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1. PROOF OF THEOREMS IN SECTION 3.4

Recall that the spatial regression model with a GP prior considered in Section
3.4 is

y(si) = w(si) +e(si),  e(si) ~ N(0,7%),

(1) w(-) ~ GP{0,\1C(-,)},  i=1,...,n.

Writing this model for the n locations in S gives

(2) y=wo+e, €|S~N(0,7’I), y|S~ N(wo,1I),

where wo = {wp(s1),...,wo(sp)} and € = {€(s1),...,€(sy)} are the true value of

the residual spatial surface and white noise realized at the locations in §. We can
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2 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

write the model in a similar format for each data subset. Let s € D be a location,
wop(s) be the true value of the residual spatial surface, Eg+, Eg, Eg, Ey|s, and
Ey w(s+)| s respectively be the expectations with respect to the distributions of s*,
(S,y), S,y given S, and (y,w(s*)) given S,s*.

In this section, we assume the Assumption A.5, so that the parameters (72, a)
are fixed at their truth and the same across all subsets. In this case, if w(s*) is
a random variable that follows the DISK posterior for estimating wp(s*), then
conditional on 72 and «, w(s*) has the density N(m,v), where

j=1
_ 1 1/2 _ -2 _
(3) ’Ul/2 - % Z’U]/ ) Uj = Anl {C*’* - c‘r;,j*(C]J + k)\*n I) 1 Cj,*} 9
j=1
where ¢, » = Cq(s*,s*), and ch7* = c?(s*) = [Ca(sj1,5%),...,Ca(Sjm,s")]. In the

proofs below, without confusion, we use the notation c; , and c;(s*) interchange-
ably.
The Bayes Lo-risk in estimating wg using the DISK posterior is defined as

Eo Es- [{w(s*) — wo(s%)}?]
@) © Es [ By s [{07) - wn(s)] Pu(ds”)

where (7) follows from Fubini’s theorem. Using bias-variance decomposition,

Ey w9 s [{0(s*) — wo(s*)}?]
= Ey s s [05") = By a(n) s (W)} + Ey msry s{w(s*)} — wo(s*)]?
= [Ey ey s{w(s)} — wo(S*)]2 + Ey w(st)| s [W(s") — Ey,ﬁ(s*ns{W(S*)}]Z
= bias?,@(s*)l s1W(s™)} + vary m(s) s{W0(s™) }-

If cf (+) = [cov{w(), w(sjn)},- .. cov{w(-), w(sjm)} = {Calsj1, "), -, Calsjm, )},

CT(') = {C{(), s 705(')}7 W(j); = {wo(sj1)7 SRR wO(Sjm)}7 and Wg = {ngv s 7W€k}7
then the distribution of w(s*) in (3) implies that

k
1 T 1
Ey w(s+) s1w(s” =1 Eﬁ (C”-i— An I) W

cl(kL+r2\, 1 1)~ ! wo,
Val"y,m(s*)\s{@(s*)} = vary |s [E{w(s") | y}] + Ey s [var{w(s") | y}]

k
(4) 1 720, T\ — %
D sty s |23 (Chy Dy | 4 By 006
i=1
(5) =72 (") (kL+7A, 1) 2 ¢(s”) + v(sY),

where L is a block-diagonal matrix with Cy1,..., Cy along the diagonal. The
equality (i) holds due to the following reasons: (i) The true data follows y(sj;) =
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wo(sji) +e(sji) (j=1,...,kandi=1,...,m), where €(sj;)’s are all independent
with variance 78 = 72 by Assumption A.5; (i) {y,...,ys} conditional on S are

jointly independent since they are a disjoint (random) partition of the full dataset

by Assumption A.1, which implies that vary, | s (Z?Zl ajT y j) =72 Z?zl aJT a; for

any vectors ay,...,a; € R™.
Therefore, the Bayes Lo-risk in (4) can be decomposed into three parts:

E¢ Es{cl (kL +72)\, 1) wo —wo(s*)}? + 72 Eg+ Eg {cl (kL +7%I)%¢c.}
(6) + Es Es {v(s")},

which correspond to biasQ, Varmean and varprsg in Theorem 3.1.
1.1 Proof of Theorem 3.1

The next three sections find upper bounds for each of the three terms in (6).
The conclusion of Theorem 3.1 follows directly by combining the three upper
bounds.

1.1.1 An upper bound for the squared bias Consider the squared-bias term in
(6). For ease of presentation, assume that {si,...,s,} are relabeled to

{811,---,Slm7---,Skl,---,Skm}

corresponding to the k subsets. Define &, (-) = Ca(sji, *),

Wg = ({0, €11 )Hy - + - 5 (W0, Esypn ) -+ + 5 (W0, Espy VH - -+ 5 (W05 &y ) 1)
= (W1 W),
() = Eonrre s Eoims o> oo+ Eonn)
(7) ={c{ ()b (O} = (et s )

The following lemma provides an upper bound on the squared bias of the DISK
posterior.

Lemma 1.1 If Assumptions A.1-A.5 in the main paper hold, then for some
global constant A > 0,

872\
Eg- Es{c! (kL +72\, I) ! wo —wp(s*)}2 < Tn " lwollZ

Ab(m. d, g)p("5*) H |

8n
2 - 4 d
+ [Jwolli é&fu 2 P tr(Ca)tr(Ca)+u1{

Jm

Proof Based on the term ¢ (kL +72\,I)"wq in (6), we define A; (j =
1,...,k) and A as

n

8j() = ¥] (Cyy +722 1) es() — wol) = iy (+) — wol-),
(8)

k k
AC) =y LA ™ e() —wo() = 3 D500 — wo()} = 1 D0 A0
j=1
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4 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

so that Ey|3(A) = w"()r(kL—l—Tg)\n I~lc() —wo(-) = k=1 Z;?:l Ey|3(Aj) and
Es || Ey|s(A)|3 yields the bias? term in (6). Jensen’s inequality implies that
| Eys(A)]3 < k71 Z?Zl | Ey|s(A))]|3, so we only need to find upper bounds
for || By s(A)I3 (G =1,....k).

We can recognize that the optimization problem below has w;(-) defined in (8)
as its solution,

, S {w(si) —yls)}? 1 .
(9) argmlnwe'HZ ]2’7'2/]{3 J +§)‘nHw||]%—]I7 J = ]-7"'7k‘
i=1

Differentiating (9) and taking expectations with respect to E,|s implies that

m 2An ~
ZEy|S {w;(sji) —y(sji)} &s;i + TTEy\s(wj)
i=1
i 2An ]
(10) = 3 {By s(85), s, sys + T By 5(5) =0,
i=1

where the last inequality follows because y(s;i) = (wo, &s;; ) + €(s;ji) and
<Ey|8(€)>£sj'i>H = <07£Sji>H = 0. Using (8)7 Aj = wj_w07 Il“—-ﬂy|$(wj) = Ey\S(Aj)+
wp, and dividing by m in (10), we obtain that

] m 7'2>\n 7'2)\71
aw ;@yw@j),&ﬁm&ﬂ o, 18180 = = e

If we define the jth sample covariance operator as ij = % Z;nzl &s;i @ &s;,» then
(11) reduces to

2
- 2, T
(Ej + T I) Ey|S(Aj) = _7km wo
(12) = H]Ey|S(A])”H < HwOHH7 J= L...k,

where the last inequality follows because f]j is a positive semi-definite matrix.

The rest of the proof finds an upper bound for || Ey|s(A;)|[3. We now reduce
this problem to a finite dimensional one indexed by a chosen d € N. Let §; =
(5]'1, - ,(5jd, (Sj(d—i-l)a - ,(5]'00) € LQ(N) such that

Ey1s(8) =D 8jivi, 05 = (Ey|s(A5), ¢idr2m),
=1
(13) 1By s =3 0% j=1,....k
=1

Define the vectors 6j = (6j1,-.-,0jq) and 5; = (6j(d41)s - - -+ 0joc), SO

Iy s(A)I3 = 1185113 + 1185113 and we upper bound ||Ey|s(A))[3 by sep-

arately upper bounding || Jj |2 and || 5; |2. Using the expansion Cg(s,s’) =
> ipi(s)pi(s’) for any s,s' € D, we have the following upper bound for
j=1HjPi\8)P;

187 13:
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(14)
s 52 () (id)
Hd+1
167115 = S < pan Y L < | By s(A) I3 < parallwol,
Hd+1, 27 g1 M

where (i) follows because || Ey | s(A))[|f = Y02y (5321.//% and (i7) follows from (12).

We then derive an upper bound for || 5? 3. Let M = diag(p1, ..., ua) € R
I € R™*4 be a matrix such that

(15) ) =pp(sji), i=1,....,m, h=1,....d, j=1,...,k
wy = >.5°, 0ip;, and the tail error vector v; = (vj1,...,vjm) € R™ (j =
1,...,k) such that
oo
Vji = Z 5jh(ph(Sji), 1=1,...,m.
h=d+1

For any g € {1,...,d}, taking the H-inner product with respect ¢, in (12) yields

1 « >
<<m Z&Sji ® §Sji + Tkr),\qln I) Ey|S(A])ﬂ 909>
=1 H

7'2)\n 7'2)\n 0
(16) = —m<w07¢g>lﬂl = -

- =1,...,k.
k:m Mga J ) I

Expanding the left hand side in (16), we obtain that

1 & 2\,
p. D (g, & By 5 {A(850)} + (09, By |s(A5))m

; km
=1

1 & 2\ djg
= m;‘:og(sji)EyIS{Aj(sji)} + I

The term = > ¢g(s;i) Ey s {Aj(sji)} on the right hand side is

1 n : d 1 m ] 00
SEPILDIVTICHEED S AP PRITACH
=1 h=l i—1

h=d+1
1 d m 4 ' 1 m '
_ § E J J E J .
= E (S]h (I)ig (I)’Lh +E @ig Vji
h=1 =1 =1

1 d T 1 & T
_ 5 (q)j q)j> il (q)j )

1 . . 1 )
(17) = (" @ls) +— (o) .

m g m g
Substitute (17) in (16) for g = 1,...,d to obtain that

1 _.r . 1 _. 2)\
— ol @i gt 4= @i v 4 T
m 7 " m k

2\

Mo
km

Y
m ]
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6 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

1 2N\, T 2\, .
18 By YA M) &t = Mot — —(I)J
(18) (m km > J km M

The proof is completed by showing that the right hand side expression in (18)
1/2
gives an upper bound for || 5; |2. Define Q = (I —1—% M_1> , then

T 1

2
% o/ @ +% M- -
Cafiat (e o)
and using this in (18) gives
(19)
{1+Q1 <; o" @ —1> Ql} Qo = —T;if Q 'M e —% Qe v
Now we define the P-measureable event

(20) E1= { ‘Q_l <1 7" @ —I) Q!
m

where [|-]|| is the matrix operator norm. We have that I+ Q™! (% " @i — I) Q!>

(1/2) I whenever £; occurs. Furthermore, when £; occurs, (19) implies that

< 1/2},

2

) 1 T
SI<Qet et Mo —Q @
18512 < 1Qojllz < 4| —=Q +-Q v

2

2 2 2

n Q—l M—l O\L

< -
8l<:m

)

2

1 .
+8HQ—1c1>JTv
m

2

where the last inequality follows because (a + b)? < 2a% + 2b? for any a,b € R.
Since &1 is P-measureable, Eg (H 6]¢- H%) =Es {|| 5; 121 (81)}—1—1513 {H 5; 121 (5%)}
and the previous display gives

T
(21) Es{llot131(€ >}<8 “g-tno!| s —q oy,

2

2

From Lemma 10 in Zhang et al. (2015), we have that under our assumptions A.1-
A.5, there exists a universal constant A > 0 that does not depend on \,,n, 72,
such that

N\, 1 2 2\
IM e < =S lwollR
e Q S Tom [[wo I,
1 1 jT 2 d 2
Es| Q& v; (Ca) tr(C)[lwollf,
2

max(q, log d) '027(@) '

(22) _ {Ab(m d%,y(r )\n)}q‘
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Since p1 > pg > ... > 0, the optimality condition in (12) implies that
(23)

[ee] [ee]

2 5ji

By s(A))]5 = o Shiei<m Y T” = 11| By | s(A))|13 < pualwol|-
=1 =1

Using the shorthand (22) and (23), we obtain that

1) Es {118 131(ED} < Es (1B, 1s(A)I31(ED)} < PEDmunl
Combining (21) and (24) gives

872\,

S8km
Es([6;513) SW

2\,

Ab(m, d, q)p*y(52e) | *
(25) +{ T k i1 ||wo |-

. _ k — k
Finally, we use that || Ey s(A)[5 < k71370 [ By s(A)I53 = k71320, 1165 115
to obtain that

llwollfz + —5—p" tr(Ca) tr(Ca) lwol [y

872\ 8km
Es (1 By s(A)3) < 72 ol + 51" tr(Ca) tr(Ca) ol
Ab(m, d, q)p*y(Far) |
+ { Jm . i f|wol [y

(26)

872\ 8n Ab(m, d, ¢)p*y(722) | *
= l[wollfr + llwollf [7_2)\”[)4tr(ca)tl"(cg) +M1{ NG ,
where we have replaced km by n in the last equality. Taking the infimum over
d € N leads to the proof. |

1.1.2 An upper bound for the first variance term The following lemma provides
an upper bound the first part of the variance term in (6).

Lemma 1.2 If Assumptions A.1-A.5 in the main paper hold, then

72 Es- Es {c] (kL+7°X, 1) c,} <

on Alwo % . n
(k/\n % . ol |Harr + 1272)\n ptr(Ca) tr(Ca)
Ab(m, d, Q)PQ’Y(LA" ) ! 127°X, 2 T (T
n 12 .
" { vm + o llwollg +12—=~ | —

Proof Continuing from (8), we start by finding an upper bound for Ey 75+, s 1417,
which is required later to upper bound Eg ||A;||%. From (8) we have

(27) Ey w8 18117 < 2By a0y s 19517 + 2llwollf-
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8 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

An upper bound for Ey, zs+)| s [|0; |2, gives the desired bound. Using the objective
in (9),

G Wy (sji) — y(s;0)} ~
sty S S B0 vonl | Ly

=1

”) {wo(sji) — Sﬂ)}2 1 2
(28) < Z 272\ /k; +§||w0||Ha

where (i) follows because the term inside the summation is non-negative and (i)
follows because w; minimizes the objective. Since w(s;;) — y(sji) = —e(sj;) and
Ey (s s{€%(sji)} < 72 by Assumption A.2, (28) reduces to

. I km
(29) By ey 1851 < e D By (elsi))? + s < 7 4 o

Substituting (29) in (27) gives

2km
(30) Ey wss 18117 < ST A |wol |-
n

First notice that

2 Eg Es {cl (kL +7°\, 1) % ¢, }

k
1 2 T 72\ -2
(31) = 5> TEsEs {cj* (Cj,j+ 2 fI> cj*}.

J=1

and from (6) we have

—2
2By Es {cﬁ (Cig+71) cj*}

2 -1
= Eg s vary z(s+) s {C;T (Cj,j +5 I) Yj}

1 2
< Eg+ ]ESIEy7 (s* )|3{ (C 3, —l—T 22 I> Y; —’LUO(S*)}
(32) = Eo+ Es Ey m(s+)[ s 14113-

Substituting (32) to (31) leads to

k
_ 1
(33) 7°EgEs{cl(kL+7\,I)%c.} < E 5 D EsEyasn s 14513
j=1
We then find an upper bound for Eg Ey, 7(s+)| s [|1Q; |3 by following similar steps
to the proof of Lemma 1.1. Let §; € Lo(N) be the expansion of A; in the basis
{pi}2,,sothat Aj = >"°, d;i¢; (the d; sequence here is different from the one in

the previous section). Similar to Section 1.1.1, choose a fixed d € N and truncate
A; by defining Aj, AJT, 6#, and 6; as

Zéjﬁ@za A = Z 5JZ(701 AJ'_A]%
i=d+1
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85 = (0j1,--,0ja), &) = (85(as1)s-- -+ Ojoc)-
The orthonormality of {¢;}3°; implies that

EsEywsis 1213 = Es Ey (s s ||Aj¢'||% + EsEg s ||AJTH%
(34) =EsEy a5 s | 85 13 + Es By as s | 65 13-

First, the upper bound for Ey s+ s || 5; |3 follows from (14),

Eyays 1A = Y By wes(6%)

1= d+1
Z Ey (s )|3 ]7« < Z 5321)
- fa fat1 fa i

i=d+1 i=d+1

= a1 By sy s 1AHIE < ptar1 By mgsey) s 1851,

and using (30),

2km
(35) Bymerns IAJE < o ).

We now find an upper bound for Es Ey, s+ s ||Aj\|§ Following Section 1.1.1,
define the error vector v; = (vj1,..., vjm)T € R™ with vj; = 3727 101 djipn(s;i)
(t=1,...,m),and M = diag(p1,. . ., ptq). From (9) and (10), w;(-) in (8) satisfies

" 2\
(36) Z gsgnwj —€m gsji km ——w; =0.

For any g € {1,...,d}, taking the H-inner product with respect ¢4 in (36) to
obtain that

2\
m Z fsgm - <§sjm ‘Pg> + %<A]’ + wo, ‘Pg>H =
=1
ifﬁ{A-(a-) s} olsg) + ol Tl
m = 3\8ji) — €(8ji) s Pg(Sji km g | kmopg
m d 9]
1 72X 0 2\ 0
il S " 5. W) — y ” nzj9 _ _ n_-9
m ; {Z jhn(sji) + h:§+1 inn(sji) — €(s; )} Pg(sji) + km g km p,’
d m m
1 1 2N, 6 2\, 0
p- > {Z ©n(8ji)pg(sji } djn+ — > A{vji —e(sji)} g(sji) + = f = —m;‘q,
h=1 \i=1 i=1 g 9
1 - . 2\, Ay
- (@J o/ 5¢) +— {qﬂ (v —ej)}g ToM M), = =T 0,

Writing this equation in the matrix form yields,

2\,
km

1 2\, 1 . 1 .
(37) (qﬂ P74 Tk M1>5j=— M —— 7 v+ — D ¢
m m m m
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10 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

Following Section 1.1.1, by defining Q = (I —i—% M~ H1/2 ] (37) reduces to

{I+Q1 (1 1" i —1> Ql} Qo
m

7.2

A 1 ; 1 ,

(38) =L QTIMT e —— QT v+ — QT ¢
km m m

On the event £1 defined as in (20), we have that T+ Q~* <% 1" @I — I) Q!>
(1/2)I. Furthermore, when &£; occurs, (38) implies that

7'2)\ _ _ 1 B . 1 - . 2
I <eati<a |-t me Lot e v hae

2

2 2

1 1 T 2
+ 12 44'(2_ PJ €
2 m

<12

)

2
T -1 gt
km 9

1 o
+12HmQ Lol v

2

where the last inequality follows because (a + b + ¢)? < 3a? + 3b? + 3c? for any
a,b,c € R. Since &7 is P-measureable,

Ey s (18113) = Ey s {IAH31 ()} +Eyues {18715 1 (€9}

If the event £1 occurs, then the upper bounds for the first term and the last two
terms in the last inequality are given by Lemmas 10 and 7 of Zhang et al. (2015),
respectively, and we have that

2

2\, 2\

—1a1-1pl T 2
M6 <
g < ol
1 . .7 2 km 2km
e |2 @ o v | < At ety (B2 aanl).

2

d m
1
(39) S 2 Z Z Tnl ES ]Ey,ﬁ(s*)‘ S {QO}QL(SJZ)€2(S]1)} .

Since the error €(-) and w(-) are independent, by Assumption A.4,
Es Ey w(s) s {95856 (851) } = Es { @i (i) } Eyase) s {€2(s50)} < 77
and the last inequality in (39) simplifies to

2 9 d 2 2
T 1 T T An
et < ()

1 s
EQ 1q)‘7 Ej

Es Ey w(s)|s

Hence when the event £1 occurs,

Es Eyaienis {1A131(60)} <

(40)
2\,

19 km 2km
km

2 [T\,
ol + 1257 x(Ca) w(Ce) (52 + ol ) + 125 (T2 ).
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If the event £ does not occur, then

yas {IATIBLED }
(4) <2km

< Bs {160 By 1AJIB} < PED) (57 + 4l
an C

) [ Ab(m, d, q)p*y(%ar) | ZLLINTITE
N/ﬁ{ An Oll| | »

where (i) follows from (30) and (i7) follows from (22). Substituting (40), (41),
and (35) in (34) implies that

EsE

2
]ESIEy <7é;21>4+
" kA P r(Cly) tr(C )+
A m, T An q m
42) { Ao 8 0 >} ] (25 + ;).

Therefore, substituting (42) in (33) implies that

?Ee Es {c (kL+72X\, 1) %c,} <

2n  Alwollg
(k)xn + ) |Hdt
Ab(m,d, q)p*y(Z2) "] 1272, o+ 127 2\,
Jm fn O ” n )

where we have replace km by n. Taking the infimum over d € N leads to the
proof. |

ptr(Cy) tr(CL)+

n
T2\,

(43)

1.1.8 An upper bound for the second variance term The following lemma pro-
vides an upper bound the second part of the variance term in (6).

Lemma 1.3 If Assumptions A.1-A.5 in the main paper hold, then

2 2A
Eg EsT(s*) < 3~ (T ">
n

n

n Ab(m, d, q)p? 2y 1
it [{T;l)\%tr(ca)+i}tr(ci)—i-)\nltr(Ca){ b d\/f‘%p 7(”)} ]

Proof First we have the following relation between v and the subset variance

Ly:

?r‘ \

) = {1 ) < Yt
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12 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

(44) % Zk: { s*) —cf (s7) (Cj,j - I>71 Cj(S*)} :

Since Cq(s,s") = > ooy nipi(s)pi(s') for s, s’ € D, we have

o oo
) =Y napa(s"), {ej(s)}i =) Hava(sjipa(s™), i=1,....m.
a=1 a=1
These together with the orthogonality property of {¢;};2, imply that

Es: Es {0j(s")} = A0 Y pa Ese 0 (s7)

a=1
FEEE R,

1a= 1
X Es [Spa(SJZ)SDb(sz’) Es« {©0a(s™)wn

m m o0

o (Ca) Eszzzug{cmn M et
{

i=14=1a=1

=\, IZua—A EsZui !ii

i=1¢'=1

_l’_

b putsigalsi)
1)

a=1

Ms

'I,L'll

m -1
A r(C3) = A Es Z T [Z j+ I) } Pa(8ji)pa(s;i)

a=d+1 =117

;!

I
—

(45)

(i) d 4 ,

<O Es Y {ma— 12l (Cig TR DT @l b A (Cl),
a=1

where iath element of the matrix ®/ (defined in the proof of Lemma 1.1) is

©Va(8ji)s @) is the ath column of ®7, and (i) follows because (C“ +7 " ) is a

positive definite matrix and <p£ (Cj,j +Z kf‘" I) @) > 0.

1/2
Let M = diag(u1, ..., p1q) and Q = (I —i—% M_1> as defined in the proofs

. -1
of Lemmas 1.1 and 1.2. Define a dxd matrix B= M~ M®/" (Cj;+7221) &/ M,
so that from (45),

T 2 -1
tr(B) ZZ{ua—Mfmé (Cj,jJr - I) %},

(46) Ee- Es {v;(s*)} < A\, ' Estr(B) + X\, ' tr(CL).

C; =M+ MM = oI M@ +Cl,

= diag(fgs1,- - poo), BT = [0l 1, @l ],
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then the Woodbury formula (Harville, 1997) and the definition of Q imply that

-1

. -1 .
B = {M_l +07" (Ol +7 1) qﬂ}

2 2 1 . 1 -1
_ T /\n{ T An 1+7(DJT <72/\ CT +I) (I)]_I}

km km m
7'2/\n _ -~ 1 _ .7 -1 _. _ -1
an  =Trar et {Lel (o)1) eo1fa]

Define the event €5 = {Tzk)\ C; = i } Since the matrix C} j is nonnegative

definite, we have the relation that

{or(Fel) < i e b)) < i cen

Smax(A) is the maximum eigenvalue of the square matrix A. Therefore, by Markov’s
inequality, we have that

Pw@gp{u(k cl,) > ;b <amsir (k0]

(48) Z Z paEs 3(sji) = fmetr <Ci) :

=1 a=d+1

Now on the event £1 NEy (with £; defined in (20)), we have that

1 . .
I+Q1{m¢>ﬂT (Focl+1) @J—I}Ql

(i) o1 - .
~1+Q7' {0 <4I+I> ®-1;Q"

et e e
( i) 1 4 1 2
4 = I— I — —I=-1
(49) ral=z1
where (1) follows on the event €3, and (ii) holds on the event £; and from the

fact Q2 < L.
Therefore, by combining (48), (49), and the upper bound for P(£]) given in
(22) under our assumptions, we obtain that

Es tr(B)
< Es{tr(B)1(€1N&2)} + Es [tr(B) {1(£7) + 1(£5)}]
95T 1 (Q ) 4 tr(Ca) (BLET) + P(ES))
@ 37273717 <T2nAn> n T;”; tr(Cy ) t(C2)
(50) +tr(Ca) {Ab(m’d’%ww)} ,
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14 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

where (i) follows from (49), and (ii) follows from (48), (22), and by replacing km

with n.
(45), (47), and (50) together yield

Es- Es {v;(s")}
<M IEstr(B) 4 A, tr (Ci)

2 2 n 4 1
23%7 <TT:\ >+{ i tr(C’a)—l-}tr(Ci)

22 An
(51) + A tr(Cg) {Ab(m’ dj%p ) } .

Since the righthand side of (51) does not depend on j, a further upper bound
for (44) is given by

k
Egx ES {5(S*)} < % Z Eg+ ES {Ej(S*)}
=1

2 (72, 4n 1 d

n n >\n
Ab(m, d, q)p*v(2) |
Jm '

Taking the infimum over d € N leads to the proof. |

(52) + 2, t1(Ca) {

1.2 Proof of Theorem 3.2
The proof of parts (i)—(iv) are as follows.

(1) Since d* is a constant integer and k = o(n), we can take m sufficiently large
such that n > m > max(d*, e?). In the upper bounds of Theorem 3.1, we choose
d = n in every infimum to make the upper bounds larger. This implies that
tr (C’g) =0, pg+1 = 0, and b(m,d,q) < logn. Also notice that in this case,
~v(a) < d* for any a > 0. Then, with A\, = 1, Theorem 3.1 implies that

Es Es Ey (s s {W0(s*) — wo(s*)}?
2

_ o T
< (8f|wol|F + 12k~ ||lwo|E + 15d%) —

on  4f|woll3 Ap?d*logn !
+{mmm@+k+—‘;m+umw}(Wk

2 (Ap2d* log n)q kr/2-1
nr/2-1

<O Y +{1+01)}
— oY),

where the last equality follows from the condition on k.

(ii) In the upper bounds of Theorem 3.1, we choose d = n? in every infimum for
sufficiently large n such that logd = 2logn > ¢. Then

fias1 < 1 exp (—cgun®) = O(n™%),
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logd
b(m,d,q) < max <\/10gd, ml(/)2g_1/q) <logd < 2logmn,

00 0o 00
tr (C’i) = Z i < Z c1y exp (—coui") gclu/ exp (—cgu2"™) dz
i=n2+1 i=n2+1 n?
<9
(53) :clu/ —tr " exp (—egut) di,
n2k K

where in the last step, we use the change of variable ¢t = z". If K > 1, then since
t > n? > 1, we have tr1 < 1. If 0 < kK < 1, then there exists a large ng € N
that depends on only ¢o, and k, such that for all n > ng and t > n?*, we have
tnl < exp(co,t/2). Therefore, in all cases,

o0

& 2c
(54) tr (Ci) < :‘/ exp (—cgut/2) dt = p 12 exp (—cgun®*/2) = O(n™%).

2K 2M

1/k
Let dy = (é log n) . For sufficiently large n, with A\, = 1, y(72\,,/n) can be
bounded as

ldi]+1 o

V(T2 An/n) = v(7%/n) = Z o=y oy A

’7'2 T2 T
= it - Mt i:Ld1j+2“i+?

o
n
<d+1+— E — 90"
Sdi+1+ 3 c1p exp (—caut™)
i=Ld1J+1

n o
<d+1+ 72/ Cly €XP (—CQHZ”) dz
d1

[e.e]
=di+ 14— 1“ / tn L exp (—cout) dt
K

K
1

ney, [
<di+1+ 2, /dif exp (—cout/2) dt

nclu K
L o (—edi/2)

(55) = (é log n) v +1+ 61“2 =0 ((log n)l/“) .

CQ#T K
Therefore, from (53), (54), (55), and the bounds in Theorem 3.1, we obtain that
Es: Es Ey,m(st) s{0(s") = wo(s")}’

<O +1574 (f) o {Ab(m’ L 0p 27(7")}

<Om)+0 ((log n)l/”/n) +0(1) -

<0 ((log n)l/”‘/n> +O(1) - C )

=0 ((logn)l/“/n> ,
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16 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

where the last equality follows from the condition on k.

(iii) Let A, = 1. In the upper bounds of Theorem 3.1, we choose d = |n3/(21—1) |
3

in every infimum for sufficiently large n such that logd > log (n -1 — 1) > q.

Then

fasy < Cun—ﬁn/@n—l) < eun®

)

tr(C’i)z iu@_ Z cut ™ 77<c“/ Z%dz

i=d+1 i=d+1
= g1 o e n3
2n—1 2n—1

logd 3
(56) b(m,d,q) < max (x/log d, ml/2—1/q) <logd < 271 logn.

Y(12An/n) = v(72/n) can be bounded as

=1 > 1
7(7-2/71) = Z T2 =< Z 72421
i=1 1 + np; i=1 1 + cum
cun > 1
1/(2n) op i
sn +1+ 2 > 20
1/(2n)J4_2
<n 1/(2n) +1+ Ln / —
1/(2n) 2 77

(57) nt/ @) 41 4 Cu 7t 1) nt/ .,

72(2n — 1) o < <72(2n 1
From (56), (57), and the bounds in Theorem 3.1, we obtain that
Es+ Es By z(s+) s {W(s*) — wo(s™)}?
<Om™+1574 Cj) F{ o) T {Ab( 4 9)0*y () }

vm
1572 (2 + o) pt/(2)
<O(n )+ ( 2(277 1)>
n
q
3A4p% (2 + = ) pl/20) Jogn
{1+ o)} ( & 1)>

k (2n—1)\/n/k

<O0(n~ )+O( )+O() Lqiq

-0( ).

where the last equality follows from the condition on k.

(iv) Now let A, = cinY @1+ In the upper bounds of Theorem 3.1, we choose
d = [n3@1=1] in every infimum for sufficiently large n, in the same way as in
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Part (iii). Therefore, (56) still holds true. Furthermore, since \, = ¢;n!/(27+1),
we have that

o0 1 2 -1
2\ /) = ™ - Ui
e =3 (14708 ) Z (1+ )

=1 =1
_2n 0
2n+1 1
< pl/@nt1) g ST el
<n +1+ 26, 21 2
i=[n20+1 |42
< n1/(2n+1) + 1 4@ C n277+1 /
o T 2277
_ 1/@0+1) cun T
n Tt e @y - D@D

(58) < (- 1) nme
S\ 1)
From (56), (58), and the bounds in Theorem 3.1, we obtain that
Es Es Ey w(s+) s{0(5") — wo(s")}

2\ q
O(An/n) + 15227 T?n) i {1+0(1)}k2;n {Ab(m,d7\q/)£2,y(n)}

<0 (n* 23+1 + 1572 ( 1) N Tt
277 -1)
ol [ 34p% ( mt— + 1 n % logn
27’L277+1 p <72(27771) g
k (2n —1)\/n/k
k3~ (logn)

(2n—1)qg 27
n2@n+1)  2n+1

q

+{1+0(1)}

0w,

where the last equality follows from the condition on k.

1.3 Extension to Unknown 72

In this section, we extend the convergence rates of Bayes Lo-risk in Theorem
3.2 to the case where the covariance function is parameterized in a different way
and is scaled by 72, such that 72 is unknown and assigned a prior distribution. We
modify the GP prior on w(-) in Equation (11) of the main text to the following

y(si) = w(si) +e(si),  e(si) ~ N (0,7%),
(59) w(-) ~ GP{0, A, ' 7*Cal-, ) };

that is, Cq is scaled with 72, the same as the error variance. This parameterization
has also been used in the application of GP models before. We maintain the same
eigen-decomposition of the kernel Cq (-, ) and the Assumptions A.3 and A.4 as
before. We assume that « is still fixed at its truth ag, but now impose a prior

on T2.
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18 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

A.5" (Prior) For each of the k subsets, 72 is assigned a prior with a bounded
support in (0,72] for some finite constants 72 > 0.

Let H572|y
and w(s*) given y, {7]2 :j=1,...,k}, and s*, respectively, Where Tj is drawn
from the posterior of 72 given y; from the jth Subset posterior. Then the Bayes

Lo-risk of the DISK posterior for w(-) can be written as

and Eg )2,y s De the expectations of {72 i =1,. k:} given y,

(60) Es EsEy (s Eroy Egs)|y.r2.e {0(*) — wo(s*)}>.

Then, we have the following corollary when a prior distribution is imposed on 72.

Corollary 1.1 If Assumptions A.1 — A.4 and A.5 hold, then all the convergence
rates in the four cases of Theorem 3.2 still hold true for the Bayes La-risk given
n (62).

Proof [Proof of Corollary 1.1] We proceed to prove a similar bound for the Bayes
L risk to Theorem 3.1 in the main paper under A.5". By A.5, we need to account
for the randomness in the posterior of p(Tj2| y;) across j = 1,..., k. Based on the
model (59), we can see that conditional on the subset posterior draws of sz from
the subset posterior p(72| y;) for j = 1,...,k, the DISK posterior draw w(s*)
follows the distribution N (7, v), with

I {C,+ 1}y,

m =

| =
]~

1

k
_ T -1
(61) 7Y/2 — Z 7 I {6*7* — c}j* (Cj,j +% I) cj,*} ,

<
Il

?v \

where c;«, Cjj,cy are defined similarly to those in (3) according to the base
kernel Cq,. Notice that m does not depend on Tj2 due to the rescaled kernel
72C4, in (59).

Let Es-, Eo, Es, Ey|s, and Egg)y -2, E;2|y respectively be the expectations
with respect to the distributions of s*, (S,y), S, y given S, w(s*) given y and
{7']»2 :j=1,...,k}, and {7'].2 :j =1,...,k} given y. Then based on A.5, the
Bayes Lo-risk of the DISK posterior for w(-) can be written as

(62) Es+ EsEy |5 E2)y Eggse|y.r2 {W(s*) — wo(s*)}.

To upper bound (62), we apply the law of total variance repeatedly to obtain
that

Ey|sEr2|y B y.r2 {W(s*) — wo(s*)}?
= [Ey s Er2py Egeryy 2 {W(5)} — wo(s")]” + vary 2 ey s {w(s)}
= [Ey s B2y Eager))yr2 {W0(5")} — wo(s")]?
+vary s [Brey Bger))y.r2 {W(s7)}]
+Ey s (vary2)y [Ege)y..2 {@0(s)}])
(63) +Ey s (ETQIy [Var )| y,r2 {w(s*)}])
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Using (61), we can derive that

PN 12
[Ey |5 Er2)y gy y.r2 {W0(s")} — wo(s")]
2
k
_ -1 .
= |k 1ZC£* {de‘ —i—% I} Wo; —w()(S ) R
j=1

(64) — {T(RL+A, T) wo —wo(s*)},

vary | s [ETz| y Eﬁ(s*)‘ y,72 {@(S*)}]

k
_ —1
= vary|s k1 Zcf* {Cj,j —l—)‘f I} \g
j=1

(65) = 72cl(s")(kL4+MT) 2 c(s*),

Ey s (varey [Eas)) . {W(s")}])

1 1
(66) = By s | vareay |2 e {C +2 T} Ty, | =0,
j=1

(67) Ey|s (Brz)y [Varg(e) y.r2 {0(s)}]) =Ey s {Er2)y (@)},
where (64) and (67) follow from (61) and (5) (65) follows similarly to (5), and
(66) is zero because T does not depend on 7' (j=1,...,k). Next, we find upper

bound for (64), (65), and (67), respectively.

First, we notice that (64) has the same expression as (5) by setting 72 = 1 in
(5). Therefore, the proof and the conclusion of Lemma 1.1 still works as before,
by setting 7% =1, i.e.

Ee- Es{cl (kL +A, 1)~ wo —wo(s )}2<7H wollf
q
2 . 8n 4 d Ab(m, d, q)p* ’Y(Wn)
69 +lwollh jnt |6 (Ca) (O + i |

Second, we notice that (65) differs from (5) only with the 72 outside replaced
by the true error variance 7¢, and that 72 = 1 in (kL +72)\, I)72. We carefully
inspect and modify the proof of Lemma 1.2 to obtain that

75 Eer Es {cl (kL+X\,T) % ¢, } <

2rn | 4wl
kX, k

Ab(m, d, )p2'y(7") ! 12, 2N (M
(69) +{ T }]-i-kn 2+ On 7<n>

Third, ¥ (and v;) in (61) differs from o (and v;) in (3) only in that (61) has

-1
a Tj2 factor outside and it has 72 = 1 inside <Cj,j +72,;\” I) in (3). Using the

. n 4 d
> inf [Nd-i—l +125-p tr(Ca) tr(Cq)

expression of v in (61) and the upper bound T]-Q < 72in A5, we carefully inspect
and modify the proof of Lemma 1.2 to obtain that

Egs« Eg Ey |S E7-2| y(ﬁ)
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k
1
- ) Es EsEy|sE2)y(v;)

<
=1
_ov—1 kK
T2\ -1
< kn Es< Es {C*,* - C;‘C* (Cjﬂj +)\Tn I) cj?*}

J

§T2{27 <)7\"ZL> i X\
Ab(m, d, q)p*v(1) "
Jm '

Now we can combine (62), (63), (64), (65), (66), (67), (68), (69), and (70) to
obtain that

Es EsEy (s E 21y Eger)|y.r2 {B(8%) — wo(s™)}

8\ . n
< 22 g + ol int [M‘l t1(Ca) tr(C2) + {
n

220 Aol
f
+<k)\n T ) 2N,

Ab(m, d, )Py "] 120, e T (A
n —Zin 12 an
+{ vm * kn lwollf + n 7(71)

1

(70) (e {

Ab(m, d, q)p*y(2)
Jm

pHtr(Ca) tr(C2)

Pd+1 + 12

4n 1 d
{)\% tr(Ca) + )\n} tr(Cg)

We notice that the upper bound in (71) differs from the upper bound in Theo-
rem 3.1 only by some multiplicative constants in each term and inside the ~(-)
functions. In the previous proof of Theorem 3.2, these constants will only change
the multiplicative constants and do not affect the convergence rates of the Bayes
Lo-risk of W(-). As a result, the convergence rate results of Theorem 3.2 continue
to hold for (71) under the various conditions specified in the different cases of
Theorem 3.2. This completes the proof. |

2. SAMPLING FROM THE SUBSET POSTERIOR DISTRIBUTIONS
USING A FULL-RANK GP PRIOR

Recall the univariate spatial regression model for the data observed at the ith
location in subset j using a GP prior is

(72) y(sjz-) :X(sz')T,B—I—w(SjZ‘) —i—E(SjZ’), j= 1,...,k, 1= 1,...,mj.

For the simulations and real data analysis, we assume that Co (sj;, sji7) = 02p(sji, Sjir; @)
and Dq(sj;,s50) = 1(i = i")72, where 02, ¢, 72 are positive scalars, p(-,-) is a
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known positive definite correlation function, and 1(i = ¢') = 1 if i = ¢’ and 0
otherwise. This implies that a = (02,72, ¢). The model in (72) is completed by
putting priors on the unknown parameters. The priors distributions on 3 and «
have the following forms:

(73) B~ N(pg, L), 0> ~1G(as,bs), 7> ~1G(ar,b;), &~ Ulag,be),

where pg,Yg,a5,b5,0r,br, a4, and by are constants, N represents the multi-
variate Gaussian distribution of appropriate dimension, IG(a, b) represents the
Inverse-Gamma distribution with mean a/(b+1) and variance b/{(a—1)?(a—2)}
for a > 2, and U(a, b) represents the uniform distribution on the interval [a, b].
The spatial process w(-) is assigned a GP prior as

(74) w() | U27¢N GP{O7Ca(7)}7 Ca(‘v') :O'2p(‘,‘;¢).

The training data {x(sj1),y(sj1)}, -, {X(Sjm,), ¥(Sjm;)} are observed at the m;
spatial locations and S; = {s;1,...,8;m, } contains the locations in subset j.

Consider the setup for predictions and inferences on subset j. Let S* = {s},...,s]}
be the set of locations such that S*NS; = (. If w;fr = {w(sj1), .-, w(Sjm,;)} and
e]T = {e(sj1), ..., €(Sjm;)}, then (72) implies that w; apriori follows N{0, C; j(c)},
where C; j(a) is the block of C(a) that corresponds to the locations in S;, and €;
follows N (0,721), where I is the identity matrix of appropriate dimension. Given
the training data on subset j, our goal is to predict y; = {y(s}),...,y(s;)} and
to perform posterior inference on w = {w(s1),...,w(s)}, B, and a, where the
subscript 7 denotes that the predictions and inferences condition only on sub-
set j. Standard Markov chain Monte Carlo (MCMC) algorithms exist to achieve
this goal (Banerjee et al., 2014), but conditioning only on subset j ignores the
information contained in the other (k — 1) subsets, resulting in greater posterior
uncertainty compared to the full data posterior distribution.

Stochastic approximation is an approach for proper uncertainty quantification
that modifies the likelihood used for sampling from the subset posterior distribu-
tions for predictions and inferences. The likelihoods for 3, a, and w; are raised
to the power of k to compensate for the data in the other (k — 1) subsets, where
we assume that m; = -+ = myp = m and k = n/m. First, consider stochastic
approximation for the likelihood of B8 and a. Integrating out w; in (72) gives

(75) y; =X;jB+mn; mn;~N{0,C;;(a)+7°1},

where X; = [x(s;1) : -+ : X(8jm)]T € R™*P is the design matrix for subset j. The
likelihood of B and « given y;, X; after stochastic approximation is

(76)
{1(B. e)}* = (21) ™2 Cy () + 72T 23 (v =X B) {Cri(@+r21} (v, — X, 8)

The prior distribution for 3 in (73), the pseudo likelihood in (76), and Bayes rule
implies that the density of the jth subset posterior distribution for B given the
rest is

B | rest o e72(%5 =% ) [ {Cs@+r 1} (v, - X; 8) ,~5 (8- 1s)" S5 (B~ ns).
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This implies that the complete conditional distribution of 3, has density N (m; g, V; g),
where

~1
Vig = [FXT{Cj(e) + 2T X +551]
-1 —
(77) myp = Vg [kX] {Cjs(e) + 721}y + 35" ) -

If the density of the prior distribution for a is assumed to be m(o?)7(72)7 (),
where the prior densities 7(02), 7(72), and 7(¢) are defined in (73), then the
pseudo likelihood in (76), and Bayes rule implies that the density of the jth
subset posterior distribution for o given the rest is

o | rest o | Cj () + 72 1| F/2em2 (% =% B) [k H{Cra@+r? 1} (v, - X; 8)

(78) (0%) 7 et (72) T e by — ag)

This density does not have a standard form, so we use a Metropolis-Hastings step
with a normal random walk proposal and sample «; using the metrop function
in the R package mcmc (R Development Core Team, 2017).

Second, we derive the posterior predictive distribution of W}k- given the rest.

The GP prior on (wj, w}) implies that the density of w; given w; is

J

JrJ ; ’ Jod

(79) W} | w; ~ N {C.j(@) CjH(@) w;, C...(@) = C.j(a) C; } (@) Cju(e)}

where cov(w}, w}) = C, «(a), cov(w], w;) = C, j(a), and cov(w;, w}) = Cj . (av).

Given a, 8, y;, and Xj, (72) implies that the likelihood of w; after stochastic
approximation is

(80)  {L;(w;)}F = (2m) K22 L[R2 52 (% ~X;B-w;) (v, - X; B w;)

The GP prior on w;, the pseudo likelihood in (80), and Bayes rule implies that
the density of the subset posterior distribution for w; given the rest is

T
W | rest o< ei27%/k(yjijﬁ’“’j) (v; =X B=w;) e_%WJTC;;(a)Wj.

This implies that the complete conditional distribution of w; has density N (mw,, Vw;),
where

_ -1 k
(8) Ve, ={Cij@+51} . mu, =5 Vi (v~ X, 8)

therefore, (79) and (81) imply that the complete conditional distribution of w7
has density N (mw; , VW;), where

My : = E(w} | rest) = Cy j(ev) C;]l(a) E(w; | rest)
s -1
(2) = Coi@{Ci@+ 7T} (v;-X;B)
and

Vi = var(w} | rest) = E {var(w} | w;) | rest} + var {E(w} | w;) | rest}
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(83)

= C..(a) = C.j(a) Cj () Cj.(a) + C.j(a) C; () Vw,; C; } (a) Cj . ().

JiJ
Finally, we derive the posterior predictive distribution of y7 given the rest. If
Bjs 7]2, W; are the samples from the jth subset posterior distribution of 3, 72,

and w*, then (72) implies that y; given the rest is sampled as
yi=X;B;+wi+e€;, € ~N(O0,71I);
therefore, the complete conditional distribution of y; is N (Ky=, Vy;), where
J

(84) py: =X; B +wj, Vy =171

All full conditionals except that of a are analytically tractable in terms of
standard distributions in subset j (7 = 1,...,k). The Gibbs sampler with a
Metropolis-Hastings step iterates between the following four steps until sufficient
number of samples of 8;,a;, w;, and y; are drawn post convergence to the
stationary distribution:

1. Sample B; from N(p;g,V;g), where ;g and Vg are defined in (77).

2. Sample o using the Metropolis-Hastings algorithm from the jth subset
posterior density (up to constants) of o in (78) with a normal random
walk proposal.

3. Sample w7 from N (uw; , VW;_), where [ and V. are defined in (82) and
(83).

4. Sample y7 from N (uy;,Vy;), where Py and Vy- are defined in (84).

3. SAMPLING FROM THE SUBSET POSTERIOR DISTRIBUTIONS

USING A LOW-RANK GP PRIOR

For clarity, we focus on the modified predictive process (MPP) prior as a
representative example of low-rank GP prior. The Gibbs sampling algorithm
derived in this section is easily extended to other low-rank GP priors. Follow-
ing the setup in Section 2, we assume that Cu(sj;,sjir) = JQ,O(Sji,sji/;gZ)) and
Daq(sjissjir) = 1(i = )72, a = (0,72, ¢), the prior distributions on B8 and
a have the same forms as in (73), and S; contains the locations in subset j.
Following the previous section, we assume that m; = --- = mp = m and
k = n/m. The only change in this section is that the spatial process w(-)
in (72) is assigned a MPP prior derived from parent GP prior in (74). MPP
projects the parent GP w(-) onto a subspace spanned by its realization over a

set of r locations, S = {sgo), ces ,Sq(no)}, known as the “knots”, where no condi-
tions are imposed on SNS©. Let ¢(-,8©) = {Ca(-,sgo)), . ,C’a(-,sy(«o))}T and
w(0) = {w(sgo)), . .,w(sgo))}T be r x 1 vectors and C(S()) be an 7 x r matrix
whose (i, j)th entry is Ca(sgo), sg-o)). The MPP prior defines

(85) () =L (-,89) (8O Tw® 4¢(),

where the processes €(-) and w(-) are mutually independent and €(-) is a GP with
mean 0, cov{é(a),é(b)} = d(a) 1(a = b) for any a,b € D, and

8(sji) = Calsji,sji) — € (551, 8V) C(S) " e(si, S).
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The process @(-) is a low-rank GP with mean 0 and
cov{w(a), w(b)} = cT(a,80)C(S) L e(b,S80) +§(a) 1oy,
for any a,b € D. If we replace w(-) by w(-) in (72), then
(86) y(sji) = x(sji)T Bra(sji) +e(sji), j=1,....k i=1,....mj.

and our definition in (85) implies that w(-) is assigned a MPP prior (Finley et al.,

2009).
We start by defining mean and covariance functions specific to univariate spa-
tial regression using MPP. Let W; = {w(s;j1), ..., W(Sjm)} and W} = {1 (s1),...,w(s;)}.

The MPP prior is identical to the FITC approximation in sparse approximate
GP regression, so we use the FITC notations to simplify the description of pos-
terior computations (Quinionero-Candela and Rasmussen, 2005). Define Q;; =

Cjo(@) CH(S) Co (), where cov{u(sja), w(s,”)} = {Cjolal,, (a=1...,m;
b=1,...,r) and Coj(a) = C](cx). The density of (W;, w}) under the GP prior
implied by MPP is N{0, C(a)}, where 2 x 2 block form of C( ) is defined using

) = Q,; +diag{C; ;(a) — Q; ;} = cov(w;, wW;),
(@) = Q;, = cov(W;, W )

Cinla) = Q.. +diag{C..(a) — Q, .} = cov(W}, W}),
(87) C.j(@) = Q. ; = cov(Wj, w;).

Stochastic approximation is implemented following Section 2. First, consider
stochastic approximation for the likelihood of B and a. Integrating out w; in
(86) gives

(88) y; = X;B+n;, #;~N{0,Cj;(c) + 721}
The likelihood of 8 and « given y;, X; after stochastic approximation is

(89)
{1i(B. a)}F = (2m) "2\ () + T2 TR 22 (X B) {Cii(@+72 1} (v; - X, 8).
The prior distribution for 3 in (73), the pseudo likelihood in (89), and Bayes rule

implies that the density of the jth subset posterior distribution for B given the
rest is

B | rest oc e 2 (%5 =% B8) [k €+ Y] (v, - X, 8) o~ 5(8—1a) " T5' (B~ 1),

This implies that the complete conditional distribution of 8; has density N (m; g, Vj 8)s
where

O T(E 21 17!
Vg = [FXT{C)y() + 2T X5+ 551

~ ~ -1
(90) ms=V,a [k XT{Cjj() + 721}y, 455! uﬁ] .
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Following Section 2, the density of the jth subset posterior distribution for «
given the rest is

~ Tr (A —
a | rest o< |Cj () + 721 |_k/267%(yi -X;B8)" k"G @+ 1] (v, - X; 8)
(91) (02) 7 et o (P2 T T e T by — ag)
This density does not have a standard form, so we use a Metropolis-Hastings step
with a normal random walk proposal and sample o; using the metrop function
in the R package mcmc.

Second, we derive the posterior predictive distribution of W; given the rest.
The MPP prior on (W;,w7) implies that the density of W} given w; is

~ ~ ~ ~—1

92) W | W; ~ N {Coy(@)C;j (@)W, Cula) = Cu(@) Gy (@)Cjnla)}

Given «, B, y;, and Xj, (86) implies that the likelihood of w; after stochastic
approximation is

93)  {1;(W))}F = (@m) 22 R 2 (=X ) (3, =X 8 ),

The MPP prior on w;, the pseudo likelihood in (93), and Bayes rule implies that
the density of the subset posterior distribution for w; given the rest is

- \T -
W | rest o ¢ R (Vs X B ) (3 =Xy o)

This implies that the complete conditional distribution of w; has density N (m‘;vj , VV;,J.),
where

-1 -1 k
04 Ve, ={C @+ AT} . me =5 Ve, (y; - X, B)

therefore, (92) and (94) imply that the complete conditional distribution of w7
has density N (m‘g,; , Vw;f), where

#(@)C (@) E(W; | rest)

- - 5 -1
(95) = C.j(@) {Ciy(@ + F 1} (v;-X; )

My = E(W] | rest) = C.

),

and

V‘;V;f = var(w; | rest) = E {Var(VNV; | W) | rest} + var {E(\X/;‘ | W) | rest}
(96)
> ~ -1, ~ ~—1 R
= Ciu(a) — C*J(a)cj,j (@)Cj () + C*J(a)cj,j (o) Vv”Vj Cj,j (@)Cj ().

Finally, we derive the posterior predictive distribution of y7 given the rest. If

*

By, Tj2, w are the samples from the jth subset posterior distribution of 3, 72,
and w*, then (86) implies that y; given the rest is sampled as

y; =X;B;+W; +€, €~ N(O,Tj2 I);
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therefore, the complete conditional distribution of y;f has density NV ([Ly»f,Vy;),
J
where

(97) fry: = X; B; +W7, Vy; =77 1.

All full conditionals except that of « are analytically tractable in terms of
standard distributions in subset j (j = 1,...,k). The Gibbs sampler with a
Metropolis-Hastings step iterates between the following four steps until sufficient
number of samples of 3;, aj, W}, and y;f are drawn post convergence to the
stationary distribution:

1. Sample 3; from N(ﬂjﬁ,\?jg), where f1; g and Vg are defined in (90).

2. Sample o using the Metropolis-Hastings algorithm from the jth subset
posterior density (up to constants) of a; in (91) with a normal random
walk proposal.

3. Sample w} from N (u‘;vj*_ , V‘;V;), where P and Vg are defined in (95) and
(96).

4. Sample y7 from N (gy;,\*fy;_), where ﬂy; and Vyj*_ are defined in (97).

4. COMPARISONS BETWEEN DIVIDE-AND-CONQUER COMPETITORS
4.1 Setup

We compare the four competitors based on the divide-and-conquer technique.
Extending Section 4 of the main manuscript, we compare the performance based
on learning the process parameters, interpolating the unobserved spatial surface,
and predicting the response at new locations. This section presents two simulation
studies and one real data analysis. Recall that the first and second simulations
(Simulation 1) generate data from a spatial linear model where the spatial pro-
cesses are simulated from a GP and an analytic function with local features,
respectively. The number of locations in the two simulations is moderately large
with n = 10, 000. Continuing from the main manuscript, our real data analysis is
based on a large data subset of sea surface temperature data with n = 1,00, 000
locations. For all the three simulations, the response at (n+1) locations is modeled
as

(98) y(Si> = ,30 + x(Si)Bl + w(si) + €, €~ N(O, 7'2), s;i€DC RZ,

for i = 1,...,n + [, where D is the spatial domain, y(s;), z(s;), w(s;), and ¢;
are the response, covariate, spatial process, and idiosyncratic error values at the
location s;, By is the intercept, 51 models the covariate effect, and [ is the number
of new locations.

The three-step DISK, WASP, DPMC and CMC frameworks are applied using
the low-rank MPP priors using the algorithm outlined in Section 3.3 of the main
paper with two partitioning schemes. The first partitioning scheme randomly
partitions the spatial locations in k£ groups. In the second partitioning scheme,
we divide the spatial domain into sixteen square grid cells and randomly allocate
locations in every grid cell into k& groups.

We compare the quality of prediction and estimation of spatial surface at
predictive locations S* = {s],...,s/}. If w(s}) and y(s},) are the value of the
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spatial surface and response at s’ € S*, then the estimation and prediction
errors are defined as

1
(99) Est Err? = T

~| =

l l
S {isy) —wish)},  Pred En® = = 3 {i(sh) — y(si)}
=1 i'=1

where w(s) and g(s}) denote the estimates of w(s}) and y(s}) obtained using
any distributed or non-distributed methods. For sampling-based methods, we set
w(s}) and g(s}) to be the medians of posterior MCMC samples for w(s},) and
y(s}), respectively, for ¢/ = 1,...,l. We also estimate the point-wise 95% credible
or confidence intervals (Cls) of w(s};) and predictive intervals (PIs) of y(s}) for
every s € §* and compare the CI and PI coverages and lengths for every method.
Finally, we compare the performance of all the methods for parameter estimation

using the posterior medians or point estimates and the 95% Cls.
4.2 Simulation 1: Spatial Linear Model Based On GP

This section compares DISK with its divide-and-conquer competitors under
the two partitioning schemes and is a continuation of Section 4.2 of the main
manuscript. The four divide-and-conquer methods, CMC DISK, WASP, and
DPMC, have similar performance in parameter estimation (Tables 1, 2, and 3).
The parameter estimates obtained using all these methods are close to the truth
and estimation errors are also very similar. The 95% credible intervals of £y, 51, 72
in cover the true values and their lower and upper quantiles are very similar. All
the four methods underestimate o2 and overestimate ¢ slightly. Both results are
the impacts of parent MPP prior, which also shows a similar pattern for the two
choices of r. We notice that the coverage of CMC is smaller than that of DISK,
WASP, and DPMC. More importantly, the choice of r, k, or partitioning scheme
has a minimal impact on parameter estimation in DISK, WASP, and DPMC.

The inferential and predictive performance of DISK, WASP, and DPMC are
similar, but CMC shows significant differences (Table 4). There are minimal dif-
ferences in the prediction and estimation errors of CMC, DISK, WASP, and
DPMC. This indicates that the estimate of posterior medians are very similar in
all the four methods; however, the pointwise coverage of CMC in prediction of
the response and inference on the spatial surface is significantly smaller than the
nominal value for every choice of r and k. On the other hand, DISK, WASP, and
DPMC have nominal coverage in prediction and inference on the spatial surface.
Furthermore, their CI and PI coverage values are robust to the choices of r, k,
and partitioning scheme.

In summary, the DISK, WASP, and DPMC have similar inferential and pre-
dictive performance. While CMC’s point estimates are close to those of DISK,
WASP, and DPMC, its inferential and predictive performance is worse than its
three competitors. The partitioning scheme, random or grid-based, has no impact
on the performance of all the four divide-and-conquer methods.

4.3 Simulation 2: Spatial Linear Model Based On Analytic Spatial Surface

This section compares DISK with its divide-and-conquer competitors and is
a continuation of Section 4.3 of the main manuscript. Our conclusions remain
similar as those observed in the previous section. Specifically, CMC DISK, WASP,
and DPMC have similar performance in parameter estimation (Tables 5, 6, and
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TABLE 1
The errors in estimating the parameters 3 = (Bo, 1), 0>, ¢, 72 in Simulation 1 for the
divide-and-conquer methods under random and grid-based partitioning. The parameter
estimates for the Bayesian methods ﬁ = (5’0,5’1), &2, gZ;, 72 are defined as the posterior medians
of their respective MCMC' samples and their true values are B, = (1,2), 08 = 1,¢0 = 4 and
76 = 0.1. The entries in the table are averaged across 10 simulation replications.

1B =Boll [ 16%—ad| [ 16— ol | 1#* — 73]
Random Partitioning
CMC (r = 200, k = 10) 0.09 0.12 0.68 0.01
CMC (r =400, k = 10) 0.09 0.12 0.75 0.01
CMC (r = 200, k = 20) 0.10 0.13 0.95 0.02
CMC (r = 400, k = 20) 0.10 0.13 0.82 0.02
DISK (r = 200, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 400, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.66 0.02
DISK (r = 400, k = 20) 0.10 0.12 0.66 0.02
WASP (r = 200, k = 10) 0.09 0.11 0.64 0.01
WASP (r = 400, k = 10) 0.09 0.11 0.63 0.01
WASP (r = 200, k = 20) 0.10 0.12 0.66 0.02
WASP (r = 400, k = 20) 0.10 0.12 0.66 0.02
DPMC (r = 200, k = 10) 0.09 0.11 0.64 0.01
DPMC (r = 400, k = 10) 0.09 0.11 0.63 0.01
DPMC (r = 200, k = 20) 0.10 0.12 0.66 0.02
DPMC (r = 400, k = 20) 0.10 0.12 0.66 0.02
Grid-Based Partitioning
CMC (r = 200, k& = 10) 0.09 0.12 0.63 0.01
CMC (r = 400, k = 10) 0.09 0.12 0.65 0.01
CMC (r = 200, k = 20) 0.10 0.13 0.77 0.01
CMC (r = 400, k = 20) 0.10 0.13 0.83 0.01
DISK (r = 200, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 400, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.63 0.01
DISK (r = 400, k = 20) 0.10 0.12 0.64 0.01
WASP (r = 200, k = 10) 0.09 0.12 0.62 0.01
WASP (r = 400, k = 10) 0.09 0.12 0.62 0.01
WASP (r = 200, k = 20) 0.10 0.12 0.63 0.01
WASP (r = 400, k = 20) 0.10 0.12 0.64 0.01
DPMC (r = 200, k = 10) 0.09 0.12 0.62 0.01
DPMC (r = 400, k = 10) 0.09 0.12 0.62 0.01
DPMC (r = 200, k = 20) 0.10 0.12 0.63 0.01
DPMC (r = 400, k = 20) 0.10 0.12 0.64 0.01

7); however, the inferential and predictive performance of DISK, WASP, and
DPMC are significantly better than those of CMC (Table 8). The partitioning
scheme, random or grid-based, has no impact on the inferential and predictive
performance of CMC, DISK, WASP, and DPMC. The results are also robust to

the choices of k and r.
4.4 Real data analysis: Sea Surface Temperature data

This section is a continuation of Section 4.3 of the main manuscript and com-
pares DISK with its divide-and-conquer competitors in analyzing the Sea Surface
Temperature (SST) data. We have chosen random partitioning based on our con-
clusions in the previous two simulations. Our results for SST data analysis are also
very similar to those in the previous two simulations. Specifically, CMC DISK,
WASP, and DPMC have similar performance in parameter estimation, but signif-
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TABLE 2
The estimates of parameters B = (Bo, B1), 02, ¢, 7 and their 95% marginal credible intervals
(Cls) in Simulation 1 for the divide-and-conquer methods under random partitioning. The
parameter estimates for the Bayesian methods ﬁ = (BO, Bl), &2, g?), 72 are defined as the
posterior medians of their respective MCMC samples. The parameter estimates and upper and
lower quantiles of 95% Cls are averaged over 10 simulation replications.

Bo B1 o? ¢ 2
Truth 1.00 2.00 1.00 4.00 0.10
Parameter Estimates

CMC (r =200, k = 10) 1.00 2.00 0.91 4.38 0.10
CMC (r = 400, k = 10) 1.00 2.00 0.91 4.41 0.10
CMC (r = 200, k = 20) 1.00 2.00 0.90 4.55 0.10
CMC (r = 400, k = 20) 1.00 2.00 0.91 4.46 0.10
DISK (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 400, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
DISK (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11
WASP (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
WASP (r = 400, k = 10) 1.00 2.00 0.92 4.34 0.11
WASP (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
WASP (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11
DPMC (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
DPMC (r = 400, k = 10) 1.00 2.00 0.92 4.34 0.11
DPMC (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
DPMC (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11

95% Credible Intervals
(2.00, 2.00) | (0.90, 0.93) | (4.28, 4.49
(2.00, 2.00) | (0.90, 0.93)
(2.00, 2.00) | (0.89, 0.92)
(0.90, 0.92)
)
)

CMC (r = 200, k = 10
CMC (r = 400, k = 10
CMC (r = 200, k = 20
CMC (r = 400, k = 20
DISK (r = 200, k = 10
DISK (r = 400, k = 10
DISK (r = 200, k = 20) | (0.94, 1.06) | (1.98,2.01) | (0.86, 0.96)
DISK (r = 400, k = 20) | (0.94, 1.06) | (1.99, 2.01) | (0.86, 0.96) | (4.07, 4.68) | (0.09, 0.13)

Y | (0.98, 1.02
)
)
)
)
)
;
WASP (r = 200, k = 10) | (0.92, 1.08) | (1.99, 2.01) | (0.86, 0.98) | (4.00, 4.69) | (0.09, 0.12)
)
)
)
)
)
)
)

(0.98, 1.02
(0.99, 1.01

) 0.10, 0.1
) )
) )
(0.99, 1.01) | (2.00, 2.00)
) )
) )

)
0.10, 0.11)
0.10, 0.10)

)

(
(
449, 4.61) | (
(0.10, 0.10
(
(

)
(4. )
( )
(4.40, 4.53)
(4.00, 4.69)
g )

(0.92, 1.08) | (1.99, 2.01
(0.92, 1.08

(0.86, 0.98
(0.86, 0.98

0.09, 0.12)

(1.99, 2.01 4.00, 4.69 0.09, 0.12)

4.07, 4.67) | (0.09, 0.13)

WASP (r =400, k = 10) | (0.92, 1.08) | (1.99, 2.01) | (0.86, 0.98) | (4.00, 4.69) | (0.09, 0.12)
WASP (r =200, k = 20) | (0.94, 1.06) | (1.98, 2.01) | (0.86, 0.96) | (4.07, 4.67) | (0.09, 0.13)
WASP (r = 400, k = 20) | (0.94, 1.06) | (1.98,2.01) | (0.86, 0.96) | (4.07, 4.68) | (0.09, 0.13)
DPMC (r = 200, k = 10) | (0.92, 1.08
DPMC (r = 400, k = 10
DPMC (r = 200, k = 20
DPMC (r = 400, k = 20

) | (1.99, 2.01) | (0.86, 0.98) | (4.00, 4.70) | (0.09, 0.12)
(0.92, 1.08) | (1.99, 2.01) | (0.86,0.98) | (3.99, 4.70) | (0.09, 0.12)
(0.94, 1.06) | (1.98, 2.01) | (0.86, 0.96) | (4.06, 4.68) | (0.09, 0.13)
) | (1.98,2.01) | (0.86,0.96) | (4.06,4.69) | (0.09, 0.13)

(0.94, 1.06

icant differences exist in their predictive performance (Table 9). CMC’s predictive
coverage is much smaller than the nominal value, which matches our conclusions
in the previous two simulations. DISK outperforms WASP and DPMC in pre-
dictions in that its MSPE is the smallest among them. DISK also has better
nominal predictive coverage than WASP and DPMC while having comparable
95% PI lengths. The results are also robust to the choices of r. We conclude
that DISK performs better than its divide-and-conquer competitors in SST data
analysis.

4.5 Computation time comparisons

We report the run-times of all the methods used in the simulated and real data
analysis in Section 4 of the main paper. Since distributed methods partition the
data into the same subset size and fit the same MPP model for subset poste-
rior inference, the run times are identical for any method in Simulation 1 and 2.
Thus, we only present run times for simulation and for the sea surface tempera-
ture data; see Tables 10 and 11 for the run-times in log;, seconds for Simulation

imsart-sts ver. 2014/10/16 file: Supplementary.tex date: September 17, 2022



30 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

TABLE 3
The estimates of parameters B = (Bo, B1), 02, ¢, and their 95% marginal credible intervals
(CIs) in Simulation 1 for the divide-and-conquer methods under grid-based partitioning. The
parameter estimates for the Bayesian methods ﬁ = (BO, Bl), &2, g?), 72 are defined as the
posterior medians of their respective MCMC samples. The parameter estimates and upper and
lower quantiles of 95% Cls are averaged over 10 simulation replications.

Bo B1 o? ¢ 2
Truth 1.00 2.00 1.00 4.00 0.10
Parameter Estimates

CMC (r =200, k = 10) 1.00 2.00 0.91 4.37 0.10
CMC (r = 400, k = 10) 1.00 2.00 0.91 4.37 0.10
CMC (r = 200, k = 20) 1.00 2.00 0.91 4.44 0.10
CMC (r = 400, k = 20) 1.00 2.00 0.90 4.48 0.10
DISK (r = 200, k = 10) 1.00 2.00 0.91 4.35 0.11
DISK (r = 400, k = 10) 1.00 2.00 0.91 4.35 0.11
DISK (r = 200, k = 20) 1.00 2.00 0.91 4.37 0.11
DISK (r = 400, k = 20) 1.00 2.00 0.91 4.37 0.11
WASP (r = 200, k = 10) 1.00 2.00 0.91 4.35 0.11
WASP (r = 400, k = 10) 1.00 2.00 0.91 4.34 0.11
WASP (r = 200, k = 20) 1.00 2.00 0.91 4.37 0.11
WASP (r = 400, k = 20) 1.00 2.00 0.91 4.37 0.11
DPMC (r = 200, k = 10) 1.00 2.00 0.91 4.35 0.11
DPMC (r = 400, k = 10) 1.00 2.00 0.91 4.34 0.11
DPMC (r = 200, k = 20) 1.00 2.00 0.91 4.37 0.11
DPMC (r = 400, k = 20) 1.00 2.00 0.91 4.37 0.11

95% Credible Intervals
(2.00, 2.00) | (0.89, 0.03) | (4.27, 4.47
(2.00, 2.00) | (0.89, 0.93)
(2.00, 2.00) | (0.90, 0.92)
(0.89, 0.92)
)
)

CMC (r = 200, k = 10
CMC (r = 400, k = 10
CMC (r = 200, k = 20
CMC (r = 400, k = 20
DISK (r = 200, k = 10
DISK (r = 400, k = 10
DISK (r = 200, k = 20) | (0.94, 1.06) | (1.99, 2.01) | (0.86, 0.96)
DISK (r = 400, k = 20) | (0.94, 1.06) | (1.99, 2.01) | (0.86, 0.96) | (4.07, 4.67) | (0.09, 0.13)

Y | (0.98, 1.02
)
)
)
)
)
;
WASP (r = 200, k = 10) | (0.92, 1.08) | (1.99, 2.01) | (0.86, 0.98) | (3.9, 4.69) | (0.10, 0.12)
)
)
)
)
)
)
)

(0.98, 1.02
(0.99, 1.01

) 0.10, 0.1
) )
) )
(0.99, 1.01) | (2.00, 2.00)
) )
) )

)
0.10, 0.11)
0.10, 0.11)

)

(
(
4.38, 4.50) | (
(0.10, 0.11
(
(

)
(4. )
( )
(4.42, 4.54)
(3.99, 4.69)
g )

(0.92, 1.08) | (1.99, 2.01
(0.92, 1.08

(0.86, 0.98
(0.86, 0.98

0.09, 0.12)

(1.99, 2.01 3.99, 4.70 0.09, 0.12)

4.06, 4.67) | (0.09, 0.13)

WASP (r =400, k = 10) | (0.92, 1.08) | (1.99, 2.01) | (0.86, 0.98) | (3.98, 4.70) | (0.09, 0.12)
WASP (r =200, k = 20) | (0.94, 1.06) | (1.99, 2.01) | (0.86, 0.96) | (4.06, 4.67) | (0.09, 0.13)
WASP (r = 400, k = 20) | (0.94, 1.06) | (1.99, 2.01) | (0.86, 0.96) | (4.07, 4.67) | (0.09, 0.13)
DPMC (r = 200, k = 10) | (0.92, 1.08
DPMC (r = 400, k = 10
DPMC (r = 200, k = 20
DPMC (r = 400, k = 20

) | (1.99, 2.01) | (0.86, 0.98) | (3.98, 4.70) | (0.09, 0.12)
(0.92, 1.08) | (1.99, 2.01) | (0.86,0.98) | (3.98, 4.71) | (0.09, 0.12)
(0.94, 1.06) | (1.99, 2.01) | (0.86, 0.96) | (4.05, 4.69) | (0.09, 0.13)
(0.94, 1.06)

(1.99, 2.01) | (0.86, 0.96) | (4.07, 4.68) | (0.09, 0.13)

1 and in log;, hours for sea surface temperature data analysis, respectively. Sim-
ilar to our observations in the performance comparisons, the run-times for the
distributed methods are independent of the partitioning schemes. The run-times
cannot be compared directly from the tables due to the differences in implemen-
tation. Specifically, distributed methods are implemented in R for all values of
r and k, whereas most non-distributed methods are implemented in R and a
higher-level language, such as C/C++ and Fortran.

The combination step in any distributed method requires a very small time
compared to the time required for sampling on the subsets. For example, the
time required for combination using the WASP is the largest among all the four
distributed methods, but the maximum of WASP’s combination time is only 8%
of the maximum time required for sampling on the subsets. On an average, the
combination steps of the other three methods require less than 1% of the time
required for sampling on the subsets. This implies that run-times for all the four
distributed methods in the two simulations are fairly similar (Table 10). In the
real data analysis, the combination steps of the all the four distributed methods
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TABLE 4
Inference on the values of spatial surface and response at the locations in S, in Simulation 1
for the divide-and-conquer methods under random and grid-based partitioning. The estimation
and prediction errors are defined in (99) and coverage and credible intervals are calculated
pointwise for the locations in S.. The entries in the table are averaged over 10 simulation

replications.
Est Err | Pred Err | 95% CI Coverage | 95% CI Length
GP Y GP | Y GP |V
Random Partitioning
CMC (r =200, k = 10) 0.56 0.64 0.38 0.39 0.81 0.81
CMC (r = 400, k = 10) 0.43 0.52 0.40 0.41 0.74 0.74
CMC (r = 200, k = 20) 0.58 0.67 0.27 0.28 0.57 0.57
CMC (r = 400, k = 20) 0.46 0.55 0.28 0.29 0.52 0.52
DISK (r = 200, k = 10) 0.55 0.64 0.97 0.97 3.20 3.45
DISK (r = 400, k = 10) 0.42 0.51 0.97 0.97 2.88 3.15
DISK (r = 200, k = 20) 0.58 0.67 0.97 0.97 3.25 3.51
DISK (r = 400, k = 20) 0.46 0.55 0.97 0.97 2.98 3.25
WASP (r =200, k = 10) 0.55 0.64 0.96 0.96 3.25 3.25
WASP (r = 400, k = 10) 0.42 0.51 0.96 0.96 2.97 2.97
WASP (r = 200, k = 20) 0.58 0.67 0.96 0.96 3.30 3.30
WASP (r = 400, k = 20) 0.46 0.55 0.96 0.96 3.06 3.06
DPMC (r = 200, k = 10) 0.55 0.64 0.97 0.97 3.46 3.46
DPMC (r = 400, k = 10) 0.42 0.51 0.97 0.97 3.17 3.17
DPMC (r = 200, k = 20) 0.58 0.67 0.97 0.97 3.53 3.53
DPMC (r = 400, k = 20) 0.46 0.55 0.97 0.97 3.28 3.28
Grid-Based Partitioning
CMC (r = 200, k = 10) 0.75 0.80 0.38 0.39 0.81 0.81
CMC (r = 400, k = 10) 0.65 0.72 0.40 0.40 0.74 0.74
CMC (r = 200, k = 20) 0.76 0.82 0.27 0.28 0.57 0.57
CMC (r = 400, k = 20) 0.68 0.74 0.28 0.28 0.52 0.52
DISK (r = 200, k = 10) 0.75 0.80 0.97 0.97 3.45 3.45
DISK (r = 400, k = 10) 0.65 0.72 0.97 0.97 3.15 3.15
DISK (r = 200, k = 20) 0.76 0.82 0.97 0.97 3.51 3.51
DISK (r = 400, k = 20) 0.68 0.74 0.97 0.97 3.26 3.26
WASP (r = 200, k = 10) 0.74 0.80 0.96 0.96 3.25 3.25
WASP (r = 400, k = 10) 0.65 0.72 0.96 0.96 2.97 2.97
WASP (r = 200, k = 20) 0.76 0.82 0.96 0.95 3.30 3.30
WASP (r = 400, k = 20) 0.68 0.74 0.96 0.96 3.06 3.06
DPMC (r = 200, k = 10) 0.74 0.80 0.97 0.97 3.46 3.46
DPMC (r = 400, k = 10) 0.65 0.72 0.97 0.97 3.16 3.16
DPMC (r = 200, k = 20) 0.76 0.82 0.97 0.97 3.53 3.53
DPMC (r = 400, k = 20) 0.68 0.74 0.97 0.97 3.28 3.28

require less that 1% of the time required for sampling on the subsets, so all of
them have nearly identical run-times (Table 11).

5. MARKOV CHAINS ON THE SUBSETS IN DISK

Any divide-and-conquer method runs modified Markov chain Monte Carlo al-
gorithms in parallel on the subsets to obtain draws from the subset posterior
distributions. In our context, we draw parameter and response values from the
respective posterior distributions on every subset. There are no theoretical results
that guarantee convergence of the Markov chain produced by the sampling algo-
rithms to its stationary distribution in a spatial linear model with MPP prior.
This further complicates the theoretical analysis of the Markov chain produced
on the subsets in DISK, where the likelihood is modified. We are not aware any
rigorous approach for comparing the Markov chains obtained from the subset
and true posterior distributions. We use heuristics based on trace plots and auto
correlation functions of the Markov chains for parameters, spatial surface, and
predictive surface to judge “convergence” to the respective subset posterior dis-
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TABLE 5
The errors in estimating the parameters 8,72 in Simulation 2 for the divide-and-conquer
methods under random and grid-based partitioning. The parameter estimates for the Bayesian
methods ,3, 72 are defined as the posterior medians of their respective MCMC' samples and
Bo =1 and 7¢ = 0.01. The entries in the table are averaged across 10 simulation replications.

I8 — Boll | 17 — 73]
Random Partitioning
CMC (r =200, k = 10) 0.03 0.00
CMC (r = 400, k = 10) 0.03 0.09
CMC (r = 200, k = 20) 1.41 0.09
CMC (r = 400, k = 20) 1.41 0.09
DISK (r = 200, k = 10) 0.18 0.04
DISK (r = 400, k = 10) 0.13 0.04
DISK (r = 200, k = 20) 0.18 0.04
DISK (r = 400, k = 20) 0.13 0.04
WASP(r = 200, k = 10) 0.68 0.09
WASP (r = 400, k = 10) 0.68 0.09
WASP (r = 200, k = 20) 0.72 0.09
WASP (r = 400, k = 20) 0.72 0.09
DPMC (r = 200, k = 10) 0.68 0.09
DPMC (r = 400, k = 10) 0.68 0.09
DPMC (r = 200, k = 20) 0.72 0.09
DPMC (r = 400, k = 20) 0.72 0.09
Grid-Based Partitioning
CMC (r =200, k = 10) 0.03 0.09
CMC (r = 400, k = 10) 0.03 0.09
CMC (r =200, k = 20) 0.02 0.09
CMC (r = 400, k = 20) 0.02 0.09
DISK (r = 200, k = 10) 0.03 0.09
DISK (r = 400, k = 10) 0.03 0.09
DISK (r = 200, k = 20) 0.02 0.09
DISK (r = 400, k = 20) 0.02 0.09
WASP(r = 200, k = 10) 0.03 0.09
WASP (r = 400, k = 10) 0.03 0.09
WASP (r = 200, k = 20) 0.02 0.09
WASP (r = 400, k = 20) 0.02 0.09
DPMC (r = 200, k = 10) 0.03 0.09
DPMC (r = 400, k = 10) 0.03 0.09
DPMC (r = 200, k = 20) 0.02 0.09
DPMC (r = 400, k = 20) 0.02 0.09

tributions.

Unfortunately, it is impractical to compare trace plots and auto correlation
functions obtained using subset and true posterior distributions; therefore, we
compare the effective sample sizes of Markov chains for the parameters, spatial
surface, and response obtained on the subsets using an MPP prior relative to
those obtained using the full data and the same MPP prior. The number of
posterior samples in both cases is 1000, which are obtained from a Markov chain
of 10000 draws after using a burn-in of 5000 and collecting every fifth sample.
The effectiveSize command coda R package is used for estimating the effective
sample sizes for every choice of k and r (Plummer et al., 2006). We compute
the ratio of the effective sample sizes of the Markov chains produced on the
subsets in DISK to those obtained using the MPP prior and the full data. For
two- or higher-dimensional parameters, spatial surface, and predictive surface,
we average the ratio of the effective sample sizes across all the dimensions. While
there are no theoretical justifying the convergence of the Markov chain to the
stationary distribution, we still assume so because MPP has been used extensively
for analyzing spatial data. This heuristic shows that the Markov chains obtained
using the data subsets and full data are “similar” in that their effective sample
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TABLE 6
The estimates of parameters 8,02, ¢, 7> and their 95% marginal credible intervals (CIs) in
Simulation 2 for the divide-and-conquer methods under random partitioning. The parameter
estimates for the Bayesian methods B, 52, (;AS, 72 are defined as the posterior medians of their
respective MCMC' samples. The parameter estimates and upper and lower quantiles of 95% Cls
are averaged over 10 simulation replications

5 o z 2
Truth 1.00 - - 0.01
Parameter Estimates

CMC (r =200, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 400, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 200, k = 20) 0.98 0.23 0.13 0.01
CMC (r = 400, k = 20) 0.98 0.23 0.13 0.01
DISK (r = 200, k = 10) 1.03 0.21 0.12 0.01
DISK (r = 400, k = 10) 0.98 0.22 0.14 0.01
DISK (r = 200, k = 20) 1.03 0.21 0.12 0.01
DISK (r = 400, k = 20) 0.98 0.22 0.14 0.01
WASP (r =200, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 400, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 200, k = 20) 0.98 0.22 0.14 0.01
WASP (r = 400, k = 20) 0.98 0.22 0.14 0.01
DPMC (r = 200, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 400, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 200, k = 20) 0.98 0.22 0.14 0.01
DPMC (r = 400, k = 20) 0.98 0.22 0.14 0.01

95% Credible Intervals

CMC(r = 200, k = 10) | (0.96, 1.11) | (0.22, 0.23) | (0.11, 0.12) | (0.01, 0.01)
CMC (r =400, k = 10) | (0.96, 1.11) | (0.22, 0.23) | (0.11, 0.12) | (0.01, 0.01)
CMC (r = 200, k = 20) | (0.94, 1.02) | (0.22, 0.24) | (0.13,0.13) | (0.01, 0.01)
CMC (r = 400, k = 20) | (0.94, 1.02) | (0.22,0.24) | (0.12,0.13) | (0.01, 0.01)
DISK (r = 200, k = 10) | (0.80, 1.27) | (0.18, 0.24) | (0.11, 0.14) | (0.01, 0.01)
DISK (r =400, k = 10) | (0.82, 1.16) | (0.17,0.26) | (0.12,0.18) | (0.01, 0.01)
DISK (r = 200, k = 20) | (0.80, 1.27) | (0.18,0.24) | (0.11, 0.14) | (0.01, 0.01)
DISK (r — 400, k — 20) | (0.82, 1.16) | (0.17, 0.26) | (0.12, 0.18) | (0.01, 0.01)

WASP (r = 200, k = 10) | (0.80, 1.27) | (0.18, 0.24) | (0.11, 0.14) | (0.01, 0.01)
WASP (r =400, k = 10) | (0.80, 1.27) | (0.18, 0.24) | (0.11, 0.14) | (0.01, 0.01)
WASP (r = 200, k = 20) | (0.82, 1.16) | (0.17, 0.26) | (0.12, 0.18) | (0.01, 0.01)
WASP (r =400, k = 20) | (0.82, 1.16) | (0.17,0.26) | (0.12, 0.18) | (0.01, 0.01)
DPMC (r = 200, k = 10) | (0.80, 1.27) | (0.17, 0.25) | (0.10, 0.15) | (0.01, 0.01)
DPMC (r = 400, k = 10) | (0.80, 1.27) | (0.17,0.25) | (0.10, 0.15) | (0.01, 0.01)
DPMC (r = 200, k = 20) | (0.82, 1.16) | (0.17, 0.26) | (0.11, 0.18) | (0.01, 0.01)
DPMC (r = 400, k = 20) | (0.82, 1.16) | (0.17, 0.26) | (0.11, 0.19) | (0.01, 0.01)

sizes are very close.

The effective sample sizes of the Markov chains for the parameters and the
spatial surface and response at the locations in S&* are very similar to those
obtained using the full data and the same MPP prior in Simulation 1 (Table 12).
The effective sample sizes decrease with k£ in Simulation 2 slightly for the spatial
surface and response at the locations in &* (Table 13); however, this spatial
surface is not simulated from a GP in this simulation, so the comparisons are less
reliable. The partitioning scheme, random or grid-based, has a minimal impact
on the effective sample sizes. The ratio of the effective sample sizes are equal
for the 3, spatial surface, and predictions in Simulation 1; however, there are
differences in the effective sample sizes of the Markov chains for o2, ¢, 72 in both
simulations. These differences mainly arise due to the non-identifiability of the
covariance function parameters. In most spatial applications, the main interest
lies in inference and prediction, where the effective sample sizes on the subsets are
very similar to their full data benchmarks; therefore, we conclude that the Markov
chains produced on the subsets in DISK have similar properties as their full data
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TABLE 7
The estimates of parameters 8,02, ¢, 7> and their 95% marginal credible intervals (CIs) in
Simulation 2 for the divide-and-conquer methods under grid-based partitioning. The parameter
estimates for the Bayesian methods B, 52, (;AS, 72 are defined as the posterior medians of their
respective MCMC' samples. The parameter estimates and upper and lower quantiles of 95% Cls
are averaged over 10 simulation replications

5 o z 2
Truth 1.00 - - 0.01

Parameter Estimates
CMC (r =200, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 400, k = 10) 1.03 0.22 0.11 0.01
CMC (r = 200, k = 20) 0.98 0.23 0.13 0.01
CMC (r = 400, k = 20) 0.98 0.23 0.13 0.01
DISK (r = 200, k = 10) 1.03 0.21 0.12 0.01
DISK (r = 400, k = 10) 1.03 0.21 0.12 0.01
DISK (r = 200, k = 20) 0.98 0.22 0.14 0.01
DISK (r = 400, k = 20) 0.98 0.22 0.14 0.01
WASP (r =200, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 400, k = 10) 1.03 0.21 0.12 0.01
WASP (r = 200, k = 20) 0.98 0.22 0.14 0.01
WASP (r = 400, k = 20) 0.99 0.22 0.14 0.01
DPMC (r = 200, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 400, k = 10) 1.03 0.21 0.12 0.01
DPMC (r = 200, k = 20) 0.98 0.22 0.14 0.01
DPMC (r = 400, k = 20) 0.99 0.22 0.14 0.01

95% Credible Intervals

CMC(r = 200, k = 10) | (0.96, 1.10) | (0.21, 0.23) | (0.11, 0.12) | (0.01, 0.01)
CMC (r =400, k = 10) | (0.95, 1.10) | (0.21, 0.23) | (0.11, 0.12) | (0.01, 0.01)
CMC (r = 200, k = 20) | (0.94, 1.02) | (0.22,0.23) | (0.13,0.14) | (0.01, 0.01)
CMC (r = 400, k = 20) | (0.94, 1.02) | (0.22, 0.24) | (0.13,0.13) | (0.01, 0.01)
DISK (r = 200, k = 10) | (0.80, 1.27) | (0.18, 0.24) | (0.11, 0.14) | (0.01, 0.01)
DISK (r = 400, k = 10) | (0.80, 1.27) | (0.18, 0.24) | (0.11,0.14) | (0.01, 0.01)
DISK (r = 200, k = 20) | (0.82, 1.16) | (0.17, 0.26) | (0.12, 0.18) | (0.01, 0.01)
DISK (r = 400, k = 20) | (0.82, 1.16) | (0.17,0.26) | (0.12,0.18) | (0.01, 0.01)
WASP (r = 200, k = 10) | (0.80, 1.27) | (0.18, 0.24) | (0.11, 0.14) | (0.01, 0.01)
WASP (r =400, k = 10) | (0.80, 1.27) | (0.18, 0.24) | (0.11, 0.14) | (0.01, 0.01)
WASP (r = 200, k = 20) | (0.82, 1.16) | (0.17, 0.26) | (0.12, 0.18) | (0.01, 0.01)
WASP (r = 400, k = 20) | (0.82,1.16) | (0.17,0.26) | (0.12, 0.18) | (0.01, 0.01)
DPMC (r = 200, k = 10) | (0.80, 1.27) | (0.17, 0.24) | (0.10, 0.15) | (0.01, 0.01)
DPMC (r = 400, k = 10) | (0.80, 1.27) | (0.17, 0.25) | (0.10, 0.15) | (0.01, 0.01)
DPMC (r = 200, k = 20) | (0.82, 1.16) | (0.17, 0.26) | (0.11, 0.18) | (0.01, 0.01)
DPMC (r = 400, k = 20) | (0.82, 1.16) | (0.17, 0.26) | (0.11, 0.18) | (0.01, 0.01)

versions in Simulations 1 and 2 in terms of effective sample size comparisons.
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TABLE 8
Inference on the values of spatial surface and response at the locations in S. in Simulation 2
for the divide-and-conquer methods under random and grid-based partitioning. The estimation
and prediction errors are defined in (99) and coverage and credible intervals are calculated
pointwise for the locations in Ss. The entries in the table are averaged over 10 simulation

replications.
Est Err | Pred Err | 95% CI Coverage | 95% CI Length
GP Y GP | Y GP |V
Random Partitioning
CMC (r = 200, k = 10) 0.56 0.64 0.38 0.39 0.10 0.10
CMC (r = 400, k = 10) 0.43 0.52 0.40 0.41 0.10 0.10
CMC (r = 200, k = 20) 0.58 0.67 0.27 0.28 0.07 0.07
CMC (r = 400, k = 20) 0.46 0.55 0.28 0.29 0.07 0.07
DISK (r = 200, k = 10) 0.00 0.01 1.00 0.97 0.54 0.45
DISK (r = 400, k = 10) 0.00 0.01 1.00 0.97 0.45 0.47
DISK (r = 200, k = 20) 0.00 0.01 1.00 0.97 0.52 0.43
DISK (r = 400, k = 20) 0.00 0.01 1.00 0.97 0.43 0.44
WASP (r =200, k = 10) 0.55 0.64 0.96 0.96 0.42 0.42
WASP (r = 400, k = 10) 0.42 0.51 0.96 0.96 0.40 0.40
WASP (r = 200, k = 20) 0.58 0.67 0.96 0.96 0.43 0.43
WASP (r = 400, k = 20) 0.46 0.55 0.96 0.96 0.41 0.41
DPMC (r = 200, k = 10) 0.55 0.64 0.97 0.97 0.45 0.45
DPMC (r = 400, k = 10) 0.42 0.51 0.97 0.97 0.43 0.43
DPMC (r = 200, k = 20) 0.58 0.67 0.97 0.97 0.46 0.46
DPMC (r = 400, k = 20) 0.46 0.55 0.97 0.97 0.44 0.44
Grid-Based Partitioning
CMC (r =200, k = 10) 0.05 0.10 0.80 0.38 0.10 0.10
CMC (r = 400, k = 10) 0.04 0.10 0.85 0.37 0.10 0.10
CMC (r = 200, k = 20) 0.03 0.10 0.71 0.28 0.07 0.07
CMC (r = 400, k = 20) 0.03 0.10 0.70 0.28 0.07 0.07
DISK (r = 200, k = 10) 0.04 0.10 1.00 0.97 0.45 0.45
DISK (r = 400, k = 10) 0.04 0.10 1.00 0.96 0.42 0.42
DISK (r = 200, k = 20) 0.03 0.10 1.00 0.97 0.46 0.46
DISK (r = 400, k = 20) 0.03 0.10 1.00 0.96 0.44 0.44
WASP (r =200, k = 10) 0.04 0.10 1.00 0.95 0.42 0.42
WASP (r = 400, k = 10) 0.04 0.10 1.00 0.94 0.40 0.40
WASP (r = 200, k = 20) 0.03 0.10 1.00 0.96 0.43 0.43
WASP (r = 400, k = 20) 0.03 0.10 1.00 0.95 0.41 0.41
DPMC (r = 200, k = 10) 0.04 0.10 1.00 0.97 0.45 0.45
DPMC (r = 400, k = 10) 0.04 0.10 1.00 0.96 0.43 0.43
DPMC (r = 200, k = 20) 0.03 0.10 1.00 0.97 0.46 0.46
DPMC (r = 400, k = 20) 0.03 0.10 1.00 0.97 0.44 0.44
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TABLE 9
Parametric inference and prediction in SST data using the divide-and-conquer methods and
MPP-based modeling with r = 400,600 knots on k = 300 subsets. For parametric inference

posterior medians are provided along with the 95% credible intervals (Cls) in the parentheses.

Similarly, mean squared prediction errors (MSPEs) along with length and coverage of 95%

predictive intervals (Pls) are presented. The upper and lower quantiles of 95% Cls and Pls are

averaged over 10 simulation replications.

(r = 600, k = 300)

Bo [ B1 [ a2 ¢ 2
Parameter Estimate
CMC 32.37 -0.32 12.38 0.03 0.18
(r = 400, k = 300)
CMC 32.36 -0.32 12.31 0.03 0.18
(r = 600, k = 300)
DISK 32.33 -0.32 11.82 0.04 0.18
(r = 400, k = 300)
DISK 32.33 -0.32 11.85 0.04 0.18
(r = 600, k = 300)
WASP 32.33 -0.32 11.82 0.04 0.18
(r = 400, k = 300)
WASP 32.33 -0.32 11.85 0.04 0.18
(r = 600, k = 300)
DPMC 32.33 -0.32 11.82 0.04 0.18
(r = 400, k = 300)
DPMC 32.33 -0.32 11.85 0.04 0.18
(r = 600, k = 300)
95% Credible Interval
CMC | (32.33, 32.4) | (-0.32, -0.32) | (12.37, 12.39) | (0.0339, 0.0340) | (0.18, 0.18)
(r = 400, k = 300)
CMC | (32.33,32.4) | (-0.32,-0.32) | (12.3,12.31) | (0.0342, 0.0343) | (0.18, 0.18)
(r = 600, k = 300)
DISK | (31.72,32.93) | (-0.33,-0.31) | (11.24, 12.43) | (0.0373, 0.0412) | (0.18, 0.19)
(r = 400, k = 300)
DISK | (31.72,32.93) | (-0.33,-0.31) | (11.25, 12.45) | (0.0372, 0.0413) | (0.18, 0.19)
(r = 600, k = 300)
WASP | (31.72, 32.93) | (-0.33,-0.31) | (11.22, 12.46) | (0.0372, 0.0413) | (0.18, 0.19)
(r = 400, k = 300)
WASP | (31.72, 32.93) | (-0.33,-0.31) | (11.24, 12.47) | (0.0372, 0.0413) | (0.18, 0.19)
(r =600, k = 300)
DPMC | (31.72,32.94) | (-0.33,-0.31) | (11.09, 12.55) | (0.0369, 0.0416) | (0.18, 0.19)
(r = 400, k = 300)
DPMC | (31.72, 32.94) | (-0.33,-0.31) | (11.14, 12.56) | (0.0368, 0.0416) | (0.18, 0.19)

(r = 600, k = 300)

Predictions
MSPE 95% PI 95% P1
Coverage Length
CMC 0.74 0.05 0.08
(r =400, k = 300)
CMC 0.67 0.05 0.07
(r =600, k = 300)
DISK 0.43 0.95 2.65
(r = 400, k = 300)
DISK 0.36 0.95 2.34
(r = 600, k = 300)
WASP 0.66 0.93 2.39
(r = 400, k = 300)
WASP 0.60 0.92 2.11
(r = 600, k = 300)
DPMC 0.66 0.95 2.67
(r = 400, k = 300)
DPMC 0.60 0.94 2.36
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TABLE 10
Run-time (in log,, seconds) of the non-distributed methods and distributed methods under the
random and grid-based partitioning schemes in Simulations 1 and 2, where MPP prior is used
on the subsets.

37

INLA LaGP NNGP NNGP NNGP (m = 30) LatticeKrig GpGp
(m = 10) (m = 20) (m = 30)
1.08 0.08 2.96 3.42 3.74 2.03 0.96
Vecchia Vecchia Vecchia MPP MPP
(m = 10) (m = 20) (m = 30) (r = 200) (r = 400)
2.76 3.20 3.50 3.97 4.31
k=10
CMC DISK WASP DPMC
r = 200 r = 400 r = 200 r = 400 r = 200 r = 400 r = 200 r = 400
Random 3.18 3.18 3.18 3.18 3.20 3.20 3.18 3.18
Grid 3.18 3.18 3.18 3.18 3.20 3.20 3.18 3.18
k =20
CMC DISK WASP DPMC
r = 200 r = 400 r = 200 r = 400 r = 200 r = 400 r = 200 r = 400
Random 3.17 3.17 3.17 3.17 3.20 3.20 3.17 3.17
Grid 3.17 3.17 3.17 3.17 3.20 3.20 3.17 3.17
TABLE 11

Run-time (in log,, hours) of laGP and the distributed methods in the sea surface temperature
data analysis, where MPP prior is used on the subsets.

1laGP MPP, r = 400, k = 300 MPP, r = 600, £k = 300
CMC | DISK | WASP | DPMC | CMC | DISK | WASP | DPMC
-1.32 167 | 167 | 1.67 | 167 169 | 169 | 1.69 | 1.69
TABLE 12

The ratio of effective sample sizes of the Markov chains produced on the subsets using the MPP
prior and those obtained using the full data and the same MPP prior in Simulation 1 under
random and grid-based partitioning. The effective sample sizes have been averaged over the
parameter dimensions and over 10 simulation replications.

0 N Nl 1
Random Partitioning
k=10and »r =200 | 0.99 | 0.35 | 3.24 | 0.53 | 1.00 | 1.00
k=20and r=200 | 1.00 | 0.61 | 3.92 | 0.40 | 1.00 | 1.00
k=10and » =400 | 1.0 | 0.93 | 2,53 | 0.57 | 1.00 | 1.00
k=20and r=400 | 1.11 | 1.45 | 2.88 | 0.43 | 1.00 | 1.00
Grid-Based Partitioning
k=10 and » =200 | 1.00 | 0.34 | 3.37 | 0.55 | 1.00 | 1.00
k=20and r=200 | 1.00 | 0.61 | 3.89 | 0.39 | 1.00 | 1.00
k=10 and »r =400 | 1.11 | 1.00 | 2.44 | 0.55 | 1.00 | 1.00
k=20and r=400 | 1.11 | 1.65 | 2.97 | 0.41 | 1.00 | 1.00
TABLE 13

The ratio of effective sample sizes of the Markov chains produced on the subsets using the MPP
prior and those obtained using the full data and the same MPP prior in Simulation 2 under
random and grid-based partitioning. The effective sample sizes have been averaged over the
parameter dimensions and over 10 simulation replications.

F 1< 6 [~ [GP[Y
Random Partitioning
k=10and r=200 | 0.98 | 0.46 | 1.32 | 3.45 | 0.93 | 1.00
k=20 and r =200 | 0.69 | 0.20 | 1.25 | 3.30 | 0.79 | 1.00
k=10 and r =400 | 0.89 | 1.65 | 1.81 | 2.84 | 0.91 | 1.00
k=20 and r =400 | 0.57 | 1.05 | 1.94 | 2.60 | 0.73 | 1.00
Grid-Based Partitioning
k=10 and =200 | 0.98 | 0.62 | 1.27 | 3.52 | 0.94 | 1.00
k=20and r=200 | 0.65 | 0.24 | 1.33 | 3.32 | 0.79 | 1.00
k=10 and »r =400 | 0.88 | 1.81 | 1.97 | 2.73 | 0.91 | 1.00
k=20 and r =400 | 0.63 | 0.94 | 2.05 | 2.70 | 0.77 | 1.00
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