since the Kullback-Leibler divergence is invariant to one-to-one transformations (Kullback35

& Leibler, 1951, Corollary 4.1), the Kullback-Leibler divergence is constant with respect to

MTXβ. The required result follows from setting MTXβ equal to zero and dropping the expec-

tation in the right-hand side of the last display. �

S2. COROLLARY TO THEOREM 1

Theorem 1 considered how close our approximation Π̂(β | y) is to the posterior Π(β | y).40

Alternatively, one may be interested in a scenario where the nuisance parameter η equals η0, and

one would like to do inference without interference from the nuisance term using Π(β | y, η0),
even though η0 is unknown.

Define the squared quadratic Wasserstein distance between the distributions Π(a) and Π(b) as

W 2
2 {Π(a), Π(b)} = inf E(‖a − b‖2) where ‖ · ‖ denotes the Euclidean norm and the infimum45

is over all joint distributions on (a, b) such that a ∼ Π(a) and b ∼ Π(b).

LEMMA S2. Let P and Q be distributions on Rp. For any σ2 > 0,

D
{
P ∗N(0, σ2Ip) ‖ Q ∗N(0, σ2Ip)

}
≤

1

2σ2
W 2

2 (P, Q).

Proof. Let Π(a, b) be any coupling on Rp × Rp satisfying the marginal constraints Π(a) =
P (a) and Π(b) = Q(b). By the convexity of Kullback-Leibler divergence (Cover & Thomas,

2006, Theorem 2.7.2), Jensen’s inequality provides50

D
{
P ∗N(0, σ2Ip) ‖ Q ∗N(0, σ2Ip)

}
≤ EΠ(a,b)

[
D
{
N(a, σ2Ip)] ‖ N(b, σ2Id)

}]

=
1

2σ2
EΠ(a,b)

(
‖a− b‖2

)
,

where the equality follows from inserting the Gaussian densities into the definition of the

Kullback-Leibler divergence. Recalling the definition of the quadratic Wasserstein distance and

choosing the infimum over all couplings Π(a, b) of P and Q gives the stated result. �55

COROLLARY S1. Let Π̂(β | y) be as in (4). Let y be distributed according to the data-

generating model in (1) with β ∼ Π(β) distributed according to its prior and η fixed to η0.

Then,

E
[

D
{

Π(β | y, η0) ‖ Π̂(β | y)
} ∣
∣
∣ STy

]

≤
1

2σ2
EΠ̂(MTη|STy)

(∥
∥MTη0 −MTη

∥
∥
2
∣
∣
∣ STy

)

.

In particular, under the Gaussian approximation Π̂(MTη | STy) from (5),

E
[

D
{

Π(β | y, η0) ‖ Π̂(β | y)
} ∣
∣
∣ STy

]

≤
1

2σ2

{∥
∥MTη0 − µ̂

∥
∥
2
+ tr(Σ̂)

}

.

Proof. Evaluating Theorem 1 with Lemma S2, Π(η) = δ(η0), a point mass at η0, and recalling60

the definition of the quadratic Wasserstein distance provides the first inequality. For the second

equality, (5) provides MTη0 −MTη | STy ∼ N (MTη0 − µ̂, Σ̂). Evaluating the right-hand side

of the first inequality with this distribution provides the second inequality. �
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Corollary S1 links two different quantities of interest. The left-hand side is the difference

between our approximation Π̂(β | y) and the exact posterior Π(β | y, η0). The right-hand side 65

involves the average squared deviation of the distribution Π̂(MTη | STy) from MTη0. This de-

viation can be small while the average squared deviation of Π(η | STy) from η0 is large: The

n-dimensional η can have a potentially high-dimensional distribution while the p-dimensional

term MTη is a projection onto the low-dimensional column space of M . In Corollary S1, y
is distributed according to (1) with β ∼ Π(β) while η is fixed to η0. That β and η are treated 70

differently is a result of their different treatment in Algorithm 1.

Consider asymptotic analysis where, for a sequence of instances of (1), n→ ∞ and interest

is in the properties of Π̂(β | y) as n→ ∞. If Π̂(MTη | STy) contracts around the value MTη0

as n→ ∞, Corollary S1 shows that the posterior approximation from our method converges

to the posterior Π(β | y, η0) based on the likelihood from (1) with η equal to η0. This conver- 75

gence is in terms of Kullback-Leibler divergence which bounds dissimilarity measures com-

monly used in asymptotic analyses of Bayesian posteriors. For instance, Bernstein-von Mises

theorems often use total variation distance (Bontemps, 2011) which Pinsker’s inequality bounds

by the square root of the Kullback-Leibler divergence. The finite-sample analysis of Corol-

lary S1 therefore gives rise to asymptotic properties of the approximate posterior Π̂(β | y) if 80

EΠ̂(MTη|STy)(
∥
∥MTη0 −MTη

∥
∥2 | STy) → 0. Such asymptotic results for Π̂(β | y) differ from

usual Bayesian asymptotics due to the set-up of Corollary S1: The data-generating process

involves β ∼ Π(β) rather than fixing β to a value. By contrast, η is fixed to η0 in the data-

generating process of Corollary S1 rather than distributed according to its prior.

S3. PROOF OF THEOREM 2 85

To simplify notation, define a = q1/2Λ1/2(α− ξ), ba = q1/2Λ1/2(ξ̂ − ξ), and H =
q−1/2MTZΛ−1/2 such that the entries of H are independent with distribution N(0, 1/q) and

Ha =MTZ(α− ξ). Also,

∆ = D(Π(Ha | STy, STZ) ∗Nσ2 ‖ N [Hba, {tr(ΛΨ̂) + σ2}Ip]),

∆1 = D(Π(Ha | STy, STZ) ∗Nσ2 ‖ N [0, {tr(ΛΨ) + σ2}Ip]), 90

∆2 = D(N [0, {tr(ΛΨ) + σ2}Ip] ‖ N [Hba, {tr(ΛΨ̂) + σ2}Ip]).

Here, N [Hba, {tr(ΛΨ̂) + σ2}Ip] is a shifted version of the Gaussian approximation in (7). We

will show that ∆ equals the divergence in Theorem 2. ∆1 is the Kullback-Leibler divergence

from the target distribution to the Gaussian approximation evaluated with the true and approxi-

mated mean and covariance. ∆2 depends on the mismatch in the estimates ξ̂, captured by ba, and 95

Ψ̂.

LEMMA S3. Conditional on any STy and STZ , EH(∆1) ≤ δ1 with δ1 as in Theorem 2.

Proof. SinceE(Ha | STy, STZ) = 0, cov(Ha | STy, STZ) = E(HaaTHT), where we drop

the condition on STy and STZ for notation convenience. By the law of total expectation,

E(HaaTHT) = E{E(HaaTHT | H)} = E{Hcov(a)HT}. Inserting the definition of a and re- 100

calling cov(α) = Ψ yields E{Hcov(a)HT} = E(HqΛ1/2ΨΛ1/2HT). Since E(HijHkl) equals

1/q if (i, j) = (k, l) and 0 otherwise, E(HqΛ1/2ΨΛ1/2HT) = tr(qΛ1/2ΨΛ1/2)Ip/q. The cyclic

property of the trace now provides cov(Ha | STy, STZ) = tr(qΛ1/2ΨΛ1/2)Ip/q = tr(ΛΨ)Ip.

Thus, the mean and covariance of both distributions in ∆1 are matched. Therefore, Theorem 2
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from Reeves (2017) evaluated with ǫ = 1 and C = 3 yields105

EH(∆1) ≤ 3p log

{

1 +

1
qE(‖a‖2)

σ2

}
1
qE{|‖a‖2 − E(‖a‖2)|}

1
qE(‖a‖2)

+ 3p
3
4

{
1
qE(|aTa′|)
1
qE(‖a‖2)

} 1
2

+ 3p
1
4

{

1 +

3
qE(‖a‖2)

σ2

} p

4 1
qE(|aTa′|2)

1
2

1
qE(‖a‖2)

, (S1)

where a′ is an independent copy of a. The remainder of this proof is simplifying this bound.

Since E(a) = 0 and cov(a) = qΛ1/2ΨΛ1/2,110

q−2E(|aTa′|2) = q−2E(aTa′a′Ta) = q−2 tr{E(aaTa′a′T)}

= q−2 tr{cov(a)2} = tr(Λ
1
2ΨΛΨΛ

1
2 ) = tr{(ΛΨ)2},

and

1

q
E(‖a‖2) =

1

q
tr{cov(a)} =

1

q
tr(qΛ

1
2ΨΛ

1
2 ) = tr(ΛΨ).

Therefore,

1
qE{|‖a‖2 − E(‖a‖2)|}

1
qE(‖a‖2)

= E

{∣
∣
∣
∣

‖a‖2

E(‖a‖2)
− 1

∣
∣
∣
∣

}

= E

{∣
∣
∣
∣
∣

‖q
1
2Λ

1
2 (α− ξ)‖2

q tr(ΛΨ)
− 1

∣
∣
∣
∣
∣

}

= m1,

and, by Jensen’s inequality,

{
1
qE(|aTa′|)
1
qE(‖a‖2)

}2

≤







1
qE(|aTa′|2)

1
2

1
qE(‖a‖2)







2

=
q−2E(|aTa′|2)

tr(ΛΨ)2
= m2.

Inserting the last three displays and p1/4 ≤ p3/4 ≤ p into (S1) provides the required result. �

LEMMA S4. Conditional on any STy and STZ , EH(∆2) ≤ δ2 with δ2 as in Theorem 2.115

Proof. Combining (7), Lemma S2, and the evaluation of the quadratic Wasserstein distance

between two Gaussians from Dowson & Landau (1982) yields

∆2 ≤
1

2σ2

[

‖Hba‖
2 + tr

{

tr(ΛΨ)Ip + tr(ΛΨ̂)Ip − 2 tr(ΛΨ̂)
1
2 tr(ΛΨ)

1
2 Ip

}]

=
1

2σ2

[

‖Hba‖
2 + p{(ΛΨ)

1
2 − (ΛΨ̂)

1
2 }2
]

.

(S2)

Recalling ba = q1/2Λ1/2(ξ̂ − ξ),

EH

(
‖Hba‖

2
)
= EH

{

‖q
1
2HΛ

1
2 (ξ − ξ̂)‖2

}

= q {Λ
1
2 (ξ − ξ̂)}TEH(HTH)Λ

1
2 (ξ − ξ̂) = p ‖Λ

1
2 (ξ − ξ̂)‖2,

where the last equality follows from E(HTH) = pIq/q. Taking the expectation of (S2) with

respect to H and inserting the last display yields the required result. �120

Proof of Theorem 2. Let π0 denote the density function of Π(Ha | STy, STZ) ∗Nσ2 and let

E0(·) denote the expectation with respect to this distribution. Let υ ∼ π0. By the definition of
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the Kullback-Leibler divergence,

∆ = E0

{

log

(

π0(υ)

N [υ | Hba, {tr(ΛΨ̂) + σ2}Ip]

)}

= E0

{

log

(
π0(υ)

N [υ | 0, {tr(ΛΨ) + σ2}Ip]

)}

︸ ︷︷ ︸

∆1

+E0

{

log

(

N [υ | 0, {tr(ΛΨ) + σ2}Ip]

N [υ | Hba, {tr(ΛΨ̂) + σ2}Ip]

)}

.

Taking the expectation with respect to H yields

EH(∆) = EH(∆1) + EH

[

E0

{

log

(

N [υ | 0, {tr(ΛΨ) + σ2}Ip]

N [υ | Hba, {tr(ΛΨ̂) + σ2}Ip]

)}]

. (S3)

Denote the expectation with respect to υ ∼ N [0, {tr(ΛΨ) + σ2}Ip] by E2(·). The mean and co- 125

variance of EH{Π(Ha | STy, STZ) ∗Nσ2} and N [0, {tr(ΛΨ) + σ2}Ip] are the same as con-

firmed in the proof of Lemma S3, and the expectation of the logarithm of the Gaussian density

only depends on the mean and covariance of υ. Therefore,

EH

[
E0

{
log
(
N [υ | 0, {tr(ΛΨ) + σ2}Ip]

)}]
= E2

{
log
(
N [υ | 0, {tr(ΛΨ) + σ2}Ip]

)}
. (S4)

Also, expanding the square inside the Gaussian density and noting E0(υ) = 0 yields
130

EH

[

E0

{

log
(

N [υ | Hba, {tr(ΛΨ̂) + σ2}Ip]
)}]

= EH

[

E0

{

log
(

N [υ | 0, {tr(ΛΨ̂) + σ2}Ip]
)

+
‖Hba‖

2

2{tr(ΛΨ̂) + σ2}

}]

.

Again using that the logarithm of a Gaussian density only depends on the mean and covariance

of ν provides
135

EH

[

E0

{

log
(

N [υ | Hba, {tr(ΛΨ̂) + σ2}Ip]
)}]

= EH

[

E2

{

log
(

N [υ | 0, {tr(ΛΨ̂) + σ2}Ip]
)

+
‖Hba‖

2

2{tr(ΛΨ̂) + σ2}

}]

= EH

[

E2

{

log
(

N [υ | Hba, {tr(ΛΨ̂) + σ2}Ip]
)}]

,

where the last equality follows from completing the square and E2(υ) = 0. Inserting the last

display and (S4) into (S3), and recalling the definition of the Kullback-Leibler divergence shows

EH(∆) = EH(∆1) + EH(∆2).

Both distributions in the Kullback-Leibler divergence ∆ are equal to their respective distri- 140

butions in the divergence in Theorem 2 shifted by Hq1/2Λ1/2ξ =MTZξ. Since the Kullback-

Leibler divergence is invariant to one-to-one transformations (Kullback & Leibler, 1951, Corol-

lary 4.1), ∆ equals the divergence in Theorem 2. Also, H is a deterministic function of MTZ
such that taking the expectation with respect to one or the other yields the same result. Therefore,

EH(∆) equals the left-hand side of Theorem 2. The required result is thus EH(∆) ≤ δ1 + δ2 145

which inserting Lemmas S3 and S4 into the last display provides. �
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S4. PROOF OF THEOREM 3

Let Pγ′ = Xγ(X
T
γXγ)

−1XT
γ denote the orthogonal projection onto the column space of Xγ .

The assumptions in Theorem 3 in addition to (9) are

pr(γ = γ0) > 0, (S5a)150

lim
n→∞

‖(In − Pγ)Xβ
0‖2

n
> 0 for any γ not containing γ0, (S5b)

gn → ∞, (S5c)

log gn
n

→ 0. (S5d)

Assumption (S5a) is a basic prerequisite as otherwise pr(γ = γ0 | y) = 0. Assumption (S5b) is

analogous to Equation A.4 from Fernández et al. (2001). Previous literature (Fernández et al.,155

2001; Liang et al., 2008) required gn to grow appropriately with n, estimates gn via empirical

Bayes, or places an appropriate prior on gn to obtain consistency. We focus on the first case by

assuming (S5c) and (S5d). Condition (S5b) ensures that any model that does not contain the true

one has posterior probability converging to zero. The fact that supersets of the true model are

also discarded follows from the g-prior, which favors smaller subsets.160

LEMMA S5. Pγ0 − Pγ =MMT(Pγ0 − Pγ).

Proof. Recall from § 2·2 that STX = 0(n−p)×p and Q is orthogonal so that QQT = In. There-

fore,

MMTX =MMTX + S (STX)
︸ ︷︷ ︸

0(n−p)×p

= (MMT + SST)X = (QQT)X = InX = X,

where the third equality follows fromQ = (M, S). Considering MMTX = X columnwise and

recalling Pγ = Xγ(X
T
γXγ)

−1XT
γ yields MMTPγ = Pγ , for any γ including γ0. �165

Proof of Theorem 3. Conditional on γ and η, the set-up is a normal-normal model as both the

prior Π(βγ | γ) from (8) and the likelihood from (1) are Gaussian. The corresponding marginal

likelihood follows as

π(y | γ, η) =

∫

π(y | βγ , γ, η) π(βγ | γ) dβγ170

=
(
2πσ2

)− p

2 (gn + 1)−
|γ|
2 exp

{

−
1

2σ2

(

‖z‖2 −
gn

gn + 1
zTPγz

)}

,

where z = y − η and |γ| denotes the number of elements in γ. The logarithm of the Bayes factor

of the true model γ0 over γ conditional on η is thus

log BFγ0:γ = log

{

π
(
y | γ0, η

)

π(y | γ, η)

}

=
|γ| − |γ0|

2
log(gn + 1) +

gn
2σ2(gn + 1)

hγ(z), (S6)

where hγ(z) = zT(Pγ0 − Pγ)z. By assumption (S5a), the required result follows if log BFγ0:γ →

∞ in probability, except for γ = γ0 when log BFγ0:γ0 = 0.175

Since z = y − η, z ∼ N(ν, σ2In) where ν = Xβ0 + η0 − η. Then, by Theorems 5.2a and

5.2c from Rencher & Schaalje (2008) and the fact that the trace of a projection matrix equals the
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dimensionality of its target space,

E{hγ(z) | η} = σ2 tr(Pγ0 − Pγ) + νT(Pγ0 − Pγ)ν

= σ2(|γ0| − |γ|) + νT(Pγ0 − Pγ)ν,
(S7a)

var{hγ(z) | η} = 2σ4 tr
{
(Pγ0 − Pγ)

2
}
+ 4σ2νT(Pγ0 − Pγ)

2ν

≤ 2σ4
{
tr(Pγ0) + tr(Pγ)

}
+ 4σ2‖(Pγ0 − Pγ)ν‖

2

= 2σ4(|γ0|+ |γ|) + 4σ2‖(Pγ0 − Pγ)ν‖
2.

(S7b) 180

We analyze the asymptotic behavior of hγ(z) by bounding this expectation and variance.

The first term of each right-hand side in (S7) is independent of n. Let us bound the second

terms. Inserting ν = Xβ0 + ζ where ζ = η0 − η and expanding the square yields

νT(Pγ0 − Pγ)ν = (Xβ0)T(Pγ0 − Pγ)Xβ
0 + 2ζT(Pγ0 − Pγ)Xβ

0 + ζT(Pγ0 − Pγ)ζ.

Inserting Pγ0Xβ0 = Xβ0 and Lemma S5 provides

νT(Pγ0 − Pγ)ν = (Xβ0)T(In − Pγ)Xβ
0 + 2ζTMMT(Pγ0 − Pγ)Xβ

0 + ζT(Pγ0 − Pγ)ζ

= ‖(In − Pγ)Xβ
0‖2 + 2ζTMMT(In − Pγ)Xβ

0 + ζTMMT(Pγ0 − Pγ)ζ.

Applying the Cauchy-Schwarz inequality and |ζTMMT(Pγ0 − Pγ)ζ| ≤ ζTMMTζ = ‖MTζ‖2, 185

νT(Pγ0 − Pγ)ν ≥ ‖(In − Pγ)Xβ
0‖2 − 2‖MTζ‖ ‖MT(In − Pγ)Xβ

0‖ − ‖MTζ‖2,

νT(Pγ0 − Pγ)ν ≤ ‖(In − Pγ)Xβ
0‖2 + 2‖MTζ‖ ‖MT(In − Pγ)Xβ

0‖+ ‖MTζ‖2.

Since the columns of M form an orthonormal basis for the column space of X,

‖MT(In − Pγ)Xβ
0‖ = ‖(In − Pγ)Xβ

0‖ such that

νT(Pγ0 − Pγ)ν ≥ ‖(In − Pγ)Xβ
0‖2 − 2‖MTζ‖ ‖(In − Pγ)Xβ

0‖ − ‖MTζ‖2

=
{
‖(In − Pγ)Xβ

0‖ − 2‖MTζ‖
}
‖(In − Pγ)Xβ

0‖ − ‖MTζ‖2,
(S8a) 190

νT(Pγ0 − Pγ)ν ≤ ‖(In − Pγ)Xβ
0‖2 + 2‖MTζ‖ ‖(In − Pγ)Xβ

0‖+ ‖MTζ‖2

=
{
‖(In − Pγ)Xβ

0‖+ 2‖MTζ‖
}
‖(In − Pγ)Xβ

0‖+ ‖MTζ‖2.
(S8b)

For the second term of the right-hand side in (S7b), consider ν = Xβ0 + ζ and

‖(Pγ0 − Pγ)ν‖ = ‖(In − Pγ)Xβ
0 + (Pγ0 − Pγ)ζ‖.

By the triangle inequality,

‖(Pγ0 − Pγ)ν‖ ≤ ‖(Pγ0 − Pγ)Xβ
0‖+ ‖(Pγ0 − Pγ)ζ‖

= ‖(In − Pγ)Xβ
0‖+ ‖(Pγ0 − Pγ)MMTζ‖,

where the equality follows from Pγ0Xβ0 = Xβ0 and Lemma S5. Also, ‖(Pγ0 − Pγ)MMTζ‖ ≤
‖MMTζ‖ = ‖MTζ‖ since MTM = Ip. Therefore, 195

‖(Pγ0 − Pγ)ν‖ ≤ ‖(In − Pγ)Xβ
0‖+ ‖MTζ‖.

Inserting into (S7b) provides

var{hγ(z) | η}
1
2 ≤

{
2σ4(|γ0|+ |γ|) + 4σ2‖(Pγ0 − Pγ)ν‖

2
} 1

2

≤ 2
1
2 σ2(|γ0|+ |γ|)

1
2 + 2σ‖(Pγ0 − Pγ)ν‖

≤ 2
1
2 σ2(|γ0|+ |γ|)

1
2 + 2σ

{
‖(In − Pγ)Xβ

0‖+ ‖MTζ‖
}
.

(S9)
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Since ζ = η0 − η, assumptions (9) and (S5d) imply

‖MTζ‖2

log gn
→ 0,

‖MTζ‖2

n
→ 0; (S10)

in probability. Let us consider γ 6= γ0 that contain γ0, that is γ0 ( γ, and γ that do not contain

γ0, that is γ0 6⊂ γ, separately.

First, consider the case where γ does not contain γ0. Assumption (S5b), (S7a),200

(S8a), and (S10) imply E{hγ(z) | η}/‖(In − Pγ)Xβ
0‖ → ∞. On the other hand,

limn→∞ var{hγ(z) | η}
1/2/‖(In − Pγ)Xβ

0‖ ≤ 2σ by (S5b), (S9), and (S10). Therefore,

limn→∞ hγ(z | η)/n > 0 with probability tending to one by Chebyshev’s inequality and (S5b).

Under assumption (S5d), it then follows from (S6) that log BFγ0:γ → ∞ in probability.

Next, consider the case where γ contains γ0. In this setting, PγXβ
0 = Xβ0 and thus205

(In − Pγ)Xβ
0 = 0n×1. Therefore, (S7a) with (S8b), and (S9) reduce to

E{hγ(z) | η} ≤ σ2(|γ0| − |γ|) + ‖MTζ‖2,

var{hγ(z) | η}
1
2 ≤ 2

1
2 σ2(|γ0|+ |γ|)

1
2 + 2σ ‖MTζ‖.

Chebyshev’s inequality and (S10) provide thus limn→∞ hγ(z | η)/ log gn = 0 with probability

tending to one. We conclude from (S6) that BFγ0:γ → ∞ in probability because of assumption210

(S5c) and |γ| > |γ0|.
We have shown BFγ0:γ → ∞ whenever γ 6= γ0. The required result follows from this result

as noted earlier in this proof. �

S5. VECTOR APPROXIMATE MESSAGE PASSING

S5·1. Derivation215

To give a motivation for the steps of vector approximate message passing in Algorithm S1 on

page 12, we derive the algorithm as an approximation to sum-product message passing (Bishop,

2006, § 8.4.4) similar to what is done in Rangan et al. (2016, § III-B). Consider the linear model

y ∼ N(Xβ, σ2In) where y is an n-dimensional vector of observations, X an n× p design ma-

trix, β a p-dimensional vector of parameters, and σ2 the error variance. We assume that the220

entries of β are a priori independent such that π(β) =
∏p

j=1 π(βj). The goal is to approximate

the posterior

π(β | y) ∝ π(β)π(y | β) = π(β)N(y | Xβ, σ2In)

= π(β) δ(β − β̃)N(y | Xβ̃, σ2In),
(S11)

where δ is the Dirac delta function and β̃ is thus a copy of β. This copying of β gives rise to an

extra variable node in the corresponding factor graph in Fig. S1.

Let µπ→β and µδ→β denote the messages to the variable node β, µδ→β̃ and µN→β̃ the mes-225

sages to the variable node β̃, and µβ→δ and µβ̃→δ the messages to the factor node δ(β − β̃).
By the general expression for a message from a factor to a variable node (Bishop, 2006, Equa-

tion 8.69),

µδ→β̃(β̃) =

∫

δ(β − β̃)µβ→δ(β)dβ = µβ→δ(β̃),

µδ→β(β) =

∫

δ(β − β̃)µβ̃→δ(β̃)dβ̃ = µβ̃→δ(β).

(S12)
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π(β)

β

δ(β − β̃)

β̃

N(y | Xβ̃, σ2In)

Fig. S1. The factor graph representation of (S11). The
squares and circles are factor and variable nodes, respec-
tively. This figure is an edited version of Fig. 1 from Ran-

gan et al. (2016).

The beliefs at the variable nodes are the products of the incoming messages,

b(β) ∝ µπ→β(β)µδ→β(β) = π(β)µδ→β(β),

b(β̃) ∝ µδ→β̃(β̃)µN→β̃(β̃) = µβ→δ(β̃)N(y | Xβ̃, σ2In);

where the last equality uses (S12). Combining these beliefs with the general expression for a 230

message from a variable to a factor node (Bishop, 2006, Equation 8.66) and Fig. S1 yields

µβ→δ(β) = µπ→β(β) ∝
b(β)

µδ→β(β)
,

µβ̃→δ(β̃) = µN→β̃(β̃) ∝
b(β̃)

µδ→β̃(β̃)
=

b(β̃)

µβ→δ(β̃)
;

where the last equality follows from (S12).

The last two displays provide a message-passing algorithm. Initialize µδ→β(β). Then, iterate

the updates

b(β) ∝ π(β)µδ→β(β), (S13a) 235

µβ→δ(β) ∝
b(β)

µδ→β(β)
, (S13b)

b(β̃) ∝ µβ→δ(β̃)N(y | Xβ̃, σ2In), (S13c)

µδ→β(β̃) = µβ̃→δ(β̃) ∝
b(β̃)

µβ→δ(β̃)
, (S13d)

where the last equality is from (S12). Since the graph in Fig. S1 is a tree, the beliefs b(p) converge

to the exact posterior π(β | y) after one iteration. This exact algorithm can however be expensive 240

to compute for certain π(β) if p is large. Vector approximate message passing approximates

(S13) to reduce computational cost:

Initialize µδ→β(β) = N(β | r0, t20Ip). At the kth iteration, approximate b(β) by

N(β | β̂k, s
2
kIp) where β̂k = Eb(β)(β) and s2k = Tr{covb(β)(β)}/p. Applying (S13a) provides

Step 3a of Algorithm S1. 245

Since µδ→β(β) ≈ N(β | rk, t
2
kIp) and b(β) ≈ N(β | β̂k, s

2
kIp), the resulting approximation

to µβ→δ(β) is Gaussian too by (S13b). Denote this Gaussian approximation by N(β̃ | r̃k, t̃
2
kIp).

Step 3b states the update equations for r̃k and t̃2k derived from (S13b).

With µβ→δ(β̃) ≈ N(β̃ | r̃k, t̃
2
kIp), b(β̃) from (S13c) is Gaussian too. We further approxi-

mate b(β̃) by requiring its covariance to be proportional to the identity matrix. Let b(β̃) ≈ 250
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N(β̃ | ˆ̃βk, s̃
2
kIp). The updates follow from (S13c) as

ˆ̃
βk =

(
t̃2kX

TX + σ2Ip
)−1(

t̃2kX
Ty + σ2r̃k

)
, (S14a)

s̃2k =
σ2t̃2k
p

Tr
{(
t̃2kX

TX + σ2Ip
)−1
}

. (S14b)

These involve an inversion of a p× p matrix which is expensive to compute if p is large. We can

however rewrite these expressions to make their computation faster.255

Let X = UDV T denote a singular-value decomposition with an n×min(n, p) matrix U , a

min(n, p)×min(n, p) diagonal matrix D, and V an p×min(n, p) matrix such that UTU =
V TV = Imin(n,p). Substituting X = UDV T yields

(
t̃2kX

TX + σ2Ip
)−1

=
(
t̃2kV D

2V T + σ2Ip
)−1

=
1

σ2

(
t̃2k
σ2
V D2V T + Ip

)−1

=
1

σ2

{

Ip − V

(
σ2

t̃2k
D−2 + V TV

)−1

V T

}

=
1

σ2

[

Ip − V

{
σ2

t̃2k
D−2 + Imin(n,p)

}−1

V T

]

,

(S15)

where D2 = DD, D−2 = D−1D−1 and the third equality follows from the Woodbury matrix

identity. Substituting XT = V DUT and (S15) provide260

(
t̃2kX

TX + σ2Ip
)−1

t̃2kX
Ty =

t̃2k
σ2

[

Ip − V

{
σ2

t̃2k
D−2 + Imin(n,p)

}−1

V T

]

V DUTy

=
t̃2k
σ2

[

V − V

{
σ2

t̃2k
D−2 + Imin(n,p)

}−1

V TV

]

DUTy

=
t̃2k
σ2
V

[

Imin(n,p) −

{
σ2

t̃2k
D−2 + Imin(n,p)

}−1
]

DUTy,

where the last equality uses V TV = Imin(n,p). Since the expression inside the square brackets

consists only of diagonal matrices, we can write it as a single fraction to obtain

(
t̃2kX

TX + σ2Ip
)−1

t̃2kX
Ty =

t̃2k
σ2
V

[

σ2

t̃2k
D−2

{
σ2

t̃2k
D−2 + Imin(n,p)

}−1
]

DUTy

=
t̃2k
σ2
V

{

Imin(n,p) +
t̃2k
σ2
D2

}−1

DUTy

= V

{
σ2

t̃2k
Imin(n,p) +D2

}−1

DUTy,

where the second equality follows from multiplying both the numerator and the denominator of

the diagonal-matrices faction by (t̃2k/σ
2)D2. Combining the last display with (S14a) and (S15)
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provides 265

ˆ̃βk = V

{
σ2

t̃2k
Imin(n,p) +D2

}−1

DUTy +

[

Ip − V

{
σ2

t̃2k
D−2 + Imin(n,p)

}−1

V T

]

r̃k

= r̃k + V

{
σ2

t̃2k
Imin(n,p) +D2

}−1

DUTy − V

{
σ2

t̃2k
D−2 + Imin(n,p)

}−1

V Tr̃k

= r̃k + V

{
σ2

t̃2k
Imin(n,p) +D2

}−1

DUTy − V

{
σ2

t̃2k
Imin(n,p) +D2

}−1

D2V Tr̃k

= r̃k + V

{
σ2

t̃2k
Imin(n,p) +D2

}−1
(
DUTy −D2V Tr̃k

)

= r̃k + V

(
σ2

t̃2k
D−1 +D

)−1

(UTy −DV Tr̃k),

(S16)

where we used that D is a diagonal matrix. This update for
ˆ̃βk only involves matrix multiplica-

tions and inversions of diagonal matrices.

For s̃2k, substitute (S15) into (S14b) such that

s̃2k =
t̃2k
p
Tr

[

Ip − V

{
σ2

t̃2k
D−2 + Imin(n,p)

}−1

V T

]

= t̃2k

(

1−
1

p
Tr

[{
σ2

t̃2k
D−2 + Imin(n,p)

}−1

V TV

])

,

where the last equality uses that the trace is invariant under cyclic permutations. Since V TV =
Imin(n,p), the last expression reduces to 270

s̃2k = t̃2k

(

1−
1

p
Tr

[{
σ2

t̃2k
D−2 + Imin(n,p)

}−1
])

= t̃2k

[

1−
1

p
Tr

{

D

(
σ2

t̃2k
D−1 +D

)−1
}]

,

where the last equality uses that the argument of the trace is diagonal. This display with (S16)

constitutes Step 3c.
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Recall µβ→δ(β̃) ≈ N(β̃ | r̃k, t̃
2
kIp) and b(β̃) ≈ N(β̃ | ˆ̃βk, s̃

2
kIp). We would like to update

µδ→β(β) ≈ N(β | rk+1, t
2
k+1Ip) where we have incremented the iteration counter. Step 3d fol-

lows now from (S13d) in the same way as Step 3b followed from (S13b).275

Algorithm S1. Vector approximate message passing.

Input: Data (y, X)

1. Compute the singular-value decomposition X = UDV T.

2. Initialize r0 and t20.

3. For k = 0, . . . ,K do:

a. Set β̂k,j = E(βj | rk,j, t
2
k) and s2k =

∑p
j=1 var(βj | rk,j, t

2
k)/p where the density of βj is

proportional to π(βj)N(βj | rk,j, t
2
k) for j = 1, . . . , p.

b. Set 1/t̃2k = 1/s2k − 1/t2k and r̃k = (t2kβ̂k − s2krk)/(t
2
k − s2k).

c. Set
ˆ̃βk = r̃k + V (σ2D−1/t̃2k +D)−1(UTy −DV Tr̃k) and

s̃2k = t̃2k [1− Tr{D (σ2D−1/t̃2k +D)−1}/p].

d. Set 1/t2k+1 = 1/s̃2k − 1/t̃2k and rk+1 = (t̃2k
ˆ̃
βk − s̃2kr̃k)/(t̃

2
k − s̃2k).

Output: Approximate posterior N(β̂K , s
2
KIp)

S5·2. Computational complexity

The computational complexity of the singular-value decomposition is O{n p min(n, p)}
(Rangan et al., 2016, § I-E). The steps inside each iteration are O(p) except for Step 3c which is

O{p min(n, p)} if UTy is precomputed. The computational complexity of Algorithm S1 is thus280

O{(n +K) p min(n, p)}.

In practice, we do not always run Algorithm S1 for all K iterations. We stop it once the

innovation ‖β̂k − β̂k−1‖
2 becomes small enough, indicating convergence.

S5·3. Estimating σ2

So far, we have treated σ2 as fixed and known. As § 2·4 notes, applications like those in § 5·2285

and § 5·3 often require estimation of σ2 and methods available for Step 2 of Algorithm 1 often

provide such estimation. For instance, Vila & Schniter (2011) detail how σ2 can be estimated

when using approximate message passing. We add a step to Algorithm S1 to estimate σ2 when

required: Consider the prior 1/σ2 ∼ Ga(a0, b0) for some shape parameter a0 and rate parameter

b0. Then, the full conditional posterior for 1/σ2 of Algorithm S1 at iteration k is290

1

σ2
| β̂k ∼ Ga

(

a0 +
n

2
, b0 +

‖y −Xβ̂k‖
2

2

)

.

At each iteration, we update σ2 such that 1/σ2 matches the mean of this full conditional:

σ2k =
b0 + ‖y −Xβ̂k‖

2/2

a0 + n/2
(k = 1, . . . ,K),

between Steps 3a and 3b of Algorithm S1.

S5·4. Dampened updates

If vector approximate message passing fails to converge, which can happen for certain matrices

X which have a challenging collinearity structure, damping of updates can induce convergence,295
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like it does in approximate message passing (Rangan et al., 2014). In this article, we only dampen

the updates for the SNP application in § 5·3 to ensure convergence.

Let ρ ∈ (0, 1] denote the damping constant with ρ = 1 representing no damping. Then, the

dampened version of Algorithm S1 follows by replacing Steps 3a and 3c by

β̂k,j = (1− ρ) β̂k−1,j + ρE(βj | rk,j, t
2
k),

s2k = (1− ρ) s2k−1 + ρ

p
∑

j=1

var(βj | rk,j, t
2
k)/p;

and 300

ˆ̃βk = (1− ρ) ˆ̃βk−1 + ρ {r̃k + V (σ2D−1/t̃2k +D)−1(UTy −DV Tr̃k)},

s̃2k = (1− ρ) s̃2k−1 + ρ t̃2k [1− Tr{D (σ2D−1/t̃2k +D)−1}/p];

respectively, for k > 0.

S6. DEBIASED LASSO

Consider the linear model y ∼ N(Xβ, σ2In) as in §S5 with the spike-and-slab prior βj ∼
λN(0, ψ) + (1− λ) δ(0) independently for j = 1, . . . , p. Denote the lasso estimator of β by

β̂lasso(y): Here, we use the smallest lasso regularization parameter that results in at most ⌊λp⌋ 305

nonzero coefficients where λp is the number of expected nonzero elements in β under its spike-

and-slab prior. The lasso algorithm from Efron et al. (2004) allows for efficient computation of

β̂lasso(y) under this constraint on the regularization parameter.

As the number of predictors is less than the sample size in § 5·2, we assume p ≤ n. Then, we

can set the matrix M in Javanmard & Montanari (2013) equal to Σ̂−1 where Σ̂ = XTX/n. The 310

debiased lasso estimator follows as (Javanmard & Montanari, 2013, Equation 5)

β̂unbiased(y) = β̂lasso(y) +
1

n
MXT

{

y − β̂lasso(y)
}

.

Theorem 2.1 from Javanmard & Montanari (2013) implies

β | y ∼ N

{

β̂unbiased(y),
σ2

n
MΣ̂MT

}

,

as posterior approximation based on the debiased lasso.

The error variance σ2 is unknown in the application from § 5·2. We therefore estimate it by

b0 + ‖y −Xβ̂unbiased(y)‖2/2

a0 + n/2
,

analogously to §S5·3. 315

S7. LAPLACE APPROXIMATION FOR § 3·3

We follow Steinberg & Bonilla (2014, § 2.3). Recall F = {f(z1), . . . , f(zn)}
T. Since f has

a Gaussian process prior, F ∼ N(µ, Σ) for some n-dimensional mean µ and an n× n covari-

ance matrix Σ. The first-order Taylor series of G around an n-dimensional vector m is G(F ) ≈
G(m) + Jm(F −m) where Jm is the Jacobian matrix of G(F ) evaluated at m. The correspond- 320

ing approximate likelihood from the non-linear Gaussian model STy ∼ N{STG(F ), σ2In−p}
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follows as π̂m(STy | F ) = N{STy | STG(m) + STJm(F −m), σ2In−p}, which yields the ap-

proximate posterior

π̂m(F | STy) = N

(

Σ∗
m

[
1

σ2
JT
mSS

T{y −G(m) + Jmm}+Σ−1µ

]

, Σ∗
m

)

,

where Σ∗
m = (JT

mSS
TJm/σ

2 +Σ−1)−1. The posterior mean suggests the iterative update

mt+1 = (1− ρt)mt + ρtΣ
∗
mt

[
1

σ2
JT
mt
SST{y −G(mt) + Jmt

mt}+Σ−1µ

]

,

where t is the iteration number and ρt the learning rate. This update produces a dampened325

Gauss-Newton algorithm. Since the mean of a Gaussian equals its mode, m∞ targets the mode

of the exact posterior as t→ ∞. Therefore, π̂m∞(F | STy) provides a Laplace approximation

Π̂(F | STy).

S8. ADDITIONAL SIMULATION STUDIES

S8·1. Variable selection on a correlated subset330

Consider the set-up from § 3·1 with the same spike-and-slab prior on the elements of β as on

the elements of α, n = 100, p = 2, ψ = 1, λ = p/(p+ q), and σ2 = 1/2. Generate the elements

in X and Z independently from N(0, 1), then reassign the second column of X, denoted by
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Fig. S2. Median (dot) and interquartile ranges (x) of the absolute differences between posterior inclusion probability
(PIP) and their approximation from the simulation in § S8·1. Integrated rotated Gaussian approximation is in black,

expectation propagation in blue, and variational Bayes in red.
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Fig. S3. Median (dot) and interquartile ranges (x) of the computation times for the results in Fig. S2. Integrated rotated
Gaussian approximation is in black, expectation propagation in blue, and variational Bayes in red.
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X∗2, to equal 0.01X∗2 + 0.99X∗1 to induce correlation, and lastly standardize the columns of

X and Z to have zero mean and unit standard deviation. Generate y according to (1) with α = 335

(0, . . . , 0)T and β = (1, 2)T. Then, compute the posterior inclusion probabilities for β using

Algorithm 1 with vector approximate message passing in Step 2 as described in § 3·1, and using

expectation propagation and variational Bayes as in § 5·2 but with σ2 known. Do this for q =
1, 2, . . . , 15 with exact computation of the posterior inclusion probabilities as reference. For

large q, exact computation takes too long. Therefore, use a Gibbs sampler with 10,000 burnin 340

and 90,000 recorded iterations to compute reference posterior inclusion probabilities for q =
15, 30, . . . , 480, 960. Repeat the above 20 times for each q.

Figs. S2 through S5 contain the results and computation times. Integrated rotated Gaussian ap-

proximation has the lowest approximation error, although the difference with expectation prop-

agation is less pronounced in Fig. S4 as approximation error from the method and Monte Carlo 345

error from the Gibbs sampler are mixed. Comparing q = 15 in Fig. S2 and Fig. S4 shows that

the Monte Carlo error is of noticeable size compared to the approximation error of our method

and expectation propagation. Integrated rotated Gaussian approximation deals with the fact that

the columns of X are correlated since β is treated separately in Algorithm 1. Expectation prop-

agation and variational Bayes do not make such a distinction between the elements of α and β. 350

Variational Bayes consistently has the highest approximation error and the shortest computation

time. Expectation propagation has a higher computation time than integrated rotated Gaussian

approximation which is a result of how quickly vector approximate message passing converges

in this set-up.
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ity (PIP) approximation and their Gibbs sampler estimate from the simulation in § S8·1. Integrated rotated Gaussian

approximation is in black, expectation propagation in blue, and variational Bayes in red.
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Fig. S6. Median (dot) and interquartile ranges (x) of the absolute differences between the posterior inclusion probabil-
ity (PIP) approximation and their Gibbs sampler estimate from the simulation in § S8·2. Integrated rotated Gaussian

approximation is in black, expectation propagation in blue, and variational Bayes in red.
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Fig. S7. Median (dot) and interquartile ranges (x) of the computation times for the results in Fig. S6. Integrated rotated
Gaussian approximation is in black, expectation propagation in blue, and variational Bayes in red.

S8·2. Variable selection with a random design matrix355

Consider the set-up from § 3·2 with n = 100, λ = 40/r, ψ = 1, and σ2 = 1/2. Generate θ by

randomly selecting 40 elements in θ to be non-zero and drawing them from N(0, 1). The ele-

ments ofA are drawn independently fromN(0, 1) after which the columns ofA are standardized

to have zero mean and unit standard deviation. Sample y according to y ∼ N(Aθ, σ2In). We re-

peat the random generation of θ,A, and y 20 times for each r = 60, 120, 240, 480, 960. Estimate360

the posterior inclusion probabilities using the same methods as in § 5·2 but with σ2 = 1/2 known

and without considering the debiased lasso. Algorithm 1 is used with p = ⌊log(r)⌋ as in § 5·2.

The results and computation times are in Figs. S6 and S7, respectively. There is no clear

separation between the methods in terms of their approximation errors in Fig. S6. This might be

a result of the smoothening effect of the Monte Carlo error which adds to the reported error as in365

Fig. S4. Our method seems to yield slightly more accurate posterior inclusion probabilities for

r = 60, 120, 240, when Monte Carlo error is also lower because r is smaller, albeit at a higher

computational cost. The higher computational cost results from our method having to repeat

Algorithm 1 ⌈r/p⌉ times to obtain all r posterior inclusion probabilities, while we use only

8 ≪ ⌈r/p⌉ CPU cores for parallelization here. Expectation propagation and variational Bayes370

target all posterior inclusion probabilities at once.

S8·3. Variable selection with gene expressions

In §S8·2, A was simulated. Let us instead set A equal to 3,571 expression levels from the

leukemia data from Golub (1999) available in the supplementary data of Friedman et al. (2010).
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Table S1. Summary statistics of the absolute difference between the Gibbs sampler estimates

and the approximations of the posterior log odds of inclusion for the simulation study in § S8·3
with median computation times. IRGA stands for integrated rotated Gaussian approximation.

Method Min Q1 Median Q3 Max Mean
Median computation

time (seconds)

IRGA 0.000 0.231 0.456 0.713 50.1 0.540 54

Expectation propagation 0.000 0.192 0.404 0.699 46.9 0.529 21

Variational Bayes 0.003 1.50 1.83 2.25 56.7 2.44 1.5

Then, n = 72 and r = 3,571. More importantly, the predictors are now highly dependent in a 375

complex, non-linear, and non-Gaussian way: For instance, the maximum correlation between

columns of A equals 0.988. The rest of the simulation, which we repeat 10 times, is the same as

in §S8·2. The results are in Table S1.

Expectation propagation and our method achieve similar performance, with similar error sizes.

On the other hand, expectation propagation is over twice as fast. Variational Bayes takes an order 380

of magnitude less computation time than expectation propagation but yields worse approxima-

tions. As in §S8·2, the longer computation time of our method stems from having to repeat

Algorithm 1 to obtain all posterior inclusion probabilities.

S9. OPTIONS FOR SPLITTING θ INTO α AND β

S9·1. Motivation 385

Using Algorithm 1 for Bayesian variable selection as detailed in § 3·2 requires repeatedly

splitting the r-dimensional coefficient vector θ into the q-dimensional α and p-dimensional β.

Different splits yield different correlation structures between the columns of X and Z . Such

correlation might affect the quality of the approximation Π̂(β | y). Therefore, one might want

to choose splits that minimize the correlation between the columns of X and Z . Also, one can 390

average the obtained posterior inclusion probabilities over multiple splits to reduce dependence

on any one splitting of θ.

This section considers multiple options for splitting θ. The resulting approximation accuracy

of these options is empirically compared. For ease of exposition, we assume that r is divisible

by p. Then, r/p splits are required to compute p̂r(θj 6= 0 | y) (j = 1, . . . , r) by repeating Algo- 395

rithm 1. The methods are readily modified for when r is not divisible by p by using ⌈r/p⌉ splits

where in the ⌈r/p⌉p − r last splits β is (p− 1)-dimensional instead of p-dimensional.

S9·2. Methods of splitting θ

One method for splitting θ is sequential. The first split is α = (θp+1, . . . , θr)
T

and β = (θ1, . . . , θp)
T. The kth split is α = (θ1, . . . , θ(k−1)p, θkp+1, . . . , θr)

T and β = 400

(θ(k−1)p+1, . . . , θkp)
T for k = 2, . . . , r/p − 1. The final split is α = (θ1, . . . , θr−p)

T and β =
(θr−p+1, . . . , θr)

T.

Splitting can also be done randomly. Sequential splitting depends on the ordering of the

columns in the design matrix A. Instead, we can randomly permute the elements of θ and the

respective columns of A before splitting sequentially. This breaks the dependence on the or- 405

dering but introduces dependence on the permutation. To reduce dependence on a single per-

mutation, one can use multiple random permutations, and then take the average of the multiple

p̂r(θj 6= 0 | y) obtained. Here, we use 10 random permutations.
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Sequential and random splitting do not minimize the correlation between the columns of X
and Z . We present two options that aim to minimize this correlation. The first option, which410

we call Belsley splitting, is based on Belsley et al. (1980, § 3.2) and only applies if r ≤ n. Let

A = UDV T denote a singular-value decomposition with an n× r matrix U , an r × r diagonal

matrixD of singular values in decreasing order, and an r × r matrix V . Then, we compute φkj =
V 2
kj/D

2
jj and πjk = φkj/

∑p
j=1 φkj for j, k = 1, . . . , r as in Belsley et al. (1980, Equation 3.11).

A larger πjk indicates collinearity between the jth and the kth column of A if j 6= k and each415

row of the matrix π corresponds with a different potential near linear dependency between the

columns of A in decreasing order of severity as discussed in Belsley et al. (1980, § 3.2). To group

collinear columns of A together, the r/p splits of θ are as follows. In the jth split, β consists of

the p elements θk for which πjk is the largest, and α consists of the other elements in θ.

The second option, which we call spectral splitting, is based on spectral clustering (von420

Luxburg, 2007) and also applies if r > n. Consider a weighted graph with the columns of A
as nodes and the absolute value of the correlation between two columns as the edge weight.

Then, the r × r similarity matrix W has Wjk equal to the absolute value of the correlation be-

tween the jth and the kth column of A. Here, Wjk = 0 and Wjk = 1 correspond with least and

most similarity, respectively, between the jth and the kth column of A. The r/p splits of θ follow425

from spectral clustering using W . The Laplacian matrix of the graph is L = D −W where D
is a diagonal matrix with Dkk =

∑r
j=1Wjk (k = 1, . . . , r). Let the r × (r/p) matrix U consist

of the first r/p eigenvalues of L. Then, the rows of U constitute r points in Rr/p. We cluster

the points into r/p clusters using k-means clustering. These clusters are not necessarily of equal

size and β cannot contain too many elements from θ as then evaluation of (6) is computationally430

expensive. Therefore, we reassign points in clusters of size greater than r/p to other nearby clus-

ters such that no cluster contains more than r/p points. Each cluster corresponds with columns

of A and thus elements of θ. Each split of θ follows by having β consist of the elements of θ
from one cluster while the other elements in θ constitute α.

S9·3. Empirical comparison435

This section investigates how the various options for splitting θ affect the approximation ac-

curacy. Firstly, consider the set-up from § 5·2. We run Algorithm 1 with vector approximate

message passing, and with sequential, random, Belsley and spectral splitting. Table S2 contains

the results. It shows that the approximation accuracy does not vary notably with the various

methods for splitting θ.440

Secondly, repeat this comparison but now with the set-up from §S8·2 with r = 60. The re-

sults are in Table S3. Again, the approximation accuracy does not vary notably with the various

methods for splitting θ.

Table S2. Summary statistics of the absolute difference between the Gibbs sampler estimates

and the approximations of the posterior log odds of inclusion for the diabetes data. The approx-

imations come from Algorithm 1 with different methods of splitting θ.

Method for splitting θ Min Q1 Median Q3 Max Mean

Sequential 0.003 0.036 0.076 0.133 10.7 0.599

Random 0.005 0.027 0.061 0.113 8.66 0.475

Belsley 0.005 0.034 0.060 0.140 12.5 0.588

Spectral 0.000 0.032 0.071 0.139 9.93 0.601
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Table S3. Summary statistics of the absolute difference between the Gibbs sampler estimates

and the approximations of the posterior inclusion probability for data simulated as in § S8·2
with r = 60. The approximations come from Algorithm 1 with different methods of splitting θ.

Method for splitting θ Min Q1 Median Q3 Max Mean

Sequential 0.000 0.000 0.001 0.007 0.368 0.007

Random 0.000 0.000 0.000 0.006 0.123 0.005

Belsley 0.000 0.000 0.001 0.007 0.134 0.006

Spectral 0.000 0.000 0.001 0.006 0.130 0.006

Table S4. Summary statistics of the absolute difference between the Gibbs sampler estimates

and the approximations of the posterior log odds of inclusion for data simulated as in § S8·3.

The approximations come from Algorithm 1 with different methods of splitting θ.

Method for splitting θ Min Q1 Median Q3 Max Mean

Sequential 0.000 0.253 0.500 0.834 52.9 0.769

Random 0.000 0.280 0.550 0.954 50.7 0.838

Spectral 0.000 0.247 0.494 0.828 51.8 0.760

Table S5. Summary statistics of the absolute difference between the Gibbs sampler estimates

and the approximations of the posterior log odds of inclusion for data simulated as in § S8·3.

The approximations come from Algorithm 1 with sequential splitting using different split sizes p.

p Min Q1 Median Q3 Max Mean

1 0.000 0.244 0.472 0.730 55.2 0.608

2 0.000 0.242 0.475 0.735 55.5 0.632

4 0.000 0.239 0.466 0.733 55.1 0.632

8 0.000 0.229 0.450 0.711 54.5 0.588

16 0.000 0.212 0.422 0.673 16.6 0.522

Lastly, we run the comparison on the gene expression data from §S8·3. Here, we cannot use

Belsley splitting since r > n in these data. Once more, the results in Table S4 do not show 445

notable variation in approximation accuracy across the various methods for splitting θ.

S9·4. Choice of split size p

So far, we have used p = ⌊log(r)⌋ as suggested by p = O(log r) from § 3·2 as a trade-off be-

tween approximation accuracy and speed. Here, we investigate how the approximation accuracy

can vary with p. We run Algorithm 1 with sequential splitting and p = 1, 2, 4, 8, 16 on the gene 450

expression data from §S8·3. Table S5 contains the results. Approximation accuracy is better at

p = 16. However, p larger than O(log r) can increase computational cost exponentially since the

cost of computing (6) is exponential in p for Bayesian variable selection.

S10. ADDITIONAL COMPARISONS FOR § 5·3

This section provides additional results for the SNP application from § 5·3. In addition to 455

integrated rotated Gaussian approximation and ignoring the SNPs, we consider the following

methods for inference on β. 1) Expectation propagation from Hernández-Lobato et al. (2015)

is readily extended to allow for different prior inclusion probabilities and slab variances per

coefficient. As such, we can use it in the current set-up where the spike-and-slab prior on β is
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Table S6. Posterior inclusion probabilities for the demographic factors from the application

in § 5·3. EP and IRGA stand for integrated rotated Gaussian approximation and expectation

propagation, respectively.

Population

Method Gender Utahn of European ancestry Finnish Tuscan Yoruba

IRGA 0.83 0.96 0.96 0.92 0.00

EP 0.18 0.05 0.05 0.05 1.00

Gibbs sampler 0.19 0.05 0.05 0.06 1.00

Table S7. Posterior mean or estimates of β corresponding with the demographic factors from

the application in § 5·3. EP and IRGA stand for integrated rotated Gaussian approximation and

expectation propagation, respectively.

Population

Method Gender Utahn of

European ancestry
Finnish Tuscan Yoruba Computation

time

IRGA -0.012 -0.001 0.001 0.004 0.189 15 seconds

Ignoring the SNPs -0.083 0.003 0.000 0.015 -0.050 82 millisecs.

EP -0.014 -0.001 0.002 0.002 0.336 21 minutes

Gibbs sampler -0.015 -0.001 0.002 0.002 0.323 5.2 days

Mixed effects model -0.124 0.010 0.012 0.031 -0.049 1.6 seconds

different from the spike-and-slab prior on α. 2) We run a Gibbs sampler with 10,000 burnin460

and 90,000 recorded iterations. 3) The model in (1) can be used as a mixed effects model with

fixed effects β and random effects η. Here, we fit a mixed effects model (Bates et al., 2015) to

exemplify this interpretation of (1) and to provide a comparison with a frequentist method. The

clusters for the random effects are 17 groups of individuals that are genetically distinct according

to the 2,000 SNPs with the highest sure independence screening score (Fan & Lv, 2008). The465

mixed effects model provides estimates of β but no posterior inclusion probabilities since it is

not a Bayesian method.

The resulting posterior inclusion probabilities and estimates for β with computation times are

in Tables S6 and S7, respectively. The results from the Gibbs sampler and expectation propa-

gation are consistent and different from our method. Either our method’s approximations are470

inaccurate, those from the Gibbs sampler and expectation propagation are, or they all are. The

Gibbs sampler and expectation propagation being consistent suggests that our method failed to

give accurate approximations for this posterior. Though, it is also possible that both the Gibbs

sampler and the expectation propagation struggle with the high-dimensional posterior in such a

way that results in similar but inaccurate approximations. Our method requires substantially less475

computation time than expectation propagation and the Gibbs sampler.

The mixed effects model yields estimates that are not aligned with the posterior means from

any of the Bayesian options. This is unsurprising since the mixed effects model is adjusting for

the SNPs in a fundamentally different manner.
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