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Abstract. Gaussian process (GP) regression is computationally expensive
in spatial applications involving massive data. Various methods address
this limitation, including a small number of Bayesian methods based on
distributed computations (or the divide-and-conquer strategy). Focusing
on the latter literature, we achieve three main goals. First, we develop an
extensible Bayesian framework for distributed spatial GP regression that
embeds many popular methods. The proposed framework has three steps
that partition the entire data into many subsets, apply a readily available
Bayesian spatial process model in parallel on all the subsets, and combine
the posterior distributions estimated on all the subsets into a pseudo pos-
terior distribution that conditions on the entire data. The combined pseudo
posterior distribution replaces the full data posterior distribution in predic-
tion and inference problems. Demonstrating our framework’s generality, we
extend posterior computations for (non-distributed) spatial process models
with a stationary full-rank and a nonstationary low-rank GP priors to the
distributed setting. Second, we contrast the empirical performance of pop-
ular distributed approaches with some widely used non-distributed alterna-
tives and highlight their relative advantages and shortcomings. Third, we
provide theoretical support for our numerical observations and show that
the Bayes L2-risks of the combined posterior distributions obtained from
a subclass of the divide-and-conquer methods achieves the near-optimal
convergence rate in estimating the true spatial surface with various types of
covariance functions. Additionally, we provide upper bounds on the num-
ber of subsets to achieve these near-optimal rates.
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1. INTRODUCTION

A fundamental challenge in geostatistics is the
analysis of massive spatially-referenced data. Such
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data sets provide scientists with an unprecedented
opportunity to hypothesize and test complex the-
ories, see for example Cressie and Wikle (2011),
Banerjee et al. (2014). This has led to the develop-
ment of complex and flexible GP-based models that
are computationally intractable for a large number
of spatial locations, denoted as n, due to the O(n3)
computational cost and the O(n2) storage cost. An
overwhelming number of methods exists to address
this issue that develop either efficient alternatives
to the GP model or efficient approximations of the
likelihood. We broadly refer to these approaches as
the non-distributed methods. An emerging class of
Bayesian methods addresses this problem using dis-
tributed computations, where the scalability of an
existing, possibly non-distributed, spatial GP re-
gression model is enhanced multiple folds by suit-
ably distributing the computations and storage of
data subsets across many machines. This article pro-
poses a novel class of distributed Bayesian frame-
work for process-based geostatistical models that
contains many popular approaches, presents a com-
parative study of important approaches within this
class, and contrasts their performance with repre-
sentative non-distributed methods.

1.1 Non-distributed Methods for GP Modeling
of Massive Spatial Data

Efficient GP-based models for massive spatial
data have received extensive attention due to their
great practical importance (Heaton et al., 2019).
A common idea in GP-based modeling is to seek
dimension-reduction by endowing the spatial co-
variance matrix either with a low-rank or a sparse
structure. Low-rank structures on the spatial co-
variance matrix are the most widely used tool for
efficient spatial computation. They represent the
spatial surface using r apriori chosen basis func-
tions with associated computational complexity of
O(nr2 + r3) (Cressie and Johannesson, 2008, Baner-
jee et al., 2008, Finley et al., 2009, Guhaniyogi et al.,
2011, Wikle, 2010); however, a major shortcoming
of the above methods is that a small (r/n)-ratio
yields inaccurate GP approximations, resulting in
the propensity to oversmooth the spatial data (Stein,
2014, Simpson et al., 2012).

A specific form of sparse structure, called co-
variance tapering, uses compactly supported covari-

ance functions to create sparse spatial covariance
matrices that approximate the full covariance ma-
trix (Kaufman et al., 2008, Furrer et al., 2006, Da-
ley et al., 2015, Bevilacqua et al., 2022). Covari-
ance tapering still requires expensive determinant
evaluation of the massive covariance matrix, and
the choice of the taper range can be difficult for
spatial data over irregularly spaced locations (An-
deres et al., 2013). An alternative approach is to
introduce sparsity in the inverse covariance (preci-
sion) matrix of the GP likelihoods using products
of lower dimensional conditional distributions (Vec-
chia, 1988, Rue et al., 2009, Stein et al., 2004), or
via composite likelihoods (Eidsvik et al., 2014, Bai
et al., 2012, Bevilacqua and Gaetan, 2015). Extend-
ing these ideas, recent approaches introduce sparsity
in the inverse covariance (precision) matrix of pro-
cess realizations and hence enable “kriging” at arbi-
trary locations (Datta et al., 2016, Guinness, 2018,
Finley et al., 2019). In related literature on com-
puter experiments, localized approximations of GP
models are proposed; see, for example, Gramacy and
Apley (2015), Gramacy and Haaland (2016). These
methods scale well with the sample size and are able
to capture local spatial variations.

The remaining variants of dimension-reduction
methods combine the benefits of low-rank and
sparse covariance functions. Examples include non-
stationary models (Banerjee et al., 2014) and multi-
resolution models (Nychka et al., 2015, Katzfuss,
2017, Guinness, 2021, Katzfuss and Guinness, 2021,
Guhaniyogi and Sanso, 2020). Multi-resolution mod-
els are difficult to implement and lack large sample
theoretical guarantees, but they successfully capture
spatial variation at multiple scales and are compu-
tationally efficient. The GP with Matérn covariance
can be viewed as the solution of a stochastic par-
tial differential equation. This observation has mo-
tivated GP approximations (Lindgren et al., 2011,
Bolin and Lindgren, 2013), including a recent ex-
tension to multivariate non-Gaussian models with
marginal Matérn covariance functions (Bolin and
Wallin, 2020). This class of methods work well for
Matérn covariance functions but are inapplicable in
scaling GP with low-rank or non-stationary covari-
ance functions.
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1.2 Distributed Bayes

Rooted in the divide-and-conquer technique, the
distributed Bayesian methods do not belong to any
of the classes of methods in Section 1.1. They in-
stead fit an existing model on different data subsets
exploiting the distributed computing architecture.
The results from the subsets are combined using
an aggregation algorithm. These methods were first
proposed in machine learning, including Consensus
Monte Carlo (Scott et al., 2016), the Weierstrass
sampler (Wang and Dunson, 2013), the semipara-
metric density product (Neiswanger et al., 2014),
the median posterior (Minsker et al., 2014) and the
Wasserstein posterior (Srivastava et al., 2015). Most
of these methods are developed only for independent
data. Recently, distributed Bayes has been applied
to a variety of statistical problems in both modeling
and computation, such as density estimation (Su,
2020), modeling of multivariate binary data (Mehro-
tra et al., 2021), sequential Monte Carlo (Lindsten
et al., 2017), random partition trees (Wang et al.,
2015), etc. For GP models, Zhang and Williamson
(2019) proposes to combine GP fitted on different
data subsets via an importance-sampled mixture-of-
experts model. Theoretical results on distributed GP
inference have been developed recently (Cheng and
Shang, 2017, Szabo and van Zanten, 2019, Shang
et al., 2019). Nevertheless, these theoretical works
and applications have mainly focused on univariate
domains for nonparametric regression and have not
considered the GP-based models used in spatial ap-
plications such as GP with Matérn covariance on a
spatial domain.

On the spatial front, Barbian and Assunção
(2017) propose combining point estimates of spa-
tial parameters obtained from different subsets, but
they do not provide combined inference on the spa-
tial processes or predictions. Similarly, Heaton et al.
(2017) partition the spatial domain and assume in-
dependence between the data in different partitions.
Guhaniyogi and Banerjee (2018, 2019) propose the
idea of “meta-posterior,” a computationally efficient
approximation to the full data posterior. This ap-
proach does not assume independence across data
blocks and enables accurate prediction with uncer-
tainty (Heaton et al., 2019); however, Guhaniyogi
and Banerjee (2018) does not offer any theoretical
guidance on choosing the number of subsets for op-

timal inference on the spatial surface.

Instead of developing a new spatial GP regression
model, we describe a general class of three-step dis-
tributed Bayesian approaches for extending an ex-
isting process-based geostatistical model, which in-
cludes a number of important special cases. To im-
plement the general approach, the n spatial locations
are divided into k subsets such that each subset has
representative data samples from all regions of the
spatial domain with the jth subset containing mj

data samples. Second, posterior computations are
implemented in parallel on the k subsets using any
chosen spatial process model after raising the model
likelihood to a power of n/mj in the jth subset.
The pseudo posterior distribution obtained using the
modified likelihood is called the “subset pseudo pos-
terior distribution”. Since jth subset pseudo pos-
terior distribution conditions on (mj/n)-fraction of
the full data, the modification of the likelihood by
raising it to the power of n/mj ensures that variance
of each subset pseudo posterior is of the same order
(as a function of n) as that of the full data poste-
rior distribution. Third, the k subset pseudo poste-
rior distributions are combined into a single pseudo
probability distribution, called the combined pseudo
posterior, that conditions on the full data and re-
places the computationally expensive full data pos-
terior distribution for prediction and inference. Our
distributed framework leverages existing spatial GP
regression models and enhances their scalability by
embedding them within the three-step framework.
For example, Section 3.1 embeds full-rank and low-
rank spatial GP regression models within the dis-
tributed framework and Section 3.3 discusses various
methods for combining the k subset pseudo posteri-
ors.

The proposed framework builds on the recent
works that combine the subset pseudo posterior
distributions through their geometric centers (e.g.,
mean, median) and guarantee wide applicability
under general assumptions (Minsker et al., 2014,
Srivastava et al., 2015, Li et al., 2017, Minsker
et al., 2017, Savitsky and Srivastava, 2018, Srivas-
tava et al., 2018, Minsker, 2019, Wang and Sri-
vastava, 2021). The theory and practice of such
distributed approaches are limited to parametric
models. In contrast, the framework proposed here
is tuned for accurate and computationally efficient
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posterior inference in nonparametric Bayesian mod-
els based on GP priors. In particular, we develop a
new approach to modify the likelihood for comput-
ing the subset pseudo posterior distribution of an
unknown function, an infinite-dimensional parame-
ter, that subsumes the parametric distributed meth-
ods. We offer novel theoretical results on the conver-
gence rate of the combined pseudo posterior to the
true function. Finally, we also provide guidance on
choosing k depending on the covariance function and
n such that the combined pseudo posterior main-
tains near minimax optimal performance as n→∞.
The proposed distributed framework delivers princi-
pled Bayesian inference and predictions without any
restrictive data- or model-specific assumptions, such
as the independence between data subsets or inde-
pendence between blocks of parameters.

A related focus of this article is to present a
comparative study of the proposed class of dis-
tributed approaches with important non-distributed
approaches for modeling massive spatial data. We
illustrate the application of the distributed frame-
work for enhancing the scalability of spatial mod-
els with a low-rank non-stationary GP prior called
the modified predictive process (MPP) prior (Finley
et al., 2009). This prior is commonly used for es-
timating spatial surfaces in applications with mas-
sive sample size, but it struggles to provide accurate
inference in a manageable time beyond (approxi-
mately) 104 observations. We embed MPP within
our distributed framework and scale it to spatial ap-
plications of much bigger sizes and assess its perfor-
mance relative to other distributed and state-of-the-
art non-distributed alternatives for efficient spatial
GP modeling. Unfortunately, there is no theoreti-
cal guarantee for convergence of the Markov chain
to its stationary distribution, where MCMC samples
are drawn from the subset pseudo posteriors with an
MPP prior on spatial effects; however, we find strong
empirical evidence for it and propose to develop the
theoretical support elsewhere.

2. BAYESIAN INFERENCE IN GP-BASED
SPATIAL MODELS

Consider the model for the data observed at location
s in a compact domain D,

y(s) = x(s)T β+w(s) + ε(s),(1)

where y(s) and x(s) are the response and a p × 1
predictor vector respectively at s, β is a p × 1 pre-
dictor coefficient, w(s) is the value of an unknown
spatial function w(·) at s, and ε(s) is the value of a
white-noise process ε(·) at s, which is independent
of w(·). The Bayesian implementation of the model
in (1) customarily assumes that (a) β apriori fol-
lows N(µβ, Σβ) and (b) w(·) and ε(·) apriori follow
mean 0 GPs with covariance functions Cα(s1, s2)
and Dα(s1, s2) that model cov{w(s1), w(s2)} and
cov{ε(s1), ε(s2)}, respectively, where α are the pro-
cess parameters indexing the two families of covari-
ance functions and s1, s2 ∈ D; therefore, the param-
eters are ΩΩΩ = {α,β}. The training data consists of
predictors and responses observed at n spatial loca-
tions, denoted as S = {s1, . . . , sn}.

Standard Markov chain Monte Carlo (MCMC)
algorithms exist for performing posterior infer-
ence on ΩΩΩ and w(·) at a set of locations S∗ =
{s∗1, . . . , s∗l }, where S∗ ∩S = ∅, and for predict-
ing y(s∗) for any s∗ ∈ S∗ (Banerjee et al.,
2014). Given S, the prior assumptions on w(·)
and ε(·) imply that wT = {w(s1), . . . , w(sn)} and
εT = {ε(s1), . . . , ε(sn)} are independent and follow
N {0,C(α)} and N {0,D(α)}, respectively, with
the (i, j)th entries of C(α) and D(α) are Cα(si, sj)
and Dα(si, sj), respectively. The hierarchy in (1)
is completed by assuming that α apriori follows a
distribution with density π(α). The MCMC algo-
rithm for sampling ΩΩΩ, w∗T = {w(s∗1), . . . , w(s∗l )},
and y∗T = {y(s∗1), . . . , y(s∗l )} cycle through the fol-
lowing three steps until sufficient MCMC samples
are drawn post convergence:

1. Integrate over w in (1) and

(a) sample β given y,X,α from N(mβ,Vβ),
where

Vβ =
{

XT V(α)−1 X+Σ−1
β

}−1
,(2)

mβ =Vβ

{
XT V(α)−1 y+Σ−1

β µβ

}
,

X = [x(s1) : · · · : x(sn)]T is the n×p matrix of
predictors, with p < n, V(α) = C(α) + D(α);
and

(b) sample α given y,X,β using the Metropolis-
Hastings algorithm with a normal random walk
proposal.
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2. Sample w∗ given y,X,α,β from N(m∗,V∗),
where

V∗=C∗,∗(α)−C∗(α) V(α)−1 C∗(α)T ,(3)

m∗=C∗(α) V(α)−1(y−Xβ),

C∗(α) and C∗,∗(α) are l×n and l×l matrices, re-
spectively, and the (i, j)th entries of C∗,∗(α) and
C∗(α) are Cα(s∗i , s

∗
j ) and Cα(s∗i , sj), respectively.

3. Sample y∗ given α,β,w∗ from
N {X∗ β+ w∗,D(α)}, where X∗T = [x(s∗1) : · · · :
x(s∗l )].

Many spatial models can be formulated in terms of
(1) by assuming different forms of Cα(s1, s2) and
Dα(s1, s2); see Banerjee et al. (2014) and supple-
mentary material for details on the MCMC algo-
rithm. Irrespective of the form of D(α), if no ad-
ditional assumptions are made on the structure of
C(α), then the three steps require O(n3) flops in
computation and O(n2) memory units in storage
in every MCMC iteration. Spatial models with this
form of posterior computations are based on a full-
rank GP prior, which are infeasible to compute for
big data.

There are methods which either impose a low-
rank structure or a sparse structure on C(α) to
address this computational issue (Banerjee et al.,
2014). Methods with a low-rank structure on C(α)
expresses C(α) in terms of r � n basis func-
tions, in turn inducing a low-rank GP prior. Again,
a class of sparse structure uses compactly sup-
ported covariance functions to create C(α) with
overwhelming zero entries (Kaufman et al., 2008,
Furrer et al., 2006), where as another variety of
sparse structure imposes a Markov random field
model on the joint distribution of y (Vecchia, 1988,
Rue et al., 2009, Stein et al., 2004) or w (Datta
et al., 2016, Guinness, 2018). We use the MPP
prior as a representative example of this broad class
of computationally efficient methods. Let S(0) =

{s(0)
1 , ..., s

(0)
r } be a set of r locations, known as

the “knots,” which may or may not intersect with

S. Let c(s,S(0)) = {Cα(s, s
(0)
1 ), . . . , Cα(s, s

(0)
r )}T

be an r × 1 vector and C(S(0)) be an r × r

matrix whose (i, j)th entry is Cα(s
(0)
i , s

(0)
j ). Using

c(s1,S(0)), . . . , c(sn,S(0)) and C(S(0)), define the
diagonal matrix δ = diag{δ(s1), . . . , δ(sn)} with
δ(si) = Cα(si, si)− cT (si,S(0)) C(S(0))−1 c(si,S(0)),

i = 1, . . . , n. Let 1(a = b) = 1 if a = b and 0 other-
wise. Then, MPP is a GP with covariance function

C̃α(s1, s2) = cT (s1,S(0)) C(S(0))−1 c(s2,S(0))

+δ(s1) 1(s1 = s2),(4)

where s1, s2 ∈ D, C̃α(s1, s2) depends on the co-
variance function of the parent GP and the se-
lected r knots, which define C(S(0)), cT (s1,S(0)),
and cT (s2,S(0)). We have used a ˜ in (4) to distin-
guish the covariance function of a low-rank GP prior
from that of its parent full-rank GP. If C̃(α) is a ma-
trix with (i, j)th entry C̃α(si, sj), then the posterior
computations using MPP, a low-rank GP prior, re-
place C(α) by C̃(α) in the steps 1(a), 1(b), and 2.
The (low) rank r structure imposed by C(S(0)) im-
plies that C̃(α)−1 computation requiresO(nr2) flops
using the Woodbury formula (Harville, 1997); how-
ever, massive spatial data require that r = O(

√
n),

leading to the computational inefficiency of low-rank
methods.

The next section discusses a general three-step
distributed framework to scale the posterior com-
putations in spatial GP regression models with full-
rank and low-rank GP priors. Briefly, the first and
second steps divide the full data and fit a low-rank or
full-rank spatial GP regression model on each data
subset after modifying the subset likelihood, respec-
tively, and the third step combines draws from the
all the subset pseudo posteriors. We discuss a few
popular alternatives for combining draws from the
subset pseudo posteriors and offer novel convergence
rate results for an important subclass of combination
approaches.

3. DISTRIBUTED FRAMEWORK FOR
BAYESIAN INFERENCE IN SPATIAL

REGRESSION MODELS

3.1 First Step: Partitioning of Spatial Locations

We partition the n spatial locations into k non-
overlapping subsets. The default partitioning scheme
is to randomly allocate the locations into k possibly
non-overlapping subsets (referred to as the random
partitioning scheme hereon) to ensure that each sub-
set has representative data samples from all subre-
gions of the domain. We provide discussion on the
choice of k later.
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Let Sj = {sj1, . . . , sjmj} denote the set of mj spa-
tial locations in subset j (j = 1, . . . , k). Conceptu-
ally, a spatial location can belong to multiple sub-
sets, though for this work we have assumed disjoint
subsets, so that

∑k
j=1mj = n and ∪kj=1Sj = S,

where sji = si′ for some si′ ∈ S and for every
i = 1, . . . ,mj and j = 1, . . . , k. Denote the data in
the jth partition as {yj ,Xj} (j = 1, . . . , k), where

yj = {y(sj1), . . . , y(sjmj )}T is a mj × 1 vector and

Xj = [x(sj1) : · · · : x(sjmj )]
T is a mj × p matrix of

predictors corresponding to the spatial locations in
Sj with p < mj . In modern grid or cluster computing
environments, all the machines in the network have
similar computational power, so the performances
of distributed Bayesian methods are optimized by
choosing similar values of m1, . . . ,mk.

One can choose more sophisticated partitioning
schemes than random partitioning. For example, it
is possible to cluster the data based on centroid
clustering (Knorr-Held and Raßer, 2000) or hier-
archical clustering based on spatial gradients (An-
derson et al., 2014, Heaton et al., 2017), and then
construct subsets such that each subsets contains
representative data samples from each cluster. De-
tailed exploration later shows that even random par-
titioning leads to desirable inference in the various
simulation settings and in the sea surface data ex-
ample. Perhaps more sophisticated blocking meth-
ods may provide further improvement in the cases
where spatial locations are drawn based on spe-
cific designs; for example, sophisticated partitioning
schemes have inferential benefits when a sub-domain
shows substantial local behavior compared to the
others (Guhaniyogi and Sanso, 2020), or sampled
locations are chosen based on a specific survey de-
sign. Since they are atypical examples in the spatial
context, we will pursue them elsewhere.

The univariate spatial GP regression model for
any location sji ∈ Sj ⊂ D is

y(sji) = x(sji)
T β+w(sji) + ε(sji), i = 1, . . . ,mj .

(5)

Let wT
j = {w(sj1), . . . , w(sjmj )} and εTj =

{ε(sj1), . . . , ε(sjmj )} be the realizations of GP w(·)
and white-noise process ε(·), respectively, in the jth
subset. After marginalizing over wj in the GP-based
model for the jth subset, the likelihood of ΩΩΩ =
{α,β} is given by `j(ΩΩΩ) = N{yj | Xj β,Vj(α)},

where Vj(α) = Cj(α) + Dj(α) and Vj(α) =
C̃j(α)+Dj(α) for full-rank and low-rank GP priors,
respectively, and Cj(α), C̃j(α),Dj(α) are obtained
by extending the definitions of C(α), C̃(α),D(α) to
the jth subset. The likelihood of wj given yj , Xj ,
and ΩΩΩ is `j(wj) = N{yj −Xj β | wj ,Dj(α)}. The
likelihoods in `j(ΩΩΩ) and `j(wj) yield the posterior
distributions for β,α,w∗, y∗ (w∗ and y∗ have al-
ready been defined in the second paragraph of Sec-
tion 2) based on full-rank or low-rank GP priors and
are called jth subset pseudo posterior distributions.

3.2 Second Step: Sampling From Subset Pseudo
Posterior Distributions

We define subset pseudo posterior distributions
by modifying the likelihoods in `j(ΩΩΩ) and `j(wj).
More precisely, the density of the jth subset pseudo
posterior distribution of ΩΩΩ is given by

πmj (ΩΩΩ | yj) =
{`j(ΩΩΩ)}n/mjπ(ΩΩΩ)∫
{`j(ΩΩΩ)}n/mjπ(ΩΩΩ)dΩΩΩ

,(6)

where we assume that
∫
{`j(ΩΩΩ)}n/mjπ(ΩΩΩ)dΩΩΩ < ∞,

and the subscript ‘mj ’ denotes that the density con-
ditions on mj data samples in the jth subset. The
modification of likelihood to yield the subset pseudo
posterior density in (6) is called stochastic approxi-
mation (Minsker et al., 2014). Raising the likelihood
to the power of n/mj is equivalent to replicating ev-
ery y(sji) n/mj times (i = 1, . . . ,mj), so stochas-
tic approximation accounts for the fact that the jth
subset pseudo posterior distribution conditions on a
(mj/n)-fraction of the full data and ensures that its
variance is of the same order (as a function of n)
as that of the full data posterior distribution. Un-
like parametric models, stochastic approximation in
spatial regression models has not been studied pre-
viously in the literature.

We address this gap using the proposed stochas-
tic approximation in (6). The full conditional densi-
ties of jth subset pseudo posterior distributions for
prediction and inference follow from their full data
counterparts. The jth full conditional densities of β
and α in the GP-based models are

πmj (β |yj ,α)=
{`j(ΩΩΩ)}n/mjπ(β)∫
{`j(ΩΩΩ)}n/mjπ(β)dβ

,

πmj (α |yj ,β)=
{`j(ΩΩΩ)}n/mjπ(α)∫
{`j(ΩΩΩ)}n/mjπ(α)dα

,
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where π(β) = N(µβ,Σβ), π(α) is the prior den-

sity of α, and we assume that
∫
{`j(ΩΩΩ)}n/mjπ(β)dβ

and
∫
{`j(ΩΩΩ)}n/mjπ(α)dα respectively are finite.

The jth full conditional densities of y∗ and w∗ are
calculated after modifying the likelihood of wj us-
ing stochastic approximation. Given yj , Xj , and
ΩΩΩ, straightforward calculation yields that the jth
subset pseudo posterior predictive density of w∗ is
πmj (w

∗ | yj ,ΩΩΩ) = N(w∗ |mj∗,Vj∗), with

Vj∗=C∗,∗(α)−C∗j(α) Vj(α)−1 C∗j(α)T ,

mj∗=C∗j(α) Vj(α)−1(yj−Xj β),

where Vj(α) = Cj(α) + (n/mj)
−1 Dj(α) and

Vj(α) = C̃j(α) + (n/mj)
−1 Dj(α) for full-

rank and low-rank GP priors, respectively, and
C∗,∗(α),C∗j(α) are l × l, l ×mj matrices obtained
by extending the definition in (3) to subset j for
full-rank and low-rank GP priors with covariance
functions Cα(·, ·) and C̃α(·, ·), respectively. We note
that the stochastic approximation exponent, n/mj ,
scales Dj(α) in Vj(α) so that the uncertainty in
subset and full data posterior distributions are of
the same order (as a function of n). The jth subset
pseudo posterior predictive density of y∗ given the
MCMC samples of w∗ and ΩΩΩ in the jth subset is
N{y∗ | X∗ β+ w∗,Dj(α)}.

We specialize the sampling algorithm (Steps 1–3)
introduced in Section 2 to subset j (j = 1, . . . , k),
sampling {β,α,y∗,w∗} in each subset across mul-
tiple MCMC iterations; see supplementary material
for subset pseudo posterior sampling algorithms in
the full-rank and low-rank GP priors. The compu-
tational complexity of jth subset pseudo posterior
computations follows from their full data counter-
parts if we replace n by mj . Specifically, the compu-
tational complexities for sampling a subset pseudo
posterior are O(m3) and O(mr2) flops per iteration
if the model in (5) uses a full-rank or a low-rank GP
prior, respectively, where m = maxjmj . Perform-
ing subset pseudo posterior computations in paral-
lel across k servers also alleviates the need to store
large covariance matrices. We hereon refer to subset
pseudo posterior as subset posterior.

Our second step in the distributed framework re-
sembles some existing methods based on the com-
posite likelihood (Varin et al., 2011); for example,
Chandler and Bate (2007) and Ribatet et al. (2012)
construct pseudo likelihood to replace the full data

likelihood, where the pseudo likelihood attempts to
capture important features of the full data likeli-
hood while offering computational efficiency. In the
context of geostatistical modeling with GP or its
variants, for computational efficiency, the pseudo
likelihood will naturally be based on independence
of data blocks at some level. To make up for the
incorrect asymptotic distribution of the posterior
distribution due to the incorrect independence as-
sumption, they propose a number of adjustments
in the composite log likelihood (e.g., the margin
adjustment and the curvature adjustment). Simi-
lar to these approaches, the likelihood adjustment
in each subset for the second step of our general dis-
tributed approach is also born out of consideration
to scale the asymptotic variance of subset posteriors
to the same order as the asymptotic variance of the
full posterior; however, unlike these composite likeli-
hood approaches, the distributed approaches we fo-
cus on do not assume any restrictive structure (e.g.,
block independence) in the data likelihood. In fact,
there is no guarantee that the induced data likeli-
hood that leads to the combined pseudo posterior
for any distributed method assumes any block inde-
pendence form. Moreover, Savitsky and Srivastava
(2018) represents an example of embedding a com-
posite likelihood in a distributed setup that com-
putes the Wasserstein barycenter. Likewise, we be-
lieve that most of these “flexible” composite likeli-
hoods can be used in extensions of the distributed
framework for subset sampling in models where the
true likelihood is unavailable or expensive to com-
pute.

3.3 Third Step: Combination of Subset Posterior
Distributions

We now discuss strategies for combining subset
posteriors to construct a “combined pseudo poste-
rior”, which is used as an computationally efficient
alternative to the full data posterior. The combina-
tion strategies discussed here include representative
approaches used for the distributed Bayesian infer-
ence in independent data, but they have not been
studied empirically or theoretically for correlated
spatial data setting. Specifically, we compare the
following combination schemes with our approach:
(i) Consensus Monte Carlo (CMC); (ii) Double Par-
allel Monte Carlo (DPMC); and (iii) combination
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8 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

through the Wasserstein barycenter.

3.3.1 Consensus Monte Carlo (CMC) For a
scalar or vector parameter of interest θ, Consen-
sus Monte Carlo (CMC) (Scott et al., 2016) draws
samples from an approximation of the full poste-
rior. In our setting, θ can be taken as β, α, w∗,
y∗, their individual components, or any functional

of these parameters. Let
{
θ

(j)
1 , . . . , θ

(j)
T

}
denote the

T posterior samples of θ generated from subset j
post convergence. Based on the Bernstein-von Mises
(BvM) theorem, Scott et al. (2016) proposed to use

the weighted average
∑k

j=1wjθ
(j)
i , i = 1, . . . , T to

approximate T samples from the full data poste-
rior, where the BvM theorem says that the full data
posterior tends to a normal distribution centered
around the true parameter value as n grows and wj
is the inverse of the empirical covariance matrix of{
θ

(j)
1 , . . . , θ

(j)
T

}
. This algorithm is exact when the

samples are independent and each subset posterior
is Gaussian, but this assumption is rarely satisfied
in spatial applications.

3.3.2 Double Parallel Monte Carlo (DPMC) Fol-
lowing the notation for CMC, let θ be the parameter
of interest. Denote the average of θ draws on the sub-

set j as θ
(j)

= (θ
(j)
1 + . . .+θ

(j)
T )/T (j = 1, . . . , k) and

θ = (θ
(1)

+ . . . + θ
(k)

)/k be their average. DPMC
(Xue and Liang, 2019) re-centers each of the sub-
set posteriors to θ and then uses the mixture of re-
centered subset posteriors, given by 1

k

∑k
j=1 πmj (θ−

θ + θ
(j)|yj), to approximate the full data posterior.

Following the implementation of DPMC in the con-

text of independent data, we simply transform θ
(j)
t

to θ + (θ
(j)
t − θ

(j)
) (t = 1, . . . , T ; j = 1, . . . , k) and

treat them as draws from the combined posterior
distribution.

3.3.3 Combining subset posteriors using Wasser-
stein barycenter This combination algorithm relies
on the notion of Wasserstein barycenter (Srivastava
et al., 2015). If ν1, . . . , νk are the k subset posterior
distributions of θ, then the combined pseudo poste-
rior ν is the Wasserstein barycenter defined as

ν = argmin
ν∈P2(Θ)

1

k

k∑
j=1

W 2
2 (ν, νj),(7)

W 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
Θ×Θ

‖x− y‖2 dπ(x, y),

where ‖ · ‖ is a metric on the parameter space Θ,
P(Θ) be the space of all probability measures on
Θ, P2(Θ) = {µ ∈ P(Θ) :

∫
Θ ‖θ − θ0‖2µ(dθ) < ∞},

W2(µ, ν) is the Wasserstein distance between µ, ν ∈
P2(Θ), and Π(µ, ν) is the space of all joint distribu-
tions of Θ×Θ with µ, ν as marginals. It is known that
ν exists and is unique (Agueh and Carlier, 2011).

In practice, νj is replaced by its empirical approx-
imation obtained using the θ draws from subset j. A
variety of efficient algorithms are available to provide
an empirical approximation of ν (j = 1, . . . , k) (Cu-
turi and Doucet, 2014). This approach for combin-
ing subset posteriors leads to the combined pseudo
posterior referred to as the Wasserstein posterior
(WASP), which is preferred over several other com-
bination methods for independent data (Srivastava
et al., 2018); for example, directly averaging over
many subset posterior densities with different means
can usually result in an undesirable multimodal
pseudo posterior distribution, but the WASP does
not have this problem; see Figure 1 in Srivastava
et al. (2018). Besides, the WASP does not rely on
the asymptotic normality of the subset posterior dis-
tributions as in other approaches, such as the CMC.

3.3.4 Computing the WASP with constraints
Computing the WASP is inefficient if k is large, so ν
is computed with additional constraints (Srivastava
and Xu, 2021). One such approach constrains θ to
be a one-dimensional functional of β, α, w∗, or y∗.
For a scalar parameter, the Wasserstein barycenter
of θ can be easily obtained by averaging empirical
subset posterior quantiles (Li et al., 2017). We re-
fer to this approach as distributed kriging (DISK)
and the combined pseudo posterior is called as the
DISK posterior. Let ν and νj be the full posterior
and jth subset posterior distribution of θ, and ν be
the Wasserstein barycenter of ν1, . . . , νk as in (7).
For any q ∈ (0, 1), let ν̂qj be the qth empirical quan-
tile of νj based on the MCMC samples from νj , and
ν̂
q

be the qth quantile of the empirical version of ν.
Then, ν̂

q
can be computed as

ν̂
q

=
1

k

k∑
j=1

ν̂qj , q = ξ, 2ξ, . . . , 1− ξ,(8)
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where ξ is the grid-size of the quantiles. If the ξ-grid
is fine enough, then the θ draws from the marginal
DISK distribution are obtained by inverting the em-
pirical distribution function supported on the quan-
tile estimates (Li et al., 2017). In practice, the pri-
mary interest often lies in the posterior distribution
of some one-dimensional functional of θ; therefore,
the univariate WASP obtained by averaging quan-
tiles in (8) accomplishes this with great general-
ity and convenient implementation. Our simulation
studies in Section 4 investigate if the multi-variate
combination approaches in CMC, DPMC, or WASP
lead to any notable improvement over the univariate
quantile combination in (8).

The choice of the grid size is mainly determined by
the Monte Carlo approximation error of each subset
posterior. In general, the Monte Carlo approxima-
tion error to subset posteriors can be measured in
terms of the size of MCMC samples (say T ). This
error is evaluated by taking T to infinity and differs
from the statistical error, where n tends to infin-
ity. In the context of distributed Bayesian inference
for independent data, Theorem 3 in the supplemen-
tary material of Li et al. (2017) has shown that the
Monte Carlo error is usually in some polynomial or-
der of T such as O(T−1/2) and O(T−1/4) depending
on the distance measure and is independent of the
statistical error defined in terms of n. Following this
intuition, in application, we usually draw at least
104 MCMC samples for each subset posterior and
use all of them to construct the quantiles.

A key feature of the combination scheme for the
four distributed approaches is that given the subset
posterior MCMC samples, the combination step is
agnostic to the choice of a model. Specifically, given
MCMC samples from the k subset posterior distri-
butions, (8) remains the same for models based on
a full-rank GP prior, a low-rank GP prior, such as
MPP, or any other model described in Section 1.1.
Since the combination step over k subsets takes O(k)
flops for all four combination schemes and k < n,
the total time for computing the empirical quan-
tile estimates of the combined pseudo posterior in
inference or prediction requires O(k) + O(m3) and
O(k)+O(rm2) flops in models based on full-rank and
low-rank GP priors, respectively. Assuming that we
have abundant computational resources, k is chosen
large enough so that O(m3) computations are feasi-

ble. This would enable applications of the proposed
distributed framework in models based on both full-
rank and low-rank GP priors in massive n settings.

3.4 Bayes L2-Risk: Bias-Variance Decomposition
and Convergence Rates

In the distributed Bayesian setup, it is already
known that when the data are independent and
identically distributed (i.i.d.), the combined poste-
rior distribution using the Wasserstein barycenter of
subset posteriors approximates the full data poste-
rior distribution at a near optimal parametric rate,
under certain conditions as n, k,m1, . . . ,mk → ∞
(Li et al., 2017, Srivastava et al., 2018); however, in
models based on spatial process, data are not i.i.d.
and inference on the infinite dimensional true spa-
tial surface is of primary importance. Few formal
theoretical results are available in this nonparamet-
ric distributed Bayes setup. The recent work (Szabo
and van Zanten, 2019) has shown that combination
using Wasserstein barycenter has optimal Bayes risk
and adapts to the smoothness of w0(·), the true but
unknown w(·), in the Gaussian white noise model,
which is a special case of (1) with additional smooth-
ness assumptions on w0(·).

We mainly focus on the theoretical proper-
ties of the DISK posterior of the mean surface
x(·)T β+w(·), and our theoretical framework can be
possibly extended to the other three combination
schemes described in Section 3.3. For ease of pre-
sentation, we assume that m1 = · · · = mk = m and
k = n/m. Determining the appropriate order for k in
terms of n is one of the key issues for all distributed
statistical methods. Our theory below reveals that
the number of subsets k cannot increase too fast
with n, or equivalently, the subset size m cannot be
too small, mainly because a small subset size m will
result in larger random errors in the estimation from
subset posterior distributions.

We formally explain the model setup for our the-
ory development. Suppose that the data generation
process follows the model (1) with the true param-
eter value ΩΩΩ0 = (α0,β0) and the true spatial sur-
face w0(·). We focus on the Bayes L2-risk of the
DISK predictive posterior for the mean function in
(1); that is, x(s∗)T β+w(s∗) for any testing location
s∗ ∈ S. To ease the complexity of our theory, we first
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10 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

present two theorems below for the simplified model

y(si) =w(si) + ε(si), ε(si) ∼ N
(
0, τ2

)
,(9)

w(·) ∼ GP{0, λ−1
n Cα(·, ·)},

for i = 1, . . . , n. Compared to the spatial model (1),
the model (9) does not contain the regression term
x(s)T β; however, our theory includes this regression
term later by modifying the covariance function; see
Corollary 3.3 below. The tuning parameter λn is a
user-chosen deterministic sequence that depends on
n. In real applications, one can simply set λn = 1,
but one can also choose λn such that the posterior
convergence rate is minimax optimal; see Theorem
3.2 below and the discussions therein.

We introduce some theoretical definitions used in
stating our results. Let α0 be the true kernel pa-
rameter. Let Ps be a design distribution of s over
D, L2(Ps) be the L2 space under Ps, the inner prod-
uct in L2(Ps) is defined as 〈f, g〉L2(Ps) = EPs(fg) for
any f, g ∈ L2(Ps) where EPs(·) represents an expec-
tation taken with with respect to the distribution,
Ps. For any f ∈ L2(Ps) and s ∈ D, define the lin-
ear operator (Tα0f)(s) =

∫
D Cα0(s, s′)f(s′)dPs(s

′).
According to the Mercer’s theorem, there exists an
orthonormal basis {ϕi(s)}∞i=1 in L2(Ps), such that
Cα0(s, s′) =

∑∞
i=1 µiϕi(s)ϕi(s

′), where µ1 ≥ µ2 ≥
. . . ≥ 0 are the eigenvalues and {ϕi(s)}∞i=1 are the
eigenfunctions of Tα0 . The trace of the kernel Cα0

is defined as tr(Cα0) =
∑∞

i=1 µi. Any f ∈ L2(Ps)
has the series expansion f(s) =

∑∞
i=1 θiϕi(s), where

θi = 〈f, ϕi〉L2(Ps). The reproducing kernel Hilbert
space (RKHS) H attached to Cα0 is the space of
all functions f ∈ L2(Ps) such that the H-norm
‖f‖2H =

∑∞
i=1 θ

2
i /µi < ∞. The RKHS H is the

completion of the linear space of functions defined
as
∑I

i=1 aiCα0(si, ·), where I is a positive integer,
si ∈ D, and ai ∈ R (i = 1, . . . , I); see van der Vaart
and van Zanten (2008) for more details on RKHS.

We impose the following assumptions.

A.1 (Sampling) The locations S = {s1, . . . , sn} and
s∗ are independently drawn from the same sam-
pling distribution Ps. S1, . . . ,Sk is a random
disjoint partition of S, each with size m = n/k.

A.2 (True model) The true function w0 is an element
of the RKHS H attached to the kernel Cα0 . At a
location s, the observation is y(s) = w0(s)+ε(s),
where ε(s) is a white noise process with the true
variance τ2

0 <∞.

A.3 (Trace class kernel) tr(Cα0) <∞.
A.4 (Moment condition) There are positive con-

stants ρ and q > 4 such that EPs{ϕ
2q
i (s)} ≤ ρ2q

for every i ∈ N.

The random partition in A.1 guarantees that each
individual subset Sj (j = 1, . . . , k) is a random sam-
ple from Ps. In general, the RKHS H in A.2 can be
a smaller space relative to the support of the GP
prior. While we use w0 ∈ H in A.2 mainly for tech-
nical simplicity, this assumption can be possibly re-
laxed by considering sieves with increasing H-norms,
similar to Assumption B′ and Theorem 2 in Zhang
et al. (2015). Furthermore, A.2 only requires that
the true unknown error distribution to have a finite
variance. Although we fit the data using the normal
error in model (9), our theory below allows this er-
ror distribution to be misspecified and not normal;
therefore, our posterior convergence rate results also
hold for heavy-tailed error distributions such as t4,
which are more general than van der Vaart and van
Zanten (2011) whose techniques fully depend on the
normal error assumption. In A.3, tr(Cα) measures
the size of the covariance function and imposes con-
ditions on the regularity of functions that DISK can
learn. A.4 on the eigenfunctions controls the error in
approximating Cα0(s, s′) by a finite sum, similar to
Assumption A in Zhang et al. (2015).

We first consider the case where both the error
variance τ2 and the kernel parameter α are fixed
and known, similar to van der Vaart and van Zan-
ten (2011). We extend our results to a special case
where τ2 is assigned a prior with bounded support
in Corollary 1.1 of the supplementary material.

A.5 (Fixed parameters) α and τ2 are fixed at their
true values α = α0, τ2 = τ2

0 .

We begin by examining the Bayes L2-risk of the
DISK posterior for estimating w0 in (9). Let w(s∗) be
a random variable that follows the DISK posterior
for estimating w0(s∗). Let Es∗ , ES , and Ey,w(s∗)|S,s∗
respectively be the expectations with respect to the
distributions of s∗, S, and {y, w(s∗)} given S, s∗.
Given the random partition assumption in A.1, each
individual subset Sj (j = 1, . . . , k) is a random sam-
ple from Ps. By A.5, we can drop the subscript “0”
in α0 and τ2

0 . Then, w(s∗) given y,S, s∗ has the den-
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sity N(m, v), where

m =
1

k

k∑
j=1

cTj,∗(Cj,j + τ2λn
k I)−1 yj ,

v1/2 =
1

k

k∑
j=1

v
1/2
j ,(10)

vj = λ−1
n

{
c∗,∗ − cTj,∗(Cj,j + τ2λn

k I)−1 cj,∗

}
,

cTj,∗ = [cov{w(sj1), w(s∗)}, . . . , cov{w(sjm), w(s∗)}],
and c∗,∗ = cov{w(s∗), w(s∗)}. The Bayes
L2-risk of DISK in estimating w0 is
Es∗ ES Ey,w(s∗)| S,s∗{w(s∗) − w0(s∗)}2. This risk
can be used to quantify how quickly the DISK
posterior concentrates around the unknown true
surface w0(·) as the total sample size n increases to
infinity. The convergence rate of this Bayes L2-risk
towards zero also gives the posterior contraction
rate of the DISK posterior defined in the same way
as in Bayesian nonparametrics, such as van der
Vaart and van Zanten (2011, Theorem 2). When
the parameters τ2 and α are fixed and known, it is
straightforward to show (see the proof of Theorem
3.1 in the supplementary material) that this Bayes
L2-risk can be decomposed into the squared bias,
the variance of subset posterior means, and the
variance of DISK posterior terms as

bias2 = Es∗ ES{cT∗ (kL +τ2λn I)−1 w0−w0(s∗)}2,
(11)

varmean = τ2 Es∗ ES
{
cT∗ (kL +τ2λn I)−2 c∗

}
,

varDISK = Es∗ ES{v(s∗)},

where v(s∗) = Ey|S [var{w(s∗) | y}], cT∗ =

(cT1,∗, . . . , c
T
k,∗), w0j = {w0(sj1), . . . , w0(sjk)} for j =

1, . . . , k, wT
0 = (w01, . . . ,w0k), and L is a block-

diagonal matrix with C1,1, . . . ,Ck,k along the diag-
onal. The next theorem provides theoretical upper
bounds for each of the three terms in (11).

Theorem 3.1 If Assumptions A.1–A.5 hold, then

Bayes L2 risk

= Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)− w0(s∗)}2

= bias2 + varmean + varDISK,

bias2 ≤ 8τ2λn
n
‖w0‖2H

(12)

+ ‖w0‖2H inf
d∈N

[
8n

τ2λn
ρ4 tr(Cα) tr(Cdα)

+ µ1R(m,n, d, q)

]
,

varmean ≤
(

2n

kλn
+

4‖w0‖2H
k

)
inf
d∈N

[
µd+1

+
12n

τ2λn
ρ4 tr(Cα) tr(Cdα) +R(m,n, d, q)

]

+
12τ2λn
kn

‖w0‖2H + 12
τ2

n
γ

(
τ2λn
n

)
,

varDISK ≤ 3
τ2

n
γ

(
τ2λn
n

)
+ inf
d∈N

[{
4n

τ2λ2
n

tr(Cα) +
1

λn

}
tr(Cdα)

+ λ−1
n tr(Cα)R(m,n, d, q)

]
,

where N is the set of all positive integers, A is a
global positive constant that does not depend on any
of the quantities here, and

b(m, d, q) = max

(√
max(q, log d),

max(q, log d)

m1/2−1/q

)
,

R(m,n, d, q) =

{
Aρ2b(m, d, q)γ(τ2λn/n)√

m

}q
,

γ(a) =
∞∑
i=1

µi
µi + a

for a > 0, tr(Cdα) =
∞∑

i=d+1

µi.

These upper bounds are similar to the bounds ob-
tained in Theorem 1 of Zhang et al. (2015) for the
frequentist distributed estimator in kernel ridge re-
gression. Although the upper bounds in (12) appear
very complicated and involve many terms, the dom-

inant term among them is τ2

n γ
(
τ2λn
n

)
, where the

function γ(·) is related to the “effective dimension-
ality” of the covariance function Cα (Zhang, 2005).
This term determines how fast the Bayes L2-risk
converges to zero, as long as k is chosen to be some
proper order of n such that all the other terms in
the upper bounds of (12) can be made negligible

compared to τ2

n γ
(
τ2λn
n

)
. In particular, the term

R(m,n, d, q) that quantifies the random error and
appears in the infimums in all three upper bounds of
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(12) generally decreases with m and increases with

k; therefore, to ensure the dominance of τ
2

n γ
(
τ2λn
n

)
,

k cannot increase too fast with n; see Theorem 3.2
below.

In contrast to the frequentist literature such as
Zhang et al. (2015), a significant difference in our
Theorem 3.1 is that our risk bounds involve two dif-
ferent variance terms. Our analysis naturally intro-
duces the variance term varDISK that corresponds
to the variance of the DISK posterior distribution,
while frequentist kernel ridge regression only finds
a point estimate of w0 and thus does not include
this variance term. Each of the three upper bounds
in Theorem 3.1 can be made close to zero as n in-
creases to ∞ and k is chosen to grow at an appro-
priate rate depending on n. The next theorem finds
the appropriate order for k in terms of n, such that
the DISK posterior achieves nearly minimax optimal
rates in its Bayes L2-risk (12), for three types of com-
monly used covariance functions/kernels, (i) degen-
erate kernels, (ii) kernels with exponentially decay-
ing eigenvalues, and (iii) kernels with polynomially
decaying eigenvalues. The kernel Cα is a degenerate
kernel of rank d∗ if there is some constant positive
integer d∗ such that µ1 ≥ µ2 ≥ . . . ≥ µd∗ > 0 and
µd∗+1 = µd∗+2 = . . . = µ∞ = 0.

Theorem 3.2 If Assumptions A.1–A.5 hold, then
as n→∞,

(i) if Cα is a degenerate kernel of rank d∗, λn =

1, and k ≤ cn
q−4
q−2 /(log n)

2q
q−2 for some constant

c > 0, then the Bayes L2-risk of DISK posterior
satisfies Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)−w0(s∗)}2 =
O
(
n−1

)
;

(ii) if µi ≤ c1µ exp (−c2µi
κ) for some constants

c1µ > 0, c2µ > 0, κ > 0 and all i ∈ N,

λn = 1, and k ≤ cn
q−4
q−2 /(log n)

2(qκ+q−1)
κ(q−2) for

some constant c > 0, then the Bayes L2-risk
of DISK posterior satisfies Es∗ ES Ey,w(s∗)| S,s∗

{w(s∗)− w0(s∗)}2 = O
{

(log n)1/κ/n
}

;
(iii) if µi ≤ cµi

−2η for some constants cµ > 0, η >
q−1
q−4 and all i ∈ N, λn = 1, and k ≤

cn
(q−4)η−(q−1)

(q−2)η /(log n)
2q
q−2 for some constant c >

0, then the Bayes L2-risk of DISK posterior
satisfies Es∗ ES Ey,w(s∗)| S,s∗{w(s∗)−w0(s∗)}2 =

O
(
n
− 2η−1

2η

)
; and

(iv) if µi ≤ cµi
−2η for some constants cµ > 0,

η > q−1
q−4 and all i ∈ N, λn = c1n

1/(2η+1), and

k ≤ c2n
(2η−1)q−8η
(q−2)(2η+1) /(log n)

2q
q−2 for some positive

constants c1, c2, then the Bayes L2-risk of DISK
posterior satisfies Es∗ ES Ey,w(s∗)| S,s∗{w(s∗) −
w0(s∗)}2 = O

(
n
− 2η

2η+1

)
.

In Theorem 3.2, the space of w0 is the RKHS H
attached to Cα by Assumption A.2. In Case (i), the
RKHS of Cα is a d∗-dimensional space of functions.
For example, the covariance functions in subset of
regressors approximation (Quiñonero-Candela and
Rasmussen, 2005) and predictive process (Banerjee
et al., 2008) are both degenerate with their ranks
equaling the number of inducing variables and knots,
respectively. One example of Case (ii) is the squared
exponential kernel, which is popular in machine
learning. The squared exponential kernel defined on
R with Ps being a Gaussian measure has exponen-
tially decaying eigenvalues (Zhu et al., 1998), and it
RKHS only contains functions with infinite smooth-
ness. The rate of decay of the L2-risks in Case (i)
and Case (ii) with κ = 2 are known to be minimax
optimal (Raskutti et al., 2012, Yang et al., 2017).

Cases (iii) and (iv) apply to the class of ker-
nels with polynomially decaying eigenvalues. For
example, consider the Matérn covariance function
Cσ2,φ,ν(s, s′) = σ2 21−ν

Γ(ν) (φ‖ s− s′ ‖)ν Kν (φ‖ s− s′ ‖),
where s, s′ ∈ D ⊂ Rd, σ2 > 0, φ > 0, α = (σ2, φ),
ν ≥ d/2 is known, Γ(·) is the gamma function,
and Kν(·) is the modified Bessel function of the
second kind. Then the RKHS of Cσ2,φ,ν(s, s′) de-
fined on a compact domain D with Lipschitz bound-
ary is norm equivalent to the Sobolev space with
order ν + d/2 (Wendland 2005, Corollary 10.48).
Furthermore, when Ps is the uniform distribution
on D, the eigenvalues of Matérn kernels decay as
µi ≤ cµi

−2ν/d for all i ∈ N, such that η = ν/d in
Cases (iii) and (iv) (Santin and Schaback 2016, The-
orem 6). In the special case of ν = 1/2 and d = 1,
Cσ2,φ,1/2(s, s′) = σ2 exp (−φ‖ s− s′ ‖) is the expo-
nential kernel, whose eigenfunctions are bounded
sine and cosine functions, so (A.4) is also satisfied
with q = +∞ (Van Trees 2001, Section 3.4.1). It is
unknown whether the eigenfunctions of Matérn ker-
nels can be uniformly bounded for general ν and d.

When η = ν/d in Cases (iii) and (iv), the rate
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O
(
n−

2ν−d
2ν

)
for the Bayes L2-risk in Case (iii) is

not minimax optimal for estimating functions in the
Sobolev space of order ν + d/2, whereas the faster

rate O
(
n−

2ν
2ν+d

)
in Case (iv) is minimax optimal.

This is because (iv) has used the additional opti-
mal tuning parameter λn = c1n

ν/(2ν+d), while set-
ting λn = 1 is sub-optimal in this case. The use
of a tuning parameter to achieve optimal conver-
gence is common in Gaussian process regression and
kernel ridge regression (Zhang et al., 2015, Yang
et al., 2017). Although van der Vaart and van Zanten
(2011) have shown the minimax optimal posterior
convergence rates for the Matérn kernel without us-
ing tuning parameters, their proof only works when
the true error distribution of ε(s) is sub-Gaussian.
In comparison, our Assumption A.1 only requires
that ε(s) has a finite variance without the normality
assumption, which is more general and allows the
model (9) to be misspecified in the error distribu-
tion.

For the conditions on k, in the case when q = +∞,
the upper bounds on k in (i), (ii), (iii), and (iv) re-
duce to k = O{n/(log n)2}, k = O{n/(log n)2/κ},
k = O{n

η−1
η /(log n)2}, and k = O{n

2η−1
2η+1 /(log n)2},

respectively. The convergence rate results in Theo-
rem 3.2 hold as long as k does not grow too fast with
n.

We can generalize the results in Theorems 3.1 and
3.2 to the model (1). Besides A.1–A.4, we further
make the following assumption on x(·) and the prior
on β:

B.1 All p components of x(·) are non-random func-
tions in S. The prior on β is N(µβ,Σβ) and
it is independent of the prior on w(·), which is
GP{0, Cα(·, ·)}.

By the normality and joint independence in As-
sumption B.1, it is straightforward to show that
the mean function x(s)T β+w(s) has a GP prior
GP
{

x(·)T µβ, Čα(·, ·)
}

, where the modified covari-

ance function Čα is given by

Čα(s1, s2)

= cov
{
x(s1)T β+w(s1), x(s2)T β+w(s2)

}
= x(s1)T Σβ x(s2) + Cα(s1, s2),(13)

for any s1, s2 ∈ S. With this modified covariance
function, we have the following corollary:

Corollary 3.3 If Assumption B.1 holds, Assump-
tions A.1–A.5 hold with all Cα replaced by Čα in
(13), and µβ = 0, the conclusions of Theorems 3.1
and 3.2 hold for the Bayes L2-risk of the mean sur-
face x(·)T β+w(·) in the model (1).

4. EXPERIMENTS

4.1 Simulation Setup

This section presents a comparative study of im-
portant non-distributed and distributed approaches
on large spatial data based on the performance in
learning the process parameters, interpolating the
unobserved spatial surface, and predicting the re-
sponse at new locations. Two simulation studies and
a real data analysis are presented. The first simula-
tion (Simulation 1 ) generates the data from a spa-
tial linear model, where the spatial process is sim-
ulated from a GP with an exponential covariance
function, leading to a fairly rough (nowhere differen-
tiable) spatial surface. Following Gramacy and Ap-
ley (2015), we use an analytic function with local fea-
tures to simulate the data in the second simulation
(Simulation 2 ). The number of locations in the two
simulations is moderately large with n = 10, 000.
Our real data analysis is based on a large data subset
of sea surface temperature data with n = 1, 000, 000
locations. For the two simulations and in the real
data analysis, the response at (n + l) locations is
modeled as

y(si) = β0 + x(si)β1 + w(si) + εi,(14)

εi ∼ N(0, τ2), si ∈ D ⊂ R2 for i = 1, . . . , n+l, where
D is the spatial domain, y(si), x(si), w(si), and εi
are the response, covariate, spatial process, and id-
iosyncratic error values at the location si, β0 is the
intercept, β1 models the covariate effect, and l is the
number of new locations where surface interpolation
and prediction are sought.

A number of popular and state-of-the-art non-
distributed Bayesian and non-Bayesian spatial mod-
els are compared with a few important distributed
Bayesian approaches in the two simulations and
in the real data analysis. Among non-distributed
Bayesian and non-Bayesian methods, we fit: (i) In-
tegrated nested Laplace approximation (INLA) us-
ing the INLA package in R (Illian et al., 2012);
(ii) LatticeKrig (Nychka et al., 2015) using the
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Table 1
The errors in estimating the parameters β = (β0, β1), σ2, φ, τ2 in Simulation 1. The parameter estimates for the Bayesian

methods β̂ = (β̂0, β̂1), σ̂2, φ̂, τ̂2 are defined as the posterior medians of their respective MCMC samples and their true values
are β0 = (1, 2), σ2

0 = 1, φ0 = 4 and τ20 = 0.1. The entries in the table are averaged across 10 simulation replications.

‖β̂ − β0 ‖ |σ̂2 − σ2
0 | |φ̂− φ0| |τ̂2 − τ20 |

INLA 0.21 - - -
LaGP 0.08 - - -

NNGP (m = 10) 0.11 0.07 0.37 0.00
NNGP (m = 20) 0.12 0.09 0.51 0.00
NNGP (m = 30) 0.11 0.11 0.58 0.00

LatticeKrig 0.11 0.09 1.59 0.06
GpGp 0.08 0.11 0.64 0.01

Vecchia (m = 10) 0.10 0.11 0.51 0.01
Vecchia (m = 20) 0.10 0.10 0.55 0.01
Vecchia (m = 30) 0.10 0.38 1.13 0.01

MPP (r = 200) 0.35 0.23 1.98 0.17
MPP (r = 400) 0.19 0.09 1.88 0.07

Random Partitioning
DISK (r = 200, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 400, k = 10) 0.09 0.11 0.64 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.66 0.02
DISK (r = 400, k = 20) 0.10 0.12 0.66 0.02

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 400, k = 10) 0.09 0.12 0.62 0.01
DISK (r = 200, k = 20) 0.10 0.12 0.63 0.01
DISK (r = 400, k = 20) 0.10 0.12 0.64 0.01

LatticeKrig package in R with 3 resolutions (Ny-
chka et al., 2016); (iii) modified predictive process
(MPP) using the spBayes package in R with the
full data; (iv) nearest neighbor Gaussian process
(NNGP) using the spNNGP package in R with the
number of nearest neighbors m set to be 10, 20,
and 30 (Datta et al., 2016); (v) locally approximated
Gaussian process (laGP) using the laGP package in
R (Gramacy and Apley, 2015); (vi) Vecchia’s ap-
proximation using the GPvecchia package in R with
the number of nearest neighbors m set to be 10, 20,
and 30 (Katzfuss and Guinness, 2021); (vii) Fisher
Scoring of Vecchia’s Approximation using the GpGp
(Guinness, 2021).

In fitting (i), (ii), (iv), (v), (vi), (vii), we assume
an exponential correlation in the random field given
by cov{w(s), w(s′)} = σ2e−φ‖ s− s′ ‖, s, s′ ∈ D. To
fit MPP for (iii), the MPP prior on w(·) is fitted
with rank r = 200, 400 in Simulations 1, 2 and with
r = 400, 600 in the real data analysis, where r knots
are selected randomly from D. For Bayesian model
fitting, we apply a flat prior on (β0, β1), a IG(2, 0.1)
prior on τ2, an IG(2, 2) prior on σ2 and a uniform
prior on φ, where IG(a, b) is the Inverse-Gamma dis-
tribution with mean b/(a− 1).

The non-distributed approaches are compared
with distributed Bayesian methods for model-free

subset posterior aggregation discussed in Section 3
of this article. They are (viii) CMC (Scott et al.
(2016)); (ix) DPMC (Xue and Liang (2019)); (x)
WASP (Srivastava et al. (2015)); (xi) DISK (with
ξ = 10−4), for our exposition. Identical priors, co-
variance functions, ranks, and knots are used for the
non-distributed process models and their distributed
counterparts for a fair comparison. We emphasize
that the distributed methods do not compete with
the non-distributed methods in (i)-(vii). Instead,
each of them can be potentially embedded in the
second step of any of the distributed methods for
improved performance because the distributed ap-
proaches are not model-specific. More importantly,
MPP is not considered to be the state-of-the-art, so
it is instructive to investigate the competitiveness of
(viii)-(xi) with MPP fitted on each subset.

In the interest of space, we present the perfor-
mance comparison between distributed and non-
distributed approaches only, and similar compar-
isons between CMC, DISK, DPMC and WASP are
presented in the supplementary material. Because
DISK shows better or similar performance as its
distributed competitors in all simulations, we only
present results from DISK with the non-distributed
methods in the main text. Notably, DISK combines
one-dimensional marginals of subset posteriors, but
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DPMC and WASP aggregate subset posteriors of
multivariate parameters; therefore, similar perfor-
mances of DISK, DPMC, and WASP in the sup-
plementary material shows that combining subset
posteriors of univariate parameters does not lead to
any significant loss in inference or predictions.

Any distributed method has two important
choices: (A) the value of k and (B) the construction
of subsets. We choose k in our experiments based
on two broad guidelines: (a) available computational
resources and (b) the subset size to draw reliable
inference on the spatial surface with data subsets.
To assess (b), we plot the histograms or density es-
timates of subset posterior draws of representative
parameters and see if they are very far from each
other. If so, the subset posteriors fail to provide a
noisy approximation of the full data posterior, re-
sulting in inaccuracy of the combined pseudo poste-
rior for a distributed approach. Empirically, we also
propose computing the pairwise Wasserstein or to-
tal variation distance between the subset posteriors
of representative parameters. If the average of these
distances is much larger than the average distance
between the combined and subset posterior distribu-
tions, then the combined pseudo posterior provides
a poor approximation of the full data posterior. As-
suming that the fitted model can reasonably capture
variation of the data, these checks would imply that
one has to fit a distributed approach with a smaller
value of k.

Regarding (B), we present performance of the
distributed approaches when data subsets are con-
structed (a) under a random partitioning scheme
and (b) under a grid partitioning scheme. Random
partitioning scheme randomly partitions the data
into subsets. In contrast, grid partitioning scheme
partitions the domain into a number of sub-domains
and creates each subset with representative samples
from each sub-domain. All tables in the main arti-
cle and in supplementary material show results from
both partitioning schemes.

We run all the experiments on an Oracle Grid
Engine cluster with 2.6GHz 16 core compute nodes.
The non-distributed methods (INLA, LatticeKrig,
MPP, NNGP, laGP, GPvecchia, and GpGp) and
the distributed methods (DISK, DPMC, CMC, and
WASP) are allotted memory resources of 64GB and
16GB, respectively. Every MCMC algorithm runs

for 10,000 iterations, out of which the first 5,000
MCMC samples are discarded as burn-ins and the
rest of the chain is thinned by collecting every fifth
MCMC sample. We also refer to Section 5 of the sup-
plementary material that presents comparison be-
tween effective sample size of model parameters av-
eraged over all subsets to the effective sample size
of model parameters from the full data posterior in
simulations. We compare the quality of prediction
and estimation of spatial surface at predictive loca-
tions S∗ = {s∗1, . . . , s∗l }. If w(s∗i′) and y(s∗i′) are the
value of the spatial surface and response at s∗i′ ∈ S

∗,
then the estimation and prediction errors are defined
as

Est Err2 =
1

l

l∑
i′=1

{ŵ(s∗i′)− w(s∗i′)}2,(15)

Pred Err2 =
1

l

l∑
i′=1

{ŷ(s∗i′)− y(s∗i′)}2,

where ŵ(s∗i′) and ŷ(s∗i′) denote the point estimates of
w(s∗i′) and y(s∗i′) obtained using any distributed or
non-distributed methods. For sampling-based meth-
ods, we set ŵ(s∗i′) and ŷ(s∗i′) to be the medians of
posterior MCMC samples for w(s∗i′) and y(s∗i′), re-
spectively, for i′ = 1, . . . , l. We also estimate the
point-wise 95% credible or confidence intervals (CIs)
of w(s∗i′) and predictive intervals (PIs) of y(s∗i′) for
every si′ ∈ S∗ and compare the CI and PI coverages
and lengths for every method. Finally, we compare
the performance of all the methods for parameter
estimation using the posterior medians and the 95%
CIs. Posterior medians are reported instead of pos-
terior means as point estimators since they are easily
estimated for the DISK combined posterior following
equation (8).

4.2 Simulation 1: Spatial Linear Model Based
On GP

Our first simulation generates data using the spa-
tial linear model in (14). We set D = [−2, 2] ×
[−2, 2] ⊂ R2, n = 10, 000, l = 500 and uniformly
draw (n + l) spatial locations si = (si1, si2) in D
(i = 1, . . . , n + l). The spatial surface w(·) at the
(n+ l) locations, {w(s1), . . . , w(sn+l)}, is simulated
from GP(0,σ2 exp{−φ‖ s− s′ ‖)}, where s, s′ ∈ D,
φ = 4, and σ2 = 1. The covariance function ensures
the generated spatial surface is continuous every-
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Table 2
The estimates of parameters β = (β0, β1), σ2, φ, τ2 and their 95% marginal credible intervals (CIs) in Simulation 1. The

parameter estimates for the Bayesian methods β̂ = (β̂0, β̂1), σ̂2, φ̂, τ̂2 are defined as the posterior medians of their respective
MCMC samples. The parameter estimates and upper and lower quantiles of 95% CIs are averaged over 10 simulation

replications; ‘-’ indicates that the uncertainty estimates are not provided by the software or the competitor.

β0 β1 σ2 φ τ2

Truth 1.00 2.00 1.00 4.00 0.10
Parameter Estimates

INLA 1.00 2.00 - - -
laGP 1.01 2.00 - - -

NNGP (m = 10) 1.02 2.00 0.99 4.00 0.10
NNGP (m = 20) 0.98 2.00 0.94 4.30 0.10
NNGP (m = 30) 0.99 2.00 0.94 4.34 0.10

LatticeKrig 1.01 2.00 0.93 2.42 0.16
GpGp 0.99 2.00 0.92 4.43 0.11

Vecchia (m = 10) 0.99 2.00 0.94 3.93 0.09
Vecchia (m = 20) 0.99 2.00 0.95 3.93 0.09
Vecchia (m = 30) 1.00 2.00 1.10 3.68 0.09

MPP (r = 200) 1.26 2.00 0.77 2.02 0.27
MPP (r = 400) 1.08 2.00 0.99 2.14 0.17

DISK (r = 200, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 400, k = 10) 1.00 2.00 0.92 4.35 0.11
DISK (r = 200, k = 20) 1.00 2.00 0.91 4.38 0.11
DISK (r = 400, k = 20) 1.00 2.00 0.91 4.38 0.11

95% Credible Intervals
INLA (0.26, 1.73) (1.98, 2.02) - - -
laGP (0.99, 1.03) (1.98, 2.02) - - -

NNGP (m = 10) (0.87, 1.15) (1.99, 2.01) (0.86, 1.24) (3.15, 4.70) (0.09, 0.11)
NNGP (m = 20) (0.85, 1.13) (1.99, 2.01) (0.82, 1.14) (3.46, 4.95) (0.09, 0.11)
NNGP (m = 30) (0.86, 1.12) (1.99, 2.01) (0.81, 1.11) (3.62, 5.03) (0.09, 0.11)

LatticeKrig - - - - -
GpGp (0.75, 1.23) (1.99, 2.01) - - -

Vecchia (m = 10) - - - - -
Vecchia (m = 20) - - - - -
Vecchia (m = 30) - - - - -

MPP (r = 200) (1.06, 1.26) (1.98, 2.00) (0.70, 0.85) (2.01, 2.07) (0.24, 0.30)
MPP (r = 400) (0.76, 1.08) (1.99, 2.00) (0.91, 1.08) (2.07, 2.26) (0.15, 0.19)

DISK (r = 200, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
DISK (r = 400, k = 10) (0.92, 1.08) (1.99, 2.01) (0.86, 0.98) (4.00, 4.69) (0.09, 0.12)
DISK (r = 200, k = 20) (0.94, 1.06) (1.98, 2.01) (0.86, 0.96) (4.07, 4.67) (0.09, 0.13)
DISK (r = 400, k = 20) (0.94, 1.06) (1.99, 2.01) (0.86, 0.96) (4.07, 4.68) (0.09, 0.13)

where but differentiable nowhere, which is a more
familiar simulation scenario in the spatial context.
Setting β0 = 1, β1 = 2, and τ2 = 0.1, we simulate
the responses at (n + l) locations using (14). The
three-step distributed frameworks are applied using
the low-rank MPP priors with k = 10 and k = 20,
having average subset sizes 1000 and 500, respec-
tively. We replicate this simulation ten times.

DISK with MPP prior, NNGP, and GPvecchia
have similar performance in parameter estimation
(Tables 1 and 2). The parameter estimates obtained
using DISK are very close to their true values and
the estimation errors are very similar to those of
NNGP and non-Bayesian methods based on the Vec-
chia approximation, including GpGp and GPvec-
chia. The 95% credible intervals of β0, β1, τ

2 in DISK
cover the true values and their lower and upper

quantiles are very similar to those of NNGP. DISK
underestimates σ2 and overestimates φ slightly. Both
results are the impacts of parent MPP prior, which
also shows less accurate estimation of the posterior
distribution of σ2 and φ for the two choices of the
number of knots r. More importantly, the impacts
the choice of r on parameter estimation are less se-
vere in the distributed methods compared to that
in its parent MPP prior. The CIs are not available
from GPvecchia, LatticeKrig and laGP, so that the
cells corresponding these methods are kept blank in
Table 2.

Despite the discrepancy in parameter estimates,
the correlation function estimates obtained using
the combined posteriors from distributed competi-
tors (DISK pseudo posterior being a representative)
are very close to those obtained using NNGP and
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Fig 1: Estimated covariance function using three types of GP priors on the spatial surface. The true
covariance function is cov{w(si), w(sj)} = exp(−4‖ si− sj ‖2).

GPvecchia (Figure 1). Similar to the observations
of Sang and Huang (2012), there is considerable dis-
crepancy between the estimated and true correlation
functions when the MPP prior is used. In contrast,
for the same choices of r as its parent MPP prior,
DISK’s estimate of the correlation function is much
closer to the truth and is insensitive to the choice
of k = 10, 20. DISK estimates are similar to those
obtained using Vecchia-type approximation, except
when the number of nearest neighbor is 30 and the
GPvecchia-based estimate of the correlation func-
tion has a significant positive bias.

The predictive performance of the representa-
tive distributed competitor DISK is little inferior
to that of NNGP. NNGP, MPP, and DISK have
close to nominal predictive coverage, but the PIs of
NNGP have smaller lengths for every choice of near-
est neighbor. The PI coverage values and lengths of
MPP and DISK are similar and stable for the dif-
ferent choices of r and k. PIs in GPvecchia have the
smallest length and their coverage values are smaller
than the nominal value for all the three choices of
nearest neighbor. Focusing on spatial surface inter-
polation, the estimation error of DISK is smaller
than that of MPP for both choices of r when k = 10
and is slightly larger when k = 20 and r = 400.
Similarly, MPP’s coverage of the spatial surface is
smaller than the nominal value when r = 200, but
DISK shows better coverage than its parent MPP
prior for both choices of k. Consequently, the lengths
of DISK’s credible intervals are slightly larger than
those obtained using its parent MPP prior.

In summary, the distributed methods are com-
petitive with state-of-the-art non-distributed meth-

ods NNGP and GPvecchhia in inference on the spa-
tial surface and predictions, respectively. laGP is
the only non-distributed competing method that
yields comprehensively better inferential and pre-
dictive performance than all distributed methods,
but it is not designed to provide estimates for the
σ2, φ, and τ2. LatticeKrig has a very similar point
estimation, but inferior uncertainty quantification
compared to GpGp and GPvecchia. INLA under-
performs in surface interpolation and prediction.
Supplementary material shows comparative perfor-
mance of distributed competitors and also ensures
that stochastic approximation does not impact the
mixing of the Markov chains on the subsets. The
model free nature of the distributed methods also al-
lows us to fit a nearest neighbor approach, including
NNGP, on each subset to improve inference and ex-
pedite computations by multiple folds. Finally, the
results show that the random partitioning scheme
yields little better point estimation with similar un-
certainty quantification compared to a more sophis-
ticated grid partitioning scheme.

4.3 Simulation 2: Spatial Linear Model Based
On Analytic Spatial Surface

Our second simulation generates data by setting
w(·) in (14) to be an analytic function. For any
s ∈ [−2, 2], define the function f0(s) = e−(s−1)2 +
e−0.8(s+1)2 − 0.05 sin{8(s + 0.1)} and set w(si) =
−f0(si1)f0(si2). Although the function w(·) simu-
lated in this way is theoretically infinitely smooth,
the response surface simulated from (14) exhibits
complex local behavior, which is challenging to
capture using spatial process-based models as we
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Table 3
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 1. The estimation and prediction
errors are defined in (15) and coverage and credible intervals are calculated pointwise for the locations in S∗. The entries in
the table are averaged over 10 simulation replications; ‘-’ indicates that the estimates are not provided by the software or the

competitor.

Est Err Pred Err 95% CI Coverage 95% CI Length
GP Y GP Y GP Y

INLA - 0.90 - 0.80 - 0.17
laGP 0.20 0.28 0.98 0.95 2.06 1.04

NNGP (m = 10) 0.38 0.47 0.93 0.95 1.39 1.84
NNGP (m = 20) 0.38 0.47 0.93 0.95 1.38 1.81
NNGP (m = 30) 0.38 0.47 0.92 0.95 1.37 1.82

LatticeKrig 0.38 0.47 - 0.73 - 1.08
GpGp - 0.47 - - - -

Vecchia (m = 10) - 0.47 - 0.87 - 1.43
Vecchia (m = 20) - 0.47 - 0.86 - 1.41
Vecchia (m = 30) - 0.47 - 0.86 - 1.41

MPP (r = 200) 0.73 0.59 0.93 0.95 3.05 3.02
MPP (r = 400) 0.43 0.47 0.96 0.95 2.76 2.67

Random Partitioning
DISK (r = 200, k = 10) 0.55 0.64 0.97 0.97 3.20 3.45
DISK (r = 400, k = 10) 0.42 0.51 0.97 0.97 2.88 3.15
DISK (r = 200, k = 20) 0.58 0.67 0.97 0.97 3.25 3.51
DISK (r = 400, k = 20) 0.46 0.55 0.97 0.97 2.98 3.25

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.75 0.80 0.97 0.97 3.45 3.45
DISK (r = 400, k = 10) 0.65 0.72 0.97 0.97 3.15 3.15
DISK (r = 200, k = 20) 0.76 0.82 0.97 0.97 3.51 3.51
DISK (r = 400, k = 20) 0.68 0.74 0.97 0.97 3.26 3.26

demonstrate later. We set β0 = 1, β1 = 0, and
τ2 = 0.01, use the same values of the spatial do-
main, k, and r as used in the previous simulation,
and replicate this simulation 10 times.

The parameter estimation results in this simula-
tion are similar to those in Simulation 1 with one
important exception in inference on β0 (Tables 4 and
5). All the methods except GpGp show excellent per-
formance in estimating τ2; however, NNGP, GPvec-
chia, and MPP estimate β0 with a significant bias.
95% credible intervals of β0 computed from DISK
has better coverage properties than those of NNGP.
Unlike our observation in the previous section, all
the methods underestimate τ2 slightly, and the 95%
credible intervals of NNGP, MPP prior, and DISK
fail to cover the true value. Similar to the previous
simulation results, DISK performs better than its
parent MPP prior for both choices of r.

The predictive and inferential performance of dis-
tributed methods in this simulation are also very
similar to those in Simulation 1. The prediction er-
ror, PI coverage, and PI length of all the methods
except GPvecchia are fairly similar and are close to
the nominal value. The PI length of GPvecchia is the
smallest, but its coverage values are critically low for

all choices of nearest neighbor; that is, GPvecchia
has a relatively inferior performance for estimating
spatial surfaces that are not simulated from a GP.
The PI coverage values of distributed method DISK
is a little higher than those of NNGP and MPP pri-
ors while the PI lengths of DISK are very close to
those of MPP and NNGP priors. A noticeable fea-
ture of our comparison is that the distributed meth-
ods improve the performance of their parent MPP
prior when r = 200. In this case, the CI coverage
values of distributed methods for both choices of
k are greater the nominal value, whereas the par-
ent MPP prior has fails to cover the spatial surface.
Intuitively, for most competitors in this simulation
the estimation of fixed and random effects are mixed
up, whereas the overall mean effect is estimated cor-
rectly by all competitors.

As in Simulation 1, INLA still underperforms
in surface interpolation and prediction, and laGP
maintains its superior predictive and inferential per-
formance, especially because it is tuned for inference
in such analytic surfaces with many local features
(Gramacy and Apley, 2015). LatticeKrig also offers
excellent performance and it outperforms the dis-
tributed methods in terms of surface estimation and
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Table 4
The errors in estimating the parameters β, τ2 in Simulation 2. The parameter estimates for the Bayesian methods β̂, τ̂2 are
defined as the posterior medians of their respective MCMC samples and β0 = 1 and τ20 = 0.01. The entries in the table are

averaged across 10 simulation replications.

‖β̂ − β0‖ |τ̂2 − τ20 |
INLA 0.18 -
LaGP - -

NNGP (m = 10) 0.84 0.03
NNGP (m = 20) 0.84 0.03
NNGP (m = 30) 0.84 0.03

LatticeKrig - 0.01
GpGp 0.31 0.39

Vecchia (m = 10) 0.85 0.01
Vecchia (m = 20) 0.85 0.01
Vecchia (m = 30) 0.85 0.01

MPP (r = 200) 0.75 0.05
MPP (r = 400) 0.48 0.04

Random Partitioning
DISK (r = 200, k = 10) 0.18 0.04
DISK (r = 400, k = 10) 0.13 0.04
DISK (r = 200, k = 20) 0.18 0.04
DISK (r = 400, k = 20) 0.13 0.04

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.03 0.09
DISK (r = 400, k = 10) 0.03 0.09
DISK (r = 200, k = 20) 0.02 0.09
DISK (r = 400, k = 20) 0.02 0.09

prediction. Simulation 2 shows that grid based parti-
tioning yields better point estimation for β0, but in-
ferior point estimation for τ2

0 (Table 4). This leads to
little better surface estimation for random partition-
ing scheme than grid-based partitioning scheme, but
practically indistinguishable predictive performance
as demonstrated in Table 6. We conclude that the
distributed methods are promising tools even when
the spatial surface is not simulated from a GP.

4.4 Real Data Analysis: Sea Surface
Temperature Data

A description of the evolution and dynamics of
the SST is a key component of the study of the
Earth’s climate. SST data (in centigrade) from ocean
samples have been collected by voluntary observing
ships, buoys, and military and scientific cruises for
decades. During the last 20 years or so, the SST
database has been complemented by regular streams
of remotely sensed observations from satellite orbit-
ing the earth. A careful quantification of variabil-
ity of SST data is important for climatological re-
search, which includes determining the formation of
sea breezes and sea fog and calibrating measure-
ments from weather satellites (Di Lorenzo et al.,
2008). A number of articles have appeared to ad-
dress this issue in recent years; see Berliner et al.

(2000), Lemos and Sansó (2009), Wikle and Holan
(2011), Hazra and Huser (2021).

We consider the problem of capturing the spa-
tial trend and characterizing the uncertainties in the
SST in the west coast of mainland U.S.A., Canada,
and Alaska between 40◦–65◦ north latitudes and
100◦–180◦ west longitudes. The data is obtained
from NODC World Ocean Database (https://www.
nodc.noaa.gov/OC5/WOD/pr_wod.html) and the
entire data corresponds to sea surface temperature
measured by remote sensing satellites on 16th Au-
gust 2016. All data locations are distinct and there
is no time replicate; therefore, we can practically
ignore the temporal variation of sea surface tem-
perature for our analysis. After screening the data
for quality control, we choose a random subset of
1, 000, 800 spatial observations over the selected do-
main. From these observations, we randomly select
106 observations as training data and the remaining
observations are used to compare the performance
of distributed and non-distributed competitors. We
replicate this setup ten times. The selected domain
is large enough to allow considerable spatial varia-
tion in SST from north to south and provides an
important first step in extending these models for
analyzing global-scale SST database.

The SST data in the selected domain shows a
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Table 5
The estimates of parameters β, σ2, φ, τ2 and their 95% marginal credible intervals (CIs) in Simulation 2. The parameter

estimates for the Bayesian methods β̂, σ̂2, φ̂, τ̂2 are defined as the posterior medians of their respective MCMC samples. The
parameter estimates and upper and lower quantiles of 95% CIs are averaged over 10 simulation replications; ‘-’ indicates

that the uncertainty estimates are not provided by the software or the competitor.

β σ2 φ τ2

Truth 1.00 - - 0.01
Parameter Estimates

INLA 0.8161 - - -
laGP - - - -

NNGP (m = 10) 0.2897 0.1933 0.1075 0.0091
NNGP (m = 20) 0.3002 0.1660 0.1059 0.0092
NNGP (m = 30) 0.2892 0.1557 0.1058 0.0093

LatticeKrig - - 0.0842 0.0099
GpGp 1.0346 0.0669 0.2643 0.1620

Vecchia (m = 10) 0.2792 0.4063 0.7796 0.0099
Vecchia (m = 20) 0.2792 0.2904 0.9479 0.0099
Vecchia (m = 30) 0.2792 0.2746 0.9587 0.0099

MPP (r = 200) 1.5634 0.1535 0.1185 0.0077
MPP (r = 400) 1.2333 0.1586 0.1200 0.0080

DISK (r = 200, k = 10) 1.0322 0.2133 0.1196 0.0087
DISK (r = 400, k = 10) 0.9830 0.2185 0.1402 0.0082
DISK (r = 200, k = 20) 1.0328 0.2133 0.1194 0.0087
DISK (r = 400, k = 20) 0.9822 0.2185 0.1402 0.0082

95% Credible Intervals
INLA (0.5320, 1.2108) - - -
laGP - - - -

NNGP (m = 10) (0.2678, 0.3143) (0.1568, 0.2223) (0.1010, 0.1339) (0.0088, 0.0094)
NNGP (m = 20) (0.2801, 0.3226) (0.1361, 0.1906) (0.1009, 0.1279) (0.0089, 0.0095)
NNGP (m = 30) (0.2660, 0.3103) (0.1293, 0.1794) (0.1009, 0.1284) (0.0090, 0.0095)

LatticeKrig - - - -
GpGp (0.7090, 1.3601) - - -

Vecchia (m = 10) - - - -
Vecchia (m = 20) - - - -
Vecchia (m = 30) - - - -

MPP (r = 200) (0.9931, 2.1464) (0.1307, 0.1760) (0.1104, 0.1327) (0.0073, 0.0081)
MPP (r = 400) (0.6130, 1.8412) (0.1269, 0.1876) (0.1096, 0.1480) (0.0076, 0.0084)

DISK (r = 200, k = 10) (0.7961, 1.2722) (0.1783, 0.2418) (0.1088, 0.1439) (0.0084, 0.0091)
DISK (r = 400, k = 10) (0.8180, 1.1582) (0.1743, 0.2589) (0.1192, 0.1773) (0.0079, 0.0086)
DISK (r = 200, k = 20) (0.7987, 1.2719) (0.1781, 0.2417) (0.1087, 0.1434) (0.0084, 0.0091)
DISK (r = 400, k = 20) (0.8172, 1.1568) (0.1721, 0.2588) (0.1190, 0.1806) (0.0079, 0.0086)

clear decreasing trend in SST with increasing lati-
tude (Figure 2). Based on this observation, we add
latitude as a linear predictor in the univariate spa-
tial regression model (14) to explain the long-range
directional variability in the SST. Similar to Simula-
tion 1 and 2, Section 4.4 in the supplementary mate-
rial shows that among distributed competitors DISK
shows identical or little better performance than
the other distributed approaches for the sea sur-
face data. Thus, we only present results from DISK
in this section due to space constraint considering
it as a representative distributed competitor. The
detailed performance comparison of all distributed
competitors in the real data can be found in Section
4.4 of the supplementary material. To fit distributed
competitors, we set k = 300, which results in sub-
sets of approximately 3300 locations. Since each sub-

set has larger sample size than the simulation stud-
ies, we increase the number of knots in each subset
for model fitting and use MPP priors with 400 and
600 knots, respectively, in each subset. All the non-
distributed competitors except laGP fail to produce
results due to numerical issues. Specifically, GPvec-
chia and GpGp fail after 8 and 21 iterations with an
error in vecchia Linv function, INLA fails with an
error in GMRFLib factorise sparse matrix TAUCS

function, spNNGP fails an error in the dpotrf func-
tion, and MPP fails from memory bottlenecks. Due
to the lack of ground truth for estimating w(s∗), we
compare the DISK and laGP in terms of their in-
ference on ΩΩΩ and prediction of y(s∗) for s∗ ∈ S∗ in
terms of MSPE and the length and coverage of 95%
posterior PIs.

DISK provides inference on the covariance func-
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Table 6
Inference on the values of spatial surface and response at the locations in S∗ in Simulation 2. The estimation and prediction
errors are defined in (15) and coverage and credible intervals are calculated pointwise for the locations in S∗. The entries in
the table are averaged over 10 simulation replications; ‘-’ indicates that the estimates are not provided by the software or the

competitor.

Est Err Pred Err 95% CI Coverage 95% CI Length
GP Y GP Y GP Y

INLA - 0.1552 - 0.0755 - 0.0268
laGP 0.0004 0.0103 1.0000 0.9456 0.3890 0.3902

NNGP (m = 10) 0.5058 0.0104 0.0000 0.9439 0.1496 0.3949
NNGP (m = 20) 0.4908 0.0103 0.0000 0.9456 0.1392 0.3938
NNGP (m = 30) 0.5103 0.0103 0.0000 0.9479 0.1388 0.3969

LatticeKrig 0.0002 0.0101 0.9867 0.9463 - 0.3901
GpGp - 0.0103 - - - -

Vecchia (m = 10) - 0.0106 - 0.3559 - 0.0951
Vecchia (m = 20) - 0.0103 - 0.2815 - 0.0728
Vecchia (m = 30) - 0.0102 - 0.2612 - 0.0674

MPP (r = 200) 0.3732 0.0105 0.0000 0.9498 0.4061 0.4061
MPP (r = 400) 0.0623 0.0102 0.2946 0.9477 0.3976 0.3976

Random Partitioning
DISK (r = 200, k = 10) 0.0017 0.1035 1.0000 0.9696 0.5388 0.4449
DISK (r = 400, k = 10) 0.0009 0.1026 1.0000 0.9724 0.4477 0.4578
DISK (r = 200, k = 20) 0.0015 0.1041 1.0000 0.9646 0.5211 0.4248
DISK (r = 400, k = 20) 0.0007 0.1031 1.0000 0.9672 0.4253 0.4359

Grid-Based Partitioning
DISK (r = 200, k = 10) 0.0394 0.1036 1.0000 0.9660 0.4452 0.4452
DISK (r = 400, k = 10) 0.0368 0.1028 1.0000 0.9594 0.4249 0.4249
DISK (r = 200, k = 20) 0.0304 0.1040 1.0000 0.9700 0.4590 0.4590
DISK (r = 400, k = 20) 0.0268 0.1030 1.0000 0.9642 0.4371 0.4371

tion, including credible intervals for σ2, φ, and τ2,
which are unavailable in laGP. The 50%, 2.5%, and
97.5% quantiles of the posterior distributions for ΩΩΩ,
w(s∗) and y(s∗) for every s∗ ∈ S∗ are used for esti-
mation and uncertainty quantification. We observe
significantly higher estimation of spatial variability
than non-spatial variability from DISK indicating lo-
cal spatial variation in SST. Importantly, the point
estimate of β1 is negative and its 95% CI does not
include zero, which confirms that SST decreases as
latitude increases. For every s∗ ∈ S∗, laGP’s and
DISK’s estimates of w(s∗) and y(s∗) agree closely
(Figures 2 and 3 and Table 7). The pointwise predic-
tive coverages of laGP and DISK match their nom-
inal levels; however, the 95% posterior PIs of DISK
are wider than those of laGP because DISK accounts
for uncertainty due to the error term and unknown
parameters (Figure 2 and Table 7). As a whole, SST
data analysis reinforces our findings on the impor-
tance of distributed Bayesian methods as computa-
tionally efficient and flexible tools for full Bayesian
inference.

5. DISCUSSION

This article presents a comparative study of
a class of distributed Bayesian and popular non-
distributed methods that are tuned for spatial GP
regression in massive data settings. As part of our
exposition, we have demonstrated through simulated
and real data analyses that distributed Bayesian
methods compare well with state-of-the-art non-
distributed methods. Motivated by the promising
empirical performance, we provide theoretical sup-
port for our numerical results. In particular, under
commonly assumed regularity conditions, we have
provided explicit upper bound on the number of sub-
sets k depending on the analytic properties of the
spatial surface so that the Bayes L2-risk of the com-
bined pseudo posterior for a subclass of distributed
methods is nearly minimax optimal. Additional em-
pirical and theoretical results in the supplementary
material shed light on the relative empirical perfor-
mances of different distributed Bayesian methods in
simulations and in the real data analyses.

The simplicity and generality of distributed
frameworks enable scaling of any spatial model. For
example, recent applications have confirmed that the
NNGP prior requires modifications if scalability is

imsart-sts ver. 2014/10/16 file: STS868.tex date: September 17, 2022



22 GUHANIYOGI, LI, SAVITSKY, SRIVASTAVA

Table 7
Parametric inference and prediction in SST data. DISK uses MPP-based modeling with r = 400, 600 on k = 300 subsets. For

parametric inference posterior medians are provided along with The 95% credible intervals (CIs) in the parentheses, where
available. Similarly mean squared prediction errors (MSPEs) along with length and coverage of 95% predictive intervals (PIs)

are presented, where available. The upper and lower quantiles of 95% CIs and PIs are averaged over 10 simulation
replications; ‘-’ indicates that the parameter estimate or prediction is not provided by the software or the competitor

β0 β1 σ2 φ τ2

Parameter Estimate
laGP 32.98 -0.37 - - -

DISK (r = 400) 32.33 -0.32 11.82 0.04 0.18
DISK (r = 600) 32.33 -0.32 11.85 0.04 0.18

95% Credible Interval
laGP - - - - -

DISK (r = 400) (31.72, 32.93) (-0.33, -0.31) (11.24, 12.43) (0.0373, 0.0412) (0.18, 0.19)
DISK (r = 600) (31.72, 32.93) (-0.33, -0.31) (11.25, 12.45) (0.0372, 0.0413) (0.18, 0.19)

Predictions
MSPE 95% PI 95% PI

Coverage Length
laGP 0.24 0.95 1.35

DISK (r = 400) 0.43 0.95 2.65
DISK (r = 600) 0.36 0.95 2.34

desired for even a few millions of locations (Fin-
ley et al., 2019). While computing subset posteri-
ors with MCMC algorithm, we have tacitly assumed
that the MCMC chain converges to the subset pos-
terior. While there is no theoretical result to sup-
port this, we find enough empirical evidence regard-
ing convergence of the MCMC chain for each subset
posterior. We plan to explore this issue theoretically
in a future work. In future, we also aim to scale ordi-
nary NNGP and other multiscale approaches to tens
of millions of locations with distributed frameworks.

We have focused on developing the distributed
framework for spatial modeling due to the moti-
vating applications from massive geostatistical data.
The distributed frameworks, however, are applicable
to any mixed effects model where the random effects
are assigned a GP prior, which includes Bayesian
nonparametric regression using GP prior. We plan
to explore more general applications in the future
with high dimensional covariates.
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Fig 2: Prediction of sea surface temperatures at the locations in S∗. Negative longitude means degree west
from Greenwich. DISK uses MPP-based modeling with r = 400, 600 on k = 300 subsets and laGP uses
the ‘nn’ method. The 2.5%, 50%, and 97.5% quantile surfaces, respectively, represent pointwise quantiles
of the posterior distribution for y(s∗) for every s∗ ∈ S∗.
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Fig 3: Interpolated spatial surface w at the locations in S∗. Negative longitude means degree west from
Greenwich. DISK uses MPP-based modeling with r = 400, 600 on k = 300 subsets and laGP uses the ‘nn’
method. The 2.5%, 50%, and 97.5% quantile surfaces, respectively, represent pointwise quantiles of the
posterior distribution for w(s∗) for every s∗ ∈ S∗.
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