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Introduction
Based on two papers:

▶ Li, C. (2022) Bayesian fixed-domain asymptotics for covariance parameters
in a Gaussian process model. AoS, arXiv:2010.02126.

▶ Li, C., S. Sun, and Y. Zhu (2023+) Fixed-domain posterior contraction rates
for spatial Gaussian process model with nugget. JASA, arXiv:2207.10239.

This research is at the interface of two fields: spatial statistics and Bayesian
asymptotics.

−70 −50 −30 −10

10
30

50

longitude

la
tit

ud
e

1.0 1.5 2.0 2.5

−2

−1

0

1

2

0 1 2 3
α

n
(θ

−
θ 0

)

π(.|Xn)
π~(.|Xn)
π*(.|Xn)
θ~α

n = 100

3 / 38



Introduction Bayesian Estimation of Covariance Parameters Universal Kriging Nugget Conclusion

Gaussian Process

▶ Gaussian Processes (or Gaussian random fields) is widely used for
interpolation in machine learning, spatial statistics, and computer models.
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Gaussian Process

▶ X ∼ GP(µ,K ) means that X (·) is a Gaussian process on a spatial domain
S ⊆ Rd , with mean function µ(s) : S → R and covariance function
K (s, s ′) : S ×S → R.

▶ For any collection of distinct s1, . . . , sn ∈ S, the random vector
Xn ∼ N (µn,Kn), where

Xn =

X (s1)
...

X (sn)

 , µn =

µ(s1)
...

µ(sn)

 , Kn =

K (s1, s1) . . . K (s1, sn)
...

. . .
...

K (sn, s1) . . . K (sn, sn)

 .

▶ Given the observation Xn, we can interpolate the function value at a new
location s∗ as X (s∗)|Xn ∼ N (µ∗, k∗), where

µ∗ = µ(s∗) + kn(s
∗)⊤K−1

n (Xn − µn),

k∗ = K (s∗, s∗)− kn(s
∗)⊤K−1

n kn(s
∗),

kn(s
∗)⊤ =

(
K (s1, s

∗) . . . K (sn, s
∗)
)
.

5 / 38



Introduction Bayesian Estimation of Covariance Parameters Universal Kriging Nugget Conclusion

Spatial Gaussian Process Regression

▶ Gaussian process (GP) regression models in spatial statistics:

Universal Kriging Model

Y (si ) = m(si )
⊤β + X (si ), i = 1, . . . , n;

X (·) ∼ GP(0, σ2Kα,ν).

Model with Nugget

Y (si ) = m(si )
⊤β + X (si ) + ϵ(si ), i = 1, . . . , n;

X (·) ∼ GP(0, σ2Kα,ν), ϵ(·) ∼ N(0, τ).

▶ m(·): p-dimensional spatially referenced predictors; coefficients β ∈ Rp

▶ σ2Kα,ν(·, ·): Matérn covariance function

▶ ϵ(·): measurement error / nugget
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Spatial Gaussian Process Regression

Recent decades have seen an increasing volume of massive spatial and
spatiotemporal data. One example is the remote sensing data in Geographic
Information Systems (GIS).

▶ Parameter estimation: Estimation of β, σ2, α, ν, τ , etc.

Identification; Interpretation; Large sample properties, ...

▶ Prediction: Predicting Y (·) at a new location s∗

▶ Spatial correlation: Make sense of Cov(Y (s),Y (s ′)) for s ̸= s ′?

Related to the covariance estimation in GP.

Our work focuses on the parameter estimation and prediction.
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Covariance Function

▶ We focus on X (·) ∼ GP(0, σ2Kα,ν), where σ2Kα,ν is the isotropic Matérn
covariance function

σ2Kα,ν(s − t) = σ2 2
1−ν

Γ(ν)
(α∥s − t∥)ν Kν (α∥s − t∥)

for any s, t ∈ S, where Kν(·) is the modified Bessel function of the second
kind, and ∥ · ∥ is the Euclidean norm.

▶ ν > 0 is the smoothness parameter:

▶ ν = 1/2 and d = 1: σ2Kα,ν(s − t) = σ2 exp(−α|s − t|), the
Ornstein-Uhlenbeck (OU) process; sample path continuous but not
differentiable.

▶ ν ≥ m + d
2 : X ∼ GP(0, σ2Kα,ν) is m times mean square differentiable.

▶ ν → ∞: becomes the squared exponential covariance function
c1 exp(−c2∥s − t∥2).

▶ σ2 > 0 is the variance (or partial sill) parameter, and α > 0 is the inverse
range (or length-scale) parameter. They control the vertical and horizontal
scaling of the covariance function. 8 / 38
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Matérn Covariance Function
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Example: Sea Surface Temperature Data
▶ When we fit the universal kriging model Y (·) = m(·)⊤β + X (·);

▶ m(·): 10 monomials of latitude and longitude up to degree 3;

▶ X (·): Matérn with ν = 1/2 (exponential covariance function).
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Example: Sea Surface Temperature Data

▶ When we fit the model with nugget Y (·) = m(·)⊤β + X (·) + ϵ(·);

▶ m(·): 3 monomials of latitude and longitude up to degree 1;

▶ X (·): Matérn with ν = 1/2 (exponential covariance function).
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Parameter Estimation in Covariance Function

▶ The main focus of this work is on the estimation of the covariance
parameters σ2 and α in GP(0, σ2Kα,ν), and also the nugget parameter τ
in the model with nugget.

▶ The smoothness parameter ν is assumed to be known and fixed.

▶ Estimation of ν is important and technically challenging, with some recent
progress in the frequentist literature (Wu, Lim and Xiao ’13 JMVA, Loh ’15
AOS, Wu and Lim ’16 Stat. Sin., Loh, Sun and Wen ’21 AOS, Loh and Sun
’23 Bernoulli).

▶ Our work is on the Bayesian large sample properties (asymptotics).
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Parameter Estimation in Covariance Function

▶ Our overall model setup is different from Bayesian nonparametric
regression using Gaussian process priors, such as van der Vaart and van
Zanten (’08 AOS, ’09 AOS, ’11 JMLR).

▶ In Bayesian nonparametric regression, they assume that

▶ Y (·) is a true deterministic function (m(·)⊤β + X (·)) plus some i.i.d.
noise (ϵ(·)).

▶ The GP model on X (·) is merely a prior. The true X (·) does not need
to be a sample path from GP(0, σ2Kα,ν) – it only needs to be well
approximated by the GP.

▶ There are no “true” parameters. All GP parameters (σ2, α, ν) are
merely tuning parameters.

▶ In contrast, we assume that X (·) ∼ GP(0, σ2Kα,ν) is the true model.
Therefore, m(·)⊤β + X (·) is a random function, not a deterministic function.
We assume that there are true parameters of σ2, α, ν.
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Bayesian Setup for Universal Kriging

▶ We first study the universal kriging model (in Li 2022):

Y (si ) = m(si )
⊤β + X (si ), i = 1, . . . , n;

X (·) ∼ GP(0, σ2Kα,ν).

▶ m(·) = (m1(·), . . . ,mp(·))⊤ is a vector of p known functions.

▶ We observe Yn = (Y (s1), . . . ,Y (sn))
⊤ and Mn, the stacked obs of m(·).

▶ If Xn = (X (s1), . . . ,X (sn))
⊤, then the model is Yn = Mnβ + Xn.

▶ We impose the normal prior β | σ2, α ∼ N
(
0p, σ

2Ω−1
β

)
.

▶ Ωβ can be 0p×p, leading to a noninformative (improper) prior.

▶ The posterior of β conditional on (σ2, α) is

β | σ2, α,Yn,Mn ∼ N
(
β̃α, σ

2
(
M⊤

n R−1
α Mn +Ωβ

)−1
)
,

where β̃α =
(
M⊤

n R−1
α Mn +Ωβ

)−1
M⊤

n R−1
α Yn.
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Bayesian Setup for Universal Kriging

▶ The log-likelihood function is

Ln(β, σ
2, α) = −n

2
log σ2 − 1

2
log |Rα| −

1

2σ2
(Yn −Mnβ)

⊤R−1
α (Yn −Mnβ),

where Rα is the n × n Matérn correlation matrix, whose (i , j)-entry is
Kα,ν(si − sj), for 1 ≤ i , j ≤ n. |Rα| is the determinant of Rα. So
Xn ∼ N (0, σ2Rα).

▶ If we integrate out β from the posterior and then maximize over σ2, we
obtain the REML σ̃2

α

σ̃2
α =

Y⊤
n

[
R−1
α − R−1

α Mn

(
M⊤

n R−1
α Mn +Ωβ

)−1
M⊤

n R−1
α

]
Yn

n − p
.

If p = 0 and Ωβ = 0p×p, then this is the MLE of σ2 given α.

▶ There is no closed-form REML or MLE for the range parameter α.
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Two Asymptotic Regimes

Estimation of (σ2, α) falls into two asymptotic regimes:

▶ Increasing-domain asymptotics: The domain S increases as the sample
size n increases.

▶ The adjacent points have a minimum distance apart =⇒ weak dependence.
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Two Asymptotic Regimes

Estimation of (σ2, α) falls into two asymptotic regimes:

▶ Fixed-domain asymptotics: Also known as infill asymptotics. The domain
S remains fixed and bounded as n increases.

▶ The adjacent points getting closer and closer =⇒ increasingly strong
dependence.
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Challenge in Fixed-Domain Asymptotics

▶ Spatial applications mostly have locations in a spatial or a spatiotemporal
domain.

▶ This implies that the dimension of the location index s ∈ S ⊆ Rd is
d = 1, 2, 3, and S is a fixed and bounded domain, such as [0, 1]d .

▶ A negative result: For dimension d = 1, 2, 3, Zhang (2004, JASA) has
shown that there exists no consistent estimator for σ2 and α in the isotropic
Matérn covariance function.

▶ For two sets of parameters (σ2
1 , α1) and (σ2

2 , α2) (with the same ν), the
measures induced by the two Gaussian processes GP(0, σ2

1Kα1,ν) and
GP(0, σ2

2Kα2,ν) are equivalent to each other, if and only if

σ2
1α

2ν
1 = σ2

2α
2ν
2 .

Otherwise, if σ2
1α

2ν
1 ̸= σ2

2α
2ν
2 , then the two Gaussian measures are

orthogonal.
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Challenge in Fixed-Domain Asymptotics

▶ For two equivalent Gaussian processes, it is impossible to estimate the
parameters (σ2, α) based on a single sample path:
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▶ However, since the equivalence relation is totally determined by the product
σ2α2ν , it is possible to consistently estimate θ = σ2α2ν .

▶ θ is called the microergodic parameter (Stein 1999).

▶ The microergodic parameter θ is crucial for the prediction (kriging)
performance.
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Bayesian Fixed-Domain Asymptotics

▶ We reparametrize the model by replacing σ2 with θ = σ2α2ν . This leads to a
model with parameters (θ, α).

▶ We assume that there are true parameters β0, σ
2
0 , α0, such that for all s ∈ S,

Y (s) = m(s)⊤β0 + X (s), and X ∼ GP(0, σ2
0Kα0,ν).

▶ Assumption: m1(·), . . . ,mp(·) have (ν + d/2)-times bounded derivatives on
S.

▶ With a prior distribution π(β, θ, α), the posterior of (β, θ, α) given the data
(Yn,Mn) can be written as

π(β, θ, α|Yn,Mn) =
exp

{
Ln(β, θ/α

2ν , α)
}
π(β|θ, α)π(θ|α)π(α)∫

exp {Ln(β′, θ′/α′2ν , α′)}π(β′|θ′, α′)π(θ′|α′)π(α′)dα′dθ′dβ′ .

▶ Question: Does the posterior of θ and α converge or not?

(Yes for θ; No for α.)
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Properties of REML

▶ The REML θ̃α (dashed line) is an increasing function in α.

▶ As n → ∞, θ̃α is close to θ̃α0 uniformly over α ∈ [n−κ, nκ].

▶ The Bernstein-von Mises (BvM) theorem seems to hold for θ, but not α.
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Limiting Posterior Distribution in Universal Kriging
The profile restricted log-likelihood (after integrating out β from the posterior) is

L̃n(α) = −n − p

2
log

Y⊤
n

[
R−1
α − R−1

α Mn

(
M⊤

n R−1
α Mn +Ωβ

)−1
M⊤

n R−1
α

]
Yn

n − p

− 1

2
log |Rα| −

1

2
log

∣∣M⊤
n R−1

α Mn +Ωβ

∣∣− n − p

2
.

Theorem 1 (L. 2022 for Universal Kriging)
Under some mild assumptions, the posterior distributions of θ and α are
asymptotically independent, and the joint posterior of (θ, α) satisfies∥∥∥∥Π(dθ,dα|Yn,Mn)−N

(
dθ
∣∣ θ̃α0 ,

2θ20
n

)
× Π̃(dα|Yn,Mn)

∥∥∥∥
TV

→ 0,

as n → ∞ almost surely, where Π̃(dα|Yn,Mn) is profile posterior distribution
with the density

π̃(α|Yn,Mn) =
exp

{
L̃n(α)

}
π(α|θ0)∫∞

0
exp

{
L̃n(α′)

}
π(α′|θ0)dα′

,
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Explicit Profile Posterior for 1d OU Process

Consider the following special case:

▶ p = 0 (no regression terms m(·)⊤β);

▶ d = 1, S = [0, 1];

▶ ν = 1/2, Y = X ∼ GP(0, σ2Kα,1/2) (exponential covariance function);

▶ The sampling points Sn = {s1, . . . , sn} are the equispaced grid with si = i/n
for i = 1, . . . , n.

▶ This gives the 1-d Ornstein-Uhlenback (OU) process.
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Explicit Profile Posterior for 1d OU Process

Theorem 2 (L. 2022 Limiting Posterior for 1d OU process)
Under some relaxed assumptions on the prior of (θ, α),∥∥∥Π(dθ,dα|Yn)−N

(
dθ
∣∣θ̃α0 , 2θ

2
0/n
)
× Π∗(dα|Yn)

∥∥∥
TV

→ 0,

as n → ∞ in probability, where Π∗(dα|Yn) has the density

π∗(α|Yn) ∝
√
α exp

{
− (α− u∗)

2

2v∗

}
· π(α|θ0), for all α ∈ R+,

with u∗ =
n(A1 − A2)

A1
, v∗ =

n(A1 − 2A2 + A3)

A1
,

A1 =
n−1∑
i=2

Y (si )
2, A2 =

n−1∑
i=1

Y (si )Y (si+1), A3 =
n∑

i=1

Y (si )
2.

Furthermore, v∗ > 0 and v∗ ≍ 1 as n → ∞ in probability. Therefore, the
posterior of range parameter α, π(α|Yn), does not converge to any point mass.
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A Simulation Study

▶ Consider the 1d OU process (isotropic Matérn with ν = 1/2), without
regression terms m(·)⊤β.

▶ The true parameters are σ2
0 = 2, α0 = 1, and θ0 = σ2

0α
2ν
0 = 2.

▶ For the d = 1 case, S = [0, 1], sampling locations si =
2i−1
2n for i = 1, . . . , n.

Sample size n = 25, 50, 100, 200, 400.

▶ We directly observe Yn = Xn from GP(0, σ2
0Kα0,ν) on the sampling locations.

▶ Independent gamma priors on θ and α, with the same shape parameter 1.1
and rate parameter 0.1.

▶ Random walk Metropolis algorithm (RWM): draw 5000 samples after 1000
burnins from the true joint posterior Π(dθ,dα|Xn), the limiting posteriors

N
(
dθ
∣∣θ̃α0 , 2θ

2
0/n
)
× Π̃(dα|Xn) in Theorem 1, and the limiting posterior

N
(
dθ
∣∣θ̃α0 , 2θ

2
0/n
)
× Π∗(dα|Xn) in Theorem 2.

▶ We calculate the the Wasserstein-2 (W2) distance between the true posterior
and our approximations.
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Posterior Means and Variances

All numbers are averaged over 100 macro replications. The true parameter values are
θ0 = 2 and α0 = 1.

d = 1 n = 25 n = 50 n = 100 n = 200 n = 400

E(θ|Xn) 2.6795 2.1932 2.1467 2.0740 2.0320
Var(θ|Xn) 0.9825 0.2441 0.1031 0.0455 0.0212

Ẽ(θ|Xn) 2.0404 1.9357 2.0214 2.0130 2.0028

Ṽar(θ|Xn) 0.3197 0.1599 0.0798 0.0399 0.0200

E(α|Xn) 3.1924 2.9803 2.7392 2.9947 2.5075
Var(α|Xn) 5.3673 4.0441 2.9987 3.7074 2.5080

Ẽ(α|Xn) 2.9717 2.8767 2.6941 2.9534 2.5012

Ṽar(α|Xn) 4.5474 3.7045 2.9094 3.6840 2.4664

E∗(α|Xn) 2.5267 2.6534 2.5873 2.9105 2.4933
Var∗(α|Xn) 2.5207 2.7894 2.5783 3.3733 2.4291
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W2 Distances

All numbers are averaged over 100 macro replications. Standard errors are in the
parentheses.

d = 1 n = 25 n = 50 n = 100 n = 200 n = 400

W2

(
Π(dθ|Xn),N

(
θ̃α0 ,

2θ20
n

)) 0.8051 0.3000 0.1449 0.0706 0.0335
(0.0326) (0.0101) (0.0042) (0.0024) (0.0010)

W2(Π(dα|Xn), Π̃(dα|Xn))
0.3175 0.1807 0.1260 0.1303 0.1073
(0.0290) (0.0183) (0.0086) (0.0099) (0.0077)

W2(Π(dα|Xn),Π∗(dα|Xn))
0.8972 0.4259 0.2131 0.1583 0.1095
(0.0874) (0.0504) (0.0211) (0.0160) (0.0075)
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Contour Plots of Two Approximations
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Model with Nugget

▶ Based on results from Li, Sun and Zhu (2023+) JASA paper.

▶ We further consider the universal kriging model with nugget
Y (s) = m(s)⊤β + X (s) + ϵ(s), where X ∼ GP(0, σ2Kα,ν) and ϵ ∼ N(0, τ).

▶ Similar to the model without nugget, when d = 1, 2, 3, the microergodic
parameter θ = σ2α2ν can be consistently estimated, but σ2 and α cannot.

▶ In general, when d = 1, 2, 3, β, σ2, α do not have consistent estimators
under fixed-domain asymptotics, and hence, no posterior consistency.

▶ We focus on the Bayesian posterior distribution of the microergodic
parameter θ and the nugget parameter τ .
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Impact from Nugget
The nugget brings a big difference to the fixed-domain asymptotic theory.

▶ The nugget parameter τ itself can be estimated with the parametric rate of
O(n−1/2).

▶ However, the microergodic parameter θ = σ2α2ν no longer has the O(n−1/2)
rate.

▶ Chen et al. ’00 Stat. Sin. shows that for the 1d OU process example, the
convergence rate of the MLE of θ deteriorates from O(n−1/2) in the model
without nugget, to O(n−1/4) in the model with nugget.

▶ Tang et al. ’21 JRSSB shows that under some mathematical assumptions,
for Yn on the equispaced grids, for isotropic Matérn with general ν, the MLE

of θ converges at the rate O
(
n−

1
2(2ν/d+1)

)
.

▶ The convolution of the GP X with the Gaussian noise ϵ makes the
estimation more difficult. Furthermore, the MLEs of θ and τ have no closed
forms or even first-order approximation.
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Posterior Contraction Rates for Isotropic Matérn

Theorem 3 (L., Sun, Zhu 2023+ for Model with Nugget)
Under some mild assumptions, for a general class of stratified sampling designs
Sn in [0, 1]d , the posterior distribution of θ and τ satisfies that for any positive
sequence Ln → ∞ as n → ∞,

Π

(∣∣∣∣ θθ0 − 1

∣∣∣∣ < Lnn
− 1

2(4ν/d+1)+ϱ log n,

and

∣∣∣∣ ττ0 − 1

∣∣∣∣ < Lnn
− 1

2 log n
∣∣∣ Yn,Mn

)
→ 1,

as n → ∞ almost surely, where ϱ > 0 is a fixed number related to the prior and
can be arbitrarily small.
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New Proof Techniques
The main challenge for the model with nugget is that the likelihood function is
difficult to work with – no closed-form MLE, not even closed-form first-order
Taylor expansions for θ and τ .

We solve this parametric problem in a nonparametric way:

▶ We take the idea from the Schwarz’s posterior consistency theorem in
Bayesian nonparametrics, which needs two components:

(i) A consistent frequentist estimator that satisfies some concentration
inequalities with exponentially small tail probabilities;

(ii) An evidence lower bound that decays only polynomially in n as n → ∞.

▶ We derive a new evidence lower bound for strongly dependent data Yn that
satisfies (ii).

▶ We use the higher-order quadratic variation estimators of θ and τ ,
developed in Loh ’15 AOS, Loh, Sun and Wen ’21 AOS, Loh and Sun ’23
Bernoulli. Our posterior contraction rates are inherited from the rates of
these estimators.
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A Simulation Study

▶ Consider the 2d isotropic Matérn with ν = 1/2 and ν = 1/4; m(·) includes 6
monomials up to degree 2.

▶ The true parameters are θ0 = 5, α0 = 1, τ0 = 0.5,
β0 = (1,−1.5,−1.5, 2, 1, 2)⊤.

▶ Domain S = [0, 1]2; Sampling locations in Sn are the regular grid
((2i − 1)/(2m), (2j − 1)/(2m)) for i , j = 1, . . . ,m.

▶ Sample size n = m2 ≈ 400× 1.25k−1 for k = 1, . . . , 10.

▶ We draw observations Yn from GP(m(·)⊤β0, σ
2
0Kα0,ν) on Sn.

▶ Prior: β ∼ N(0, 106), θ ∼ InvGamma(0.1, 0.1), τ ∼ InvGamma(0.1, 0.1),
α ∼ InvGaussian(1, 1).

▶ We check how the marginal posterior distributions of θ and τ change with n,
as well as the posterior preditive MSEs.
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Posterior Contraction for ν = 1/2

5

10

400 484 625 784 961 1225 1521 1936 2401 3025
n

π(
θ|

Y
n,

 F
n)

0.4

0.8

1.2

1.6

6.0 6.5 7.0 7.5 8.0
log(n)

lo
g 

|θ
−

θ 0
|

0.2

0.3

0.4

0.5

0.6

0.7

400 484 625 784 961 1225 1521 1936 2401 3025
n

π(
τ|

Y
n,

 F
n)

0.00

0.02

0.04

0.06

6.0 6.5 7.0 7.5 8.0
log(n)

lo
g 

|τ
−

τ 0
|

Left column: Boxplots for the marginal posterior densities of θ and τ versus the
increasing sample size n.

Right column: Posterior means of |θ − θ0| and |τ − τ0| versus the increasing
sample size n, on the logarithm scale. 34 / 38
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Posterior Contraction for ν = 1/4
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Left column: Boxplots for the marginal posterior densities of θ and τ versus the
increasing sample size n.

Right column: Posterior means of |θ − θ0| and |τ − τ0| versus the increasing
sample size n, on the logarithm scale. 35 / 38
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Prediction MSE for ν = 1/2 and ν = 1/4
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Left panel: The prediction mean squared errors under both the Bayesian
posterior prediction and the oracle prediction based on the true parameters.

Right panel: Ratios of the Bayesian prediction mean squared error and the
oracle prediction mean squard error.
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Conclusion

▶ We have explored the Bayesian large sample properties for the covariance
parameters in the universal kriging model without and with nugget, under
fixed-domain asymptotics.

▶ There is no posterior contraction for the individual parameters σ2 and α with
the domain dimension d = 1, 2, 3.

▶ Posterior contraction rates are derived for the microergodic parameter θ and
the nugget τ .

▶ Bayesian posterior prediction performance remains asymptotically efficient
with misspecified α, theoretically and empirically.
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