68. Blended nexus molecules promote CO2 to L-tyrosine conversion
Lei Fan, Zihan Zhu, Siyan Zhao, Smaranika Panda, Yilin Zhao, Jingyi Chen, Lei Chen, Junmei Chen, Jianzhong He, Kang Zhou, and Lei Wang*
Science Advances, 2024. Link to article
67. Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol
Haozhou Yang, Na Guo, Shibo Xi, Yao Wu, Bingqing Yao, Qian He, Chun Zhang*, Lei Wang*
Nature Communications, 2024. Link to article
66. Preserving molecular tuning for enhanced electrocatalytic CO2-to-ethanol conversion
Weiwei Fu, Yuke Li, Jiayi Chen, Jingyi Chen, Shibo Xi, Jia Zhang, Lei Wang*
Angewandte Chemie International Edition, 2024. Link to article
65. Energy-efficient CO(2) conversion to multicarbon products at high rates on CuGa bimetallic catalys
Lei Chen, Junmei Chen, Weiwei Fu, Jiayi Chen, Di Wang, Yukun Xiao, Shibo Xi, Yongfei Ji*, Lei Wang*
Nature Communications, 2024. Link to article
64. Selective and stable CO2 electroreduction at high rates via control of local H2O/CO2 ratio
Junmei Chen, Haoran Qiu, Yilin Zhao, Haozhou Yang, Lei Fan, Zhihe Liu, ShiBo Xi, Guangtai Zheng, Jiayi Chen, Lei Chen, Ya Liu, Liejin Guo, and Lei Wang*
Nature Communications, 2024. Link to article
63. Alkali cation-induced cathodic corrosion in Cu electrocatalysts
Shikai Liu, Yuheng Li, Di Wang, Shibo Xi, Haoming Xu, Yulin Wang, Xinzhe Li, Wenjie Zang, Weidong Liu, Mengyao Su, Katherine Yan, Adam C. Nielander, Andrew B. Wong, Jiong Lu, Thomas F. Jaramillo, Lei Wang*, Pieremanuele Canepa*, and Qian He*
Nature Communications, 2024. Link to article
62. Revealing the Structure Evolution of CuAg Composites During Electrochemical Carbon Monoxide Reduction
Nature Communications, 2024. Link to article
61. Cu/LaF3 Interfaces Boost Electrocatalytic CO-to-Acetate Conversion
ACS Catalysis, 2024. Link to article
60. Enzyme-Inspired Ligand Engineering of Gold Nanoclusters for Electrocatalytic Microenvironment Manipulation
Zhihe Liu, Junmei Chen, Bo Li, De-en Jiang*, Lei Wang*, Qiaofeng Yao*, and Jianping Xie*
Journal of the American Chemical Society, 2024. Link to article
59. Enhancing Cu-Ligand Interaction for Efficient CO2 Reduction towards Multi-Carbon Products
Jingyi Chen, Lei Fan, Yilin Zhao, Haozhou Yang, Di Wang, Bihao Hu, Shibo Xi, Lei Wang*
Chemical Communications, 2024. Link to article
58. Tailoring the Chemical Environment of Ru-Mo Composites for Efficient Hydrogen and Oxygen Evolution Reaction
Chunfeng Li, Jiayi Chen, Kok Chan Chong, Lei Wang*, Bin Liu*
Small Structures, 2023. Link to article
57. Enhancing CO Diffusion for Selective Acetate Production via CO Reduction on Copper Catalyst
Junmei Chen, Lei Chen, Jingyi Chen, Di Wang, Yilin Zhao, Lan Wen, Shibo Xi, Lei Wang*
Applied Catalysis B: Environmental, 2023. Link to article
56. Multi-Shell Copper Catalysts for Selective Electroreduction of CO2 to Multicarbon Chemicals
Advanced Energy Materials, 2023. Link to article
55. Boosting Oxygen Reduction through Microenvironment Modulation to Enhance Mass Transportation
Bihao Hu, Miao Wang, Danning Li, Jingyi Chen, Chunfeng Li, Lei Wang*
Advanced Energy and Sustainability Research, 2023. Link to article
54. Additive-Assisted Electrodeposition of Cu on Gas Diffusion Electrodes Enables Selective CO2 Reduction to Multicarbon Products
Lei Chen, Jingyi Chen, Lei Fan, Jiayi Chen, Tianyu Zhang, Junmei Chen, Shibo Xi, Baoliang Chen*, and Lei Wang*
ACS Catalysis, 2023. Link to article
53. Selective production of ethylene glycol at high rate via cascade catalysis
Lei Fan, Yilin Zhao, Lei Chen, Jiayi Chen, Junmei Chen, Haozhou Yang, Yukun Xiao, Tianyu Zhang, Jingyi Chen & Lei Wang*
Nature Catalysis, 2023. Link to article
52. Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters
Zhihe Liu, Hua Tan, Bo Li, Zehua Hu, De-en Jiang, Qiaofeng Yao*, Lei Wang* & Jianping Xie*
Nature Communications, 2023. Link to article
51. Promote electroreduction of CO2 via catalyst valence state manipulation by surface-capping ligand
Yilin Zhao, Xiaoqing Liu, Jingyi Chen, Junmei Chen, Jiayi Chen, Lei Fan, Haozhou Yang, Shibo Xi, Lei Shen, and Lei Wang*
PNAS, 2023. Link to article
50. Electrocatalytic amino acid synthesis from biomass-derivable keto acids over ball milled carbon nanotubes
Yiying Xiao, Chia Wei Lim, Jinquan Chang, Qixin Yuan,Lei Wang* and Ning Yan*
Green Chemistry, 2023. Link to article
49. Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution
Jiayi Chen, Mohammed Aliasgar, Fernando Buendia Zamudio, Tianyu Zhang, Yilin Zhao, Xu Lian, Lan Wen, Haozhou Yang, Wenping Sun*, Sergey M. Kozlov*, Wei Chen & Lei Wang*.
Nature Communications, 2023. Link to article
48. Directing oxygen reduction reaction selectivity towards hydrogen peroxide via electric double layer engineering
Jingyi Chen, Yilin Zhao, Haozhou Yang, Tianyu Zhang, Lei Fan, Chunfeng Li and Lei Wang*.
Nanoscale, 2023. Link to article
47. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction
Tianyu Zhang, Jing Jin, Junmei Chen, Yingyan Fang, Xu Han, Jiayi Chen, Yaping Li, Yu Wang, Junfeng Liu* & Lei Wang*.
Nature Communications, 2022. Link to article
46. Functionalized Ag with Thiol Ligand to Promote Effective CO2 Electroreduction
Junmei Chen, Xiaoqing Liu, Shibo Xi, Tianyu Zhang, Zhihe Liu, Jiayi Chen, Lei Shen,* Sibudjing Kawi,* and Lei Wang*.
ACS Nano, 2022. Link to article
45. Promoting oxygen reduction via coordination environment modulation through secondary metal-atom incorporation
Haozhou Yang, Tianyu Zhang, Xiao Chi,Xiaojiang Yu, Junmei Chen, Jiayi Chen, Chunfeng Li, Shengdong Tan, Qian He, Xun Wang and Lei Wang*.
Journal of Materials Chemistry A, 2022. Link to article
44. Vapor-Fed Electrolyzers for Carbon Dioxide Reduction Using Tandem Electrocatalysts: Cuprous Oxide Coupled with Nickel-Coordinated Nitrogen-Doped Carbon
Yi-Rung Lin,Dong Un Lee,Shunquan Tan,David M. Koshy,Tiras Y. Lin,Lei Wang,Daniel Corral,Jaime E. Avilés Acosta,Jose A. Zamora Zeledon,Victor A. Beck,Sarah E. Baker,Eric B. Duoss,Christopher Hahn*,Thomas F. Jaramillo*.
Advanced Functional Materials, 2022. Link to article
43. A happy couple makes acetate from CO
Lei Wang*.
Nature Catalysis, 2022. Link to article
42. Defect-Rich Molybdenum Sulfide Quantum Dots for Amplified Photoluminescence and Photonics-Driven Reactive Oxygen Species Generation
Houjuan Zhu, Wenyan Zan, Wanli Chen, Wenbin Jiang, Xianguang Ding, Bang Lin Li, Yuewen Mu, Lei Wang, Slaven Garaj*, David Tai Leong*.
Advanced Materials, 2022. Link to article
41. Using pH Dependence to Understand Mechanisms in Electrochemical CO Reduction
Georg Kastlunge*, Lei Wang, Nitish Govindarajan, Hendrik Heenen, Stefan Ringe, Thomas Jaramillo, Christopher Hahn*, Chan Karen.
ACS Catalysis, 2022. Link to article
40. Designing a Zn–Ag Catalyst Matrix and Electrolyzer System for CO2 Conversion to CO and Beyond
Sarah Lamaison, David Wakerley, Frauke Kracke, Thomas Moore, Lan Zhou, Dong Un Lee, Lei Wang, McKenzie A Hubert, Jaime E Aviles Acosta, John M Gregoire, Eric B Duoss, Sarah Baker, Victor A Beck, Alfred M Spormann, Marc Fontecave, Christopher Hahn*, Thomas F Jaramillo*.
Advanced Materials, 2022. Link to article
39. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts
Xinyan Liu, Bo-Quan Li, Bing Ni, Lei Wang, Peng Hong-jie*.
Journal of Energy Chemistry, 2022. Link to article
38. Effects of the Catalyst Dynamic Changes and Influence of the Reaction Environment on the Performance of Electrochemical CO2 Reduction
Chen Jiayi, Lei Wang*.
Advanced materials, 2021. Link to article
37. Guiding the Catalytic Properties of Copper for Electrochemical CO2 Reduction by Metal Atom Decoration
Yusaku F. Nishimura*, Hong-Jie Peng*, Stephanie Nitopi, Michal Bajdich, Lei Wang, Carlos G. Morales-Guio, Frank Abild-Pedersen, Thomas F. Jaramillo* and Christopher Hahn*.
ACS Applied Materials & Interfaces, 2021. Link to article
36. Electrolyte-Guided Design of Electroreductive CO Coupling on Copper Surfaces
Sneha A Akhade, Buddhinie S Jayathilake, Stephen E Weitzner, Hannah V Eshelman, Julie Hamilton, Jeremy T Feaster, David W Wakerley, Lei Wang, Sarah Lamaison, Dong Un Lee, Christopher Hahn, Thomas F Jaramillo, Eric B Duoss, Sarah E Baker, Joel B Varley.
ACS Applied Energy Materials 2021, 4(8), 8201-8210. Link to article
35. Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO
Wang, L.; Peng, H.; Lamaison, S.; Qi, Z.; Koshy, M. D.; Stevens, M. B.; Wakerley, D.; Zamora Zeledo´, J.A.; King, L. A.; Zhou, L.; Lai, Y.; Fontecave, M.; Gregoire, J.; Abild-Pedersen, F.; Jaramillo, T. F.; Hahn, C.
Chem Catalysis 2021, July 15, 1, 1-18. Link to article
34. From Ru-bda to Ru-bds: a step forward to highly efficient molecular water oxidation electrocatalysts under acidic and neutral conditions
Yang, J.;# Wang, L.;# Zhan, S.; Zou, H.; Chen, H.; Ahlquist, M. S. G.; Duan, L.;* Sun, L.*
Nature Communications 2021, 12, Article number: 373 . Link to article
33. Readily Constructed Glass Piston Pump for Gas Recirculation
Nielander, A. C.; Blair, S. J.; McEnaney, J. M.; Schwalbe, J. A.; Adams, T.; Sawson Taheri, S.; Wang, L.; Sungeun Yang, S.; Cargnello, M.; Jaramillo, T. F.*
ACS Omega 2020, 5, 27, 16455-16459. Link to article
32. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts
Wang, L.; Higgins, D. C.; Ji, Y.; Morales-Guio, C. G.; Chan, K.; Hahn, C.*; Jaramillo, T. F.*
PNAS 2020. Link to article
31. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area
Wang, L.; Nitopi, S. A.; Wong, A. B.; Snider, J. L.; Nielander, A. C.; Morales-Guio, C. G.; Orazov, M.; Higgins, D. C.; Hahn, C.*; Jaramillo, T. F.*
Nature Catalysis 2019, 2, 702-708. Link to article
30. The effect of pH on the electrochemical reduction of CO and CO2 towards C2+ products on stepped copper
Liu, X.; Schlexer, P.; Xiao, J.; Ji, Y.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H.; Ringe, S.; Hahn, C.; Jaramillo, T. F.; Nørskov, J. K.; Chan, K.*
Nature Communications 2019, 10, Article number: 32 . Link to article
29. Copper(I)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters
Lin, L.; Chen, H.; Kang, L.; Quan, L.; Lin, Z.; Kong, Q.; Lai, M.; Yu, M.; Wang, L.; Wang, Lin-W,; M, Toney.; Yang, P.
Matter 2019, 1, 180-191. Link to article
28. A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques
Nielander, C. A.; McEnaneyJay, M. J.; Schwalbe, A. J.; Baker, G. J.; Blair, J. S.; Wang, L.; Pelton, G. J.; Andersen, Z. S.; Enemark-Rasmussen, K.; Čolić, V.; Yang, S.; Bent, F. S.; Cargnello, M.; Kibsgaard, J.; Vesborg, C K. P.; Chorkendorff, I.; Jaramillo, F. J.*
ACS Catal., 2019, 9, 5797–5802. Link to article
27. Guiding electrochemical carbon dioxide reduction toward carbonyls using copper silver thin films with interphase miscibility
Higgins, D. C.; Landers, A. T.; Yongfei, J.; Nitopi, S. A.; Morales-Guio, C. G.; Wang, L.; Chan, K.; Hahn, C.*; Jaramillo, T. F.*
ACS Energy Letters 2018, 3, 2947-2955. Link to article
26. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst
Morales-Guio, C. G.+; Cave, E. R.+; Nitopi S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T.; Hahn, C.*; Jaramillo, T. F.*
Nature Catalysis 2018, 1, 764–771. Link to article
25. Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure and pH on selectivity towards multi-carbon and oxygenated products
Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.*; Jaramillo, T. F.*
ACS Catalysis 2018, 8, 7445–7454. Link to article
24. Water Oxidation Initiated by In Situ Dimerization of the Molecular Ru(pdc) Catalyst
Daniel, Q.; Duan, L.; Timmer, J. B.; Chen, H.; Luo, D.; Ambre, R.; Wang, Y.; Zhang, B.; Zhang, P.; Wang, L.; Li, F.; Sun, J.; Ahlquist, M.; Sun, L.;*
ACS Catalysis 2018, 8, 4375–4382. Link to article
23. Towards efficient and robust anodes for water splitting: Immobilization of Ru catalysts on carbon electrode and hematite by in situ polymerization
Wang, L.; Fan, K.; Chen. H.; Daniel, Q.; Philippe, B.; Rensmo, H.; Sun, L.;*
Catalysis Today 2017, 290, 73-77. Link to article
22. Rearranging from 6- to 7- coordination initiates the catalytic activity: an EPR study on a Ru-bda water oxidation catalyst
Daniel, Q.; Huang, P.; Fan, T.; Wang, Y.; Duan, L.; Wang, L.; Li. F.; Rinkevicius, Z; Mamedov, F.; Ahlquist, S. G. M.; Styring, S.; Sun, L.;*
Coord. Chem. Rev. 2017, 346, 206-215. Link to article
21. A Nickel (II) Complex as an Electrocatalyst for Water Oxidation
Wang, L.; Duan, L.; Ambre. B. Ram.; Daniel, Q.; Chen, H.; Sun, J.; Das, B.; Thapper, A.; Uhlig, J.; Diner, P.; Sun, L.;*
J. Catal. 2016, 335, 72-78. Link to article
20. Promoting the Water Oxidation Catalysis by Synergistic Interactions between Ni(OH)2 and Carbon Nanotube
Wang, L.; Chen, H.; Daniel, Q.; Duan, L.; Philippe, B.; Yang, Y.; Rensmo, H.; Sun, L.;*
Adv. Energy Mater. 2016, 6, 1600516, Cover image. Link to article
19. Organic Polymer Dots as Photocatalyst for Visible Light-Driven Hydrogen Generation
Wang, L.; Fernandez-Teran, R.; Zhang, L.; Fernandes, L. A. D.; Tian, L.; Chen, H.; Tian, H.;*
Angew. Chem. Int. Ed. 2016, 55, 12306 –12310. Hot Paper. Link to article
18. Visible Light-Driven Water Oxidation by Covalently-Linked Molecular Catalyst-Sensitizer Dyad Assembled on TiO2
Yamamoto, M.; Wang, L.; Li, F.; Fukushima, T.; Tanaka, K.; Sun, L.; Imahori, H.;*
Chem. Sci., 2016,7, 1430-1439. Link to article
17. Molecular Engineering for Efficient and Selective Iron Porphyrin Catalysts for Electrochemical Reduction of CO2 to CO
Ambre, B. R.; Daniel, Q.; Fan, T.; Chen, H.; Zhang, B.; Wang, L.; Ahlquist, S. G. M.; Duan, L.*; Sun, L.*
Chem. Commun., 2016, 52, 14478-14481. Link to article
16. Tailored design of ruthenium molecular catalysts with 2,2′-bypyridine-6,6′-dicarboxylate and pyrazole based ligands for water oxidation
Daniel, Q.; Wang, L.; Duan, L.; Li, F.; Sun, L.*
Dalton Trans., 2016, 45, 14689-14696. Link to article
15. Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode
Wang, L.; Fan, K.; Daniel, Q.; Duan, L.; Li, F.; Philippe, B.; Rensmo, H.; Chen, H.; Sun, J.; Sun, L.*
Chem. Commun., 2015, 51, 7883-7886. Link to article
14. Sensitizer-Catalyst Assemblies for Water Oxidation
Wang, L.; Mirmohades, M.; Brown, A.; Duan, L.; Li, F.; Daniel, Q.; Reiner, L.; Sun, L.; Hammarström.*
Inorg. Chem. 2015, 54, 6, 2742-2751. Link to article
13. Alkene Epoxidation Catalysts [Ru(pdc)(tpy)] and [Ru(pdc)(pybox)] Revisited: Revealing a Unique RuIV═O Structure from a Dimethyl Sulfoxide Coordinating Complex
Wang, Y.; Duan, L.; Wang, L.; Chen, H.; Sun, J; Sun, L.; Ahlquist, S. G. M.*
ACS Catal. 2015, 5, 7, 3966-3972. Link to article
12. Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts with Negatively Charged Backbone Ligands
Duan, L.; Wang, L.; Li, F.; Li, F; Sun, L.*
Acc. Chem. Res. 2015, 48, 7, 2084-2096. Link to article
11. Immobilizing Ru(bda) Catalyst on a Photoanode via Electrochemical Polymerization for Light-Driven Water Splitting
Li, F.; Fan, K.; Wang, L.; Daniel, Q.; Duan, L.; Sun, L.*
ACS Catal. 2015, 5, 6, 3786-3790. Link to article
10. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent
Fan, K.; Li, F.; Wang, L.; Daniel, Q.; Chen, H.; Gabrielsson, E.; Sun, J.; Sun, L.*
Chemsuschem. 2015, 201500730. Link to article
9. Construct Polyoxometalate frameworks through Covalent Bonds
Chen, H.; Zhao, H.; Yu, Z.; Wang, L.; Sun, L.; Sun, J.*
Inorg. Chem. 2015, 54, 8699-8704. Link to article
8. Pt-free tandem molecular photoelectrochemical cells for water splitting driven by visible light
Fan, K.; Li, F.; Wang, L.; Daniel, Q.; Gabrielsson, E.; Sun, L.*
Phys. Chem. Chem. Phys., 2014, 16, 25234-25240. Link to article
7. Highly Efficient and Robust Molecular Water Oxidation Catalysts Based on Ruthenium Complexes
Wang, L.; Duan, L. Wang, Y.; Ahlquist, S. G. M.; Sun, L.*
Chem. Commun., 2014, 50, 12947-12950. Link to article
6. Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a 2,2′-Bipyridine-6,6′-dicarboxylate (bda) Ligand: How Ligand Environment Influences the Catalytic Behavior
Staehle, R.; Tong, L.; Wang, L.; Duan, L.; Fischer, A.; Ahlquist, S. G. M.*; Sun, L.*; Rau, S.*
Inorg. Chem. 2014, 53, 3, 1307-1319. Link to article
5. Visible light-driven water oxidation catalyzed by mononuclear ruthenium complexes
Wang, L.; Duan, L.; Tong, L.; Sun, L.*
J. Catal. 2013, 306, 129-132. Link to article
4. Insights into Ru-Based Molecular Water Oxidation Catalysts: Electronic and Noncovalent-Interaction Effects on Their Catalytic Activities
Duan, L.; Wang, L.; Inge, A. K.; Fischer, A.; Zou, A.; Sun, L.*
Inorg. Chem. 2013, 52, 14, 7844-7852. Link to article
3. Catalytic Water Oxidation by Mononuclear Ru Complexes with an Anionic Ancillary Ligand
Tong, L.; Inge, A. K.; Duan, L.; Wang, L.; Zou, A.; Sun, L.*
Inorg. Chem. 2013, 52, 5, 2505-2518. Link to article
2. Visible Light Driven Water Splitting in A Molecular Device with Unprecedently High Photocurrent Density
Gao, Y.; Ding, X.; Liu, J.; Wang, L.; Lu, Z.; Li, L.; Sun, L.*
J. Am. Chem. Soc. 2013, 135, 11, 4219-4222. Link to article
1. Towards Controlling Water Oxidation Catalysis: Tunable Activity of Ruthenium Complexes with Axial Imidazole/DMSO Ligands
Wang, L.; Duan, L.; Stewart, B.; Pu, M.; Liu, J.; Privalov, T.; Sun, L.*
J. Am. Chem. Soc. 2012, 134, 45, 18868-18880. Link to article