68. Blended nexus molecules promote CO2 to L-tyrosine conversion

Lei Fan, Zihan Zhu, Siyan Zhao, Smaranika Panda, Yilin Zhao, Jingyi Chen, Lei Chen, Junmei Chen, Jianzhong He, Kang Zhou, and Lei Wang*

Science Advances, 2024. Link to article

67. Potential-driven structural distortion in cobalt phthalocyanine for electrocatalytic CO2/CO reduction towards methanol

Haozhou Yang, Na Guo, Shibo Xi, Yao Wu, Bingqing Yao, Qian He, Chun Zhang*, Lei Wang*

Nature Communications, 2024. Link to article

66. Preserving molecular tuning for enhanced electrocatalytic CO2-to-ethanol conversion

Weiwei Fu, Yuke Li, Jiayi Chen, Jingyi Chen, Shibo Xi, Jia Zhang, Lei Wang*

Angewandte Chemie International Edition, 2024. Link to article

65. Energy-efficient CO(2) conversion to multicarbon products at high rates on CuGa bimetallic catalys

Lei Chen, Junmei Chen, Weiwei Fu, Jiayi Chen, Di Wang, Yukun Xiao, Shibo Xi, Yongfei Ji*, Lei Wang*

Nature Communications, 2024. Link to article

64. Selective and stable CO2 electroreduction at high rates via control of local H2O/CO2 ratio

Junmei Chen, Haoran Qiu, Yilin Zhao, Haozhou Yang, Lei Fan, Zhihe Liu, ShiBo Xi, Guangtai Zheng, Jiayi Chen, Lei Chen, Ya Liu, Liejin Guo, and Lei Wang*

Nature Communications, 2024. Link to article

63. Alkali cation-induced cathodic corrosion in Cu electrocatalysts

Shikai Liu, Yuheng Li, Di Wang, Shibo Xi, Haoming Xu, Yulin Wang, Xinzhe Li, Wenjie Zang, Weidong Liu, Mengyao Su, Katherine Yan, Adam C. Nielander, Andrew B. Wong, Jiong Lu, Thomas F. Jaramillo, Lei Wang*, Pieremanuele Canepa*, and Qian He*

Nature Communications, 2024. Link to article

62. Revealing the Structure Evolution of CuAg Composites During Electrochemical Carbon Monoxide Reduction

Di Wang, Hyun Dong Jung, Shikai Liu, Jiayi Chen, Haozhou Yang, Qian He*, Shibo Xi*, Seoin Back*, and Lei Wang*

Nature Communications, 2024. Link to article

61. Cu/LaF3 Interfaces Boost Electrocatalytic CO-to-Acetate Conversion

Yilin Zhao, Yuke Li, Jingyi Chen, Buwei Sun, Lei Fan, Junmei Chen, Yukun Xiao, Haozhou Yang, Di Wang, Jiayi Chen, Xiaopeng Han, Shibo Xi, Jia Zhang*, and Lei Wang*

ACS Catalysis, 2024. Link to article

60. Enzyme-Inspired Ligand Engineering of Gold Nanoclusters for Electrocatalytic Microenvironment Manipulation

Zhihe Liu, Junmei Chen, Bo Li, De-en Jiang*, Lei Wang*, Qiaofeng Yao*, and Jianping Xie*

Journal of the American Chemical Society, 2024. Link to article

59. Enhancing Cu-Ligand Interaction for Efficient CO2 Reduction towards Multi-Carbon Products

Jingyi Chen, Lei Fan, Yilin Zhao, Haozhou Yang, Di Wang, Bihao Hu, Shibo Xi, Lei Wang*

Chemical Communications, 2024. Link to article

58. Tailoring the Chemical Environment of Ru-Mo Composites for Efficient Hydrogen and Oxygen Evolution Reaction

Chunfeng Li, Jiayi Chen, Kok Chan Chong, Lei Wang*, Bin Liu*

Small Structures, 2023. Link to article

57. Enhancing CO Diffusion for Selective Acetate Production via CO Reduction on Copper Catalyst

Junmei Chen, Lei Chen, Jingyi Chen, Di Wang, Yilin Zhao, Lan Wen, Shibo Xi, Lei Wang*

Applied Catalysis B: Environmental, 2023. Link to article

56. Multi-Shell Copper Catalysts for Selective Electroreduction of CO2 to Multicarbon Chemicals

Yukun Xiao, Meng Wang, Haozhou Yang, Haoran Qiu, Haotian Lu, Yumin Da, Ganwen Chen, Tianyuan Jiang, Weiwei Fu, Bihao Hu, Junmei Chen, Lei Chen, Yishui Ding, Baihua Cui, Chonglai Jiang, Zejun Sun, Yu Long, Haotian Yang, Zhangliu Tian, Lei Wang*, Wei Chen*

Advanced Energy Materials, 2023. Link to article

55. Boosting Oxygen Reduction through Microenvironment Modulation to Enhance Mass Transportation

Bihao HuMiao WangDanning LiJingyi ChenChunfeng LiLei Wang*

Advanced Energy and Sustainability Research, 2023. Link to article

54. Additive-Assisted Electrodeposition of Cu on Gas Diffusion Electrodes Enables Selective CO2 Reduction to Multicarbon Products

Lei Chen, Jingyi Chen, Lei Fan, Jiayi Chen, Tianyu Zhang, Junmei Chen, Shibo Xi, Baoliang Chen*, and Lei Wang*

ACS Catalysis, 2023. Link to article

53. Selective production of ethylene glycol at high rate via cascade catalysis

Lei Fan, Yilin Zhao, Lei Chen, Jiayi Chen, Junmei Chen, Haozhou Yang, Yukun Xiao, Tianyu Zhang, Jingyi Chen & Lei Wang*

Nature Catalysis, 2023. Link to article

52. Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters

Zhihe Liu, Hua Tan, Bo Li, Zehua Hu, De-en Jiang, Qiaofeng Yao*, Lei Wang* & Jianping Xie*

Nature Communications, 2023. Link to article

51. Promote electroreduction of CO2 via catalyst valence state manipulation by surface-capping ligand

Yilin Zhao, Xiaoqing Liu, Jingyi Chen, Junmei Chen, Jiayi Chen, Lei Fan, Haozhou Yang, Shibo Xi, Lei Shen, and Lei Wang*

PNAS, 2023. Link to article

50. Electrocatalytic amino acid synthesis from biomass-derivable keto acids over ball milled carbon nanotubes

Yiying Xiao, Chia Wei Lim,  Jinquan Chang, Qixin Yuan,Lei Wang* and  Ning Yan*

Green Chemistry, 2023. Link to article

49. Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution

Jiayi Chen, Mohammed Aliasgar, Fernando Buendia Zamudio, Tianyu Zhang, Yilin Zhao, Xu Lian, Lan Wen, Haozhou Yang, Wenping Sun*, Sergey M. Kozlov*, Wei Chen & Lei Wang*.

Nature Communications, 2023. Link to article

48. Directing oxygen reduction reaction selectivity towards hydrogen peroxide via electric double layer engineering

Jingyi Chen, Yilin Zhao, Haozhou Yang, Tianyu Zhang, Lei Fan, Chunfeng Li and  Lei Wang*.

Nanoscale, 2023. Link to article

47. Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction

Tianyu Zhang, Jing Jin, Junmei Chen, Yingyan Fang, Xu Han, Jiayi Chen, Yaping Li, Yu Wang, Junfeng Liu* & Lei Wang*.

Nature Communications, 2022. Link to article

46. Functionalized Ag with Thiol Ligand to Promote Effective CO2 Electroreduction

Junmei Chen, Xiaoqing Liu, Shibo Xi, Tianyu Zhang, Zhihe Liu, Jiayi Chen, Lei Shen,* Sibudjing Kawi,* and Lei Wang*.

ACS Nano, 2022. Link to article

45. Promoting oxygen reduction via coordination environment modulation through secondary metal-atom incorporation

Haozhou Yang, Tianyu Zhang, Xiao Chi,Xiaojiang Yu, Junmei Chen, Jiayi Chen, Chunfeng Li, Shengdong Tan, Qian He, Xun Wang  and  Lei Wang*.

Journal of Materials Chemistry A, 2022. Link to article

44. Vapor-Fed Electrolyzers for Carbon Dioxide Reduction Using Tandem Electrocatalysts: Cuprous Oxide Coupled with Nickel-Coordinated Nitrogen-Doped Carbon

Yi-Rung Lin,Dong Un Lee,Shunquan Tan,David M. Koshy,Tiras Y. Lin,Lei Wang,Daniel Corral,Jaime E. Avilés Acosta,Jose A. Zamora Zeledon,Victor A. Beck,Sarah E. Baker,Eric B. Duoss,Christopher Hahn*,Thomas F. Jaramillo*.

Advanced Functional Materials, 2022. Link to article

43. A happy couple makes acetate from CO

Lei Wang*.

Nature Catalysis, 2022. Link to article

42. Defect-Rich Molybdenum Sulfide Quantum Dots for Amplified Photoluminescence and Photonics-Driven Reactive Oxygen Species Generation

Houjuan Zhu, Wenyan Zan, Wanli Chen, Wenbin Jiang, Xianguang Ding, Bang Lin Li, Yuewen Mu, Lei Wang, Slaven Garaj*, David Tai Leong*.

Advanced Materials, 2022. Link to article

41. Using pH Dependence to Understand Mechanisms in Electrochemical CO Reduction

Georg Kastlunge*, Lei Wang, Nitish Govindarajan, Hendrik Heenen, Stefan Ringe, Thomas Jaramillo, Christopher Hahn*, Chan Karen.

ACS Catalysis, 2022. Link to article

40. Designing a Zn–Ag Catalyst Matrix and Electrolyzer System for CO2 Conversion to CO and Beyond

Sarah Lamaison, David Wakerley, Frauke Kracke, Thomas Moore, Lan Zhou, Dong Un Lee, Lei Wang, McKenzie A Hubert, Jaime E Aviles Acosta, John M Gregoire, Eric B Duoss, Sarah Baker, Victor A Beck, Alfred M Spormann, Marc Fontecave, Christopher Hahn*, Thomas F Jaramillo*.

Advanced Materials, 2022. Link to article

39. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts

Xinyan Liu, Bo-Quan Li, Bing Ni, Lei Wang, Peng Hong-jie*.

Journal of Energy Chemistry, 2022. Link to article

38. Effects of the Catalyst Dynamic Changes and Influence of the Reaction Environment on the Performance of Electrochemical CO2 Reduction

Chen Jiayi, Lei Wang*.

Advanced materials, 2021. Link to article

37. Guiding the Catalytic Properties of Copper for Electrochemical CO2 Reduction by Metal Atom Decoration

Yusaku F. Nishimura*, Hong-Jie Peng*, Stephanie Nitopi, Michal Bajdich, Lei Wang, Carlos G. Morales-Guio, Frank Abild-Pedersen, Thomas F. Jaramillo* and Christopher Hahn*.

ACS Applied Materials & Interfaces, 2021. Link to article

36. Electrolyte-Guided Design of Electroreductive CO Coupling on Copper Surfaces

Sneha A Akhade, Buddhinie S Jayathilake, Stephen E Weitzner, Hannah V Eshelman, Julie Hamilton, Jeremy T Feaster, David W Wakerley, Lei Wang, Sarah Lamaison, Dong Un Lee, Christopher Hahn, Thomas F Jaramillo, Eric B Duoss, Sarah E Baker, Joel B Varley.

ACS Applied Energy Materials 2021, 4(8), 8201-8210. Link to article

35. Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO

Wang, L.; Peng, H.; Lamaison, S.; Qi, Z.; Koshy, M. D.; Stevens, M. B.; Wakerley, D.; Zamora Zeledo´, J.A.; King, L. A.; Zhou, L.; Lai, Y.; Fontecave, M.; Gregoire, J.; Abild-Pedersen, F.; Jaramillo, T. F.; Hahn, C.

Chem Catalysis 2021, July 15, 1, 1-18. Link to article

34. From Ru-bda to Ru-bds: a step forward to highly efficient molecular water oxidation electrocatalysts under acidic and neutral conditions

Yang, J.;# Wang, L.;# Zhan, S.; Zou, H.; Chen, H.; Ahlquist, M. S. G.; Duan, L.;* Sun, L.*

Nature Communications 2021, 12, Article number: 373 . Link to article

33. Readily Constructed Glass Piston Pump for Gas Recirculation

Nielander, A. C.; Blair, S. J.; McEnaney, J. M.; Schwalbe, J. A.; Adams, T.; Sawson Taheri, S.; Wang, L.; Sungeun Yang, S.; Cargnello, M.; Jaramillo, T. F.*

ACS Omega 2020, 5, 27, 16455-16459. Link to article

32. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts 

Wang, L.; Higgins, D. C.; Ji, Y.; Morales-Guio, C. G.; Chan, K.; Hahn, C.*; Jaramillo, T. F.*

PNAS 2020. Link to article

31. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area

Wang, L.; Nitopi, S. A.; Wong, A. B.; Snider, J. L.; Nielander, A. C.; Morales-Guio, C. G.; Orazov, M.; Higgins, D. C.; Hahn, C.*; Jaramillo, T. F.*

Nature Catalysis 2019, 2, 702-708. Link to article

30. The effect of pH on the electrochemical reduction of CO and CO2 towards C2+ products on stepped copper

Liu, X.; Schlexer, P.; Xiao, J.; Ji, Y.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H.; Ringe, S.; Hahn, C.; Jaramillo, T. F.; Nørskov, J. K.; Chan, K.*

Nature Communications 2019, 10, Article number: 32 . Link to article

29. Copper(I)-Based Highly Emissive All-Inorganic Rare-Earth Halide Clusters

Lin, L.; Chen, H.; Kang, L.; Quan, L.; Lin, Z.; Kong, Q.; Lai, M.; Yu, M.; Wang, L.; Wang, Lin-W,; M, Toney.; Yang, P.

Matter 2019, 1, 180-191. Link to article

28. A Versatile Method for Ammonia Detection in a Range of Relevant Electrolytes via Direct Nuclear Magnetic Resonance Techniques

Nielander, C. A.; McEnaneyJay, M. J.; Schwalbe, A. J.; Baker, G. J.; Blair, J. S.; Wang, L.; Pelton, G. J.; Andersen, Z. S.; Enemark-Rasmussen, K.; Čolić, V.; Yang, S.; Bent, F. S.; Cargnello, M.; Kibsgaard, J.; Vesborg, C K. P.; Chorkendorff, I.; Jaramillo, F. J.*

ACS Catal., 2019, 9, 5797–5802. Link to article

27. Guiding electrochemical carbon dioxide reduction toward carbonyls using copper silver thin films with interphase miscibility

Higgins, D. C.; Landers, A. T.; Yongfei, J.; Nitopi, S. A.; Morales-Guio, C. G.; Wang, L.; Chan, K.; Hahn, C.*; Jaramillo, T. F.*

ACS Energy Letters 2018, 3, 2947-2955. Link to article

26. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst

Morales-Guio, C. G.+; Cave, E. R.+; Nitopi S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T.; Hahn, C.*; Jaramillo, T. F.*

Nature Catalysis 2018, 1, 764–771. Link to article

25. Electrochemical carbon monoxide reduction on polycrystalline copper: Effects of potential, pressure and pH on selectivity towards multi-carbon and oxygenated products

Wang, L.; Nitopi, S. A.;  Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.*; Jaramillo, T. F.*

ACS Catalysis 2018, 8, 7445–7454. Link to article

24. Water Oxidation Initiated by In Situ Dimerization of the Molecular Ru(pdc) Catalyst 

Daniel, Q.; Duan, L.; Timmer, J. B.; Chen, H.; Luo, D.; Ambre, R.; Wang, Y.; Zhang, B.; Zhang, P.; Wang, L.; Li, F.; Sun, J.; Ahlquist, M.; Sun, L.;*

ACS Catalysis 2018, 8, 4375–4382. Link to article

23. Towards efficient and robust anodes for water splitting: Immobilization of Ru catalysts on carbon electrode and hematite by in situ polymerization

Wang, L.; Fan, K.; Chen. H.; Daniel, Q.; Philippe, B.; Rensmo, H.; Sun, L.;*

Catalysis Today 2017, 290, 73-77. Link to article

22. Rearranging from 6- to 7- coordination initiates the catalytic activity: an EPR study on a Ru-bda water oxidation catalyst

Daniel, Q.; Huang, P.; Fan, T.; Wang, Y.; Duan, L.; Wang, L.; Li. F.; Rinkevicius, Z; Mamedov, F.; Ahlquist, S. G. M.; Styring, S.; Sun, L.;*

Coord. Chem. Rev. 2017, 346, 206-215. Link to article

21. A Nickel (II) Complex as an Electrocatalyst for Water Oxidation

Wang, L.; Duan, L.; Ambre. B. Ram.; Daniel, Q.; Chen, H.; Sun, J.;  Das, B.; Thapper, A.; Uhlig, J.; Diner, P.; Sun, L.;*

J. Catal. 2016, 335, 72-78. Link to article

20. Promoting the Water Oxidation Catalysis by Synergistic Interactions between Ni(OH)2 and Carbon Nanotube

Wang, L.; Chen, H.; Daniel, Q.; Duan, L.; Philippe, B.; Yang, Y.; Rensmo, H.; Sun, L.;*

Adv. Energy Mater. 2016, 6, 1600516, Cover image. Link to article

19. Organic Polymer Dots as Photocatalyst for Visible Light-Driven Hydrogen Generation

Wang, L.; Fernandez-Teran, R.; Zhang, L.; Fernandes, L. A. D.; Tian, L.; Chen, H.; Tian, H.;*

Angew. Chem. Int. Ed. 2016, 55, 12306 –12310. Hot Paper. Link to article

18. Visible Light-Driven Water Oxidation by Covalently-Linked Molecular Catalyst-Sensitizer Dyad Assembled on TiO2

Yamamoto, M.; Wang, L.; Li, F.; Fukushima, T.; Tanaka, K.; Sun, L.; Imahori, H.;*

Chem. Sci., 2016,7, 1430-1439. Link to article

17. Molecular Engineering for Efficient and Selective Iron Porphyrin Catalysts for Electrochemical Reduction of CO2 to CO

Ambre, B. R.; Daniel, Q.; Fan, T.; Chen, H.; Zhang, B.; Wang, L.; Ahlquist, S. G. M.; Duan, L.*; Sun, L.*

Chem. Commun., 2016, 52, 14478-14481. Link to article

16. Tailored design of ruthenium molecular catalysts with 2,2′-bypyridine-6,6′-dicarboxylate and pyrazole based ligands for water oxidation

Daniel, Q.; Wang, L.; Duan, L.; Li, F.; Sun, L.*

Dalton Trans., 2016, 45, 14689-14696. Link to article

15. Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode

Wang, L.; Fan, K.; Daniel, Q.; Duan, L.; Li, F.; Philippe, B.; Rensmo, H.; Chen, H.; Sun, J.; Sun, L.*

Chem. Commun., 2015, 51, 7883-7886. Link to article

14. Sensitizer-Catalyst Assemblies for Water Oxidation

Wang, L.; Mirmohades, M.; Brown, A.; Duan, L.; Li, F.; Daniel, Q.; Reiner, L.; Sun, L.; Hammarström.*

Inorg. Chem. 2015, 54, 6, 2742-2751. Link to article

13. Alkene Epoxidation Catalysts [Ru(pdc)(tpy)] and [Ru(pdc)(pybox)] Revisited: Revealing a Unique RuIV═O Structure from a Dimethyl Sulfoxide Coordinating Complex

Wang, Y.; Duan, L.; Wang, L.; Chen, H.; Sun, J; Sun, L.; Ahlquist, S. G. M.*

ACS Catal. 2015, 5, 7, 3966-3972. Link to article

12. Highly Efficient Bioinspired Molecular Ru Water Oxidation Catalysts with Negatively Charged Backbone Ligands

Duan, L.; Wang, L.; Li, F.; Li, F; Sun, L.*

Acc. Chem. Res. 2015, 48, 7, 2084-2096. Link to article

11. Immobilizing Ru(bda) Catalyst on a Photoanode via Electrochemical Polymerization for Light-Driven Water Splitting

Li, F.; Fan, K.; Wang, L.; Daniel, Q.; Duan, L.; Sun, L.*

ACS Catal. 2015, 5, 6, 3786-3790.  Link to article

10. Immobilization of a Molecular Ruthenium Catalyst on Hematite Nanorod Arrays for Water Oxidation with Stable Photocurrent

Fan, K.; Li, F.; Wang, L.; Daniel, Q.; Chen, H.; Gabrielsson, E.; Sun, J.; Sun, L.*

Chemsuschem. 2015, 201500730. Link to article

9. Construct Polyoxometalate frameworks through Covalent Bonds

Chen, H.; Zhao, H.; Yu, Z.; Wang, L.; Sun, L.; Sun, J.*

Inorg. Chem. 2015, 54, 8699-8704.  Link to article

8. Pt-free tandem molecular photoelectrochemical cells for water splitting driven by visible light

Fan, K.; Li, F.; Wang, L.; Daniel, Q.; Gabrielsson, E.; Sun, L.*

Phys. Chem. Chem. Phys., 2014, 16, 25234-25240.  Link to article

7. Highly Efficient and Robust Molecular Water Oxidation Catalysts Based on Ruthenium Complexes

Wang, L.; Duan, L. Wang, Y.; Ahlquist, S. G. M.; Sun, L.*

Chem. Commun., 2014, 50, 12947-12950. Link to article

6. Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a 2,2′-Bipyridine-6,6′-dicarboxylate (bda) Ligand: How Ligand Environment Influences the Catalytic Behavior

Staehle, R.; Tong, L.; Wang, L.; Duan, L.; Fischer, A.; Ahlquist, S. G. M.*; Sun, L.*; Rau, S.*

Inorg. Chem. 2014, 53, 3, 1307-1319. Link to article

5. Visible light-driven water oxidation catalyzed by mononuclear ruthenium complexes

Wang, L.; Duan, L.; Tong, L.; Sun, L.*

J. Catal. 2013, 306, 129-132. Link to article

4. Insights into Ru-Based Molecular Water Oxidation Catalysts: Electronic and Noncovalent-Interaction Effects on Their Catalytic Activities

Duan, L.; Wang, L.; Inge, A. K.; Fischer, A.; Zou, A.; Sun, L.*

Inorg. Chem. 2013, 52, 14, 7844-7852. Link to article

3. Catalytic Water Oxidation by Mononuclear Ru Complexes with an Anionic Ancillary Ligand

Tong, L.; Inge, A. K.; Duan, L.; Wang, L.; Zou, A.; Sun, L.*

Inorg. Chem. 2013, 52, 5, 2505-2518. Link to article

2. Visible Light Driven Water Splitting in A Molecular Device with Unprecedently High Photocurrent Density

Gao, Y.; Ding, X.; Liu, J.; Wang, L.; Lu, Z.; Li, L.; Sun, L.*

J. Am. Chem. Soc. 2013, 135, 11, 4219-4222. Link to article

1. Towards Controlling Water Oxidation Catalysis: Tunable Activity of Ruthenium Complexes with Axial Imidazole/DMSO Ligands

Wang, L.; Duan, L.; Stewart, B.; Pu, M.; Liu, J.; Privalov, T.; Sun, L.*

J. Am. Chem. Soc. 2012, 134, 45, 18868-18880. Link to article

 

 

Viewing Message: 1 of 1.
Warning

Blog.nus accounts will move to SSO login, tentatively before the start of AY24/25 Sem 2. Once implemented, only current NUS staff and students will be able to log in to Blog.nus. Public blogs remain readable to non-logged in users. (More information.)