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1. PROOF OF THEOREMS IN SECTION 3.4

Recall that the spatial regression model with a GP prior considered in Section
3.4 is

y(si) = w(si) + ε(si), ε(si) ∼ N(0, τ2),

w(·) ∼ GP{0, λ−1
n Cα(·, ·)}, i = 1, . . . , n.(1)

Writing this model for the n locations in S gives

y = w0 + ε, ε | S ∼ N(0, τ2 I), y | S ∼ N(w0, τ
2 I),(2)

where w0 = {w0(s1), . . . , w0(sn)} and ε = {ε(s1), . . . , ε(sn)} are the true value of
the residual spatial surface and white noise realized at the locations in S. We can
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write the model in a similar format for each data subset. Let s ∈ D be a location,
w0(s) be the true value of the residual spatial surface, Es∗ , E0, ES , Ey | S , and
Ey,w(s∗)| S respectively be the expectations with respect to the distributions of s∗,
(S,y), S, y given S, and (y, w(s∗)) given S, s∗.

In this section, we assume the Assumption A.5, so that the parameters (τ2,α)
are fixed at their truth and the same across all subsets. In this case, if w(s∗) is
a random variable that follows the DISK posterior for estimating w0(s∗), then
conditional on τ2 and α, w(s∗) has the density N(m, v), where

m =
1

k

k∑
j=1

cTj,∗(Cj,j + τ2λn
k I)−1 yj ,

v1/2 =
1

k

k∑
j=1

v
1/2
j , vj = λ−1

n

{
c∗,∗ − cTj,∗(Cj,j + τ2λn

k I)−1 cj,∗

}
,(3)

where c∗,∗ = Cα(s∗, s∗), and cTj,∗ = cTj (s∗) = [Cα(sj1, s
∗), . . . , Cα(sjm, s

∗)]. In the
proofs below, without confusion, we use the notation cj,∗ and cj(s

∗) interchange-
ably.

The Bayes L2-risk in estimating w0 using the DISK posterior is defined as

E0 Es∗
[
{w(s∗)− w0(s∗)}2

]
(i)
= ES

∫
D
Ey,w(s∗)| S

[
{w(s∗)− w0(s∗)}2

]
Ps(d s

∗),(4)

where (i) follows from Fubini’s theorem. Using bias-variance decomposition,

Ey,w(s∗)| S
[
{w(s∗)− w0(s∗)}2

]
= Ey,w(s∗)| S

[
w(s∗)− Ey,w(s∗)| S{w(s∗)}+ Ey,w(s∗)| S{w(s∗)} − w0(s∗)

]2
=
[
Ey,w(s∗)| S{w(s∗)} − w0(s∗)

]2
+ Ey,w(s∗)| S

[
w(s∗)− Ey,w(s∗)| S{w(s∗)}

]2
≡ bias2

y,w(s∗)| S{w(s∗)}+ vary,w(s∗)| S{w(s∗)}.

If cTj (·) = [cov{w(·), w(sj1)}, . . . , cov{w(·), w(sjm)}] = {Cα(sj1, ·), . . . , Cα(sjm, ·)},
cT (·) = {cT1 (·), . . . , cTk (·)}, wT

0j = {w0(sj1), . . . , w0(sjm)}, and wT
0 = {wT

01, . . . ,w
T
0k},

then the distribution of w(s∗) in (3) implies that

Ey,w(s∗)| S{w(s∗)} =
1

k

k∑
j=1

cTj (s∗)
(
Cj,j + τ2λn

k I
)−1

w0j

= cT∗ (kL+τ2λn I)
−1 w0,

vary,w(s∗)| S{w(s∗)} = vary | S [E{w(s∗) | y}] + Ey | S [var{w(s∗) | y}]

(i)
= vary | S

1

k

k∑
j=1

cTj,∗(Cj,j + τ2λn
k I)−1 yj

+ Ey | S [v(s∗)]

= τ2 cT (s∗)(kL+τ2λn I)
−2 c(s∗) + v(s∗),(5)

where L is a block-diagonal matrix with C1,1, . . . ,Ck,k along the diagonal. The
equality (i) holds due to the following reasons: (i) The true data follows y(sji) =
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w0(sji) + ε(sji) (j = 1, . . . , k and i = 1, . . . ,m), where ε(sji)’s are all independent
with variance τ2

0 = τ2 by Assumption A.5; (ii) {y1, . . . ,yk} conditional on S are
jointly independent since they are a disjoint (random) partition of the full dataset

by Assumption A.1, which implies that vary | S

(∑k
j=1 a

T
j yj

)
= τ2

∑k
j=1 a

T
j aj for

any vectors a1, . . . ,ak ∈ Rm.
Therefore, the Bayes L2-risk in (4) can be decomposed into three parts:

Es∗ ES{cT∗ (kL+τ2λn I)
−1 w0−w0(s∗)}2 + τ2 Es∗ ES

{
cT∗ (kL+τ2 I)−2 c∗

}
+ Es∗ ES {v(s∗)} ,(6)

which correspond to bias2, varmean and varDISK in Theorem 3.1.

1.1 Proof of Theorem 3.1

The next three sections find upper bounds for each of the three terms in (6).
The conclusion of Theorem 3.1 follows directly by combining the three upper
bounds.

1.1.1 An upper bound for the squared bias Consider the squared-bias term in
(6). For ease of presentation, assume that {s1, . . . , sn} are relabeled to

{s11, . . . , s1m, . . . , sk1, . . . , skm}

corresponding to the k subsets. Define ξsji(·) = Cα(sji, ·),

wT
0 = (〈w0, ξs11〉H, . . . , 〈w0, ξs1m〉H, . . . , 〈w0, ξsk1〉H, . . . , 〈w0, ξskm〉H)

≡ (wT
01, . . . ,w

T
0k),

cT (·) = (ξs11 , . . . , ξs1m , . . . , ξsk1 , . . . , ξskm)

= {cT1 (·), . . . , cTk (·)} ≡ (cT1 , . . . , c
T
k ).(7)

The following lemma provides an upper bound on the squared bias of the DISK
posterior.

Lemma 1.1 If Assumptions A.1–A.5 in the main paper hold, then for some
global constant A > 0,

Es∗ ES{cT∗ (kL+τ2λn I)
−1 w0−w0(s∗)}2 ≤ 8τ2λn

n
‖w0‖2H

+ ‖w0‖2H inf
d∈N

[
8n

τ2λn
ρ4 tr(Cα) tr(Cdα) + µ1

{
Ab(m, d, q)ρ2γ( τ

2λn
n )

√
m

}q]
.

Proof Based on the term cT∗ (kL+τ2λn I)
−1 w0 in (6), we define ∆j (j =

1, . . . , k) and ∆ as

∆j(·) = yTj (Cj,j + τ2λn
k I)−1 cj(·)− w0(·) ≡ w̃j(·)− w0(·),

∆(·) = yT (kL+τ2λn I)
−1 c(·)− w0(·) =

1

k

k∑
j=1

{w̃j(·)− w0(·)} =
1

k

k∑
j=1

∆j(·),

(8)
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4 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

so that Ey | S(∆) = wT
0 (kL+τ2λn I)

−1 c(·) − w0(·) = k−1
∑k

j=1 Ey | S(∆j) and

ES ‖Ey | S(∆)‖22 yields the bias2 term in (6). Jensen’s inequality implies that

‖Ey | S(∆)‖22 ≤ k−1
∑k

j=1 ‖Ey | S(∆j)‖22, so we only need to find upper bounds

for ‖Ey | S(∆j)‖22 (j = 1, . . . , k).
We can recognize that the optimization problem below has w̃j(·) defined in (8)

as its solution,

argminw∈H

m∑
i=1

{w(sji)− y(sji)}2

2τ2/k
+

1

2
λn‖w‖2H, j = 1, . . . , k.(9)

Differentiating (9) and taking expectations with respect to Ey | S implies that

m∑
i=1

Ey | S {w̃j(sji)− y(sji)} ξsji +
τ2λn
k

Ey | S(w̃j)

=

m∑
i=1

〈Ey | S(∆j), ξsji〉H ξsji +
τ2λn
k

Ey | S(w̃j) = 0,(10)

where the last inequality follows because y(sji) = 〈w0, ξsji〉H + ε(sji) and
〈Ey | S(ε), ξsji〉H = 〈0, ξsji〉H = 0. Using (8), ∆j = w̃j−w0, Ey | S(w̃j) = Ey | S(∆j)+
w0, and dividing by m in (10), we obtain that

1

m

m∑
i=1

〈Ey | S(∆j), ξsji〉H ξsji +
τ2λn
km

Ey | S(∆j) = −τ
2λn
km

w0.(11)

If we define the jth sample covariance operator as Σ̂j = 1
m

∑m
j=1 ξsji ⊗ ξsji , then

(11) reduces to (
Σ̂j + τ2λn

km I
)
Ey | S(∆j) = −τ

2λn
km

w0

=⇒ ‖Ey | S(∆j)‖H ≤ ‖w0‖H, j = 1, . . . , k,(12)

where the last inequality follows because Σ̂j is a positive semi-definite matrix.
The rest of the proof finds an upper bound for ‖Ey | S(∆j)‖22. We now reduce

this problem to a finite dimensional one indexed by a chosen d ∈ N. Let δj =
(δj1, . . . , δjd, δj(d+1), . . . , δj∞) ∈ L2(N) such that

Ey | S(∆j) =

∞∑
i=1

δjiϕi, δji = 〈Ey | S(∆j), ϕi〉L2(P),

‖Ey | S(∆j)‖22 =

∞∑
i=1

δ2
ji, j = 1, . . . , k.(13)

Define the vectors δ↓j = (δj1, . . . , δjd) and δ↑j = (δj(d+1), . . . , δj∞), so

‖Ey | S(∆j)‖22 = ‖ δ↓j ‖22 + ‖ δ↑j ‖22 and we upper bound ‖Ey | S(∆j)‖22 by sep-

arately upper bounding ‖ δ↓j ‖22 and ‖ δ↑j ‖22. Using the expansion Cα(s, s′) =∑∞
j=1 µjϕj(s)ϕj(s

′) for any s, s′ ∈ D, we have the following upper bound for

‖ δ↑j ‖22:
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‖ δ↑j ‖
2
2 =

µd+1

µd+1

∞∑
i=d+1

δ2
ji ≤ µd+1

∞∑
i=d+1

δ2
ji

µi

(i)

≤ µd+1‖Ey | S(∆j)‖2H
(ii)

≤ µd+1‖w0‖2H,

(14)

where (i) follows because ‖Ey | S(∆j)‖2H =
∑∞

i=1 δ
2
ji/µi and (ii) follows from (12).

We then derive an upper bound for ‖ δ↓j ‖22. Let M = diag(µ1, . . . , µd) ∈ Rd×d,
Φj ∈ Rm×d be a matrix such that

Φj
ih = ϕh(sji), i = 1, . . . ,m, h = 1, . . . , d, j = 1, . . . , k,(15)

w0 =
∑∞

i=1 θiϕi, and the tail error vector vj = (vj1, . . . , vjm)T ∈ Rm (j =
1, . . . , k) such that

vji =
∞∑

h=d+1

δjhϕh(sji), i = 1, . . . ,m.

For any g ∈ {1, . . . , d}, taking the H-inner product with respect ϕg in (12) yields〈(
1

m

m∑
i=1

ξsji ⊗ ξsji + τ2λn
km I

)
Ey | S(∆j), ϕg

〉
H

= −τ
2λn
km
〈w0, ϕg〉H = −τ

2λn
km

θg
µg
, j = 1, . . . , k.(16)

Expanding the left hand side in (16), we obtain that

1

m

m∑
i=1

〈ϕg, ξsji〉H Ey | S {∆j(sji)}+
τ2λn
km
〈ϕg,Ey | S(∆j)〉H

=
1

m

m∑
i=1

ϕg(sji)Ey | S {∆j(sji)}+
τ2λn
km

δjg
µg
.

The term 1
m

∑m
i=1 ϕg(sji)Ey | S {∆j(sji)} on the right hand side is

=
1

m

m∑
i=1

Φj
ig

d∑
h=1

δjhϕh(sji) +
1

m

m∑
i=1

Φj
ig

∞∑
h=d+1

δjhϕh(sji)

=
1

m

d∑
h=1

δjh

m∑
i=1

Φj
ig Φj

ih +
1

m

m∑
i=1

Φj
ig vji

=
1

m

d∑
h=1

δjh

(
ΦjT Φj

)
gh

+
1

m

m∑
i=1

(
ΦjT vj

)
g

=
1

m

(
ΦjT Φj δ↓

)
g

+
1

m

(
ΦjT vj

)
g
.(17)

Substitute (17) in (16) for g = 1, . . . , d to obtain that

1

m
ΦjT Φj δ↓j +

1

m
ΦjT vj +

τ2λn
km

M−1 δ↓j = −τ
2λn
km

M−1 θ↓
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1

m
ΦjT Φj +

τ2λn
km

M−1

)
δ↓j = −τ

2λn
km

M−1 θ↓− 1

m
ΦjT vj .(18)

The proof is completed by showing that the right hand side expression in (18)

gives an upper bound for ‖ δ↓j ‖22. Define Q =
(
I+ τ2λn

km M−1
)1/2

, then

1

m
ΦjT Φj +

τ2λn
km

M−1 = I+
τ2λn
km

M−1 +
1

m
ΦjT Φj − I

= Q

{
I+Q−1

(
1

m
ΦjT Φj − I

)
Q−1

}
Q

and using this in (18) gives

{
I+Q−1

(
1

m
ΦjT Φj − I

)
Q−1

}
Q δ↓j = −τ

2λn
km

Q−1 M−1 θ↓− 1

m
Q−1 ΦjT vj .

(19)

Now we define the P-measureable event

E1 =

{∣∣∣∣∣∣∣∣∣∣∣∣Q−1

(
1

m
ΦjT Φj − I

)
Q−1

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 1/2

}
,(20)

where |||·||| is the matrix operator norm. We have that I+Q−1
(

1
m ΦjT Φj − I

)
Q−1 �

(1/2) I whenever E1 occurs. Furthermore, when E1 occurs, (19) implies that

‖ δ↓j ‖
2
2 ≤ ‖Q δ

↓
j ‖

2
2 ≤ 4

∥∥∥∥τ2λn
km

Q−1 M−1 θ↓+
1

m
Q−1 ΦjT vj

∥∥∥∥2

2

≤ 8

∥∥∥∥τ2λn
km

Q−1 M−1 θ↓
∥∥∥∥2

2

+ 8

∥∥∥∥ 1

m
Q−1 ΦjT vj

∥∥∥∥2

2

,

where the last inequality follows because (a+ b)2 ≤ 2a2 + 2b2 for any a, b ∈ R.

Since E1 is P-measureable, ES
(
‖ δ↓j ‖22

)
= ES

{
‖ δ↓j ‖22 1 (E1)

}
+ES

{
‖ δ↓j ‖22 1 (Ec1)

}
and the previous display gives

ES
{
‖ δ↓j ‖

2
2 1 (E1)

}
≤ 8

∥∥∥∥τ2λn
km

Q−1 M−1 θ↓
∥∥∥∥2

2

+ 8ES
∥∥∥∥ 1

m
Q−1 ΦjT vj

∥∥∥∥2

2

.(21)

From Lemma 10 in Zhang et al. (2015), we have that under our assumptions A.1-
A.5, there exists a universal constant A > 0 that does not depend on λn, n, τ

2,
such that∥∥∥∥τ2λn

km
Q−1 M−1 θ↓

∥∥∥∥2

2

≤ τ2λn
km
‖w0‖2H,

ES
∥∥∥∥ 1

m
Q−1 ΦjT vj

∥∥∥∥2

2

≤ km

τ2λn
ρ4 tr(Cα) tr(Cdα)‖w0‖2H,

P (Ec1) ≤

{
Amax

(√
max(q, log d),

max(q, log d)

m1/2−1/q

)
ρ2γ( τ

2λn
km )

√
m

}q

=

{
Ab(m, d, q)ρ2γ( τ

2λn
km )

√
m

}q
.(22)
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Since µ1 ≥ µ2 ≥ . . . ≥ 0, the optimality condition in (12) implies that

∥∥Ey | S(∆j)
∥∥2

2
=
µ1

µ1

∞∑
i=1

δjiϕi ≤ µ1

∞∑
i=1

δji
µi
ϕi = µ1‖Ey | S(∆j)‖2H ≤ µ1‖w0‖2H.

(23)

Using the shorthand (22) and (23), we obtain that

ES
{
‖ δ↓j ‖

2
2 1 (Ec1)

}
≤ ES

{
‖Ey | S(∆j)‖22 1 (Ec1)

}
≤ P(Ec1)µ1‖w0‖2H.(24)

Combining (21) and (24) gives

ES(‖ δj ‖22) ≤8τ2λn
km

‖w0‖2H +
8km

τ2λn
ρ4 tr(Cα) tr(Cdα)‖w0‖2H

+

{
Ab(m, d, q)ρ2γ( τ

2λn
km )

√
m

}q
µ1‖w0‖2H.(25)

Finally, we use that ‖Ey | S(∆)‖22 ≤ k−1
∑k

j=1 ‖Ey | S(∆j)‖22 = k−1
∑k

j=1 ‖ δj ‖22
to obtain that

ES(‖Ey | S(∆)‖22) ≤ 8τ2λn
km

‖w0‖2H +
8km

τ2λn
ρ4 tr(Cα) tr(Cdα)‖w0‖2H

+

{
Ab(m, d, q)ρ2γ( τ

2λn
km )

√
m

}q
µ1‖w0‖2H

=
8τ2λn
n
‖w0‖2H + ‖w0‖2H

[
8n

τ2λn
ρ4 tr(Cα) tr(Cdα) + µ1

{
Ab(m, d, q)ρ2γ( τ

2λn
n )

√
m

}q]
,

(26)

where we have replaced km by n in the last equality. Taking the infimum over
d ∈ N leads to the proof.

1.1.2 An upper bound for the first variance term The following lemma provides
an upper bound the first part of the variance term in (6).

Lemma 1.2 If Assumptions A.1–A.5 in the main paper hold, then

τ2 Es∗ ES
{
cT∗ (kL+τ2λn I)

−2 c∗
}
≤(

2n

kλn
+

4‖w0‖2H
k

)
inf
d∈N

[
µd+1 + 12

n

τ2λn
ρ4 tr(Cα) tr(Cdα)

+

{
Ab(m, d, q)ρ2γ( τ

2λn
n )

√
m

}q ]
+

12τ2λn
kn

‖w0‖2H + 12
τ2λn
n

γ

(
τ2λn
n

)
.

Proof Continuing from (8), we start by finding an upper bound for Ey,w(s∗)| S ‖∆j‖2H,
which is required later to upper bound E0 ‖∆j‖2H. From (8) we have

Ey,w(s∗)| S ‖∆j‖2H ≤ 2Ey,w(s∗)| S ‖w̃j‖2H + 2‖w0‖2H.(27)
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8 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

An upper bound for Ey,w(s∗)| S ‖w̃j |2H gives the desired bound. Using the objective
in (9),

1

2
‖w̃j‖2H

(i)

≤
m∑
i=1

{w̃j(sji)− y(sji)}2

2τ2λn/k
+

1

2
‖w̃j‖2H

(ii)

≤
m∑
i=1

{w0(sji)− y(sji)}2

2τ2λn/k
+

1

2
‖w0‖2H,(28)

where (i) follows because the term inside the summation is non-negative and (ii)
follows because w̃j minimizes the objective. Since w(sji) − y(sji) = −ε(sji) and
Ey,w(s∗)| S{ε2(sji)} ≤ τ2 by Assumption A.2, (28) reduces to

Ey,w(s∗)| S ‖w̃j‖2H ≤
k

τ2λn

m∑
i=1

Ey,w(s∗)| S {ε(sji)}2 + ‖w0‖2H ≤
km

λn
+ ‖w0‖2H.(29)

Substituting (29) in (27) gives

Ey,w(s∗)| S ‖∆j‖2H ≤
2km

λn
+ 4‖w0‖2H.(30)

First notice that

τ2 Es∗ ES
{
cT∗ (kL+τ2λn I)

−2 c∗
}

=
1

k2

k∑
j=1

τ2 Es∗ ES
{
cTj∗

(
Cj,j + τ2λn

k I
)−2

cj∗

}
.(31)

and from (6) we have

τ2 Es∗ ES
{
cTj∗

(
Cj,j + τ2λn

k I
)−2

cj∗

}
= Es∗ ES vary,w(s∗)| S

{
cTj∗

(
Cj,j + τ2λn

k I
)−1

yj

}
≤ Es∗ ES Ey,w(s∗)| S

{
cTj∗

(
Cj,j + τ2λn

k I
)−1

yj −w0(s∗)

}2

= Es∗ ES Ey,w(s∗)| S ‖∆j‖22.(32)

Substituting (32) to (31) leads to

τ2 Es∗ ES
{
cT∗ (kL+τ2λn I)

−2 c∗
}
≤ Es∗

 1

k2

k∑
j=1

ES Ey,w(s∗)| S ‖∆j‖22

 .(33)

We then find an upper bound for ES Ey,w(s∗)| S ‖∆j‖22 by following similar steps
to the proof of Lemma 1.1. Let δj ∈ L2(N) be the expansion of ∆j in the basis
{ϕi}∞i=1, so that ∆j =

∑∞
i=1 δjiϕi (the δj sequence here is different from the one in

the previous section). Similar to Section 1.1.1, choose a fixed d ∈ N and truncate

∆j by defining ∆↓j , ∆↑j , δ
↓
j , and δ↑j as

∆↓j =
d∑
i=1

δjiϕi, ∆↑j =

∞∑
i=d+1

δjiϕi = ∆j −∆↓j ,
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δ↓j = (δj1, . . . , δjd), δ↑j = (δj(d+1), . . . , δj∞).

The orthonormality of {ϕi}∞i=1 implies that

ES Ey,w(s∗)| S ‖∆j‖22 = ES Ey,w(s∗)| S ‖∆
↓
j‖

2
2 + ES E0| S ‖∆

↑
j‖

2
2

= ES Ey,w(s∗)| S ‖ δ
↓
j ‖

2
2 + ES Ey,w(s∗)| S ‖ δ

↑
j ‖

2
2.(34)

First, the upper bound for Ey,w(s∗)| S ‖ δ
↑
j ‖22 follows from (14),

Ey,w(s∗)| S ‖∆
↑
j‖

2
2 =

∞∑
i=d+1

Ey,w(s∗)| S(δ2
ji)

= µd+1

∞∑
i=d+1

Ey,w(s∗)| S(δ2
ji)

µd+1
≤ µd+1

∞∑
i=d+1

Ey,w(s∗)| S(δ2
ji)

µi

= µd+1 Ey,w(s∗)| S ‖∆
↑
j‖

2
H ≤ µd+1 Ey,w(s∗)| S ‖∆j‖2H,

and using (30),

Ey,w(s∗)| S ‖∆
↑
j‖

2
2 ≤ µd+1

(
2km

λn
+ 4‖w0‖2H

)
.(35)

We now find an upper bound for ES Ey,w(s∗)| S ‖∆
↓
j‖22. Following Section 1.1.1,

define the error vector vj = (vj1, . . . , vjm)T ∈ Rm with vji =
∑∞

h=d+1 δjiϕh(sji)
(i = 1, . . . ,m), and M = diag(µ1, . . . , µd). From (9) and (10), w̃j(·) in (8) satisfies

1

m

m∑
i=1

〈ξsji , w̃j − w0 − ε〉H ξsji +
τ2λn
km

w̃j = 0.(36)

For any g ∈ {1, . . . , d}, taking the H-inner product with respect ϕg in (36) to
obtain that

1

m

m∑
i=1

〈ξsji ,∆j − ε〉H 〈ξsji , ϕg〉H +
τ2λn
km
〈∆j + w0, ϕg〉H =

1

m

m∑
i=1

{∆j(sji)− ε(sji)}ϕg(sji) +
τ2λn
km

δjg
µg

+
τ2λn
km

θg
µg

= 0,

1

m

m∑
i=1

{
d∑

h=1

δjhϕh(sji) +
∞∑

h=d+1

δjhϕh(sji)− ε(sji)

}
ϕg(sji) +

τ2λn
km

δjg
µg

= −τ
2λn
km

θg
µg
,

1

m

d∑
h=1

{
m∑
i=1

ϕh(sji)ϕg(sji)

}
δjh +

1

m

m∑
i=1

{vji − ε(sji)}ϕg(sji) +
τ2λn
km

δjg
µg

= −τ
2λn
km

θg
µg
,

1

m

(
ΦjT Φj δ↓j

)
g

+
1

m

{
ΦjT (vj − εj)

}
g

+
τ2λn
km

(M−1 δ↓j )g = −τ
2λn
km

(M−1 θ↓)g.

Writing this equation in the matrix form yields,(
1

m
ΦjT Φj +

τ2λn
km

M−1

)
δ↓j = −τ

2λn
km

M−1 θ↓− 1

m
ΦjT vj +

1

m
ΦjT εj .(37)
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Following Section 1.1.1, by defining Q = (I+ τ2λn
km M−1)1/2, (37) reduces to{

I+Q−1

(
1

m
ΦjT Φj − I

)
Q−1

}
Q δ↓j

= −τ
2λn
km

Q−1 M−1 θ↓− 1

m
Q−1 ΦjT vj +

1

m
Q−1 ΦjT εj .(38)

On the event E1 defined as in (20), we have that I+Q−1
(

1
m ΦjT Φj − I

)
Q−1 �

(1/2) I. Furthermore, when E1 occurs, (38) implies that

‖∆↓j‖
2
2 ≤ ‖Q δ

↓
j ‖

2
2 ≤ 4

∥∥∥∥−τ2λn
km

Q−1 M−1 θ↓− 1

m
Q−1 ΦjT vj +

1

m
Q−1 ΦjT εj

∥∥∥∥2

2

≤ 12

∥∥∥∥τ2λn
km

Q−1 M−1 θ↓
∥∥∥∥2

2

+ 12

∥∥∥∥ 1

m
Q−1 ΦjT vj

∥∥∥∥2

2

+ 12

∥∥∥∥ 1

m
Q−1 ΦjT εj

∥∥∥∥2

2

,

where the last inequality follows because (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 for any
a, b, c ∈ R. Since E1 is P-measureable,

Ey,w(s∗)| S

(
‖∆↓j‖

2
2

)
= Ey,w(s∗)| S

{
‖∆↓j‖

2
2 1 (E1)

}
+ Ey,w(s∗)| S

{
‖∆↓j‖

2
2 1 (Ec1)

}
.

If the event E1 occurs, then the upper bounds for the first term and the last two
terms in the last inequality are given by Lemmas 10 and 7 of Zhang et al. (2015),
respectively, and we have that∥∥∥∥τ2λn

km
Q−1 M−1 θ↓

∥∥∥∥2

2

≤ τ2λn
km
‖w0‖2H,

ES
∥∥∥∥ 1

m
Q−1 ΦjT vj

∥∥∥∥2

2

≤ km

τ2λn
ρ4 tr(Cα) tr(Cdα)

(
2km

λn
+ 4‖w0‖2H

)
,

ES Ey,w(s∗)| S

∥∥∥∥ 1

m
Q−1 ΦjT εj

∥∥∥∥2

2

≤ 1

m2

d∑
h=1

m∑
i=1

1

1 + τ2λn
km

1
µh

ES Ey,w(s∗)| S
{
ϕ2
h(sji)ε

2(sji)
}
.(39)

Since the error ε(·) and w(·) are independent, by Assumption A.4,

ES Ey,w(s∗)| S
{
ϕ2
h(sji)ε

2(sji)
}

= ES
{
ϕ2
h(sji)

}
Ey,w(s∗)| S

{
ε2(sji)

}
≤ τ2,

and the last inequality in (39) simplifies to

ES Ey,w(s∗)| S

∥∥∥∥ 1

m
Q−1 ΦjT εj

∥∥∥∥2

2

≤ τ2

m

d∑
h=1

1

1 + τ2λn
km

1
µh

≤ τ2

m
γ

(
τ2λn
km

)
.

Hence when the event E1 occurs,

ES Ey,w(s∗)| S

{
‖∆↓j‖

2
2 1(E1)

}
≤

12
τ2λn
km
‖w0‖2H + 12

km

τ2λn
ρ4 tr(Cα) tr(Cdα)

(
2km

λn
+ 4‖w0‖2H

)
+ 12

τ2

m
γ

(
τ2λn
km

)
.

(40)
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If the event E1 does not occur, then

ES Ey,w(s∗)| S

{
‖∆↓j‖

2
2 1(Ec1)

}
≤ ES

{
1(Ec1)Ey,w(s∗)| S ‖∆

↓
j‖

2
2

} (i)

≤ P(Ec1)

(
2km

λn
+ 4‖w0‖2H

)
(ii)
=

{
Ab(m, d, q)ρ2γ( τ

2λn
km )

√
m

}q (
2km

λn
+ 4‖w0‖2H

)
,(41)

where (i) follows from (30) and (ii) follows from (22). Substituting (40), (41),
and (35) in (34) implies that

ES Ey,w(s∗)| S
{
‖∆j‖22

}
≤ 12

τ2λn
km
‖w0‖2H + 12

τ2

m
γ

(
τ2λn
km

)
+[

µd+1 + 12
km

τ2λn
ρ4 tr(Cα) tr(Cdα)+{

Ab(m, d, q)ρ2γ( τ
2λn
km )

√
m

}q ](
2km

λn
+ 4‖w0‖2H

)
.(42)

Therefore, substituting (42) in (33) implies that

τ2 Es∗ ES
{
cT∗ (kL+τ2λn I)

−2 c∗
}
≤(

2n

kλn
+

4‖w0‖2H
k

)[
µd+1 + 12

n

τ2λn
ρ4 tr(Cα) tr(Cdα)+{

Ab(m, d, q)ρ2γ( τ
2λn
n )

√
m

}q ]
+

12τ2λn
kn

‖w0‖2H + 12
τ2

n
γ

(
τ2λn
n

)
.(43)

where we have replace km by n. Taking the infimum over d ∈ N leads to the
proof.

1.1.3 An upper bound for the second variance term The following lemma pro-
vides an upper bound the second part of the variance term in (6).

Lemma 1.3 If Assumptions A.1–A.5 in the main paper hold, then

Es∗ ES v(s∗) ≤ 3
τ2

n
γ

(
τ2λn
n

)
+ inf
d∈N

[{
4n

τ2λ2
n

tr(Cα) +
1

λn

}
tr(Cdα) + λ−1

n tr(Cα)

{
Ab(m, d, q)ρ2γ( τ

2

n )
√
m

}q]
.

Proof First we have the following relation between v and the subset variance
vj :

v(s∗) =
{
k−1

k∑
j=1

v
1/2
j (s∗)

}2
≤ 1

k

k∑
j=1

vj(s
∗)
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=
1

k

k∑
j=1

λ−1
n

{
Cα(s∗, s∗)− cTj (s∗)

(
Cj,j + τ2λn

k I
)−1

cj(s
∗)

}
.(44)

Since Cα(s, s′) =
∑∞

i=1 µiϕi(s)ϕi(s
′) for s, s′ ∈ D, we have

Cα(s∗, s∗) =
∞∑
a=1

µaϕ
2
a(s
∗), {cj(s∗)}i =

∞∑
a=1

µaϕa(sji)ϕa(s
∗), i = 1, . . . ,m.

These together with the orthogonality property of {ϕi}∞i=1 imply that

Es∗ ES {vj(s∗)} = λ−1
n

∞∑
a=1

µa Es∗ ϕ
2
a(s
∗)

− λ−1
n

m∑
i=1

m∑
i′=1

∞∑
a=1

∞∑
b=1

µaµb

{(
Cj,j + τ2λn

k I
)−1

}
i′i′′

× ES
[
ϕa(sji)ϕb(sji′)Es∗ {ϕa(s∗)ϕb(s∗)}

]
= λ−1

n tr(Cα)− λ−1
n ES

m∑
i=1

m∑
i′=1

∞∑
a=1

µ2
a

{(
Cj,j + τ2

k I
)−1

}
ii′
ϕa(sji)ϕa(sji′)

= λ−1
n

d∑
a=1

µa − λ−1
n ES

d∑
a=1

µ2
a

[
m∑
i=1

m∑
i′=1

{(
Cj,j + τ2λn

k I
)−1

}
ii′
ϕa(sji)ϕa(sji′)

]
+

λ−1
n tr(Cdα)− λ−1

n ES
∞∑

a=d+1

µ2
a

[
m∑
i=1

m∑
i′=1

{(
Cj,j + τ2λn

k I
)−1

}
i′i′′

ϕa(sji)ϕa(sji′)

]

(i)

≤ λ−1
n ES

d∑
a=1

{
µa − µ2

aϕ
jT

a (Cj,j + τ2λn
k I)−1ϕja

}
+ λ−1

n tr(Cdα),

(45)

where iath element of the matrix Φj (defined in the proof of Lemma 1.1) is

ϕa(sji), ϕ
j
a is the ath column of Φj , and (i) follows because

(
Cj,j + τ2λn

k I
)

is a

positive definite matrix and ϕj
T

a

(
Cj,j + τ2λn

k I
)−1

ϕja ≥ 0.

Let M = diag(µ1, . . . , µd) and Q =
(
I+ τ2λn

km M−1
)1/2

as defined in the proofs

of Lemmas 1.1 and 1.2. Define a d×dmatrix B ≡M−MΦjT
(
Cj,j + τ2λn

k I
)−1

Φj M,

so that from (45),

tr(B) =

d∑
a=1

{
µa − µ2

aϕ
jT

a

(
Cj,j + τ2λn

k I
)−1

ϕja

}
,

Es∗ ES {vj(s∗)} ≤ λ−1
n ES tr(B) + λ−1

n tr(Cdα).(46)

Let

Cj,j = Φj MΦjT + Φj↑M↑Φj↑T ≡ Φj MΦjT +C↑j,j ,

M↑ = diag(µd+1, . . . , µ∞), Φj↑ = [ϕjd+1, · · · ,ϕ
j
∞],
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then the Woodbury formula (Harville, 1997) and the definition of Q imply that

B =

{
M−1 + ΦjT

(
C↑j,j + τ2λn

k I
)−1

Φj

}−1

=
τ2λn
km

{
I+

τ2λn
km

M−1 +
1

m
ΦjT

(
k

τ2λn
C↑j,j + I

)−1
Φj − I

}−1

=
τ2λn
km

Q−2

[
I+Q−1

{
1

m
ΦjT

(
k

τ2λn
C↑j,j + I

)−1
Φj − I

}
Q−1

]−1

.(47)

Define the event E2 =
{

k
τ2λn

C↑j,j �
1
4 I
}

. Since the matrix C↑j,j is nonnegative

definite, we have the relation that{
tr
(

k
τ2λn

C↑j,j

)
≤ 1

4

}
⊆
{

smax

(
k

τ2λn
C↑j,j

)
≤ 1

4

}
⊆ E2,

smax(A) is the maximum eigenvalue of the square matrix A. Therefore, by Markov’s
inequality, we have that

P(Ec2) ≤ P
{

tr
(

k
τ2λn

C↑j,j

)
>

1

4

}
≤ 4ES tr

(
k

τ2λn
C↑j,j

)
=

4k

τ2λn

m∑
i=1

∞∑
a=d+1

µa ES ϕ2
a(sji) =

4km

τ2λn
tr
(
Cdα

)
.(48)

Now on the event E1 ∩E2 (with E1 defined in (20)), we have that

I+Q−1

{
1

m
ΦjT

(
k

τ2λn
C↑j,j + I

)−1
Φj − I

}
Q−1

(i)

� I+Q−1

{
1

m
ΦjT

(
1

4
I+ I

)−1

Φj − I

}
Q−1

= I−1

5
Q−2 +

4

5
Q−1

{
1

m
ΦjT Φj − I

}
Q−1

(ii)

� I−1

5
I−4

5
· 1

2
I =

2

5
I,(49)

where (i) follows on the event E2, and (ii) holds on the event E1 and from the
fact Q−2 � I.

Therefore, by combining (48), (49), and the upper bound for P(Ec1) given in
(22) under our assumptions, we obtain that

ES tr(B)

≤ ES {tr(B)1(E1 ∩E2)}+ ES [tr(B) {1(Ec1) + 1(Ec2)}]
(i)

≤ 5

2

τ2λn
km

tr
(
Q−2

)
+ tr(Cα) {P(Ec1) + P(Ec2)}

(ii)

≤ 3
τ2λn
n

γ

(
τ2λn
n

)
+

4n

τ2λn
tr(Cα) tr(Cdα)

+ tr(Cα)

{
Ab(m, d, q)ρ2γ( τ

2λn
n )

√
m

}q
,(50)
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where (i) follows from (49), and (ii) follows from (48), (22), and by replacing km
with n.

(45), (47), and (50) together yield

Es∗ ES {vj(s∗)}

≤ λ−1
n ES tr(B) + λ−1

n tr
(
Cdα

)
≤ 3

τ2

n
γ

(
τ2λn
n

)
+

{
4n

τ2λ2
n

tr(Cα) +
1

λn

}
tr(Cdα)

+ λ−1
n tr(Cα)

{
Ab(m, d, q)ρ2γ( τ

2

n )
√
m

}q
.(51)

Since the righthand side of (51) does not depend on j, a further upper bound
for (44) is given by

Es∗ ES {v(s∗)} ≤ 1

k

k∑
j=1

Es∗ ES {vj(s∗)}

≤ 3
τ2

n
γ

(
τ2λn
n

)
+

{
4n

τ2λ2
n

tr(Cα) +
1

λn

}
tr(Cdα)

+ λ−1
n tr(Cα)

{
Ab(m, d, q)ρ2γ( τ

2

n )
√
m

}q
.(52)

Taking the infimum over d ∈ N leads to the proof.

1.2 Proof of Theorem 3.2

The proof of parts (i)–(iv) are as follows.

(i) Since d∗ is a constant integer and k = o(n), we can take m sufficiently large
such that n ≥ m > max(d∗, eq). In the upper bounds of Theorem 3.1, we choose
d = n in every infimum to make the upper bounds larger. This implies that
tr
(
Cdα
)

= 0, µd+1 = 0, and b(m, d, q) ≤ log n. Also notice that in this case,
γ(a) ≤ d∗ for any a > 0. Then, with λn = 1, Theorem 3.1 implies that

Es∗ ES Ey,w(s∗)| S{w(s∗)− w0(s∗)}2

≤
(
8‖w0‖2H + 12k−1‖w0‖2H + 15d∗

) τ2

n

+

{
µ1‖w0‖2H +

2n

k
+

4‖w0‖2H
k

+ tr(Cα)

}(
Aρ2d∗ log n√

n/k

)q

≤ O(n−1) + {1 + o(1)}
2
(
Aρ2d∗ log n

)q
kr/2−1

nr/2−1

= O(n−1),

where the last equality follows from the condition on k.

(ii) In the upper bounds of Theorem 3.1, we choose d = n2 in every infimum for
sufficiently large n such that log d = 2 log n > q. Then

µd+1 ≤ c1µ exp
(
−c2µn

2κ
)

= O(n−4),
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b(m, d, q) ≤ max

(√
log d,

log d

m1/2−1/q

)
≤ log d ≤ 2 log n,

tr
(
Cdα

)
=

∞∑
i=n2+1

µi ≤
∞∑

i=n2+1

c1µ exp (−c2µi
κ) ≤ c1µ

∫ ∞
n2

exp (−c2µz
κ) dz

= c1µ

∫ ∞
n2κ

1

κ
t
1
κ
−1 exp (−c2µt) dt,(53)

where in the last step, we use the change of variable t = zκ. If κ ≥ 1, then since
t ≥ n2κ ≥ 1, we have t

1
κ
−1 ≤ 1. If 0 < κ < 1, then there exists a large n0 ∈ N

that depends on only c2µ and κ, such that for all n ≥ n0 and t ≥ n2κ, we have

t
1
κ
−1 ≤ exp(c2µt/2). Therefore, in all cases,

tr
(
Cdα

)
≤ c1µ

κ

∫ ∞
n2κ

exp (−c2µt/2) dt =
2c1µ

c2µκ
exp

(
−c2µn

2κ/2
)

= O(n−4).(54)

Let d1 =
(

2
c2µ

log n
)1/κ

. For sufficiently large n, with λn ≡ 1, γ(τ2λn/n) can be

bounded as

γ(τ2λn/n) = γ(τ2/n) =

∞∑
i=1

µi

µi + τ2

n

=

bd1c+1∑
i=1

µi

µi + τ2

n

+

∞∑
i=bd1c+2

µi

µi + τ2

n

≤ d1 + 1 +
n

τ2

∞∑
i=bd1c+1

c1µ exp (−c2µi
κ)

≤ d1 + 1 +
n

τ2

∫ ∞
d1

c1µ exp (−c2µz
κ) dz

= d1 + 1 +
nc1µ

τ2κ

∫ ∞
dκ1

t
1
κ
−1 exp (−c2µt) dt

≤ d1 + 1 +
nc1µ

τ2κ

∫ ∞
dκ1

exp (−c2µt/2) dt

= d1 + 1 +
nc1µ

c2µτ2κ
exp (−c2µd

κ
1/2)

=
(

2
c2µ

log n
)1/κ

+ 1 +
c1µ

c2µτ2κ
= O

(
(log n)1/κ

)
.(55)

Therefore, from (53), (54), (55), and the bounds in Theorem 3.1, we obtain that

Es∗ ES Ey,w(s∗)| S{w(s∗)− w0(s∗)}2

≤ O(n−1) + 15
τ2

n
γ

(
τ2

n

)
+ {1 + o(1)}2n

k

{
Ab(m, d, q)ρ2γ( τ

2

n )
√
m

}q

≤ O(n−1) +O
(

(log n)1/κ/n
)

+O(1) · n
k

{
(log n)1/κ · log n√

n/k

}q

≤ O
(

(log n)1/κ/n
)

+O(1) · k
q
2
−1(log n)

q(1+κ)
κ

n
q
2
−1

= O
(

(log n)1/κ/n
)
,

imsart-sts ver. 2014/10/16 file: Supplementary.tex date: September 17, 2022



16 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

where the last equality follows from the condition on k.

(iii) Let λn = 1. In the upper bounds of Theorem 3.1, we choose d = bn3/(2η−1)c
in every infimum for sufficiently large n such that log d ≥ log

(
n

3
2η−1 − 1

)
> q.

Then

µd+1 ≤ cµn−6η/(2η−1) ≤ cµn−3,

tr
(
Cdα

)
=

∞∑
i=d+1

µi ≤
∞∑

i=d+1

cµi
−2η ≤ cµ

∫ ∞
d

1

z2η
dz

=
cµ

2η − 1
d−(2η−1) ≤ cµ

2η − 1
n−3,

b(m, d, q) ≤ max

(√
log d,

log d

m1/2−1/q

)
≤ log d ≤ 3

2η − 1
log n.(56)

γ(τ2λn/n) = γ(τ2/n) can be bounded as

γ(τ2/n) =
∞∑
i=1

1

1 + τ2

nµi

≤
∞∑
i=1

1

1 + τ2i2η

cµn

≤ n1/(2η) + 1 +
cµn

τ2

∞∑
i=bn1/(2η)c+2

1

i2η

≤ n1/(2η) + 1 +
cµn

τ2

∫ ∞
n1/(2η)

1

z2η
dz

= n1/(2η) + 1 +
cµn

τ2(2η − 1)n(2η−1)/(2η)
≤
(

cµ
τ2(2η − 1)

+ 1

)
n1/(2η).(57)

From (56), (57), and the bounds in Theorem 3.1, we obtain that

Es∗ ES Ey,w(s∗)| S{w(s∗)− w0(s∗)}2

≤ O(n−1) + 15
τ2

n
γ

(
τ2

n

)
+ {1 + o(1)}2n

k

{
Ab(m, d, q)ρ2γ( τ

2

n )
√
m

}q

≤ O(n−1) +
15τ2

(
2 +

cµ
τ2(2η−1)

)
n1/(2η)

n

+ {1 + o(1)}2n

k

3Aρ2
(

2 +
cµ

τ2(2η−1)

)
n1/(2η) log n

(2η − 1)
√
n/k


q

≤ O(n−1) +O
(
n
− 2η−1

2η

)
+O(1) · k

q
2
−1(log n)q

n
q
2
−1− q

2η

= O
(
n
− 2η−1

2η

)
,

where the last equality follows from the condition on k.

(iv) Now let λn = c1n
1/(2η+1). In the upper bounds of Theorem 3.1, we choose

d = bn3/(2η−1)c in every infimum for sufficiently large n, in the same way as in
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Part (iii). Therefore, (56) still holds true. Furthermore, since λn = c1n
1/(2η+1),

we have that

γ(τ2λn/n) =
∞∑
i=1

(
1 +

τ2λn
nµi

)−1

≤
∞∑
i=1

(
1 +

τ2c1i
2η

cµn2η/(2η+1)

)−1

≤ n1/(2η+1) + 1 +
cµn

2η
2η+1

τ2c1

∞∑
i=bn

1
2η+1 c+2

1

i2η

≤ n1/(2η+1) + 1 +
cµn

2η
2η+1

τ2c1

∫ ∞
n

1
2η+1

1

z2η
dz

= n1/(2η+1) + 1 +
cµn

2η
2η+1

τ2c1(2η − 1)n(2η−1)/(2η+1)

≤
(

cµ
τ2(2η − 1)

+ 1

)
n

1
2η+1 .(58)

From (56), (58), and the bounds in Theorem 3.1, we obtain that

Es∗ ES Ey,w(s∗)| S{w(s∗)− w0(s∗)}2

≤ O(λn/n) + 15
τ2

n
γ

(
τ2λn
n

)
+ {1 + o(1)} 2n

kλn

{
Ab(m, d, q)ρ2γ( τ

2λn
n )

√
m

}q
≤ O

(
n
− 2η

2η+1

)
+ 15τ2

(
cµ

τ2(2η − 1)
+ 1

)
n
− 2η

2η+1

+ {1 + o(1)}2n
2η

2η+1

k

3Aρ2
(

cµ
τ2(2η−1)

+ 1
)
n

1
2η+1 log n

(2η − 1)
√
n/k


q

≤ O(n−1) +O
(
n
− 2η

2η+1

)
+O(1) · k

q
2
−1(log n)q

n
(2η−1)q
2(2η+1)

− 2η
2η+1

= O
(
n
− 2η

2η+1

)
,

where the last equality follows from the condition on k.

1.3 Extension to Unknown τ 2

In this section, we extend the convergence rates of Bayes L2-risk in Theorem
3.2 to the case where the covariance function is parameterized in a different way
and is scaled by τ2, such that τ2 is unknown and assigned a prior distribution. We
modify the GP prior on w(·) in Equation (11) of the main text to the following

y(si) = w(si) + ε(si), ε(si) ∼ N
(
0, τ2

)
,

w(·) ∼ GP{0, λ−1
n τ2Cα(·, ·)};(59)

that is, Cα is scaled with τ2, the same as the error variance. This parameterization
has also been used in the application of GP models before. We maintain the same
eigen-decomposition of the kernel Cα0(·, ·) and the Assumptions A.3 and A.4 as
before. We assume that α is still fixed at its truth α0, but now impose a prior
on τ2.
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A.5′ (Prior) For each of the k subsets, τ2 is assigned a prior with a bounded
support in (0, τ2] for some finite constants τ2 > 0.

Let Eτ2|y and Ew(s∗)|τ2,y,s∗ be the expectations of {τ2
j : j = 1, . . . , k} given y,

and w(s∗) given y, {τ2
j : j = 1, . . . , k}, and s∗, respectively, where τ2

j is drawn

from the posterior of τ2 given yj from the jth subset posterior. Then the Bayes
L2-risk of the DISK posterior for w(·) can be written as

Es∗ ES Ey | S Eτ2|y Ew(s∗)|y,τ2,s∗ {w(s∗)− w0(s∗)}2 .(60)

Then, we have the following corollary when a prior distribution is imposed on τ2.

Corollary 1.1 If Assumptions A.1 – A.4 and A.5′ hold, then all the convergence
rates in the four cases of Theorem 3.2 still hold true for the Bayes L2-risk given
in (62).

Proof [Proof of Corollary 1.1] We proceed to prove a similar bound for the Bayes
L2 risk to Theorem 3.1 in the main paper under A.5′. By A.5′, we need to account
for the randomness in the posterior of p(τ2

j |yj) across j = 1, . . . , k. Based on the

model (59), we can see that conditional on the subset posterior draws of τ2
j from

the subset posterior p(τ2|yj) for j = 1, . . . , k, the DISK posterior draw w(s∗)
follows the distribution N(m, v), with

m =
1

k

k∑
j=1

cTj,∗
{
Cj,j +λn

k I
}−1

yj ,

v1/2 =
1

k

k∑
j=1

v
1/2
j , vj =

τ2
j

λn

{
c∗,∗ − cTj,∗

(
Cj,j +λn

k I
)−1

cj,∗

}
,(61)

where cj,∗,Cj,j , c∗,∗ are defined similarly to those in (3) according to the base
kernel Cα0 . Notice that m does not depend on τ2

j due to the rescaled kernel

τ2Cα0 in (59).
Let Es∗ , E0, ES , Ey | S , and Ew(s∗)|y,τ2 , Eτ2|y respectively be the expectations

with respect to the distributions of s∗, (S,y), S, y given S, w(s∗) given y and
{τ2
j : j = 1, . . . , k}, and {τ2

j : j = 1, . . . , k} given y. Then based on A.5′, the
Bayes L2-risk of the DISK posterior for w(·) can be written as

Es∗ ES Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)− w0(s∗)}2 .(62)

To upper bound (62), we apply the law of total variance repeatedly to obtain
that

Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)− w0(s∗)}2

=
[
Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)} − w0(s∗)

]2
+ vary,τ2,w(s∗)| S {w(s∗)}

=
[
Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)} − w0(s∗)

]2
+ vary | S

[
Eτ2|y Ew(s∗)|y,τ2 {w(s∗)}

]
+ Ey | S

(
varτ2|y

[
Ew(s∗)|y,τ2 {w(s∗)}

])
+ Ey | S

(
Eτ2|y

[
varw(s∗)|y,τ2 {w(s∗)}

])
.(63)
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Using (61), we can derive that[
Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)} − w0(s∗)

]2
=

k−1
k∑
j=1

cTj,∗
{
Cj,j +λn

k I
}−1

w0j −w0(s∗)

2

,

=
{
cT∗ (kL+λn I)

−1 w0−w0(s∗)
}2
,(64)

vary | S
[
Eτ2|y Ew(s∗)|y,τ2 {w(s∗)}

]
= vary | S

k−1
k∑
j=1

cTj,∗
{
Cj,j +λn

k I
}−1

yj


= τ2

0 cT (s∗)(kL+λn I)
−2 c(s∗),(65)

Ey | S
(
varτ2|y

[
Ew(s∗)|y,τ2 {w(s∗)}

])
= Ey | S

varτ2|y

1

k

k∑
j=1

cTj,∗
{
Cj,j +λn

k I
}−1

yj

 = 0,(66)

Ey | S
(
Eτ2|y

[
varw(s∗)|y,τ2 {w(s∗)}

])
= Ey | S

{
Eτ2|y(v)

}
,(67)

where (64) and (67) follow from (61) and (5), (65) follows similarly to (5), and
(66) is zero because m does not depend on τ2

j (j = 1, . . . , k). Next, we find upper
bound for (64), (65), and (67), respectively.

First, we notice that (64) has the same expression as (5) by setting τ2 = 1 in
(5). Therefore, the proof and the conclusion of Lemma 1.1 still works as before,
by setting τ2 = 1, i.e.

Es∗ ES{cT∗ (kL+λn I)
−1 w0−w0(s∗)}2 ≤ 8λn

n
‖w0‖2H

+ ‖w0‖2H inf
d∈N

[
8n

λn
ρ4 tr(Cα) tr(Cdα) + µ1

{
Ab(m, d, q)ρ2γ(λnn )

√
m

}q]
.(68)

Second, we notice that (65) differs from (5) only with the τ2 outside replaced
by the true error variance τ2

0 , and that τ2 = 1 in (kL+τ2λn I)
−2. We carefully

inspect and modify the proof of Lemma 1.2 to obtain that

τ2
0 Es∗ ES

{
cT∗ (kL+λn I)

−2 c∗
}
≤(

2τ2
0n

kλn
+

4‖w0‖2H
k

)
inf
d∈N

[
µd+1 + 12

n

λn
ρ4 tr(Cα) tr(Cdα)

+

{
Ab(m, d, q)ρ2γ(λnn )

√
m

}q ]
+

12λn
kn
‖w0‖2H + 12

τ2
0λn
n

γ

(
λn
n

)
.(69)

Third, v (and vj) in (61) differs from v (and vj) in (3) only in that (61) has

a τ2
j factor outside and it has τ2 = 1 inside

(
Cj,j + τ2λn

k I
)−1

in (3). Using the

expression of vj in (61) and the upper bound τ2
j ≤ τ2 in A.5′, we carefully inspect

and modify the proof of Lemma 1.2 to obtain that

Es∗ ES Ey | S Eτ2|y(v)
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≤ 1

k

k∑
j=1

Es∗ ES Ey | S Eτ2|y(vj)

≤ τ2λ−1
n

k

k∑
j=1

Es∗ ES
{
c∗,∗ − cTj,∗

(
Cj,j +λn

k I
)−1

cj,∗

}

≤ τ2

{
3

n
γ

(
λn
n

)
+ inf
d∈N

[{
4n

λ2
n

tr(Cα) +
1

λn

}
tr(Cdα)

+ λ−1
n tr(Cα)

{
Ab(m, d, q)ρ2γ( 1

n)
√
m

}q ]}
.(70)

Now we can combine (62), (63), (64), (65), (66), (67), (68), (69), and (70) to
obtain that

Es∗ ES Ey | S Eτ2|y Ew(s∗)|y,τ2 {w(s∗)− w0(s∗)}2

≤ 8λn
n
‖w0‖2H + ‖w0‖2H inf

d∈N

[
8n

λn
ρ4 tr(Cα) tr(Cdα) + µ1

{
Ab(m, d, q)ρ2γ(λnn )

√
m

}q ]

+

(
2τ2

0n

kλn
+

4‖w0‖2H
k

)
inf
d∈N

[
µd+1 + 12

n

τ2λn
ρ4 tr(Cα) tr(Cdα)

+

{
Ab(m, d, q)ρ2γ(λnn )

√
m

}q ]
+

12λn
kn
‖w0‖2H + 12

τ2
0λn
n

γ

(
λn
n

)

+ τ2

{
3

n
γ

(
λn
n

)
+ inf
d∈N

[{
4n

λ2
n

tr(Cα) +
1

λn

}
tr(Cdα)

+ λ−1
n tr(Cα)

{
Ab(m, d, q)ρ2γ( 1

n)
√
m

}q ]}
.

(71)

We notice that the upper bound in (71) differs from the upper bound in Theo-
rem 3.1 only by some multiplicative constants in each term and inside the γ(·)
functions. In the previous proof of Theorem 3.2, these constants will only change
the multiplicative constants and do not affect the convergence rates of the Bayes
L2-risk of w(·). As a result, the convergence rate results of Theorem 3.2 continue
to hold for (71) under the various conditions specified in the different cases of
Theorem 3.2. This completes the proof.

2. SAMPLING FROM THE SUBSET POSTERIOR DISTRIBUTIONS
USING A FULL-RANK GP PRIOR

Recall the univariate spatial regression model for the data observed at the ith
location in subset j using a GP prior is

y(sji) = x(sji)
T β+w(sji) + ε(sji), j = 1, . . . , k, i = 1, . . . ,mj .(72)

For the simulations and real data analysis, we assume that Cα(sji, sji′) = σ2ρ(sji, sji′ ;φ)
and Dα(sji, sji′) = 1(i = i′)τ2, where σ2, φ, τ2 are positive scalars, ρ(·, ·) is a
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known positive definite correlation function, and 1(i = i′) = 1 if i = i′ and 0
otherwise. This implies that α = (σ2, τ2, φ). The model in (72) is completed by
putting priors on the unknown parameters. The priors distributions on β and α
have the following forms:

β ∼ N(µβ,Σβ), σ2 ∼ IG(aσ, bσ), τ2 ∼ IG(aτ , bτ ), φ ∼ U(aφ, bφ),(73)

where µβ,Σβ, aσ, bσ, aτ , bτ , aφ, and bφ are constants, N represents the multi-
variate Gaussian distribution of appropriate dimension, IG(a, b) represents the
Inverse-Gamma distribution with mean a/(b+1) and variance b/{(a−1)2(a−2)}
for a > 2, and U(a, b) represents the uniform distribution on the interval [a, b].
The spatial process w(·) is assigned a GP prior as

w(·) | σ2, φ ∼ GP{0, Cα(·, ·)}, Cα(·, ·) = σ2ρ(·, ·;φ).(74)

The training data {x(sj1), y(sj1)}, . . . , {x(sjmj ), y(sjmj )} are observed at the mj

spatial locations and Sj = {sj1, . . . , sjmj} contains the locations in subset j.
Consider the setup for predictions and inferences on subset j. Let S∗ = {s∗1, . . . , s∗l }

be the set of locations such that S∗ ∩Sj = ∅. If wT
j = {w(sj1), . . . , w(sjmj )} and

εTj = {ε(sj1), . . . , ε(sjmj )}, then (72) implies that wj apriori followsN{0,Cj,j(α)},
where Cj,j(α) is the block of C(α) that corresponds to the locations in Sj , and εj
follows N(0, τ2 I), where I is the identity matrix of appropriate dimension. Given
the training data on subset j, our goal is to predict y∗j = {y(s∗1), . . . , y(s∗l )} and
to perform posterior inference on w∗j = {w(s1), . . . , w(sl)}, βj , and αj , where the
subscript j denotes that the predictions and inferences condition only on sub-
set j. Standard Markov chain Monte Carlo (MCMC) algorithms exist to achieve
this goal (Banerjee et al., 2014), but conditioning only on subset j ignores the
information contained in the other (k − 1) subsets, resulting in greater posterior
uncertainty compared to the full data posterior distribution.

Stochastic approximation is an approach for proper uncertainty quantification
that modifies the likelihood used for sampling from the subset posterior distribu-
tions for predictions and inferences. The likelihoods for β, α, and wj are raised
to the power of k to compensate for the data in the other (k − 1) subsets, where
we assume that m1 = · · · = mk = m and k = n/m. First, consider stochastic
approximation for the likelihood of β and α. Integrating out wj in (72) gives

yj = Xj β+ηj , ηj ∼ N{0,Cj,j(α) + τ2 I},(75)

where Xj = [x(sj1) : · · · : x(sjm)]T ∈ Rm×p is the design matrix for subset j. The
likelihood of β and α given yj , Xj after stochastic approximation is

{lj(β,α)}k = (2π)−mk/2|Cj,j(α) + τ2 I |−k/2e−
k
2 (yj −Xj β)

T{Cj,j(α)+τ2 I}−1
(yj −Xj β).

(76)

The prior distribution for β in (73), the pseudo likelihood in (76), and Bayes rule
implies that the density of the jth subset posterior distribution for β given the
rest is

β | rest ∝ e−
1
2(yj −Xj β)

T
[k−1{Cj,j(α)+τ2 I}]−1

(yj −Xj β) e−
1
2(β−µβ)

T
Σ−1

β (β−µβ).
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This implies that the complete conditional distribution of βj has densityN(mj β,Vj β),
where

Vj β =
[
kXT

j {Cj,j(α) + τ2 I}−1 Xj + Σ−1
β

]−1
,

mj β = Vj β

[
kXT

j

{
Cj,j(α) + τ2 I

}−1
yj + Σ−1

β µβ

]
.(77)

If the density of the prior distribution for α is assumed to be π(σ2)π(τ2)π(φ),
where the prior densities π(σ2), π(τ2), and π(φ) are defined in (73), then the
pseudo likelihood in (76), and Bayes rule implies that the density of the jth
subset posterior distribution for α given the rest is

α | rest ∝ |Cj,j(α) + τ2 I |−k/2e−
1
2(yj −Xj β)

T
[k−1{Cj,j(α)+τ2 I}]−1

(yj −Xj β)(
σ2
)−aσ−1

e−bσ/σ
2 (
τ2
)−aτ−1

e−bτ/τ
2
(bφ − aφ)−1.(78)

This density does not have a standard form, so we use a Metropolis-Hastings step
with a normal random walk proposal and sample αj using the metrop function
in the R package mcmc (R Development Core Team, 2017).

Second, we derive the posterior predictive distribution of w∗j given the rest.
The GP prior on (wj ,w

∗
j ) implies that the density of w∗j given wj is

w∗j | wj ∼ N
{
C∗,j(α)C−1

j,j (α)wj ,C∗,∗(α)−C∗,j(α)C−1
j,j (α)Cj,∗(α)

}
,(79)

where cov(w∗j ,w
∗
j ) = C∗,∗(α), cov(w∗j ,wj) = C∗,j(α), and cov(wj ,w

∗
j ) = Cj,∗(α).

Given α, β, yj , and Xj , (72) implies that the likelihood of wj after stochastic
approximation is

{lj(wj)}k = (2π)−mk/2|τ2 I |−k/2e−
k

2τ2
(yj −Xj β−wj)

T
(yj −Xj β−wj).(80)

The GP prior on wj , the pseudo likelihood in (80), and Bayes rule implies that
the density of the subset posterior distribution for wj given the rest is

wj | rest ∝ e−
1

2τ2/k
(yj −Xj β−wj)

T
(yj −Xj β−wj)

e−
1
2
wT
j C−1

j,j (α)wj .

This implies that the complete conditional distribution of wj has densityN(mwj ,Vwj ),
where

Vwj =
{
C−1
j,j (α) + k

τ2
I
}−1

, mwj =
k

τ2
Vwj (yj −Xj β);(81)

therefore, (79) and (81) imply that the complete conditional distribution of w∗j
has density N(mw∗j

,Vw∗j
), where

mw∗j
= E(w∗j | rest) = C∗,j(α)C−1

j,j (α)E(wj | rest)

= C∗,j(α)
{
Cj,j(α) + τ2

k I
}−1

(yj −Xj β)(82)

and

Vw∗j
= var(w∗j | rest) = E

{
var(w∗j | wj) | rest

}
+ var

{
E(w∗j | wj) | rest

}
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= C∗,∗(α)−C∗,j(α)C−1
j,j (α)Cj,∗(α) + C∗,j(α)C−1

j,j (α)Vwj C
−1
j,j (α)Cj,∗(α).

(83)

Finally, we derive the posterior predictive distribution of y∗j given the rest. If

βj , τ
2
j , w∗j are the samples from the jth subset posterior distribution of β, τ2,

and w∗, then (72) implies that y∗j given the rest is sampled as

y∗j = Xj βj +w∗j + ε∗j , ε∗j ∼ N(0, τ2
j I);

therefore, the complete conditional distribution of y∗j is N(µy∗j
,Vy∗j

), where

µy∗j
= Xj βj +w∗j , Vy∗j

= τ2
j I .(84)

All full conditionals except that of α are analytically tractable in terms of
standard distributions in subset j (j = 1, . . . , k). The Gibbs sampler with a
Metropolis-Hastings step iterates between the following four steps until sufficient
number of samples of βj ,αj ,w

∗
j , and y∗j are drawn post convergence to the

stationary distribution:

1. Sample βj from N(µj β,Vj β), where µj β and Vj β are defined in (77).
2. Sample αj using the Metropolis-Hastings algorithm from the jth subset

posterior density (up to constants) of αj in (78) with a normal random
walk proposal.

3. Sample w∗j from N(µw∗j
,Vw∗j

), where µw∗j
and Vw∗j

are defined in (82) and

(83).
4. Sample y∗j from N(µy∗j

,Vy∗j
), where µy∗j

and Vy∗j
are defined in (84).

3. SAMPLING FROM THE SUBSET POSTERIOR DISTRIBUTIONS
USING A LOW-RANK GP PRIOR

For clarity, we focus on the modified predictive process (MPP) prior as a
representative example of low-rank GP prior. The Gibbs sampling algorithm
derived in this section is easily extended to other low-rank GP priors. Follow-
ing the setup in Section 2, we assume that Cα(sji, sji′) = σ2ρ(sji, sji′ ;φ) and
Dα(sji, sji′) = 1(i = i′)τ2, α = (σ2, τ2, φ), the prior distributions on β and
α have the same forms as in (73), and Sj contains the locations in subset j.
Following the previous section, we assume that m1 = · · · = mk = m and
k = n/m. The only change in this section is that the spatial process w(·)
in (72) is assigned a MPP prior derived from parent GP prior in (74). MPP
projects the parent GP w(·) onto a subspace spanned by its realization over a

set of r locations, S(0) = {s(0)
1 , . . . , s

(0)
r }, known as the “knots”, where no condi-

tions are imposed on S ∩S(0). Let c(·,S(0)) =
{
Cα(·, s(0)

1 ), . . . , Cα(·, s(0)
r )
}T

and

w(0) =
{
w(s

(0)
1 ), . . . , w(s

(0)
r )
}T

be r × 1 vectors and C(S(0)) be an r × r matrix

whose (i, j)th entry is Cα(s
(0)
i , s

(0)
j ). The MPP prior defines

w̃(·) = cT (·,S(0))C(S(0))−1 w(0) +ε̃(·),(85)

where the processes ε̃(·) and w(·) are mutually independent and ε̃(·) is a GP with
mean 0, cov{ε̃(a), ε̃(b)} = δ(a)1(a = b) for any a,b ∈ D, and

δ(sji) = Cα(sji, sji)− cT (sji,S(0))C(S(0))−1 c(sji,S(0)).
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The process w̃(·) is a low-rank GP with mean 0 and

cov{w̃(a), w̃(b)} = cT (a,S(0))C(S(0))−1 c(b,S(0)) + δ(a)1a=b

for any a,b ∈ D. If we replace w(·) by w̃(·) in (72), then

y(sji) = x(sji)
T β+w̃(sji) + ε(sji), j = 1, . . . , k, i = 1, . . . ,mj .(86)

and our definition in (85) implies that w̃(·) is assigned a MPP prior (Finley et al.,
2009).

We start by defining mean and covariance functions specific to univariate spa-
tial regression using MPP. Let w̃j = {w̃(sj1), . . . , w̃(sjm)} and w̃∗j = {w̃(s1), . . . , w̃(sl)}.
The MPP prior is identical to the FITC approximation in sparse approximate
GP regression, so we use the FITC notations to simplify the description of pos-
terior computations (Quiñonero-Candela and Rasmussen, 2005). Define Qj,j =

Cj,0(α)C−1(S(0))C0,j(α), where cov{w(sja), w(s
(0)
b )} = {Cj,0(α)}a,b (a = 1, . . . ,m;

b = 1, . . . , r) and C0,j(α) = CT
j,0(α). The density of (w̃j , w̃

∗
j ) under the GP prior

implied by MPP is N{0, C̃(α)}, where 2× 2 block form of C̃(α) is defined using

C̃j,j(α) = Qj,j + diag{Cj,j(α)−Qj,j} = cov(w̃j , w̃j),

C̃j,∗(α) = Qj,∗ = cov(w̃j , w̃
∗
j ),

C̃∗,∗(α) = Q∗,∗+ diag{C∗,∗(α)−Q∗,∗} = cov(w̃∗j , w̃
∗
j ),

C̃∗,j(α) = Q∗,j = cov(w̃∗j , w̃j).(87)

Stochastic approximation is implemented following Section 2. First, consider
stochastic approximation for the likelihood of β and α. Integrating out w̃j in
(86) gives

yj = Xj β+η̃j , η̃j ∼ N{0, C̃j,j(α) + τ2 I}.(88)

The likelihood of β and α given yj , Xj after stochastic approximation is

{lj(β,α)}k = (2π)−mk/2|C̃j,j(α) + τ2 I |−k/2e−
k
2 (yj −Xj β)

T{C̃j,j(α)+τ2 I}−1
(yj −Xj β).

(89)

The prior distribution for β in (73), the pseudo likelihood in (89), and Bayes rule
implies that the density of the jth subset posterior distribution for β given the
rest is

β | rest ∝ e−
1
2(yj −Xj β)

T
[k−1{C̃j,j(α)+τ2 I}]−1

(yj −Xj β) e−
1
2(β−µβ)

T
Σ−1

β (β−µβ).

This implies that the complete conditional distribution of βj has densityN(m̃j β, Ṽj β),
where

Ṽj β =
[
kXT

j {C̃j,j(α) + τ2 I}−1 Xj + Σ−1
β

]−1
,

m̃j β = Ṽj β

[
kXT

j

{
C̃j,j(α) + τ2 I

}−1
yj + Σ−1

β µβ

]
.(90)
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Following Section 2, the density of the jth subset posterior distribution for α
given the rest is

α | rest ∝ |C̃j,j(α) + τ2 I |−k/2e−
1
2(yj −Xj β)

T
[k−1{C̃j,j(α)+τ2 I}]−1

(yj −Xj β)(
σ2
)−aσ−1

e−bσ/σ
2 (
τ2
)−aτ−1

e−bτ/τ
2
(bφ − aφ)−1.(91)

This density does not have a standard form, so we use a Metropolis-Hastings step
with a normal random walk proposal and sample αj using the metrop function
in the R package mcmc.

Second, we derive the posterior predictive distribution of w̃∗j given the rest.
The MPP prior on (w̃j , w̃

∗
j ) implies that the density of w̃∗j given w̃j is

w̃∗j | w̃j ∼ N
{
C̃∗,j(α)C̃

−1
j,j (α)w̃j , C̃∗,∗(α)− C̃∗,j(α)C̃

−1
j,j (α)C̃j,∗(α)

}
.(92)

Given α, β, yj , and Xj , (86) implies that the likelihood of w̃j after stochastic
approximation is

{lj(w̃j)}k = (2π)−mk/2|τ2 I |−k/2e−
k

2τ2
(yj −Xj β−w̃j)

T
(yj −Xj β−w̃j).(93)

The MPP prior on w̃j , the pseudo likelihood in (93), and Bayes rule implies that
the density of the subset posterior distribution for w̃j given the rest is

w̃j | rest ∝ e−
1

2τ2/k
(yj −Xj β−w̃j)

T
(yj −Xj β−w̃j)

e−
1
2
w̃T
j C̃
−1
j,j (α)w̃j .

This implies that the complete conditional distribution of w̃j has densityN(mw̃j ,Vw̃j ),
where

Vw̃j =
{
C̃
−1
j,j (α) + k

τ2
I
}−1

, mw̃j =
k

τ2
Vw̃j (yj −Xj β);(94)

therefore, (92) and (94) imply that the complete conditional distribution of w̃∗j
has density N(mw̃∗j

,Vw̃∗j
), where

mw̃∗j
= E(w̃∗j | rest) = C̃∗,j(α)C̃

−1
j,j (α)E(w̃j | rest)

= C̃∗,j(α)
{
C̃j,j(α) + τ2

k I
}−1

(yj −Xj β)(95)

and

Vw̃∗j
= var(w̃∗j | rest) = E

{
var(w̃∗j | w̃j) | rest

}
+ var

{
E(w̃∗j | w̃j) | rest

}
= C̃∗,∗(α)− C̃∗,j(α)C̃

−1
j,j (α)C̃j,∗(α) + C̃∗,j(α)C̃

−1
j,j (α)Vw̃j C̃

−1
j,j (α)C̃j,∗(α).

(96)

Finally, we derive the posterior predictive distribution of y∗j given the rest. If

βj , τ
2
j , w̃∗j are the samples from the jth subset posterior distribution of β, τ2,

and w̃∗, then (86) implies that y∗j given the rest is sampled as

y∗j = Xj βj +w̃∗j + ε∗j , ε∗j ∼ N(0, τ2
j I);
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therefore, the complete conditional distribution of y∗j has density N(µ̃y∗j
, Ṽy∗j

),

where

µ̃y∗j
= Xj βj +w̃∗j , Ṽy∗j

= τ2
j I .(97)

All full conditionals except that of α are analytically tractable in terms of
standard distributions in subset j (j = 1, . . . , k). The Gibbs sampler with a
Metropolis-Hastings step iterates between the following four steps until sufficient
number of samples of βj ,αj , w̃

∗
j , and y∗j are drawn post convergence to the

stationary distribution:

1. Sample βj from N(µ̃j β, Ṽj β), where µ̃j β and Ṽj β are defined in (90).
2. Sample αj using the Metropolis-Hastings algorithm from the jth subset

posterior density (up to constants) of αj in (91) with a normal random
walk proposal.

3. Sample w̃∗j from N(µw̃∗j
,Vw̃∗j

), where µw̃∗j
and Vw̃∗j

are defined in (95) and

(96).
4. Sample y∗j from N(µ̃y∗j

, Ṽy∗j
), where µ̃y∗j

and Ṽy∗j
are defined in (97).

4. COMPARISONS BETWEEN DIVIDE-AND-CONQUER COMPETITORS

4.1 Setup

We compare the four competitors based on the divide-and-conquer technique.
Extending Section 4 of the main manuscript, we compare the performance based
on learning the process parameters, interpolating the unobserved spatial surface,
and predicting the response at new locations. This section presents two simulation
studies and one real data analysis. Recall that the first and second simulations
(Simulation 1 ) generate data from a spatial linear model where the spatial pro-
cesses are simulated from a GP and an analytic function with local features,
respectively. The number of locations in the two simulations is moderately large
with n = 10, 000. Continuing from the main manuscript, our real data analysis is
based on a large data subset of sea surface temperature data with n = 1, 00, 000
locations. For all the three simulations, the response at (n+l) locations is modeled
as

y(si) = β0 + x(si)β1 + w(si) + εi, εi ∼ N(0, τ2), si ∈ D ⊂ R2,(98)

for i = 1, . . . , n + l, where D is the spatial domain, y(si), x(si), w(si), and εi
are the response, covariate, spatial process, and idiosyncratic error values at the
location si, β0 is the intercept, β1 models the covariate effect, and l is the number
of new locations.

The three-step DISK, WASP, DPMC and CMC frameworks are applied using
the low-rank MPP priors using the algorithm outlined in Section 3.3 of the main
paper with two partitioning schemes. The first partitioning scheme randomly
partitions the spatial locations in k groups. In the second partitioning scheme,
we divide the spatial domain into sixteen square grid cells and randomly allocate
locations in every grid cell into k groups.

We compare the quality of prediction and estimation of spatial surface at
predictive locations S∗ = {s∗1, . . . , s∗l }. If w(s∗i′) and y(s∗i′) are the value of the
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spatial surface and response at s∗i′ ∈ S
∗, then the estimation and prediction

errors are defined as

Est Err2 =
1

l

l∑
i′=1

{ŵ(s∗i′)− w(s∗i′)}2, Pred Err2 =
1

l

l∑
i′=1

{ŷ(s∗i′)− y(s∗i′)}2,(99)

where ŵ(s∗i′) and ŷ(s∗i′) denote the estimates of w(s∗i′) and y(s∗i′) obtained using
any distributed or non-distributed methods. For sampling-based methods, we set
ŵ(s∗i′) and ŷ(s∗i′) to be the medians of posterior MCMC samples for w(s∗i′) and
y(s∗i′), respectively, for i′ = 1, . . . , l. We also estimate the point-wise 95% credible
or confidence intervals (CIs) of w(s∗i′) and predictive intervals (PIs) of y(s∗i′) for
every si′ ∈ S∗ and compare the CI and PI coverages and lengths for every method.
Finally, we compare the performance of all the methods for parameter estimation
using the posterior medians or point estimates and the 95% CIs.

4.2 Simulation 1: Spatial Linear Model Based On GP

This section compares DISK with its divide-and-conquer competitors under
the two partitioning schemes and is a continuation of Section 4.2 of the main
manuscript. The four divide-and-conquer methods, CMC DISK, WASP, and
DPMC, have similar performance in parameter estimation (Tables 1, 2, and 3).
The parameter estimates obtained using all these methods are close to the truth
and estimation errors are also very similar. The 95% credible intervals of β0, β1, τ

2

in cover the true values and their lower and upper quantiles are very similar. All
the four methods underestimate σ2 and overestimate φ slightly. Both results are
the impacts of parent MPP prior, which also shows a similar pattern for the two
choices of r. We notice that the coverage of CMC is smaller than that of DISK,
WASP, and DPMC. More importantly, the choice of r, k, or partitioning scheme
has a minimal impact on parameter estimation in DISK, WASP, and DPMC.

The inferential and predictive performance of DISK, WASP, and DPMC are
similar, but CMC shows significant differences (Table 4). There are minimal dif-
ferences in the prediction and estimation errors of CMC, DISK, WASP, and
DPMC. This indicates that the estimate of posterior medians are very similar in
all the four methods; however, the pointwise coverage of CMC in prediction of
the response and inference on the spatial surface is significantly smaller than the
nominal value for every choice of r and k. On the other hand, DISK, WASP, and
DPMC have nominal coverage in prediction and inference on the spatial surface.
Furthermore, their CI and PI coverage values are robust to the choices of r, k,
and partitioning scheme.

In summary, the DISK, WASP, and DPMC have similar inferential and pre-
dictive performance. While CMC’s point estimates are close to those of DISK,
WASP, and DPMC, its inferential and predictive performance is worse than its
three competitors. The partitioning scheme, random or grid-based, has no impact
on the performance of all the four divide-and-conquer methods.

4.3 Simulation 2: Spatial Linear Model Based On Analytic Spatial Surface

This section compares DISK with its divide-and-conquer competitors and is
a continuation of Section 4.3 of the main manuscript. Our conclusions remain
similar as those observed in the previous section. Specifically, CMC DISK, WASP,
and DPMC have similar performance in parameter estimation (Tables 5, 6, and
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Table 1
The errors in estimating the parameters β = (β0, β1), σ

2, φ, τ2 in Simulation 1 for the
divide-and-conquer methods under random and grid-based partitioning. The parameter

estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂
2, φ̂, τ̂2 are defined as the posterior medians

of their respective MCMC samples and their true values are β0 = (1, 2), σ2
0 = 1, φ0 = 4 and

τ20 = 0.1. The entries in the table are averaged across 10 simulation replications.

‖β̂ − β0 ‖ |σ̂2 − σ2
0 | |φ̂− φ0| |τ̂2 − τ20 |

Random Partitioning

CMC (r = 200, k = 10) 0.09 0.12 0.68 0.01
CMC (r = 400, k = 10) 0.09 0.12 0.75 0.01
CMC (r = 200, k = 20) 0.10 0.13 0.95 0.02
CMC (r = 400, k = 20) 0.10 0.13 0.82 0.02

DISK (r = 200, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 400, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.66 0.02
DISK (r = 400, k = 20) 0.10 0.12 0.66 0.02

WASP (r = 200, k = 10) 0.09 0.11 0.64 0.01
WASP (r = 400, k = 10) 0.09 0.11 0.63 0.01
WASP (r = 200, k = 20) 0.10 0.12 0.66 0.02
WASP (r = 400, k = 20) 0.10 0.12 0.66 0.02

DPMC (r = 200, k = 10) 0.09 0.11 0.64 0.01
DPMC (r = 400, k = 10) 0.09 0.11 0.63 0.01
DPMC (r = 200, k = 20) 0.10 0.12 0.66 0.02
DPMC (r = 400, k = 20) 0.10 0.12 0.66 0.02

Grid-Based Partitioning

CMC (r = 200, k = 10) 0.09 0.12 0.63 0.01
CMC (r = 400, k = 10) 0.09 0.12 0.65 0.01
CMC (r = 200, k = 20) 0.10 0.13 0.77 0.01
CMC (r = 400, k = 20) 0.10 0.13 0.83 0.01

DISK (r = 200, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 400, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.63 0.01
DISK (r = 400, k = 20) 0.10 0.12 0.64 0.01

WASP (r = 200, k = 10) 0.09 0.12 0.62 0.01
WASP (r = 400, k = 10) 0.09 0.12 0.62 0.01
WASP (r = 200, k = 20) 0.10 0.12 0.63 0.01
WASP (r = 400, k = 20) 0.10 0.12 0.64 0.01

DPMC (r = 200, k = 10) 0.09 0.12 0.62 0.01
DPMC (r = 400, k = 10) 0.09 0.12 0.62 0.01
DPMC (r = 200, k = 20) 0.10 0.12 0.63 0.01
DPMC (r = 400, k = 20) 0.10 0.12 0.64 0.01

7); however, the inferential and predictive performance of DISK, WASP, and
DPMC are significantly better than those of CMC (Table 8). The partitioning
scheme, random or grid-based, has no impact on the inferential and predictive
performance of CMC, DISK, WASP, and DPMC. The results are also robust to
the choices of k and r.

4.4 Real data analysis: Sea Surface Temperature data

This section is a continuation of Section 4.3 of the main manuscript and com-
pares DISK with its divide-and-conquer competitors in analyzing the Sea Surface
Temperature (SST) data. We have chosen random partitioning based on our con-
clusions in the previous two simulations. Our results for SST data analysis are also
very similar to those in the previous two simulations. Specifically, CMC DISK,
WASP, and DPMC have similar performance in parameter estimation, but signif-
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Table 2
The estimates of parameters β = (β0, β1), σ

2, φ, τ2 and their 95% marginal credible intervals
(CIs) in Simulation 1 for the divide-and-conquer methods under random partitioning. The

parameter estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂
2, φ̂, τ̂2 are defined as the

posterior medians of their respective MCMC samples. The parameter estimates and upper and
lower quantiles of 95% CIs are averaged over 10 simulation replications.

β0 β1 σ2 φ τ2

Truth 1.00 2.00 1.00 4.00 0.10
Parameter Estimates

CMC (r = 200, k = 10) 1.00 2.00 0.91 4.38 0.10
CMC (r = 400, k = 10) 1.00 2.00 0.91 4.41 0.10
CMC (r = 200, k = 20) 1.00 2.00 0.90 4.55 0.10
CMC (r = 400, k = 20) 1.00 2.00 0.91 4.46 0.10
DISK (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 400, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
DISK (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11

WASP (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
WASP (r = 400, k = 10) 1.00 2.00 0.92 4.34 0.11
WASP (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
WASP (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11
DPMC (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
DPMC (r = 400, k = 10) 1.00 2.00 0.92 4.34 0.11
DPMC (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
DPMC (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11

95% Credible Intervals
CMC (r = 200, k = 10) (0.98, 1.02) (2.00, 2.00) (0.90, 0.93) (4.28, 4.49) (0.10, 0.11)
CMC (r = 400, k = 10) (0.98, 1.02) (2.00, 2.00) (0.90, 0.93) (4.31, 4.52) (0.10, 0.11)
CMC (r = 200, k = 20) (0.99, 1.01) (2.00, 2.00) (0.89, 0.92) (4.49, 4.61) (0.10, 0.10)
CMC (r = 400, k = 20) (0.99, 1.01) (2.00, 2.00) (0.90, 0.92) (4.40, 4.53) (0.10, 0.10)
DISK (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
DISK (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
DISK (r = 200, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)
DISK (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.68) (0.09, 0.13)

WASP (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
WASP (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
WASP (r = 200, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)
WASP (r = 400, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.07, 4.68) (0.09, 0.13)
DPMC (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.70) (0.09, 0.12)
DPMC (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.99, 4.70) (0.09, 0.12)
DPMC (r = 200, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.06, 4.68) (0.09, 0.13)
DPMC (r = 400, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.06, 4.69) (0.09, 0.13)

icant differences exist in their predictive performance (Table 9). CMC’s predictive
coverage is much smaller than the nominal value, which matches our conclusions
in the previous two simulations. DISK outperforms WASP and DPMC in pre-
dictions in that its MSPE is the smallest among them. DISK also has better
nominal predictive coverage than WASP and DPMC while having comparable
95% PI lengths. The results are also robust to the choices of r. We conclude
that DISK performs better than its divide-and-conquer competitors in SST data
analysis.

4.5 Computation time comparisons

We report the run-times of all the methods used in the simulated and real data
analysis in Section 4 of the main paper. Since distributed methods partition the
data into the same subset size and fit the same MPP model for subset poste-
rior inference, the run times are identical for any method in Simulation 1 and 2.
Thus, we only present run times for simulation and for the sea surface tempera-
ture data; see Tables 10 and 11 for the run-times in log10 seconds for Simulation
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Table 3
The estimates of parameters β = (β0, β1), σ

2, φ, τ2 and their 95% marginal credible intervals
(CIs) in Simulation 1 for the divide-and-conquer methods under grid-based partitioning. The

parameter estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂
2, φ̂, τ̂2 are defined as the

posterior medians of their respective MCMC samples. The parameter estimates and upper and
lower quantiles of 95% CIs are averaged over 10 simulation replications.

β0 β1 σ2 φ τ2

Truth 1.00 2.00 1.00 4.00 0.10
Parameter Estimates

CMC (r = 200, k = 10) 1.00 2.00 0.91 4.37 0.10
CMC (r = 400, k = 10) 1.00 2.00 0.91 4.37 0.10
CMC (r = 200, k = 20) 1.00 2.00 0.91 4.44 0.10
CMC (r = 400, k = 20) 1.00 2.00 0.90 4.48 0.10
DISK (r = 200, k = 10) 1.00 2.00 0.91 4.35 0.11
DISK (r = 400, k = 10) 1.00 2.00 0.91 4.35 0.11
DISK (r = 200, k = 20) 1.00 2.00 0.91 4.37 0.11
DISK (r = 400, k = 20) 1.00 2.00 0.91 4.37 0.11

WASP (r = 200, k = 10) 1.00 2.00 0.91 4.35 0.11
WASP (r = 400, k = 10) 1.00 2.00 0.91 4.34 0.11
WASP (r = 200, k = 20) 1.00 2.00 0.91 4.37 0.11
WASP (r = 400, k = 20) 1.00 2.00 0.91 4.37 0.11
DPMC (r = 200, k = 10) 1.00 2.00 0.91 4.35 0.11
DPMC (r = 400, k = 10) 1.00 2.00 0.91 4.34 0.11
DPMC (r = 200, k = 20) 1.00 2.00 0.91 4.37 0.11
DPMC (r = 400, k = 20) 1.00 2.00 0.91 4.37 0.11

95% Credible Intervals
CMC (r = 200, k = 10) (0.98, 1.02) (2.00, 2.00) (0.89, 0.93) (4.27, 4.47) (0.10, 0.11)
CMC (r = 400, k = 10) (0.98, 1.02) (2.00, 2.00) (0.89, 0.93) (4.27, 4.48) (0.10, 0.11)
CMC (r = 200, k = 20) (0.99, 1.01) (2.00, 2.00) (0.90, 0.92) (4.38, 4.50) (0.10, 0.11)
CMC (r = 400, k = 20) (0.99, 1.01) (2.00, 2.00) (0.89, 0.92) (4.42, 4.54) (0.10, 0.11)
DISK (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.99, 4.69) (0.09, 0.12)
DISK (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.99, 4.70) (0.09, 0.12)
DISK (r = 200, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.06, 4.67) (0.09, 0.13)
DISK (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)

WASP (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.99, 4.69) (0.10, 0.12)
WASP (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.98, 4.70) (0.09, 0.12)
WASP (r = 200, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.06, 4.67) (0.09, 0.13)
WASP (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)
DPMC (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.98, 4.70) (0.09, 0.12)
DPMC (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (3.98, 4.71) (0.09, 0.12)
DPMC (r = 200, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.05, 4.69) (0.09, 0.13)
DPMC (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.68) (0.09, 0.13)

1 and in log10 hours for sea surface temperature data analysis, respectively. Sim-
ilar to our observations in the performance comparisons, the run-times for the
distributed methods are independent of the partitioning schemes. The run-times
cannot be compared directly from the tables due to the differences in implemen-
tation. Specifically, distributed methods are implemented in R for all values of
r and k, whereas most non-distributed methods are implemented in R and a
higher-level language, such as C/C++ and Fortran.

The combination step in any distributed method requires a very small time
compared to the time required for sampling on the subsets. For example, the
time required for combination using the WASP is the largest among all the four
distributed methods, but the maximum of WASP’s combination time is only 8%
of the maximum time required for sampling on the subsets. On an average, the
combination steps of the other three methods require less than 1% of the time
required for sampling on the subsets. This implies that run-times for all the four
distributed methods in the two simulations are fairly similar (Table 10). In the
real data analysis, the combination steps of the all the four distributed methods
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Table 4
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 1

for the divide-and-conquer methods under random and grid-based partitioning. The estimation
and prediction errors are defined in (99) and coverage and credible intervals are calculated
pointwise for the locations in S∗. The entries in the table are averaged over 10 simulation

replications.

Est Err Pred Err 95% CI Coverage 95% CI Length
GP Y GP Y GP Y

Random Partitioning
CMC (r = 200, k = 10) 0.56 0.64 0.38 0.39 0.81 0.81
CMC (r = 400, k = 10) 0.43 0.52 0.40 0.41 0.74 0.74
CMC (r = 200, k = 20) 0.58 0.67 0.27 0.28 0.57 0.57
CMC (r = 400, k = 20) 0.46 0.55 0.28 0.29 0.52 0.52
DISK (r = 200, k = 10) 0.55 0.64 0.97 0.97 3.20 3.45
DISK (r = 400, k = 10) 0.42 0.51 0.97 0.97 2.88 3.15
DISK (r = 200, k = 20) 0.58 0.67 0.97 0.97 3.25 3.51
DISK (r = 400, k = 20) 0.46 0.55 0.97 0.97 2.98 3.25

WASP (r = 200, k = 10) 0.55 0.64 0.96 0.96 3.25 3.25
WASP (r = 400, k = 10) 0.42 0.51 0.96 0.96 2.97 2.97
WASP (r = 200, k = 20) 0.58 0.67 0.96 0.96 3.30 3.30
WASP (r = 400, k = 20) 0.46 0.55 0.96 0.96 3.06 3.06
DPMC (r = 200, k = 10) 0.55 0.64 0.97 0.97 3.46 3.46
DPMC (r = 400, k = 10) 0.42 0.51 0.97 0.97 3.17 3.17
DPMC (r = 200, k = 20) 0.58 0.67 0.97 0.97 3.53 3.53
DPMC (r = 400, k = 20) 0.46 0.55 0.97 0.97 3.28 3.28

Grid-Based Partitioning
CMC (r = 200, k = 10) 0.75 0.80 0.38 0.39 0.81 0.81
CMC (r = 400, k = 10) 0.65 0.72 0.40 0.40 0.74 0.74
CMC (r = 200, k = 20) 0.76 0.82 0.27 0.28 0.57 0.57
CMC (r = 400, k = 20) 0.68 0.74 0.28 0.28 0.52 0.52
DISK (r = 200, k = 10) 0.75 0.80 0.97 0.97 3.45 3.45
DISK (r = 400, k = 10) 0.65 0.72 0.97 0.97 3.15 3.15
DISK (r = 200, k = 20) 0.76 0.82 0.97 0.97 3.51 3.51
DISK (r = 400, k = 20) 0.68 0.74 0.97 0.97 3.26 3.26

WASP (r = 200, k = 10) 0.74 0.80 0.96 0.96 3.25 3.25
WASP (r = 400, k = 10) 0.65 0.72 0.96 0.96 2.97 2.97
WASP (r = 200, k = 20) 0.76 0.82 0.96 0.95 3.30 3.30
WASP (r = 400, k = 20) 0.68 0.74 0.96 0.96 3.06 3.06
DPMC (r = 200, k = 10) 0.74 0.80 0.97 0.97 3.46 3.46
DPMC (r = 400, k = 10) 0.65 0.72 0.97 0.97 3.16 3.16
DPMC (r = 200, k = 20) 0.76 0.82 0.97 0.97 3.53 3.53
DPMC (r = 400, k = 20) 0.68 0.74 0.97 0.97 3.28 3.28

require less that 1% of the time required for sampling on the subsets, so all of
them have nearly identical run-times (Table 11).

5. MARKOV CHAINS ON THE SUBSETS IN DISK

Any divide-and-conquer method runs modified Markov chain Monte Carlo al-
gorithms in parallel on the subsets to obtain draws from the subset posterior
distributions. In our context, we draw parameter and response values from the
respective posterior distributions on every subset. There are no theoretical results
that guarantee convergence of the Markov chain produced by the sampling algo-
rithms to its stationary distribution in a spatial linear model with MPP prior.
This further complicates the theoretical analysis of the Markov chain produced
on the subsets in DISK, where the likelihood is modified. We are not aware any
rigorous approach for comparing the Markov chains obtained from the subset
and true posterior distributions. We use heuristics based on trace plots and auto
correlation functions of the Markov chains for parameters, spatial surface, and
predictive surface to judge “convergence” to the respective subset posterior dis-
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Table 5
The errors in estimating the parameters β, τ2 in Simulation 2 for the divide-and-conquer

methods under random and grid-based partitioning. The parameter estimates for the Bayesian
methods β̂, τ̂2 are defined as the posterior medians of their respective MCMC samples and

β0 = 1 and τ20 = 0.01. The entries in the table are averaged across 10 simulation replications.

‖β̂ − β0‖ |τ̂2 − τ20 |
Random Partitioning

CMC (r = 200, k = 10) 0.03 0.00
CMC (r = 400, k = 10) 0.03 0.09
CMC (r = 200, k = 20) 1.41 0.09
CMC (r = 400, k = 20) 1.41 0.09
DISK (r = 200, k = 10) 0.18 0.04
DISK (r = 400, k = 10) 0.13 0.04
DISK (r = 200, k = 20) 0.18 0.04
DISK (r = 400, k = 20) 0.13 0.04
WASP(r = 200, k = 10) 0.68 0.09

WASP (r = 400, k = 10) 0.68 0.09
WASP (r = 200, k = 20) 0.72 0.09
WASP (r = 400, k = 20) 0.72 0.09
DPMC (r = 200, k = 10) 0.68 0.09
DPMC (r = 400, k = 10) 0.68 0.09
DPMC (r = 200, k = 20) 0.72 0.09
DPMC (r = 400, k = 20) 0.72 0.09

Grid-Based Partitioning
CMC (r = 200, k = 10) 0.03 0.09
CMC (r = 400, k = 10) 0.03 0.09
CMC (r = 200, k = 20) 0.02 0.09
CMC (r = 400, k = 20) 0.02 0.09
DISK (r = 200, k = 10) 0.03 0.09
DISK (r = 400, k = 10) 0.03 0.09
DISK (r = 200, k = 20) 0.02 0.09
DISK (r = 400, k = 20) 0.02 0.09
WASP(r = 200, k = 10) 0.03 0.09

WASP (r = 400, k = 10) 0.03 0.09
WASP (r = 200, k = 20) 0.02 0.09
WASP (r = 400, k = 20) 0.02 0.09
DPMC (r = 200, k = 10) 0.03 0.09
DPMC (r = 400, k = 10) 0.03 0.09
DPMC (r = 200, k = 20) 0.02 0.09
DPMC (r = 400, k = 20) 0.02 0.09

tributions.
Unfortunately, it is impractical to compare trace plots and auto correlation

functions obtained using subset and true posterior distributions; therefore, we
compare the effective sample sizes of Markov chains for the parameters, spatial
surface, and response obtained on the subsets using an MPP prior relative to
those obtained using the full data and the same MPP prior. The number of
posterior samples in both cases is 1000, which are obtained from a Markov chain
of 10000 draws after using a burn-in of 5000 and collecting every fifth sample.
The effectiveSize command coda R package is used for estimating the effective
sample sizes for every choice of k and r (Plummer et al., 2006). We compute
the ratio of the effective sample sizes of the Markov chains produced on the
subsets in DISK to those obtained using the MPP prior and the full data. For
two- or higher-dimensional parameters, spatial surface, and predictive surface,
we average the ratio of the effective sample sizes across all the dimensions. While
there are no theoretical justifying the convergence of the Markov chain to the
stationary distribution, we still assume so because MPP has been used extensively
for analyzing spatial data. This heuristic shows that the Markov chains obtained
using the data subsets and full data are “similar” in that their effective sample
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Table 6
The estimates of parameters β, σ2, φ, τ2 and their 95% marginal credible intervals (CIs) in

Simulation 2 for the divide-and-conquer methods under random partitioning. The parameter
estimates for the Bayesian methods β̂, σ̂2, φ̂, τ̂2 are defined as the posterior medians of their

respective MCMC samples. The parameter estimates and upper and lower quantiles of 95% CIs
are averaged over 10 simulation replications

β σ2 φ τ2

Truth 1.00 - - 0.01
Parameter Estimates

CMC (r = 200, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 400, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 200, k = 20) 0.98 0.23 0.13 0.01
CMC (r = 400, k = 20) 0.98 0.23 0.13 0.01
DISK (r = 200, k = 10) 1.03 0.21 0.12 0.01
DISK (r = 400, k = 10) 0.98 0.22 0.14 0.01
DISK (r = 200, k = 20) 1.03 0.21 0.12 0.01
DISK (r = 400, k = 20) 0.98 0.22 0.14 0.01

WASP (r = 200, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 400, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 200, k = 20) 0.98 0.22 0.14 0.01
WASP (r = 400, k = 20) 0.98 0.22 0.14 0.01
DPMC (r = 200, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 400, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 200, k = 20) 0.98 0.22 0.14 0.01
DPMC (r = 400, k = 20) 0.98 0.22 0.14 0.01

95% Credible Intervals
CMC(r = 200, k = 10) (0.96, 1.11) (0.22, 0.23) (0.11, 0.12) (0.01, 0.01)

CMC (r = 400, k = 10) (0.96, 1.11) (0.22, 0.23) (0.11, 0.12) (0.01, 0.01)
CMC (r = 200, k = 20) (0.94, 1.02) (0.22, 0.24) (0.13, 0.13) (0.01, 0.01)
CMC (r = 400, k = 20) (0.94, 1.02) (0.22, 0.24) (0.12, 0.13) (0.01, 0.01)
DISK (r = 200, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
DISK (r = 400, k = 10) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
DISK (r = 200, k = 20) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
DISK (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)

WASP (r = 200, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
WASP (r = 400, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
WASP (r = 200, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
WASP (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
DPMC (r = 200, k = 10) (0.80, 1.27) (0.17, 0.25) (0.10, 0.15) (0.01, 0.01)
DPMC (r = 400, k = 10) (0.80, 1.27) (0.17, 0.25) (0.10, 0.15) (0.01, 0.01)
DPMC (r = 200, k = 20) (0.82, 1.16) (0.17, 0.26) (0.11, 0.18) (0.01, 0.01)
DPMC (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.11, 0.19) (0.01, 0.01)

sizes are very close.
The effective sample sizes of the Markov chains for the parameters and the

spatial surface and response at the locations in S∗ are very similar to those
obtained using the full data and the same MPP prior in Simulation 1 (Table 12).
The effective sample sizes decrease with k in Simulation 2 slightly for the spatial
surface and response at the locations in S∗ (Table 13); however, this spatial
surface is not simulated from a GP in this simulation, so the comparisons are less
reliable. The partitioning scheme, random or grid-based, has a minimal impact
on the effective sample sizes. The ratio of the effective sample sizes are equal
for the β, spatial surface, and predictions in Simulation 1; however, there are
differences in the effective sample sizes of the Markov chains for σ2, φ, τ2 in both
simulations. These differences mainly arise due to the non-identifiability of the
covariance function parameters. In most spatial applications, the main interest
lies in inference and prediction, where the effective sample sizes on the subsets are
very similar to their full data benchmarks; therefore, we conclude that the Markov
chains produced on the subsets in DISK have similar properties as their full data
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Table 7
The estimates of parameters β, σ2, φ, τ2 and their 95% marginal credible intervals (CIs) in

Simulation 2 for the divide-and-conquer methods under grid-based partitioning. The parameter
estimates for the Bayesian methods β̂, σ̂2, φ̂, τ̂2 are defined as the posterior medians of their

respective MCMC samples. The parameter estimates and upper and lower quantiles of 95% CIs
are averaged over 10 simulation replications

β σ2 φ τ2

Truth 1.00 - - 0.01
Parameter Estimates

CMC (r = 200, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 400, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 200, k = 20) 0.98 0.23 0.13 0.01
CMC (r = 400, k = 20) 0.98 0.23 0.13 0.01
DISK (r = 200, k = 10) 1.03 0.21 0.12 0.01
DISK (r = 400, k = 10) 1.03 0.21 0.12 0.01
DISK (r = 200, k = 20) 0.98 0.22 0.14 0.01
DISK (r = 400, k = 20) 0.98 0.22 0.14 0.01

WASP (r = 200, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 400, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 200, k = 20) 0.98 0.22 0.14 0.01
WASP (r = 400, k = 20) 0.99 0.22 0.14 0.01
DPMC (r = 200, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 400, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 200, k = 20) 0.98 0.22 0.14 0.01
DPMC (r = 400, k = 20) 0.99 0.22 0.14 0.01

95% Credible Intervals
CMC(r = 200, k = 10) (0.96, 1.10) (0.21, 0.23) (0.11, 0.12) (0.01, 0.01)

CMC (r = 400, k = 10) (0.95, 1.10) (0.21, 0.23) (0.11, 0.12) (0.01, 0.01)
CMC (r = 200, k = 20) (0.94, 1.02) (0.22, 0.23) (0.13, 0.14) (0.01, 0.01)
CMC (r = 400, k = 20) (0.94, 1.02) (0.22, 0.24) (0.13, 0.13) (0.01, 0.01)
DISK (r = 200, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
DISK (r = 400, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
DISK (r = 200, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
DISK (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)

WASP (r = 200, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
WASP (r = 400, k = 10) (0.80, 1.27) (0.18, 0.24) (0.11, 0.14) (0.01, 0.01)
WASP (r = 200, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
WASP (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.12, 0.18) (0.01, 0.01)
DPMC (r = 200, k = 10) (0.80, 1.27) (0.17, 0.24) (0.10, 0.15) (0.01, 0.01)
DPMC (r = 400, k = 10) (0.80, 1.27) (0.17, 0.25) (0.10, 0.15) (0.01, 0.01)
DPMC (r = 200, k = 20) (0.82, 1.16) (0.17, 0.26) (0.11, 0.18) (0.01, 0.01)
DPMC (r = 400, k = 20) (0.82, 1.16) (0.17, 0.26) (0.11, 0.18) (0.01, 0.01)

versions in Simulations 1 and 2 in terms of effective sample size comparisons.
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Table 8
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 2

for the divide-and-conquer methods under random and grid-based partitioning. The estimation
and prediction errors are defined in (99) and coverage and credible intervals are calculated
pointwise for the locations in S∗. The entries in the table are averaged over 10 simulation

replications.

Est Err Pred Err 95% CI Coverage 95% CI Length
GP Y GP Y GP Y

Random Partitioning
CMC (r = 200, k = 10) 0.56 0.64 0.38 0.39 0.10 0.10
CMC (r = 400, k = 10) 0.43 0.52 0.40 0.41 0.10 0.10
CMC (r = 200, k = 20) 0.58 0.67 0.27 0.28 0.07 0.07
CMC (r = 400, k = 20) 0.46 0.55 0.28 0.29 0.07 0.07
DISK (r = 200, k = 10) 0.00 0.01 1.00 0.97 0.54 0.45
DISK (r = 400, k = 10) 0.00 0.01 1.00 0.97 0.45 0.47
DISK (r = 200, k = 20) 0.00 0.01 1.00 0.97 0.52 0.43
DISK (r = 400, k = 20) 0.00 0.01 1.00 0.97 0.43 0.44

WASP (r = 200, k = 10) 0.55 0.64 0.96 0.96 0.42 0.42
WASP (r = 400, k = 10) 0.42 0.51 0.96 0.96 0.40 0.40
WASP (r = 200, k = 20) 0.58 0.67 0.96 0.96 0.43 0.43
WASP (r = 400, k = 20) 0.46 0.55 0.96 0.96 0.41 0.41
DPMC (r = 200, k = 10) 0.55 0.64 0.97 0.97 0.45 0.45
DPMC (r = 400, k = 10) 0.42 0.51 0.97 0.97 0.43 0.43
DPMC (r = 200, k = 20) 0.58 0.67 0.97 0.97 0.46 0.46
DPMC (r = 400, k = 20) 0.46 0.55 0.97 0.97 0.44 0.44

Grid-Based Partitioning
CMC (r = 200, k = 10) 0.05 0.10 0.80 0.38 0.10 0.10
CMC (r = 400, k = 10) 0.04 0.10 0.85 0.37 0.10 0.10
CMC (r = 200, k = 20) 0.03 0.10 0.71 0.28 0.07 0.07
CMC (r = 400, k = 20) 0.03 0.10 0.70 0.28 0.07 0.07
DISK (r = 200, k = 10) 0.04 0.10 1.00 0.97 0.45 0.45
DISK (r = 400, k = 10) 0.04 0.10 1.00 0.96 0.42 0.42
DISK (r = 200, k = 20) 0.03 0.10 1.00 0.97 0.46 0.46
DISK (r = 400, k = 20) 0.03 0.10 1.00 0.96 0.44 0.44

WASP (r = 200, k = 10) 0.04 0.10 1.00 0.95 0.42 0.42
WASP (r = 400, k = 10) 0.04 0.10 1.00 0.94 0.40 0.40
WASP (r = 200, k = 20) 0.03 0.10 1.00 0.96 0.43 0.43
WASP (r = 400, k = 20) 0.03 0.10 1.00 0.95 0.41 0.41
DPMC (r = 200, k = 10) 0.04 0.10 1.00 0.97 0.45 0.45
DPMC (r = 400, k = 10) 0.04 0.10 1.00 0.96 0.43 0.43
DPMC (r = 200, k = 20) 0.03 0.10 1.00 0.97 0.46 0.46
DPMC (r = 400, k = 20) 0.03 0.10 1.00 0.97 0.44 0.44
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Table 9
Parametric inference and prediction in SST data using the divide-and-conquer methods and
MPP-based modeling with r = 400, 600 knots on k = 300 subsets. For parametric inference

posterior medians are provided along with the 95% credible intervals (CIs) in the parentheses.
Similarly, mean squared prediction errors (MSPEs) along with length and coverage of 95%

predictive intervals (PIs) are presented. The upper and lower quantiles of 95% CIs and PIs are
averaged over 10 simulation replications.

β0 β1 σ2 φ τ2

Parameter Estimate
CMC 32.37 -0.32 12.38 0.03 0.18

(r = 400, k = 300)
CMC 32.36 -0.32 12.31 0.03 0.18

(r = 600, k = 300)
DISK 32.33 -0.32 11.82 0.04 0.18

(r = 400, k = 300)
DISK 32.33 -0.32 11.85 0.04 0.18

(r = 600, k = 300)
WASP 32.33 -0.32 11.82 0.04 0.18

(r = 400, k = 300)
WASP 32.33 -0.32 11.85 0.04 0.18

(r = 600, k = 300)
DPMC 32.33 -0.32 11.82 0.04 0.18

(r = 400, k = 300)
DPMC 32.33 -0.32 11.85 0.04 0.18

(r = 600, k = 300)
95% Credible Interval

CMC (32.33, 32.4) (-0.32, -0.32) (12.37, 12.39) (0.0339, 0.0340) (0.18, 0.18)
(r = 400, k = 300)

CMC (32.33, 32.4) (-0.32, -0.32) (12.3, 12.31) (0.0342, 0.0343) (0.18, 0.18)
(r = 600, k = 300)

DISK (31.72, 32.93) (-0.33, -0.31) (11.24, 12.43) (0.0373, 0.0412) (0.18, 0.19)
(r = 400, k = 300)

DISK (31.72, 32.93) (-0.33, -0.31) (11.25, 12.45) (0.0372, 0.0413) (0.18, 0.19)
(r = 600, k = 300)

WASP (31.72, 32.93) (-0.33, -0.31) (11.22, 12.46) (0.0372, 0.0413) (0.18, 0.19)
(r = 400, k = 300)

WASP (31.72, 32.93) (-0.33, -0.31) (11.24, 12.47) (0.0372, 0.0413) (0.18, 0.19)
(r = 600, k = 300)

DPMC (31.72, 32.94) (-0.33, -0.31) (11.09, 12.55) (0.0369, 0.0416) (0.18, 0.19)
(r = 400, k = 300)

DPMC (31.72, 32.94) (-0.33, -0.31) (11.14, 12.56) (0.0368, 0.0416) (0.18, 0.19)
(r = 600, k = 300)

Predictions
MSPE 95% PI 95% PI

Coverage Length
CMC 0.74 0.05 0.08

(r = 400, k = 300)
CMC 0.67 0.05 0.07

(r = 600, k = 300)
DISK 0.43 0.95 2.65

(r = 400, k = 300)
DISK 0.36 0.95 2.34

(r = 600, k = 300)
WASP 0.66 0.93 2.39

(r = 400, k = 300)
WASP 0.60 0.92 2.11

(r = 600, k = 300)
DPMC 0.66 0.95 2.67

(r = 400, k = 300)
DPMC 0.60 0.94 2.36

(r = 600, k = 300)
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Table 10
Run-time (in log10 seconds) of the non-distributed methods and distributed methods under the
random and grid-based partitioning schemes in Simulations 1 and 2, where MPP prior is used

on the subsets.
INLA LaGP NNGP NNGP NNGP (m = 30) LatticeKrig GpGp

(m = 10) (m = 20) (m = 30)
1.08 0.08 2.96 3.42 3.74 2.03 0.96

Vecchia Vecchia Vecchia MPP MPP
(m = 10) (m = 20) (m = 30) (r = 200) (r = 400)

2.76 3.20 3.50 3.97 4.31
k = 10

CMC DISK WASP DPMC
r = 200 r = 400 r = 200 r = 400 r = 200 r = 400 r = 200 r = 400

Random 3.18 3.18 3.18 3.18 3.20 3.20 3.18 3.18
Grid 3.18 3.18 3.18 3.18 3.20 3.20 3.18 3.18

k = 20
CMC DISK WASP DPMC

r = 200 r = 400 r = 200 r = 400 r = 200 r = 400 r = 200 r = 400
Random 3.17 3.17 3.17 3.17 3.20 3.20 3.17 3.17

Grid 3.17 3.17 3.17 3.17 3.20 3.20 3.17 3.17

Table 11
Run-time (in log10 hours) of laGP and the distributed methods in the sea surface temperature

data analysis, where MPP prior is used on the subsets.

laGP MPP, r = 400, k = 300 MPP, r = 600, k = 300
CMC DISK WASP DPMC CMC DISK WASP DPMC

-1.32 1.67 1.67 1.67 1.67 1.69 1.69 1.69 1.69

Table 12
The ratio of effective sample sizes of the Markov chains produced on the subsets using the MPP

prior and those obtained using the full data and the same MPP prior in Simulation 1 under
random and grid-based partitioning. The effective sample sizes have been averaged over the

parameter dimensions and over 10 simulation replications.

β σ2 φ τ2 GP Y

Random Partitioning

k = 10 and r = 200 0.99 0.35 3.24 0.53 1.00 1.00
k = 20 and r = 200 1.00 0.61 3.92 0.40 1.00 1.00
k = 10 and r = 400 1.0 0.93 2.53 0.57 1.00 1.00
k = 20 and r = 400 1.11 1.45 2.88 0.43 1.00 1.00

Grid-Based Partitioning

k = 10 and r = 200 1.00 0.34 3.37 0.55 1.00 1.00
k = 20 and r = 200 1.00 0.61 3.89 0.39 1.00 1.00
k = 10 and r = 400 1.11 1.00 2.44 0.55 1.00 1.00
k = 20 and r = 400 1.11 1.65 2.97 0.41 1.00 1.00

Table 13
The ratio of effective sample sizes of the Markov chains produced on the subsets using the MPP

prior and those obtained using the full data and the same MPP prior in Simulation 2 under
random and grid-based partitioning.The effective sample sizes have been averaged over the

parameter dimensions and over 10 simulation replications.

β σ2 φ τ2 GP Y

Random Partitioning

k = 10 and r = 200 0.98 0.46 1.32 3.45 0.93 1.00
k = 20 and r = 200 0.69 0.20 1.25 3.30 0.79 1.00
k = 10 and r = 400 0.89 1.65 1.81 2.84 0.91 1.00
k = 20 and r = 400 0.57 1.05 1.94 2.60 0.73 1.00

Grid-Based Partitioning

k = 10 and r = 200 0.98 0.62 1.27 3.52 0.94 1.00
k = 20 and r = 200 0.65 0.24 1.33 3.32 0.79 1.00
k = 10 and r = 400 0.88 1.81 1.97 2.73 0.91 1.00
k = 20 and r = 400 0.63 0.94 2.05 2.70 0.77 1.00
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