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This supplementary material includes more simulation results and all technical proofs of the
theorems, lemmas, propositions, and corollaries in the main text. The contents are organized
as follows.

Section provides the proof of the monotonicity and uniform convergence of REML in
Lemma of the main text, as well as auxiliary results on RKHS theory and spectral analysis
of Matérn covariance functions. Section [S2| includes technical lemmas for the profile likelihood
function. Section [S3| presents the proof of Theorem [2.1] and Theorem [2.3] of the main text, as
well as the theory for d > 5. Section [54] presents the proof of Propositions and of the
main text. Section [S5] presents the proof of Theorem [2.6]and Corollary Section [S6) presents
the proof of all theorems in Section [3] of the main text, including Theorems and
Section [S7] includes the additional simulation results for the model with regression terms
for v =1/2,1/4,3/2 in both d = 1 and d = 2 cases. To keep consistency, every lemma in this
supplementary material is immediately followed by its proof.

We first define some universal notation that will used throughout the proofs. Let Rt =
(0,4+00) and Z* be the set of all positive integers. For any z = (z1,...,24)' € R? we let

lz]| = /3L 22, ||zl = 2%, ||, and [|#]|eo = max(z1, ..., z4). For two positive sequences
an and by, we use a, < b, and b, > a, to denote the relation lim,,_,~ a,/b, = 0, a,, < b, and
bn, = a, to denote the relation limsup,,_,. an/b, < 400, and a,, < b, to denote the relation
an = b, and a, = b,. For any integers k, m, we let I} be the k x k identity matrix, 0 and 1j be
the k-dimensional column vectors of all zeros and all ones, Oy, be the k X m zero matrix. For
any generic matrix A, cA denotes the matrix of A with all entries multiplied by the number ¢,
and |A| denotes the determinant of A. For a square matrix A, tr(A) denotes the trace of A. If
A is symmetric positive semidefinite, then Amin(A) and Amax(A) denote the smallest and largest
ecigenvalues of A, and A'/2 denotes a symmetric positive semidefinite square root of A. For
two symmetric positive semidefinite matrix A and B, we use A < B and B > A to denote the
relation that B — A is symmetric positive semidefinite, and use A < B and B > A to denote the
relation that B — A is symmetric positive definite. For any matrix A, |Alop = v/ Amax(ATA)
denotes the operator norm of A. Let AN (u,X) be the normal distribution with mean p and
covariance matrix Y. Sometimes to highlight the random variable Z ~ N (u, X)), we also write
the normal measure as N (dz|u, X). Pr(-) denotes the probability under true probability measure

P(8y,02,00)- The convergence in distribution is denoted by B, The acronym i.i.d. stands for
“independent and identically distributed”.

The following diagram shows the dependence relations among all assumptions, lemmas,
theorems, propositions and corollaries. An arrow from A to B in the diagram represents the
relation that A is used in the proof of B. The only exception is that many lemmas depend on

Assumption |(A.1)| and we do not plot all the dependence on |(A.1)[in the diagram.

*stalic@nus.edu.sg
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S1 Proof of Monotonicity and Uniform Convergence in Lemma
2.2

This section is organized as follows.

Subsection contains Lemmas and for showing the monotonicity of
REML 6,, in Part (i) of Lemma in the main text. The main proof is given in the strengthened
Lemma

Subsection [ST.2] contains Lemmas [5.6, [S.7.[S-8 [5.9] and [S.I0] for showing the uniform
convergence of REML 6, in Part (ii) of Lemma in the main text. We start with a decom-
position of the REML 6, in Lemma and then provide detailed concentration inequalities
for each terms in Lemmas [S.7, and The uniform convergence is proved in Lemma, [S.9}
Lemma includes the proof of asymptotic normality of the REML 0o in Theorem
well as a concentration error bound for 6,,, which will be used as a crucial result in the proof
of Theorem 2.1l in Section

Subsection introduces the RKHS theory with the technical Lemmas and
They are used for proving Lemma and also later for proving Theorem

Subsection includes the spectral analysis of Matérn covariance function, with the tech-
nical Lemmas [S.14], [S.15] [S.16] [S.17], [S.18, and [S.20] Lemma is used for proving the
concentration inequality in Lemma [S.9 We also cite the two-sided chi-square concentration
inequality from |Laurent and Massart, 2000] in Lemma and the Hanson-Wright inequality
from [Hsu et al, 2012] in Lemma [S.21]

We assume Assumptions throughout this section. We recall that the universal kriging
model in the main text implies that the underlying true model is Y,, = M, 5y + X,, with
X, ~ N(On,agRao), where R, is the n x n Matérn correlation matrix on S, = {s1,...,8,}
indexed by « with the (7, j)th entry Ry = Ko (si — s;), for i,j € {1,...,n}. The REML O
is defined as

oY) [R5 = R7IM, (M) R7\M,, + Qﬁ)‘anTR;l} Y,
O, = . (S.1)
n—p

We emphasize that all the proofs below apply to any symmetric positive semidefinite matrix
(1, including the special case {23 = 0,x;, corresponding to the noninformative improper prior

(B) x 1.
S1.1 Proof of Monotonicity in Part (i) of Lemma

Lemma S.1. Suppose that A1, Ao € R™ ™ are two symmetric positive definite matrices and
Ay — Ay is also positive (semi)definite. Then A7" — Ay' is symmetric positive (semi)definite.

Proof of Lemma[S.1. The lemma follows from Theorem 7.7.3 and Corollary 7.7.4 in [Horn and
Johnson, [1985]. O

Lemma S.2. Suppose that A1, As € R™ ™ are two symmetric positive definite matrices and
Ao — A is also positive definite. Then for any p X p symmetric positive semidefinite matriz €2
and any full-rank n X p matriz G, the matrix

AA = [Ag ~ AG(GT AG 4 Q)’lGTAg} - [A1 ~ A G(GTALG+ Q)*lGTAl] . (S2)

is symmetric positive semidefinite.



Proof of Lemma[S-3. For any t > 0, we let Q; = Q+¢I,. Then €, is symmetric positive definite
and hence invertible.
By the Sherman-Morrison-Woodbury formula, we have that for i = 1, 2,

—1
A — AGGTAG+Q)IGT A = (A;l + GQ;lc;T) . (S.3)

Since Ay — A1 is symmetric positive deﬁnite by Lemma we have that A1_1 —Ay lis symmetric
positive definite. But A7 — Ay = (A7 + GO 'GT) — (A1 + GO 'GT) and A7+ GG
for both i = 1,2 are also symmetric positive definite. Therefore, we apply Lemma [S.1] again to
A7+ GQPGT for i = 1,2 to conclude that

—1 —1
(47" + o) - (a7t +GorteT)
is a symmetric positive definite matrix. This together with (S.3) implies that
-1 -1
(47" +Go7'cT) - (art+cortaT)
- [Ag ~ AG(GT AG + Qt)*laTAQ} - [Al ~ AG(GTALG + Qt)*GTAl}
- [AQ — AyG(GTAG+ QL+ up)—laTAg} - [Al ~AGGTAG Q4 up)—laTAl} (S.4)

is symmetric positive definite. The eigenvalues of the last matrix in (S.4)) are continuous func-
tions of t. We take ¢ — 04 and conclude that all eigenvalues of the matrix

[Az ~ A,G(GT ANG Q)’lGTAg} - [Al ~ AG(GTAG + Q)*lGTAl}

are nonnegative. Therefore, this matrix is symmetric positive semidefinite. O

Lemma S.3. For alld € Z™, v € R, for any 0 < a1 < ag < 00, the two matrices a2”R L
a%”R;ll and a4 Ry, — alR,, are always positive definite as long as the n points {s1,...,s,} are
distinct in the domain S = [0,T)%.

Proof of Lemma[S.3. We first define the matrix Qf = a7 ? R, — a5 * Ra,. Then the entries of
Qf can be expressed in terms of a function Km :R? - R, with

Ol = Kqi(si — 85) = a7 Kayu (51 = 55) — 03 2 Kag(si — 55),

for i,j € {1,...,n}. The matrix Q' is positive definite if Kq; is a positive definite function.
From ([S.56]) in Section for the isotropic Matérn covariance function 62K, , defined in
of the main text, its spectral density is

I'(v+d/2) o2a®
I'(v) T2 (02 4 ||w||2) T2

foalw) =

for any w € R%. Therefore, we can compute the spectral density of I~(m:

—w 7
fai(w) = o) /Rde Kqi(z)dx
—alV —ZUJTI' —al —'LUJT$
= @n) {041 2 /]Rd e Koy o(2)dz — ay? /Rd e KOQ,Z,(:B)da:}




_D(w+d/2) {a e }
O R RN
I'(v+d/2) 1 1
mi/2L(v) { (2 + [lwl2) " (a3 + \Iw!P)”Wz}
> 0, for all w € R?, (S.5)

where the last step follows because 0 < a1 < . This has shown that IN(QT is indeed a positive
definite function. Therefore, Qf = a7?" R4, — a5 2’ Ry, is a positive definite matrix. Since
{s1,...,sn} are distinct, both R,, and R,, are positive definite matrices. By Lemma
3" Ry} — of” R, is a positive definite matrix.

Next, we define the matrix QF = aR4, — afR,,. Then the entries of QF can be expressed
in terms of a function kﬂi :R? = R, with

Of = Koi (25 — 25) = 0§ Koy o (2; — ) — afKay o (@ — ;)

fori,j € {1,...,n}. The matrix Qi is positive definite if IN(QI is a positive definite function. We
compute the spectral density of Kq;:

1 —w |z T
for(w) = 7(27‘()d /Rd e Kqi(x)dz
1 —’LOJTI —ZUJTI
= {ag /Rd e Koy p(x)de — af /Rd e Kal,y(a;)dx}

(v+d/2) {a2- 2v . 2 }

_ T(v+d/2) { 1 - 1 }
/2T (v) (1+042_2Hw\|2)y+d/2 (1 +a1—2”wH2)V+d/2
> 0, for all w € RY, (S.6)

where the last step follows because 0 < a1 < . This has shown that [N(Qi is indeed a positive
definite function. Therefore, O = aR,, — afR,, is a positive definite matrix. O]

We restate and strengthen the monotonicity in Part (i) of Lemma in the main text as
the following lemma.

Lemma S.4 (Monotonicity of 6, in Lemma in the Main Text). Both 0, defined in (S.1)

and 9 deﬁned in are non-decreasing functions in o for all « € RY, all d € ZT, all
v € RT, for any symmetric positive semidefinite matriz Qg.

Proof of Lemma[S.j. We first show that ga is a non-decreasing function in «. We notice that
M, is full-rank by Assumption and (g is positive semidefinite. Consider two generic
values 0 < a1 < . By Lemma we have that a3 ”R_ — a%”R_ is positive definite.
Therefore, in Lemma, we can set A; = al”Rall, Ag = oaQVRazl, G =M, Q= al”Qg,
then the conclusion of Lemma [S.2] implies that the matrix AA should be pos1t1ve semidefinite,
which implies that
Onen © AA = [a§”R;21 — 0¥ R M, (02 M R M, + a2Q5)” 1MJ(a§”R;21)]

— [0 B3} = o R M (03 M) G M + a370) T M (03 R |
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() B _ _ —1 _
< [agVRa; — 0¥ R M, (a2 M RIM,, + a2°Q5) ™ M) (og”Ra,j)}

— [odRat - a¥ Ry My (08 M REIM, + a2 0) M (3 RS

1
= a3 [Ra = RaI My (M R M, + 9) M R

—a’ [Ra! = B! Mo (M RGI M, + Q) MRS (5.7)

1

where the < relation in the inequalities (i) and (ii) of means that if A < B for two positive
semidefinite matrices A, B, then B — A is positive semidefinite; (i) follows from Lemma
and (ii) follows from replacing a%”Qg inside the first inverse by a3” (13. This implies that the
right-hand side of is positive semidefinite. Therefore, together with the form of ga in ,
we have proved that if 0 < a3 < ag, then

0 < a3, [Bo) = Ro!Mu (M R M, + Q) MRS Yo/ (n = )
—ad, Rl = Bo M (M R My + Q) ' M RZY | Yo/ (n = p)

= 00{2 - 9041’ (88)

SO gal < §a2, i.e., ga is a non-decreasing function in .

For 6\ = o X, Ry X, /(n—p) from (S.10), since a3”R;) — 3" R, ! is positive definite by
Lemma we have that for any X, € R", 5&12) > 5&11), ie., 5&1) is a non-decreasing function in
Q. ]

S1.2 Proof of Uniform Convergence in Part (ii) of Lemma

We prove Part (ii) of Lemma in this subsection. We first restate the important quantities
of k,R, a,,, @p as in of the main text. We also define the constant 7 € (0,1/2):

B %mm { (2d + 0.94)(%.3+ 3d—0.9) 4(3v +d)’ 0'01}’ Q= n%,

7= g min { 2d 0.94)(%3 54+ 0.9) 2(2y1+ Ik 0'01}’ G =n""

T= %min {4d3—9188 — (4v + 5d + 0.45)R, % — 5.95%, % — (2v + d)R, % — bR,
T 3‘?88 — (40 + 1.5d — 0.45)~, g — 4.055, % —2(3v + d)k, % - 5'€}- (S.9)

Lemma S.5. For alld € Z*,v € R*,a € R, the REML 0, in (S-1) can be decomposed into
three terms:

o= 00~ + 9,

50) _ X R'X,,
« n — p ?
_ _ -1 _
32 _ o® X, Ry* M, (M,) R;1M,) ™ M, R' X,
(0% b

n—p



oY R\ M, [(MJR;an)*l — (MR M, + Qﬁ)*l} MTR:'Y,
60 = - : (S.10)

Furthermore,
0<6@ <o g6 >

Proof of Lemma[S.5. The universal kriging model implies that Y,, = M, 8o+ X,, with X,, ~
N(0p,02Rq,). Therefore, the REML 6, defined in (S.1]) can be rewritten as

02,1 [Rgt = Ry My (M RSM, + Q) MRS Y,

0, =
n—p
02 (Mo + Xa) T | Rt = Ry My (M) B3 M) ™ MRS (Moo + Xo)
_ —
oY RZ\M, [(1\4,;r1~z;11\4n)‘1 — (M R;'M, + Qﬁ)‘l} MTR-'Y,
+ —
@ X, R7IX, o®X]R;'M, (M R;'M,)” M R;'X,
n—p n—7p
N oY, R My [ (M RZMy) ™ = (M R M, + Q)™ | MTRY,
n—p
=0 — 6 + 6%, (S.11)

where in (i), we use the relation [R;

I R-'M, (MJR;an)*lMJRgl} My, = Opp.
Since for any « > 0,
R;' — Ry'M, (M, R;'M,) ™ M R
_ R;l/? |:In . R(;I/?Mn (MJR;IMn)_lMJRgl/Q} R;1/2,

where I, — R;1/2Mn(MJR;an)_lMJR;UZ is an idempotent matrix, it follows that 0 <
3 <.

Since 25 is symmetric positive semidefinite, by Lemma (MnTR;an)f1 — (M, R* M, +
Qg)fl is positive semidefinite. Therefore, 5&3) > 0 for any o > 0. O

Lemma S.6. For 5((12) defined in (S.10), for d € Z* and v € R, there exists a large integer
N that only depends on v,d,T, 0y, ag, such that for all n > N{ and a,,, @y, defined in (S.9)),

Pr (\/55&20) > Gon_T/16) < exp(—161log® n), (S.12)
Pr (ﬁagg > eon*7/16) < exp(—161log?n), (S.13)
Pr (\/55553 > Ogn~" /16) < exp(—16log? n). (S.14)

Proof of Lemma[S.6. We first prove (S.14) below. Then the proofs of (S.12)) and ([S.13)) follow

similarly.

For \/ﬁggn), we notice that by Lemma [S.15] \; (@) > (ao/@,)? ¢ for alli =1,...,n, so
)\max (Ail) < (an/a0)2V+d-

QAn




Using Lemma we have a2 Rgi = GOUanAganTn. For any o > 0, we define Z,(a) =
(Zin(@)y. s Zon(a)) = UL X,. Since X,, ~ N(0,02Ra,), by Lemma we have Z,, () ~
N0y, I,) for any o > 0. We can then write X,, = Ua_nTZn (@vn). Since Qg is positive semidefinite,

we can upper bound ggn) by
®) — (n—p) '@ X, R M, (M, RZIM,, + Q)™ M, RZX,
(n—p) ‘a2 X, RZIM, (M, RZ'M,) " M, R;' X,

<
= (n—p)"'00X, (@ nRéi Mo [M,] (@Y RGY) My M, (@3 Ry)) X
20,
< =2 Zn(@n) " A Ug, M (M, Uz, A Ug, M)~ "M, U, A 2, (@)
2
= 9°Z (@) AG, He, A5 2, (@), (S.15)
where Hy,, = :I/QUTM (MTUanAalUTM) MTUanAa/ is an n X n idempotent matrix

of rank p (i.e. Hgn = H ), since rank(M,,) = p < n as n — oo. Hence tr(Hg,) = p.

We are going to apply the Hanson-Wright inequality in Lemma to , with Z =
Zn(@y,), z = 16log’*n, and ¥ = Agi/QHanAg/Q. For this purpose, we need to find upper
bounds for tr(%), tr(X2), and |||ep in Lemma We first notice that for two generic n x n
symmetric positive semidefinite matrices A and B,

tr(BA) = tr(AB) = tr(BY?ABY?) < tr{ B> (Amax(A) ) B/} < Apax(A) tr(B).

Therefore, using /\max(Ag:) < (@n/ap)® T4, we apply the inequality above repeatedly to obtain
that

tr (A2 Ha, Agt?) = tr (AZM His,) < Amax (AZ)) b (Hs, ) < p(@a/a0)**,

Qn*ty Qn Qn

tr[( ASV2 A—1/2> } = tr (A3 Ha A Hz, ) < Amax (AZY) - tr (Ha, AZ Hz,)

IN

ax (A )tr(AJm) Amax (AZD)? - tr (HZ,)
max (AZ1) - tr () = /ao>2<2”+d>,

1/2
{Am { :1/ 2HanA; V2 H

tr{ —1/2H%A;j/2) H < /P(@n/ag)® . (S.16)

Am
A

:1/2Hoan_1/2

<

Therefore, for z = 16log?n and ¥ = :1/2H A2 , given the choice of 7 in (S.9), 7 <

an oy,

1/2 — (2v + d)R, so we have that for all suﬂimently large n,
) + 2y/tr(X2)z + 2||X||op2
P(@n /)T + 8/p(@n/cg)® T ogn + 324/p(@n/cg)* T log? n
< 42pnP+ R 1002 n < /277 /128, (S.17)

We now apply Lemma|S.21to (S.15) with Z = Z,(@,), z = 16log®n, and ¥ = AJ/QHOMA;U2
to obtain that for all sufficiently large n,

()

< Pr (Z (@) AL P He AP 2, (a) > 312711/“)

On* oy,

8



< Pr(Zn(@) A5 B, A5 Za(@n) > (D) + 2/60(22) + 2] Sllop2)
< exp(—2) = exp(—161og®n). (S.18)

This proves (S.14)).

The proof of (S.12) is similar to the proof of (S.14) above. (S.15|) still holds by replacing
all @, with ag. We notice that Ay, = I, Amax(A,,) = 1, so the three upper bounds in
(S.16) become p, p, \/p, respectively. With @, replaced by ag, the left-hand side ([S.17) is upper
bounded by p+8,/plog n+32\/ﬁlog2 n, which is smaller than n1/2_7/32 for all sufficiently large
n. Hence (S.18]) holds with @,, replaced by «g. This proves (S.12]).

The proof of (S.13]) is also similar to the proof of (S.14)) above. (S.15)) still holds by replacing
all @,, with a,,. We notice that from [S.15] A; ,(c,,) > 1 foralli =1,...,n, 50 Amax (A;i) <1.
As aresult, the three upper bounds in (S.16|) become p, p, /p, respectively. With @, replaced by
a,,, the left-hand side (S.17)) is upper bounded by p + 8,/plogn + 32\/;Blog2 n, which is smaller

than n'/2-7/32 for all sufficiently large n. Hence (S.18) holds with @, replaced by a,,. This
proves (S.13)). O

Lemma S.7. For 5&3) defined in (S.10)), for d € Z* and v € R, there exists a large integer N,
that only depends on v,d, T, By, 6y, a9 and the W;+d/2(8) norms of my(-),...,my(-), such that
for all n > N} and «,,, @p, T defined in (S.9),

Pr <\/ﬁ§§;} > 90n_7/16) < exp(—16log?n), (S.19)
Pr (\/ﬁ@) > eon*7/16) < exp(—161log?n), (S.20)
Pr (\/ﬁggg > Gon_T/16) < exp(—161log® n). (S.21)

Proof of Lemma[S.7. We first prove (S.21]). The proofs of (S.19)) and (S.20]) follow similarly.
In the definition of 9%3") in (S.10)), we directly drop the positive semidefinite matrix (MnT jo M,+

Q)" in the middle bracket, and obtain that

a2y, REMy [ (M REIM,) ™ = (M REIM, +05) 7| M RZY,

5
n n — p
OV R My (M) Ry M) "M RY,
< —
— - — -1 —
_ @ (Mafio + Xn) "R My (M, Ry 'M,) ™ My} R (Moo + Xi) (8.22)
n—p ‘ ‘

For two vectors u,v € R™ and an n x n symmetric positive definite matrix >, we have the
following inequality:

(u+v)"S(u+v)=u"Su+v Sv+2u" Lo
=u' Su+v S+ 2320 (2 2) < u'Su+ v Sv4u Su+ v So
=2 (uTZu + UTEU) . (S.23)
We apply (S.23]) to the right-hand side of (S.22)), with v = M,,fy, v = X,,, and
= Rz'M, (M,] RZ'M,) ' M;T R:" to obtain that
— - _ —1 _
3O < a2 (MnfBo + Xn) "R My (M, RZ M) ™ M, RS (M By + Xon)

Qn — n*p




2f2u _
T [55 M, Rz M, By + X, RS M, (M RZ M) ™ MTRZLX, |

—
290

IN

oy -1 202V _ _ - _
BO T M [(60/a% )R, ] Mo + - _pX;RaiMn (M R:'M,) ' M RZIX,,
(S.24)

We bound the two terms in (S.24). Because my,...,m, € Wy+d/2(8) by Assumption |(A.1)
Lemma, implies that mq,...,m, € HUSKao 1 the RKHS of Matérn kernel UQKOC,,, for any

(02,a) € R* x R*. Let mj,, = (mj(s1),...,mj(s,))" € R" for j = 1,...,p. Then we can apply

Lemma Lemma and Lemma to the first term in (S.24) and obtain that

26 v -1

50 M [(60/aT) R, ] Mafy

29 oy -1
< n_ . BO ﬂO )\max (]\4T [(00/ 2 )R ] Mn)

29 o -1
< 0|0l -t (M) [(60/a2) R, ) ™! M)

— P

260 2 - 2 p_ 17t
Zn_pHﬁoH Z [(00/@ ) Ra, ] myn
< =l Z N E—
Y g u"‘-ia )2y 2
>~ n—p 0 ~ n 0 J1H 2K a0,
< P @ a0 -l 00)?3 "y 2
>~ 0 Qp /O 2\00, &0 pr J W12/+d/2(8)
> agy+d 200, &0 - J W;+d/2(8) 0 >~ Vo ) .

for all sufficiently large n, where (i) follows by applying Lemma toeachm;(-),...,m,(-) with

the covariance kernel (6p/a2") Kz, ,, (ii) follows from Lemma [S.13] (iii) follows from Lemma
S.11) with the constant ca(0p, ap) defined in Lemma and (iv) follows from the definition of
7in (S.9) and 7 < 1/2 — (2v + d)%.

For the second term in , we notice that the exact term

=2v
In_ X TR-M, (M, R;'M,) ' M RZ'X,
n—p n

shows up as an upper bound for ggn) in (S.15) in the proof of Lemma Therefore, we
can directly make use of the inequalities in (S.15]), (S.17]), and (S.18) to conclude that for all

sufficiently large n,

o0
Pr( o X, RZIM, (MR M,) " MRS X, > eon—T—1/2/32)

S <400 — TA71/2HOC”A71/ZZ (an) > 00n71/2/32>
- Pr( an) AL He A 2, (@) > nl/%/m)
< exp(—16log?n). (S.26)

10



Therefore, we can combine ([S.24)), (S.25]), and (S.26) together to conclude that for all suffi-
ciently large n,
Pr <\/ﬁ§§’j > Hon_T/16>

20 -
< Pr <¢ﬁ- B0 M [0/ )R, ] Mafio > QOH_T/32>

202V _
+Pr (ﬁ- Zn X TR M, (M, R='M,) ' M RZ'X,, > aonT/32>
n — p n n n
< 0+ exp(—161log®n) = exp(—16log® n). (S.27)

This proves (S.21)).
For the proofs of (S.19) and (S.20)), we only need to modify the proof above for (S.21)) for a
looser upper bound. In particular, the relation (S.24)) still holds with @, replaced by both ag

and q,,; in the inequality , (@n/0g)? T in step (ii) will be replaced by 1 if @, is replaced
by both ag and ¢,,, such that n(2r+dF—1 before the last step of is replaced by the smaller
n~!, which means that remains true if o, is replaced by both ag and «a,,. Given Lemma
still holds true if @, is replaced by both ag and q,,. Therefore, holds for both
oo and a,,. This completes the proof. O

Lemma S.8. For 5@ defined in (S.1)), for d € {1,2,3} and v € RT, there exists a large integer
Ny that only depends on v,d, T, By, 0,0 and the Wg+d/2(8) norms of mi(+),...,my(-), such
that for all n > N3,

Pr <0 <Vn (%n _ 5a0) < Z%‘T) >1 - 2exp(—4log?n), (S.28)
Pr <0 <Vn (ggn) - galo)) < 040n_T> > 1 — exp(—4log®n), (S.29)
P n n 00 —T 2

r(0<+vn <9a0 — 0%) s 5 >1—2exp(—4log®n), (5.30)
Pr <0 <Vn (5&10) - ggn)) < ion_7> > 1 — exp(—4log®n), (S.31)

where T, v, @y, are as defined the same as in (S.9)).

Proof of Lemma[S-8 Proof of (S.28) and (S.29) (for the case of @, = n®).

Since & > 0, @, = n® > ag for all sufficiently large n. By Lemma we have gan > §a0
and an) > 6&10). By the decomposition of 6, in (S.10) of Lemmaﬁ and the fact that 0 < 9&2) <
5&1), 5&3) > 0, we can rewrite the difference inside the probability in (S.28) as

0 S gan - 9040
=0 — g 4 %) _g(h) 4 g2 _ 3
<0 -0 4 %) 1 2. (S.32)

According to the definition of A\, (a) (k=1,...,n) in (S.54)), we have that for any o > 0,

o™ Ry = 000 2Ry = U AU, o' Ry = 00 Ry = 00ULU, (S.33)

11



where A, = diag{\r,(a) : £ =1,...,n}. Similar to the proof of Lemma for any o > 0,
we define Z,(a) = (Z1n(a),. ., Zon(@)T = Ul X,,. Since X,, ~ N(0,,02Rq,), we have
Zn(a) ~ N (O, I,) for any a > 0.

Then it follows that for n sufficiently large,

Vi (09 - 80) = X (@R - o R X,

_ Vo X Us, (A3! - 1) UL X,

n—p
- 7\1/730; Z P\i:"(an)_l - 1‘ Zi,n(an)Z- (8.34)
i=1

vn/(n —p) < 2n~Y2 for all large n. Now we apply Lemma and Lemma to (S.34),
with z = 4log?n, Z; = Zin(0), wi = wi(ay) = ]Ai,n(an)—l — 1‘ /v/n, to obtain that

0
Pr <\/ﬁ > an_T)

1 & o _
< Pr (% Zz; ‘)\i,n(an) t— 1’ Zi,n(an)2

7 30
0@ 6(()10)

n

> [[w(@n) [l + 4l|w(@n)| log n + 8]|w(@n) o log? n)
< exp(—4log®n). (S.35)

This proves ([S.29).
We combine ([S.32), (S.35) with (S.21) from Lemma and (S.12) from Lemma to

obtain that for all sufficiently large n,

Pr <ﬁ (e — ) > 90w>

2

o~ o~ 0
< Pr (ﬁ (egf — ) P 4 953’0)) > 2%-7)

g _ 51 b O g2 o % -
< > — A
_Pr<\/ﬁ(0an 0a0>> " >+Pr<\/ﬁﬁan>16n +Pr \/ﬁaa0>16n
< exp(—4log?n) + 2exp(—161log?n) < 2exp(—4log?n), (S.36)

which proves (S.28).

Proof of (S.30) and (S.31)) (for the case of a,, = n).

K

The proof for the case of o, = n’ is similar to the previous case of @, = n". First by
Lemma|S.4} we have 0, < 0, and Hgn) < 9&10) for large n. By the decomposition of 6, in (S.10))

of Lemma and the fact that 0 < 5&2) < 5&1), 5&3) > 0, we can rewrite the difference inside
the probability in (S.30]) as

0 < 0o — 0o,
i iy n(3 (1 n(2 n(3
=00) — 02 +0%) — 1) + 6 — o)
< 05) — 0% + 653 + 00 (S.37)

Using Lemma :S.19 and Lemma with z = 4log’n, Z; = Zinla,), wi = wi(a,) =
|>\i,n(gn)_1 — 1| /4/n, we have that
0
> 20nT>

Pr (ﬁ o -7
12




1 &
< Pr (% Zz; ‘)\i,n(gn)il - 1‘ Zi,n(an)2

> [lw(ap)ll1 + 4llw(a,)| logn + 8]w(ay, )|l log? n)
< exp(—4log®n). (S.38)

This proves (S.31]).
We then combine (S.37)), (S.38) with (S.19) from Lemma|S.7|and (S.13]) from Lemma|S.6|to

obtain that for all sufficiently large n,

Pr<\/ﬁ<§a0—§ )>% ‘T>

<P ( 0 + 9&? + 5&1) > OnT)
~ 6
2 0 —r
<P < 1 n )—i—Pr(\fﬁaO 16 >+Pr(\/ﬁeg)>16n >
< exp(—4log? n)—|—2exp( 1610g n) < 2exp(—4log?n), (S.39)

which proves (S.30). O

We restate and strengthen the uniform convergence in Part (ii) of Lemma in the main
text as the following lemma. The inequality in Part (ii) of Lemma is implied by (|S.40))
below.

Lemma S.9 (Uniform Convergence of Ha in Lemma in the Main Text). Suppose that
d e {1,2,3}. For 0, defined in and N3 defined in Lemma , for all n > N3,

Pr (
QE[Qn 75”]

Pr ( sup v/ |0 — 5&10)

a€la,,,an)

0
Oay| < 20nT> > 1 —4exp(—4log®n), (S.40)

0
< an7> > 1 — 2exp(—4log®n), (S.41)

where T, v, @y, are as defined the same as in (S.9)).

Proof of Lemmal[S.9 From Lemma we have that 6, and 9" are both non-decreasing in a.
Therefore,

sup |0, — gao = gao gﬂn’
a€la,,,a0)

sup ‘5@ - 5040 = gan - 50&07
a€lag,an]

5D [T = G| = 1005 (T — G, — )
ae[ﬁ’rﬁan}

sup (G0 — 70| = wmax (310 — 59,52 — 1) .
a€la,,,an) - "

We can then combine ([S.28)) and (S.30) from Lemma to obtain that for all n > Nj,

Pr < Onp| > 90n_7>
a€la,,,an) 2
s o _ =z o _
= Pr ﬂ(@ao —9%> > oak T or \/;1(9% 79a0> > oik T
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- (\/ﬁ (5% - ggn) _ o _T> 4 Pr (\f (éan _ §a0) > 9%—7>

< 46—410g2 n
The inequality - ) follows similarly using a union bound from and (| in Lemma
5.8 0

In the next lemma, we prove the asymptotic normality of ga for a fixed a > 0 in Theorem
in the main text. We also bound the tail probability of ‘«9% — 90‘.

Lemma S.10. For d € Z" and v € RT, there exists a large integer N} that only depends on
v,d, T, By, 0y, g and the W12’+d/2(8) norms of mi(+),...,my(-), such that for all n > N},

Pr <\/ﬁ

5% — 90’ < 56 log n) >1-— Sexp(—éllog2 n). (S.42)
Furthermore, for d € {1,2,3} and v € RT, for any fived o > 0, as n — oo,
Vi (82— 00) BN (0,263) (3.43)

Proof of Lemma[S10. Let W, = (Wi, ..o, Woy)! = ao_lR;(}an ~ N(0p, I,). Using the
decomposition in ([S.10|), we have

Vi (8o = 00) = v/ (8L = 60) — VB2 + v/nl)
Since 5&0) = o’ X, Ry} X, /(n — p) = 0W,] Wy, /(n — p), by the central limit theorem for x3
random variables, we have that as n — oo,

Vi (08— 00) = MO@"TW"

-Pp

- 1) B N(0,262). (S.44)

The first inequality in Lemma with Z; = Wi, w; = 1 fori =1,...,n and z = 4log®n
implies that for all sufficiently large n,

~ 4.5(n —p)logn
1 _ - w.T _
Pr (\/ﬁ <9a0 9()) > 4.50) log n) Pr < AW >n—p+ NG
< Pr (WHT W, > n + 4v/nlogn + 8log? n) < exp(—4log?n). (S.45)

The second inequality in Lemma with Z; = Wi, w; =1fori=1,...,nand 2 = 4log2n
implies that for all sufficiently large n,

. 4.5(n—p)l
Pr (\/ﬁ (egg - 90) < —4.50p log n) ~ Pr <WnTWn <n_p- 30 \/? Og")

< Pr (WJ W, < n — 4v/nlog n) < exp(—4log?n). (S.46)

We combine (S.45)), (S.46)), (S.12)) from Lemma and (S.19) from Lemma to obtain that
for all sufficiently large n,

Pr (\/ﬁ

n 5&10) - 90‘ > 4.50q log n) + Pr (\/ﬁég? > %log n) + Pr <\/775&?;) > %Olog n>

gao — 90‘ > 50, log n)

§Pr(

14



< Pr (\/ﬁ (5((110) — 90) > 4.50p log n) + Pr <\/ﬁ (5&10) — 00> < —4.56q log n)
+Pr (\/55,320) > Ogn~" /16) +Pr (ﬁagg > Ogn~" /16)
< 2exp(—4log?n) + 2exp(—161log® n) < 3exp(—4log®n),

which has proved .

Now for , we notice that from Lemma and from Lemma imply
that both \/550?0 and \/ﬁg(%) converge to zero in P Bo’ggyao)—probability as n — oo. Therefore,
we combine this with and apply the Slutsky’s theorem to obtain that as n — oo,

NG (@10 . 90) — Vn (5}1{} - 90) — Vb + nf® B N(0,262). (S.47)

Since o > 0 is fixed, it will be eventually covered by the interval [a,,, @] as n — oo. Therefore,
by Lemma for any fixed o > 0, \/ﬁ‘ﬁa - 9a0‘ — 01in Pg, 52 o,)-Probability as n — co. We
combine this with (S.47)) and apply the Slutsky’s theorem again to conclude that as n — oo,

NG (% - 90) —Vn (9% - 90) +n (% - 5,10) B A(0,262). (S.48)

This completes the proof. ]

S1.3 Auxiliary RKHS Theory

In this subsection, we present some auxiliary technical results on the reproducing kernel
Hilbert space (RKHS) of Matérn kernels that are used to handle the regression functions
my,...,m,. We define some concepts for a generic positive definite covariance function K(-,-)
on a fixed domain S = [0,7T]¢. Let La(S) be the space of square integrable functions on S,
and C(S) be the space of continuous functions on S. We assume that K(-,-) is symmetric with
K(s,t) = K(t,s) for any s,t € S. The reproducing kernel Hilbert space (RKHS) associated
with K, denoted by Hx (suppressing its dependence on the domain S), can be defined to be
the space endowed with an inner product (-,-)3, such that: (i) K(s,-) € Hx for each s € S;
(ii) reproducing property: for any f € Hg, (f, K(-,s))n, = f(s) for all s € S (see Definition
6.1 of [Rasmussen and Williams, 2006]).

For shift-invariant kernels (including the isotropic Matérn in this paper), an alternative and
equivalent definition of the RKHS norm is based on the spectral density of the kernel. Details
can be found in [Wendland, 2005]. Let 2 = /—1 and F[f](w) = (2r)~%2 fsf(x)e_”ﬁwdw for
any w € Re. If K(-,) is a shift-invariant kernel on S, with ®(s —s') = K(s, s') for any 5,5’ € S,
then Theorem 10.12 of [Wendland) 2005] has shown that the RKHS associated with K can be

written as
M = { € Lo(S)NC(S) : 3g € Lo(RY) N C(RY such that g = 7,

i — g [ | Fll@)
1B = Nl = 2m) 2 [ 18w < oo, (5.49)

where g‘ g Is the restriction of g to the domain S. For ease of notation, we suppress the
dependence on S in the notation Hp.
In particular, for the isotropic Matérn covariance function 02K, , as defined in of the

main text, we know that F[o2K,,,](w) = Qd/Ql;((I:)rd/z) (a2+ﬁ:(\)\f;+d/2' So the RKHS associated

with JZK(W can be written as

Hoor,, = {f € L2(S) N C(S) : 3g € La(RY) NC(RY) such that g|g = f,
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I'(v)
247d/2T (v 4 d /2) 022V

£ 13 ey, , = /Rd(QQ o llw]2)7 42| Flg)w)Pdw < 00}, (8.50)

Lemma S.11. ([Wendland, 2005] Corollary 10.48) For any fized (0%,a) € R* x RY, d € Z*,

v+d/2 (8)

veRT, Ho2k,, is norm equivalent to the Sobolev space W, . In other words, there exist

constants 0 < ¢1(o, ) < a0, ) < 00, such that for any f € H,2p

a,v’?

(0, ) flywearas) < Wl < ea(o0)f lyprars )

Lemma S.12. Suppose that f € Hx for a covariance function K(-,-) defined on the fized do-
main S = [0,T]%. LetS, = {s1,...,sn} be a set of distinct points in S, f,, = (f(s1),..., f(sa))7,
and K(Sy,Sy) be the matriz with (i,j)-entry equal to K(s;,s;), for i,j = 1,...,n. Then
fo K (Sn,8n) " i < N1 f 13-

Proof of Lemma[S512 We denote the (i, j)-entry of the matrix K (Sy, Sy) " by { K(Sy, Sn)_l}ij,
for i,j7 = 1,...,n. Let K(Sn,s) = (K(s1,5),...,K(sp,s))" for any s € S. Because the

function K(s,-) € Hi for any s € S by the definition of RKHS, we have that the function
I K(Sy,Sn) ' K(Sn,-) € Hg. For any a = (ay,...,a,)" € R, the RKHS norm of the

function a' K(S,,-) is
HaTK(S H ZZa,a] (8i,55)-

=1 j=1

Therefore, the RKHS norm of f,] K(Sy,Sn) 'K (Sy,-) is

PRS0 80) K (S|

Hi

:ZZZZ{K(S"’S")_l}ij{K(SmS l}kl f(sk)K(s5,51)

i=1 j=1 k=1 I=1

ZZ {ZZ{K(S”’Sn)l}ij{K(SmS 1}kl SJ’SI}
i=1 k=1

7j=11=1
OS5 F ) F (1) {K (S Su) ™ = ST K (800 S0) ™ (8.51)
=1 k=1

where the equality (i) follows from the expression of (i, k)-entry in the matrix multiplication
K(8,,8,) ' K(S,,S80)K(Sn, Sn) ™t
On the other hand, using the RKHS inner product and the fact that f € Hg, we have

P K (S Sn) = 303" Fsi) f(s) { K (Sn Sn) 4

=1 k=1
- <zzf(sk>{K<sn,sn>—1}mK<si,->, f(-)>
i=1 k=1 Hi
DD Fe){K(Sn,Sn) K (s )|l I Flla
i=1 k=1 Hy,
= || K (Sn 8BS, Il
(2) \/f;HK(SmSn)_lfn : Hf”?‘l}(v (852)
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where the inequality (i) follows from (f1, fo)u, < [[fillrx |l f2ll2y for any fi, fo € Hi, and the
equality (ii) follows from ([S.51]). Therefore, we conclude from the left-hand side and the right-
hand side of (S52) that /) K(Sn,Sn) " fn < Il o8 fi K(SnSn) ™ i < 1f113,.- O

Lemma S.13. For any f € WVer/Q(S), anyd € ZT, v € RT, a € RT,

o v+d/2
ufuy(%/azymwSmax{(ao) 24Ul (5.53)

Proof of Lemma[S.13 From (S.50), one can see that for any function f € Wy+d/ %(8), for any
a >0,

2
HfHH(eo/a?Vma,y
_ I'(v)
—247d/2T (v 4 d/2)6

/Rd(a2 + Hw||2)1/+d/2| .F[f](w)|2dw

a2 + [lwl2) " I(v) ) )2 )
—— : 2| F d
o (Grior) T e I

2 2 V+d/2
o? + ]
sup ( 12,

IA

< 5 ,
wekd \ 0 + [|w]? (60/03") Kag v
o\ 2w td/2)
< max — 1\, 2
B <0<0> ’ HfHHff%Kaou
Hence the conclusion follows. .

S1.4 Auxiliary Results on Spectral Analysis of Matérn Covariance Functions

In this subsection, we present a series of technical lemmas on the spectral analysis of Matérn
covariance functions. For a detailed background theory on the equivalence of Gaussian measures
on Hilbert spaces, we refer the interested readers to Chapter III of |Ibragimov and Rozanov,
1978] and Chapter 4 of [Stein, [1999]. Our Lemmas [S.16] [S.17, and [S.18 below will use similar
techniques in Section 4 of [Wang and Loh} |2011]. The key difference is that the theory of [Wang
and Lohl 2011] only works for a fized and known value of range parameter o. As a result,
all those probabilistic error bounds in [Wang and Loh, 2011] do not depend on « and cannot
be directly applied to varying values of o drawn from a posterior distribution. In contrast,
our lemmas below will make all error bounds explicitly dependent on the value of «. This is
made possible by using our new results on Matérn spectral densities in Lemma which
is not shown in [Wang and Loh, 2011]. These lemmas will be used for showing the uniform
convergence of !0 ao‘ over a large range of values of a as proved in Lemma which is
fundamental for deriving the limiting joint posterior distribution of (6, «).

We first consider the case when o2a?” = 6y = 03a2”. If d € {1,2,3}, then the two Gaussian
measures GP(0, 02K, ) and GP(0,03K,, ) are equlvalent (|[Zhang, 2004]). For a generic a > 0,
we consider the two Matérn covariance matrices 03 Ra, and 02 R,. We have the following lemma.

Lemma S.14. For any pair (o,a) € RT x RY that satisfies 0?a? = 0y = ot for alld € ZF
and v € RT, there exists an n x n invertible matriz U, that depends on o, o, ao, v, such that

02Ul RoyUs = I,  0°U) RyU, = diag{\p (@) 1k =1,...,n} = Ay, (S.54)
where I, is the n x n identity matriz, and {\,(a),k = 1,...,n} are the positive diagonal

entries of the diagonal matriz A,.
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Proof of Lemma[S.14. The existence of such an invertible U, is guaranteed by Theorem 7.6.4
and Corollary 7.6.5 on page 465-466 of [Horn and Johnson, |1985]. For completeness, we directly
prove the existence of such an invertible matrix in the following general claim.

Claim: Suppose that A and B are two generic n X n symmetric positive definite matrices. Then
there always exists an invertible matrix U, such that

UTAU = I,,, UTBU = A, (S.55)

where I, is the n x n identity matrix and A is an n x n diagonal matrix whose diagonal entries
are all positive.

Proof of the Claim: Since B is symmetric positive definite, let B = LLT be the Cholesky
decomposition of B, where L is an n x n lower triangular matrix with all positive diagonal
entries and L is invertible. Let G = L~YAL~". Then obviously G is also a symmetric positive
definite matrix with GT = G. Suppose that G has the spectral decomposition G = PDP~!
where P is an n x n orthogonal matrix (P~! = PT) and D is a n x n diagonal matrix whose
diagonal entries are all eigenvalues of G' and they are all positive. Then PTGP = D. We let
U= L~ TPD~1/2. Tt follows that

UTAU = D~Y2PTLtAL-TPD~Y/2

=D ?pTGpPDp~'/2 = D '2pD 1 =,
U'BU = D Y2p L 'BL-TPD~Y/?

— D V2PT L' LL L TPDY? = D712PTpD=12 = D1,

)

We set A = D~! which is an n x n diagonal matrix whose diagonal entries are all positive. This
proves the claim.

Based on the claim, if we set A = 02R,, and B = 02R,, then we can find an invertible
matrix U such that holds. Because 020 = 6y = 0302, and o2, ap, v are assumed to
be fixed numbers, we can see that U only changes with o and we can write it as U,. Similarly,
we write A, to highlight its dependence on a. Correspondingly, we have 02U, Ry, U, = I, and
02U} RyU, = diag{\pn(a) : k=1,...,n} = A,. This proves Lemma O

Let 1+ = v/—1. For w € R?, let

_ 1 —w'z 2
foalw) = W /Rd e 0°Kqp(x)dx
2 2v
_ L(v+d/2) oo ’ (S.56)
I'(v) md/2 (a2 + |]wH2)V+d/2

be the isotropic spectral density of the Gaussian process with isotropic Matérn covariance
function defined in of the main text. For any given pair (o, ), let HwHia =V, ) f,0 =

Jga [¥(w)]? fr,a(w)dw be the norm of a generic function ¢ in the Hilbert space La(fs,q), with

inner product (y1,12)y, , = f]Rd 1 ()2 (W) fo,a(w)dw for any 11,12 € La(fo.a)-

According to the spectral analysis in Section 4 of [Wang and Lohl 2011], using the same
notation as theirs, for any given pair (o,«) that satisfies 02a?” = 6y = 03a2”, there exist

orthonormal basis functions 1, ..., ¥, € La(fs.a) such that for any j, k € {1,...,n},
(Vs Vk) fog o = L(J = k), (Vi k) f0.0 = Njin(@) L(j = k), (S.57)

where Z(+) is the indicator function.
We prove the following lemma for the spectral density f, . and the sequence {A\,(a),k =
1,...,n}.
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Lemma S.15. Suppose that d € Z and v € RT. For any pair (0,a) € RT x RT that satisfies

02a® =0y = o}ad’, and for allw € R?, the following relations hold:

2v+d 2u+d
min{(ao) ,1}§f‘7’a(w)§max{(%> ,1},
a Joo.00 (w) «
Fra(w) (2v + d) max(ad, a?) max (ag”+d_2, a2”+d*2>

B ‘ = a2u+d—2(a2 + ||WH2) )

Akn(@) < max { (a0)2V+d : 1} ,

Ak (@) > min { (%>2y+d , 1} ,

forallk=1,... n.
Proof of Lemma[S.15. For (S.58), when o2a? = 6, we have that

fralw) <a3+ ||wu2>”“’/2

a? + [l

Joo,00(W) -

|

(S.58)

(.59)
(S.60)

(S.61)

If o > «, then this ratio is an increasing function in ||w||, which implies that f;(w)/ fo.a0 (W) <
1 (attained when |lw|| — 400), and fy.0(w)/ fog.ao(w) > (ao/a)?**? (attained when [jw| — 0).

The case of a < ag follows similarly. (S.58)) summarizes the two cases.
For (S.59)), if v 4+ d/2 > 1, then using a first order Taylor expansion, we have that

fra@) || (@ + eI’
foo,a0(w) (a2 + ||w||2)" 42
o vt d/2)(e3 + ||w||?)*+4/271 20 - o — g
(@2 + [Jw]2)" /2
(a0, @) + [lw]*\ 7271
a? 4 [jw||? a? 4 [Jw||?
(2v + d) max(ad, &%) max <ag”+d_2, a2”+d_2)

a2u+d72(a2 + HWHZ) ’

)V+d/2 ‘

< (2v + d) max(a3, o?) (max

<

where o7 is a value between o and «.
If v +d/2 < 1, then we have that

fralw) ‘ (03 + [lw]®
foo,a0(W) (a2 + ||w||2) 42
o d/2)(a} + [lw||?)" T2 204 - |a — ag
(@2 + fJw[2)* T2

a?+ HwHQ 1—(v+d/2) 1
< (2v + d) max(a3, a?) <> .
’ af + [|w]? a? + [|w]?

)1/+d/2 ‘

1—=(v+d/2)
In (S.63), if @ > a1 > ap, then the function <a2+Hw”2>

af+w]?
M 1*(V+d/2) < g 2_(2l/+d) B (ﬂ)?l/—‘rd—Q < <@>2y+d_2
af + [|w]? “\a \a “\a '
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1—(v+d/2
o? tlw]* (a2 1s increasing i 2
g in [lw[%, so

If a < a1 < ap, then the function (oszerH2

<1.

<a2 + ||w”2>1—(1/+d/2)

af + [|w?

Considering both cases, then from (S.59)), we can derive that

1—(v4d/2)

Jo,a(w) ‘ 2 2 o? + ||"‘)H2 1
" — 1| < 2v+d)max(af, o) | —1—5 —_—
fo0,00(w) 0 af + [[w]? a? + [|lwl|?

o) ooy
max< [ — ,
a? + [|w|? o

(2v + d) max(ad, a?) max (a%l’+d72, a2”+d_2)
: F AT+ []F)
(S.62) for v +d/2 > 1 and (S.64) for v+ d/2 < 1 lead to (S.59).

For (S.60) and (S.61)), we use the relation Ay, () = [ga [Vk(w)]? fog.a0(w) - f({gz((]“(g) dw for
k=1,...,n and the bounds in (S.58|) to obtain that

M) < sup FED [ )P ) < max { (22)7 1

w€eRd fffo,oéo (w)

(S.64)

Aen(cr) > inf fo.a(w) ./Rd ywk(w)pfmao(w)dwzmin{(‘ff”dJ}. (S.65)

weR? foq,a0 (w)

O
In the rest of this subsection, we focus exclusively on the case of d € {1,2,3}. For any a > 0,

define m, = |a +d/2] + 1. For w € R?, let

v+d/2
co(@) = flal| 2 T I(Jlz]) < 1), (S.66)

&o(w) = /Rd e*”Twco(a:)da:, (S.67)

and & (w) = &(w)?™ for all w € RL If ¢ = ¢o * ... * ¢ is the 2m,-fold convolution of the
function ¢o with itself, then &;(w) is the Fourier transform of ¢;(z). Then Lemma 6 in [Wang

and Loh, [2011] has proved that for d = 1,2,3, {(w) < ku—%‘if as ||w|| — oo, which means
that & (w) < |lw||~@+9/2). This implies that if 02a?” = 6, then f, o(w)/&1(w) < 1 as |Jw|| — oco.
In fact, using Lemma 6 in [Wang and Loh, [2011], we can prove the following lower and upper
bound for his ratio.

Lemma S.16. Suppose that d € {1,2,3} and v € R™. For any pair (0,a) € RT x R, the
following holds for all w € R%:

2 2 . g\ 2v+d foalw) 5 o, g\ 2v+d
— 1, < == < - 1 )
ceo”a™ min {( 5 ) ; } S ap S Ceo“ o™’ max < o ) 10 (S.68)

where ¢¢ and ¢¢ are two positive constants that only depend on d, v and ayp.

Proof of Lemma[5.16. Lemma 6 in [Wang and Loh| 2011] has proved that for d = 1,2, 3, §y(w) <

_ytd/2 C . "
|w[|” 2" as [|w|| — oo. This implies that there exists two positive absolute constants c¢, and
C¢o that only depend on d, v and ag, such that

2 2 v+d/2 B
ceo < (ag + [|wl]?) #mv &o(w) < o,
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for all w € R?. According to the definition of &;(w), this implies that

v+d/2 .
b < (g +llwl®) 2 &w) <2, (S.69)

for all w € R%. Now, from the definition of f,, in (S.56), we have that

fO’,OL(w) . 0'2(12”(0[% + HwH2)V+d/2 1 (S 70)
GW)? qd/2 (2 + w|2) T2 (g + [lw]|?) 26 (w)? '
Since
-td 2 2\ v+d/2 2u-+d
min { (22)"7 1) < @ + [lwf* <max{ (2)" 1
« a? + ||w||? «
we have from ([S.69) and (S.70) that
fga(w) o202 ) {(a0>2u+d }
: > min< ( — , 10,
&(w)? — ﬂd/Qégg"‘V a
242V 2u+d
) < e { ()71}
§i(w)? T w2y o
Finally, we let ¢ =1/ (n/ 25516””) and ¢¢ = 1/ (7% 2g2‘6n") and the conclusion follows. O
Now to proceed, we define the function
n(w) = F22@) —Jononl) g g (8.71)

1(w)? ’

Note that 1 depends on (o, «), but we suppress the dependence for the ease of notation.

For any given pair (0, a) € RT x RT, from ([S.59) in Lemma and ([S.68) in Lemma

we have that
L. nn<w>2dw—/w{f”’““é;w@?“(“)}}w
- LA () v

u fo'moco(w))Q ) fa,a(w)
S&@(&wv Ad

2
—1| dw

fUO,ao (w)

(2v + d) max(ad, a?) max (ag”+d_2, a2"+d_2>
_212
< gl -
&0 Jra

a2u+d72(a2 + ||CU||2)

2

dw

6%03(21/ + d)? max(ag, at) max {a§(2y+d_2), a2(2”+d*2)}

22v+d—2)

e’} T‘d_l

where the last integral is finite because @ > 0 and 4 — (d — 1) > 2 for d = 1,2,3. Therefore,
we have shown that n(w) is a square-integrable function of w. From the theory of Fourier
transforms of Lo (R?), there exists a square-integrable function g : R — R such that

/]Rd {n(w) — gk(w)}2 dw — 0, as k — oo,
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where

i) = [ e @) Lol < B (573)

Furthermore, for any fixed number ¢ > 0 and 0 < b < min(4 — d,2), we define the sequence
£n = n~ Y/ Aat2d40) el that £, — 0 as n — co. We define the following functions similar to
Equations (35) and (36) in [Wang and Loh, 2011]. Let

_ a+d/2_d

éo(z) = ||z 2 Izl <1), VzeR,

and ¢1(x) = co * ... * co(x) be the 2m,-fold convolution of ¢y with itself. Let Cy = f]Rd ¢1(z)dx.
Define the following functions

Then

&o(w) :/ e_”Twéo(x)d:L", Vw € RY,
R4

f1(w) = /]R ) e~ W (z)dr = &(w)2™e, VYw e RY,

1 _ (= d
qn(x) = mCl <n> y v.f(: & R s

1 n
Gn(w) = / efl“’T‘”qn(:c)dx =_— [ eeEnwleg (x)dx = SIG w)) Yw e R4 (S.74)
Rd Cq R4

Gy

using Lemma 6 of [Wang and Loh, 2011], there exists a finite positive constant Cy that

only depends on d, v, a,b, such that

Cy

Yw € R, S.75
At enfwlyeraz € (8.75)

|Gn(w)] <

Lemma S.17. Suppose that d € {1,2,3} and v € RT. Let a > 0 and 0 < b < min(4 — d,2)
be fized constants. Let e, = n~/(4a+2d4b) - Eor the g function in (S.73) and the q, function in
(S.74), there ezists a positive constant Cy 4 that depends only on d,v, ag,a,b, such that

, 12 max(ag,a‘l)max{aggwdﬁ),a?@”*d_?)} b2
{/Rd g * g(z) — g(@)] dx} < Cyq aAv+3d/2—b/2 Sn o

where gy * 9(x) = [pa @n(y)g(z — y)dy for any z € RY.
Proof of Lemma[S.17. We have the following derivation:

[ nwa) - et
:/Rd

() - L 172

< (/mx—w—gu»dﬂ 4n(y)dy
lyll<2mqen L/RE
1

(1) - 1/2
- /H <2 @i fo € 1>"<w>’2dw] an(y)dy
Yl|S2MaEn L

- 1/2
(@) 1 —szy . . fU,Oé(w) B fO’O,Oéo (w) . fO’O@O (w) ? d
B /HySQmQEn (277)d /leRd (e 1) f<707040 (w) &1 (w)2 .

97 1/2

/ {9(z —y) — g(x) an(y)dy
Iyl <2maen
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- qn(y)dy

1 foo,ao (w)
= eni2 2R T aw)e

/nyszmm [/md S {fizz(fzﬁ) - 1}

(i) 1 foo.an(w )
< 0,0
= M2 oo &)

21—b/2 / / ||w b
lyl|<2maen |J/RY

(U) 21_b/2 fUO aO( )

5 71/2
dw] an(y)dy

9 1/2
dw] 912 gu(y)dy

Ui 1)

< sup
(27T)d/2 weRd ( )
5 5 wtd—2 ovtd-—2) ) > v
(21/ + d) HlaX(Oéo,Oé )max (aOV , O v+d— ) ||w”b
d
/Rd o 2v+d—2 (a2 + ||w]?)? “

g ey
Y||S2Maén
(vi) 21—b/200 9 o 2w+d
S W‘C&O’Q max{(a> ,1}
(2v + d) max(ad, a?) max <a3u+d—27 a2”+d_2>
) a2vt+d—2

00 7,‘b—i—d—l 1/2
ob/2+d/2=2 / — dr . (2ma€n)b/2
o (1+72)?

00 Tb-l—d—l 1/2
< -
= [/0 § +r2>2d”°]

2¢¢00(2v + d)mg/2 max(ad, o) max ( 0(21/+d 2). 2(2u+d—2)>

(2m)4/2q4v+3d/2-b/2

- eh/2, (S.76)

In the derivations above: (i) follows from the Minkowski’s integral inequality; (ii) follows from
the Plancherel’s theorem; (iii) is based on the definition of 7(w) in (S.71)); (iv) uses the fact that
le® — 1|2 = 4sin?(a/2) < 227|a|® for any @ € R and all 0 < b < 2; (v) follows from in
Lemma (vi) follows from in Lemma Since b < 4 — d, the integral in the last

display exists and hence the conclusion follows. ]

Lemma S.18. Suppose that d € {1,2,3} and v € RY. Let (0,a) € RT x Rt satisfy 02a? =
Oy = odad”. Let a>0and0 < b < min(4 — d,2) be fired constants. Let g, = n~1/(4at+2d+b),

For the A\ p(o) in - ), for any o > 0, there exist positive constants 017 C’%, C’i that depend
only on d, v, T g, a,b, such that

n

> Pnle) =1

k=1
3(2v+d—2 _ b/2
max(a§, a®) max {ao( vHd=2) 32+ 2)} et

T
=G oAv+3d/2—b/2
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3(2v+d—2 _
2w+d imax(ozg,ozﬁ) max {ao( vt ),a3(21’+d 2)}

[max (g, a)] e

+C o (S.77)

a2(3v+d)

Proof of Lemma[S.18. For any z,y € S, let b(z,y) = E( o) {X (%)X (¥)} — E(sg,a0){X ()X (v)}.
Then using the definition of ¢o(x) in (S.66]) and ¢;(x) with the support of ¢; in [—2m,,, 2m, ]9,
the derivation after Equation (39) of [Wang and Loh, 2011] has shown that for s,t € S,

b(z,y) = (2m)? /]Rd /]Rd g(s —t)er(z — s)er(y — t)dsdt

— (271r) /R2d e%(wa—yTy)n:; (w ;— v) 9 (w 2— v) 1()61 (0)duodo

1 / (WTz—0T (T T
+ eUw z—v y)g w)&1 (v / e t(w u—v ' u)
(27T)d R2d 1w ) [ulloo <2my +2mgo +T

X Qn(w)n(v)du}dvdw, (S.78)

QL

where 0¥ : R? — C is the Fourier transform of g — ¢, * g for g defined in (S.73)) and ¢, in defined

in (S.74), such that [pq |77 (W)]* dw = Jga lan * g(x) — g(z)|? dzz which can be upper bounded by
Lemma Y(w) in (S.78)) is defined in the same way as Equation (23) of [Wang and Lokl
2011):

1

Iw) = od

[T (e < dm, 4 27)dt, forallw e B (8.79)
Rd

Lemma 3 of [Wang and Loh, [2011] has proved that [, ¥(w)?dw < oo and its value only depends
ond,v,T.
Note that by the definition of covariance function,

b(z,y) = Boa) {X (@)X (1)} = Bogan {X ()X ()}
N /R I L fo (@) = Fopao (@)} dw. (S.80)

Hence, for any pair (o, @) that satisfies 020 = 6y = 023, for the {1 : k = 1...,n} functions

in (S.57)), we have that for k =1,...,n,

(@) = 1= (Vs V) o0 — (W V) g g = Gl Gl (S.81)

where

L= g [y o0 (5 ) 0 (M5 ) )6 o)

)¢ Jiaa
1 1

= 5 [ r(@)r(0)§1 (W) (0)Gn(w)n(v)

ki (2m)% Jpod

x l/n emt@luvTu) gy b qudo. (S.82)
[[u]| oo <2my+2me+T

We follow the derivations on page 258-259 of [Wang and Loh, 2011]. By the Bessel’s inequality,
we have that

n
>k
k=1

N
3

oy L [ ot (U5 )0 (5 &(w)&(v)dwdv}Q

k=1
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b <w;”>ﬁ<w;”> pn e

—2d 2d weRdfGa }/W dU/ |7 (w |dw

(42) max a/a0)2y+d 1
< 2dﬂ-2d : { u } » 19(v)]* dv

Q§90

dwdv

2(2v+d—2 _
max(ag,a4)max{%( vhd=2) 2(2u+d 2)}

adv+3d/2—b/2

2
X Cg’q

6(2v-+d—2 _
max(oz(lf,ozm)max{ao( vHd=2) \6(v+d 2)}

T
< (@) 2(4v+3d/2-b/2)

Ens (S.83)

where (i) follows from the Cauchy-Schwarz inequality; (ii) follows from Lemma and Lemma
S.17, and Cir is a positive constant that depends only on d,v, T, ag, a, b.
For (,ﬁ »» We apply the Bessel’s inequality to obtain that

> et
k=1
< 1 3
- (27r)d kz

=1 /”u”OO <2my+2ma+T

/Rd e Uy (w)E (w)@n(w)dw’

X du

[ e e
R4

1 n
< 5077 ),
()% il oo <2m, +2ma s kzzl {

—wluT 51(11)
/Rde wk(v)fa’a(v)n(v)fgva(v)dv

[\V]

/R ) = Ty () €1(w) G (@) fra(w)dw

fa,a (W)
2
}du

) oL
< sup | (w) ] dw
(2m)% )| oo <2m0+2m +T {weRd Joalw
s ot [ [t
R4

weRd 51 (w)2 m
max {(a/ag)? %, 1}
9590

_l’_

[\~

-1

(4)
<

Sy " U +dma + 27)*- {

02
/ do
i (1+en lel)z‘”d

1
+ - (dmy, + dmg + 2T)% - Ty max {(ao/a)2”+d, 1}

X

2(2m)d
2
(2v + d) max(ad, a?) max (agV+d—27 a2”+d—2> )
d
L. ot (@ + ]2
(4my, + 4mg + 2T)¢ C? [max(ag, a)]? ¢ /oo pd—1 .
' 5 adr
< 2(27r)d {0 a2u+d %aer o (1 +T)2a+d
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(4my, + 4m, + 2T)%ec0, (2v + d)? max(a§, a®) max {a0(2u+d 2) 3(2u+d—2)}

2(2m)¢ ' 3Crd)—1
00 d—1
aa [ [T T
X o {/0 (1+T2)2dr}
1 [max(ao a)]2”+d iIIlELX(Oég, 046) max {ag(2V+d_2)’ a3(2u+d—2)}
=d glatd T o2(3v+d) ; (S.84)

where (i) follows from Lemma Lemma and the inequality (S.75)), and C% ,C% are

positive constants that depend only on d,v, T, ag, a, b.

Finally, we combine (S.83) and (S.84) to conclude that for any pair (o, «) that satisfies
2 2v 2 2v
o“a” =ty = ojag’,

n 2 g
+|da]) < <nz\c,1,n 2) +3|dh
k=1 k=1 k=1

3(2v+d—2 _ b/2
Tmax(ag,aG) max{ao( vHd=2) o3(2v+d 2)} \/ﬁen/

5 Wenl) 112 32 (I,
k=1

<G oA r3d/2—b/2
3(2v+d—2 -
+ [max(ap, )24 imax(ag, af) max {O‘O( ) @3vtd 2)}
T gaotd ¢ 2(3v+d)

Lemma S.19. ([Laurent and Massart, 2000] Lemma 1) Let Z1, . .., Z, be i.i.d. N(0,1) random
variables. Let {w; : i = 1...,n} be nonnegative constants. Let ||w|locc = maxj<i<pw;, ||wl1 =
S wi, and ||w]]? = Y% w2. Then for any positive z > 0,

n
Pr {sz‘Z? > [lwlly + 2fjwll vz + 2HwHooZ} <e
i=1

n
Pr {Zwizf < ol — 2uw||¢2} <e.
=1

Lemma S.20. Suppose that d € {1,2,3} and v € RY. For any a > 0, we define w;(a) =
|)\i,n(a)_1 - 1| /v fori=1,....n and w(a) = (wi(a),...,wp(a))", where \;,(a)’s are as
defined in and . Then there exists a large integer Nt that only depends on v, d, T, ap,
such that for all n > N{, for 1, q,, &, defined in ,

sup {Hw )1+ 4]|w(a)| logn + 8Hw(a)|]oolog2n} <n77/8,

a€la,,,an

where |lw(a)|1 = S0 fwi(@)], [w(@)] = (X0 wi(@)?)'2, and [w(a) | = maxi<i<, [wi(a)]-

Proof of Lemma[S.20. For abbreviation, we use I' to denote the right-hand side of Equation
[S.77 in Lemma From Lemma and Lemma we can obtain that

Jw(@l = sz - 1nZ\Ai,n<a>—1—1\

Z’)\ 1< {max(ay, @)
Z" — v+d
vnag”*

}2u+d

fm1n1< - x T, (S.85)
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@) = Zw E3 i) -1
= Z’)‘zn _1|2
n {m1n1<1<n i n(

2
1 2(2v+d)
; <Z Ain(r) — 1') Fuk x T, (S-86)
i=1 n

= - 2(2v+d
n{minj<j<p Ain(a O‘o( v+d)

We can see the upper bound in (S.86)) is exactly the square of the upper bound in (S.85)).

[w(@)]loo = max w; = —= max |, ( a)_l—l‘

1<i<n V/n 1<i<n
1 maxj<j<n Ain(e) +1
< max |A; 1 < ==
- \/ﬁmin1§i§n )\i,n( ) 1<1<Xn ‘ ! n( ) ’ - \/ﬁminlgign )\i,n (a)
max { (ap/a)? T4, 1} +1  [{max(ag, @)} + o] {max(ag, a) }2* 4
~ Vnmin{(ap/a)?td 1} — Vol Ta2vtd
2(2v+d)
< 2{max (v, )} (S.87)
\/ﬁa%VerOZQVer

Since &, = n~1/(4a+2d+b) i Lemma and Lemma we have /nel/? = 1/e2atd =
n(2atd)/(4a+2d+b)  Tet » = 4]log?n in Lemma In the following, we analyze the necessary
condition for a,, and @, such that ||w(a)||1+4|w(a)||vz+8]|lw(a)||soz = o(1) for any « € [, Ty
as n — 0o. We consider two situations according to the value of «, each of which has two further
sub-cases according to the sign of 2v + d — 2.

(1) When « € [ag, @] and possibly o — 400 as n — oo:
In this case, in the upper bounds of (S.85|) and ([S.86)), since a« > ag, we have that

max{ag(2V+d_2), a3Prtd=2)y < 3(2v+d=2) if 9 + d — 2 > 0, and that
max{ag(2V+d_2),a3(2”+d_2)} < 1if -1 < 2v+d—-2 < 0. We discuss the two sub-cases

respectively:

(1)-(i) When 2v+d — 2 > 0, we have max{ag(QVer_z), a3Prtd=2)y < 3(v+d=2)  Using (S.85),
(S.86]), and (S.87)), we can see that (neglecting all multiplicative constants by using the order
relation <):

lw(e)llh + 2[w(a) vz + 2[w(a) ]|z

v 2
. a2 +d log n 21/+3d/2+b/2 fgb/Q 2V+d N ad N O{21/—i-d log n
— \/,ﬁ 62a+d \/ﬁ

—2v+d —2v+d 2
@ 7logn oy 13d/24b/2, (20+d)/(a+2d+b) 4 log”n

=<

- " vn

- qived/24b/2 )00 a2vtdlog? p g

= T b/(Bat4dt2b) T N (5.88)

In order to make the last upper bound o(1), given that @, > 1, we further need

b 2 1 2
@y, < nat2di0)ErF5d10) (Jogn)~ 80+5d+0 | @, < n2@v+d) (logn) ™ 2v+d, (S.89)

which holds as long as
__ b 1
(a+2d+b0)Sv+5d+0)° " 20w +d)

(S.90)
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(1)-(ii) When —1 < 2v +d — 2 < 0, we have max{ag(QVer_z), a3v+d=2)1 < 1. Note that this
special case can only happen when d =1 and v € (0,1/2). Using (S.85)), (S.86)), and (S.87)), we
can see that:

lw(@)l + 2[lw(@) vz + 2[w(a) oz

24d
a”’ " logn { 0~ 4v=3d/24b/2)) atd)/(dat2d+b) | 2v-+dp (2atd)/(da+2d+b)

vn

2v+d 2
6—6v—2d Qo log=n
+ _— S.91
« } + 7n ( )

Therefore,

lw(e)llr + 2llw(e) vz + 2|lw(e) [0z

—2v+d —2v+d
L G logn {ag—z;u—3d/2+b/2n(2a+d)/(4a+2d+b) + o Zd} 4 O log”n

o \/ﬁ \/ﬁ
aﬁﬂy*d/ﬂbﬂ logn a8 *~dlogn a?frd log?n 3.99
nb/(8a+4d+2b) \/ﬁ \/ﬁ ’ ( ’ )
In order to make the last upper bound o(1), given that @, > 1 and d = 1, we need
ap < nm(logn)_m,
__1 1 1 2
@, < n26-9) (logn) 5%, @, <n2@+) (logn) . (S.93)

Since d = 1 and v € (0,1/2) in this case, 11 —4v +b > 0 and 10 > 2(5 — 4v) > 2(2v + 1). We
need that
b 1

R R<—. .94
<(4a+2+b)(11—4u+b)’ AT (5:94)

(2) When « € [a,,, ap] and possibly o — 0+ as n — oo:

In this case, in the upper bounds of (S.85)) and (S.86), since o < avg, we have that
max{ag(2V+d_2), a3 +d=2)y < 1if 2u + d — 2 > 0, and that
max{ag(2y+d_2), aB3@vHd=2)y < 032 Hd=2) §f 1 < 2y 4 d —2 < 0. We discuss the two sub-cases

respectively:

2)-(1 When 2v4+d— 2 > 0, we have max{« 3(2v+d— 2) a3(2r+d—2) =< 1 and max(ag, ) = 1.
0

Using ([S.85) -7 and ( -, we can see that in th1s case:
lw(e)[l1 + 2llw(a)[[Vz + 2[lw(a)]coz
b/2 2
{logn( Vney 1 1 >+logn

- \/ﬁ av+3d/2—b/2 €%a+d + 2(3v+d) \fa2y+d
logn logn log”n
< I CUBS. (5.95)
g;1L1/+3d/27b/2nm \/ﬁ v \/>O£
In order to make the last upper bound o(1), given that a,, < 1, we need that
b 2
Qa, - 1, (4a+2d+b)(Bv+3d—b) (log n) 8vF3d—b
_ 1 1 _ 1 2
a, = n G (logn)2Guid o = n 22T (logn)2vFd. (S.96)
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Since 4(3v + d) > 2(2v + d), we only need

b |
dat2d+0)Br+3d—b) S ABurd)

K< ( (S.97)

(2)-(ii) When —1 < 2v +d — 2 < 0, we have max{ag(2V+d_2),a3(2”+d_2)} < a®@+d=2) and
max(ap, o) < a3@v+d=2) " Note that this special case can only happen when d = 1 and v €

(0,1/2). Using (S.85)), (S.86)), and (S.87)), we can see that in this case:

lw(e)llr + 2llw(e) vz + 2|lw(e) [0z

~ logn \/552/2 1 1 log® n
= n \avzsaen T zerd T gema | T m e
logn logn log?n

+ .
— oy _ ___ b 6—d 2u+d
Q?z 2v—3d/2 b/2n2(4a+2d+b) \/ﬁgn \/ﬁgnl”r

(S.98)

In order to make the last upper bound o(1), given that o,, < 1 and d = 1, we only need that

, = n_m(log n)ﬁ7
L 1 el _2
a, =n~10(logn)s, a, = n 20 (logn) 2. (5.99)

Note that since d =1 and v € (0,1/2) in this case, 9—4r—b > 0 and 2(2v+d) < 10. Therefore,
we only need

b
da+2+0b)(9—4v —10b)’

K< (S.100)

< 1
K —.
BT 10

Since all the right-hand sides of (S.90)), (S.94)), (S.97), and (S.100)) are positive, we choose
a = 0.01 and b = 0.9 such that @ > 0 and 0 < b < min(4 — d,2) with d € {1,2,3} are

both satisfied. Then the choice of £ and & in (S.9) satisfy (S.90)), (S.94)), (S.97), and (S.100).

Furthermore, for 7 defined in (S.9)), n~7/8 is strictly larger in order than the maximum of the

right-hand sides of (S.88)), (S.92)), (S.95]), and (S.98)).

With this 7 and z = 4log” n, we have shown that uniformly for all o € [a,,, @,], there exists
a large integer N/ that depends only on v,d, T, o, such that for all n > N{,

()1 + 4w (@)l logn + 8|lw(@)||e log” n < n77/8.

Lemma S.21. ([Hsu et al., |2012] Proposition 1.1) Let Zi,...,Zy, be i.i.d. N(0,1) random
variables and Z = (73, ..., Zn)T. Let ¥ be an n x n symmetric positive semidefinite matriz.
Then for any positive z > 0,

Pr {ZTzZ > () + 2¢/tr(52)z + 2Hz||opz} <e
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S2 Technical Lemmas for Profile Restricted Log-Likelihood

In this section, we derive some useful results for the profile restricted log-likelihood Zn(a)
defined in of the main text. In particular, we show Lemma Lemma Lemma
and Lemma These four lemmas play key roles in controlling the tail part of the posterior
of «, and will be used in the proof of Theorem [2.3] Finally, Lemma proves the existence
of the profile posterior 7(«|Y;,) as stated in Theorem

We recall from the main text that the profile restricted log-likelihood Zn () defined in (8))
of the main text is

Ln(a) = Ly(a0,,a)

_ _ _ -1 _
_nep, W |Rat = R My (M RM, + Q) MRS Vs
T2 8 n—op

1 1 -
— 5 log | Ra| — 5 log [ M Ry M, + s - ”Tp. (S.101)

Lemma S.22. Suppose that d € Z" and v € RT. The profile restricted log-likelihood function
defined in (S.101)) satisfies that for any 0 < a1 < as < o0, for all possible value of Y, € R™,

n(v+d/2) _ » n(v+d/2)

(&) <owf{Zue-Laan} < (2)

(%) aq

Proof of Lemma[S5.23. From the expression ([S.101]), we have that for any 0 < a; < as < o0,
Ln(az) — Ly(ar)

Y, [Rot = ROy (M RIAM, + Q) MRS Y,

n Qg n

__n-p
B 2 log T|p-1_ p-1 Tp-1 =13 T p—1
Y, |Ra) — Ray My (M,] Ra! M, + Qg) " M, Ra)' | Yy

1 1 MTRIM, +Q
—log | R — —log ‘ L cfl " B‘. (S.102)
277 [Ray| 2 7 | M RaIM, + Qg

From ([S.7) in the proof of Lemma we have that for any value of Y,, € R",

Y [Rad = RoIM (M RIM, +95) " MR Y, <>

> (S.103)
VT [Ral = Ral My (M Ral My +95) M RAL| v, — N2

Similar to the proof of (S.7]), now we notice that the second relation in Lemma implies
that a;dR;} > Oz;dR;; for any 0 < a1 < ag < 0o. Therefore, we apply Lemma with
Ay =y RS} Ay = a7 R, G = M, and Q = a;%Qj4 to obtain that

(eH o)

(@)
O = |07 Re! = a7 Ry M (o7 M Ry My + 0370) ™' M) (o7 R
- [a;dR;j — ay 'R M, (0 UM, RIM,, + ay905) M (a;dR;,j)}
(47) _ o
< [ar?R5} = a7 REIM, (o7 UM RIM, + a7 90) T M (7 RS

1

- [a;dR;,j — ay R M, (ay 'M,] R M, + a3 %) ™ M, (a;dR;;)}
n

= ot [Ra} — Ryl My (M RIMy + Q)™ M RS

— g |Ra) = R M (M R M + Q) MRS (S.104)

2

30



where (i) follows from the conclusion of Lemma and (i) follows from replacing a; Qg
inside the first inverse by afdﬁg. This implies that the right-hand side of (S.104) is positive
semidefinite. Therefore, we have that if a1 < as, then for any value of Y,, € R",

VT |R;Y — ROIM, (M RIM, + Qg) " MR Y, d
[ s~ Fay Ma : ) 2} < <0‘2> : (S.105)

a1

yT [R;} — Rzl M, (M B3l M, + Q) ' M Rg}} Y,

Using Lemma again, we can see that a3’ Rl > "R, ! and a4Ra, > afR,, imply

a1 nd |R | o 2ny
<> < |Baa| _ (> | (S.106)
sz | Ra | ai
Next we find upper and lower bounds for the last term in (S.102) involving | M, Ry* M, + Qg].
We first notice that
| M,y By My + Q|
| M,] Ra My, + Q]

= (M BZ M+ 90) (M BEIM, + 05) | (S.107)

For a lower bound of this ratio, we use the result of Lemma that o3"R.} > o3"R_]! if
a1 < ag and derive that

| M RZIM,, + Q|
| M,] Ro! M, + Q]
_ ‘ (M, R M, + Q5) ™" [oz 2 (02" M,] RyI M, — o2 M) Ry M, + o2/ M, Ry M,,) + Qﬁ} ‘

= |(MT R My + Q)™ (M REI M + )|

) 2v
> | (M, Ry M, 4+ Q)7 [(al) M, Ry M, + Qg5
2

(- ) 2pv
(‘“) : (S.108)

2v
Tp-1 1 (a1 T p-1
> |(M,] RyIM,, +Q5)~ <a2) M R M, + | = -

where (i) follows from that a3”M,] Ry M, — o3 M,] Ry M, is positive semidefinite and that
the determinant |A + B| > |B| if both A and B are positive semidefinite matrices, and (ii)
follows from (a/as)?” < 1 and that the matrix inside the determinant is p x p.

Similarly, we have the upper bound from Lemma that gy dR;; < al_ngll if 1 < ag:

|M,] Ry 1M, + Q)
|M,T R&! M, + Qg

= |(M] RS My + Q5) 7 (M R My + 5),

= | (M RZI M+ 95) 7 [ aszTR o — oy M RIIM, + a7M,] R} )+QBH
< (M, Ry} M, + Q5)~ [ MnTR M, +Qp
T p—1 1( Q2 T a2 v
< (M, Ry My +Q3) <a> [MnR M, +Qﬁ} (a) : (S.109)
1 1

Therefore, we can combine the inequalities in (S.103), (S.105)), (S.106}), (S.108]), and (S.109)
with (S.102)) to conclude that for any 0 < a1 < ag < o0,

Lo(ag) — Lolan)

>—71 a2 d—llo a2 2m/_110 a2 pd—n(u+d/2)lo it
= 2 o1 9% o1 9 %8 o1 B & as )’



< TP (2 " Lyog (44 " Lyog (& v (v +d/2)log [ 22
- og| — | —zlog|— — —log | — =n(v og|—|.
- 2 & a9 2 & a9 2 & (e & a1

Exponentiating both sides leads to the conclusion. O

The following lemma is a consequence of Lemmas in Section It
will be used in proving Lemma [S.24] Lemma [S.25] and Lemma [S.27] below.

Lemma S.23. For 7,q,, @, defined in (S.9) and 5%5&1) defined in (S.10), for d € {1,2,3}
and v € R, there exists a large integer Néﬁ1 that only depends on v,d,T, By, 0y, g and the

Wg+d/2(8) norms of my(-),...,my(-), such that for allm > Ng,

O — O3
Pr ( sup ‘~(1)’ < 2n1/27> > 1 — 10exp(—4log?n). (S.110)
ae[gnvan] 90[

Furthermore, for any given ¢ > 1/(2v+d), for alld € Zt and v € RT, there exists a large integer
Né72 that only depends on c,v,d, T, By, 0o, ag and the Wg+d/2(8) norms of my(-),...,my(-), such
that for all n > Ng ,

}506 — 5&1)‘ 17,4
Pr sup —m <n llog'n | >1—8exp(—4log®n),
ae [(l—nfc)ao,(l—&—nfc)ao] 904
Pr sup }ga - §a0| < 100gn~ 3 FDe | > 1 — 8exp(—4log?n).  (S.111)

ac [(1—n—c)ao,(1+n—5)o¢o]

Proof of Lemma [5.23. Proof of (S.110):

We consider the case of d € {1,2,3}. From the inequalities (S.12]), (S.19), (S.40), (S.41) and
(S.42), a simple union bound shows that for all sufficiently large n,

Pr (Vb2 < val® < R i - o) < bo,,,
16 ae[grwan] 0 4
O _, ~
wo < 507, V[, — 00| < 56 logn)
o€, 0n) 2
> 1 — exp(—161log?n) — exp(—16log®n) — 2 exp(—4log? n)
— 4exp(—4log®n) — 3exp(—4log?n) > 1 — 10exp(—4log? n). (S.112)

From Lemma we have 6, = 5((11) — 5&2) + 5&3) , 5&1) > 5&2) >0, and 5&3) >0 for all o € RT.
Therefore, with probability at least 1 — 10 exp(—41log? n), uniformly over all a € [a,, @y,

I CEARCE R
O (62— 080 + 3 — 353 + (3o — ) + b
[ - ]+
"0 — |03 _‘5 ’ 060_9&0)

(00/2)n" 27 + (0o/4)n """ + (00/16)n™ 2" + (6p/16)n" 37
" 0y — (0/4)n"2 T—seon—lmogn— 90/16)n %—T—(eo/m)n—a—f
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S 2n71/277"

Proof of (S.111)):

Now we consider the case of d € Z* and change the interval of supremum to [(1—n")ayg, (1+

n~)ap]. According to (S.60) and (S.61) in Lemma if @ € [ap, (1 4+ n"%)ay], then for all

k=1,...,n and all sufficiently large n,

2v+d 1
1> Apn() > (@) > (14 n76) 7@ > 1 - gp=@rde s - (S.113)
a
If o € [(1 = n~%ap, ], then for all k =1,...,n and all sufficiently large n,
2u+d
1< Memla) < (ﬁ) < (1—n=)~@+d) < 1 4 op-(@ride o o (S.114)
a

For short, we let a1, = (1—n"%)ag and ag, = (1+n"¢)ag. Following a similar argument to
the proof of Lemmas [S.6] and we can show that for all sufficiently large n, with probability
1 — 6exp(—161log? n),

5(2) < (0p/16)n " log3 n, 5(3) < (Ap/16)n"tlog® n,
0% < (0p/16)n M logn, and ) < (6y/16)n" ' log®n
02 < (8p/16)n tlog®n, and ) < (6y/16)n" ' log® n. (S.115)

For 5&121, we first notice that by Lemma 5&10) < 5&1) < 5&12)71 for all a € [, (1 +n7%)ap].
Similar to (S.34)) in the proof of Lemma we have that

~ ~ 0y ~— B
6((3412)71 — H((llo) = H Zl {Aim(azn) L 1} Zim(agn)Q, (S.116)

where Z,(a) = (Z1n(), ..., Znn(a))T UTX with U, given in Lemma We let w =
(wy,...,wy)" with w; = )\Z (qvon) ™ — 1‘ for i =1,...,n. Then by (S.114]), we have

|

2700 Z:L:l[l - Ai,n(QQn)] < 8Ggn - n*(ZVer)c

< = 8fon~ e
lwlly < n minj<i<p Ain(on) n " |
200 {5l = Aunlan)P}? _ 40 (n - 4n~220+de) 2
|| < 20 1&i=1 in\Q2n <0 = 8fgn /2@
- n minlgign Ai,n(QQn) B n |
]y < 200 max1<icnll = Ain(02n)] _ g —1-(utae,

n mini<i<n Aipn(02n)

Therefore, if we apply the first inequality in Lemma with z = 161log?n and w;’s given as
above, we obtain that for all sufficiently large n,

Pr sup (5&1) - 5&10)) > 9fgn~ B Hde
a€lag,(1+n—°

Jexo]
= Pr (BLL), — 011 > 960n~ 2+
<Pr (9(()}2)71 — 5(()}0) > [Jwl1 + 8wl log n + 32||w]| s log? n)
< exp(—161log® n). (S.117)
Similarly we can show from that

Pr ( sup (5&1) - 5&10)) > 990n_(2”+d)c) < exp(—161log® n). (S.118)
[(

€[(1-n~°)ag,0]
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(S.117)) and (S.118)) together imply that for all sufficiently large n,

Pr sup oL — 5&10)‘ > 90gn~#FDe | < 2exp(—16log?n).  (S.119)
a€c [(lfn_c)ao,(lJrn_c)ao]

Finally, from Lemma Lemma [S.10] (S.115)), (S.117) and (S.118]), we obtain that for all
sufficiently large n, with probability at least 1 —8 exp(—4 log? n), uniformly over all « € [ag, (14

n=%)aol,

80— 00| (o =00 ) + (080, — 08 ) + 05 + 080
%) = 0 — (eg}; - 9(1>>

2 (0L, — O80)) -+ 208 + 26 + 92, + 0L,

B — 00| — 0 — 3]

= 70 a2 _ g
0y — (9% - 9a0> ‘9% 0 ‘ .y
180gn~(v*d)e 1 (9o /4)n~ " log® n + (6 /8)n " log3 n
= G — 9o~ v+de — 500n-1/21ogn — (0y/8)n"1log®n

< - min{(2v+d) (@)

W ogtn = n'log*n,

and similarly for all a € [(1 —n")ag, agl, 0(1)|/9 <n’! log n. The step (i) follows from
our condition ¢ > 1/(2v + d). This proves the first inequality in . The second inequality
in (S.111)) follows from combining the first inequality with S.119. O

Lemma S.24. For 7,q,,, &, defined in , for alld € ZT,v € RT, for any ¢ > 1/(2v + d),

there exists a large integer N7, that only depends onc,v,d, T, By, 0o, g and the WVJFd/ (S) norms
of my(-),...,my(-), such that with probability at least 1 — 9 exp(—4log®n), for all n > N&,

inf : ]exp {[,n(a) — Zn(ao)} > exp (—310g4 n). (S.120)
ao

a€lag,(1+n—°

Proof of Lemma[S.24 Let An(e) = {[T;_, /\k,n(a)}l/n. (S.113)) implies that for all « € [, (14
n=%ag), An(a) < 1. Let Zy(a) = Ul Xy, = (Z10(), ..., Znn(a))T ~ N(0,,I,) for any given

a > 0, where U, is given in (S.54)) of Lemma Then using (S.54]) in Lemma and the
definition 6% in S.10) in Lemma m we have that

n-p, 04*2”5,(11) 71 |Rq |
_ 5 og O[62V§£¥10) 2 |Ra0’
_ —21/XT aA_l TXn 1 2un TN A n 1 2un
— _n ploga _2nU e Ua _710g04 Hk:12k’, (a)—kflog @ 5
2 g XTULUT X, 2 |Uy| 2 U
n—p. > Mala)” Zk:n o
= — lo - = log Mg ( vlog —. S.121
5 s = Z 8 Akn(@0) — pvlog - (S.121)

Denote the event on the left-hand side of the first inequality in (S.111]) in Lemma as A1,
such that Pr(A;,) > 1 — 8exp(—4log?n) given the condition ¢ > 1/(2v + d). Then from the
expression ([S.101)) and the relation (S.54]), we have that on the event Aj,,, uniformly over all
a € [ag, (1 +n"%ag],

En(Oé) — En(ao)
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VAl [R;l — R7\M, (M, R7\ M, + Qﬁ)*anTR;l} Y,

2 Y, [R — Rag My (M Ra) My, +Q5) ™' M, Rf;ol} Yo
1. |Ral | M, Ryy My, + Qg

log —log
2 ° |Ry,| |MTRa M, + Q|
a0, 1log IRa| 1 | M, Ry IM,, + Qg

- = — > log =
2 ag %00, 2 |Raol 2 7 |M] Ry M, + Qg
@ n-—p log a~2gy) (14+n~tlog*n) B llo Rl 1 0 |M,] Ry M, + Qg
B 2 a2y (1—n-t log* n) 2 [Rao| 2 ‘MJRc_voan + Q,@}

@) n—=p. D p_g Aeala)” an
= lo — - = log A
2 g Zk:1 Zk;7n( Z g kn

n—p, 1—n~ 1logn 1 ‘MTR 1M +QB|

e
— pvlog —
Qo

+ 5 %8 1+n—1log n ‘MTRaolM +Qﬂ|

@_n;plogzk gjnl(zinl(zkn _7210%“ _ +d10g2
—210g4n—m

_ —n;plog D ke g‘:nl(zin(zkn Zlogkkn —2log4n—§10g2, (S.122)

where (i) follows from (S.111) in Lemma (ii) follows from (S.121)); to derive (iii), we first
apply
n—op 1—n"tlog*n
og ——
2 1+n-1llog*n

> g (—=3n"1log*n) = —2log"n, (S.123)

for all sufficiently large n, then notice that pvlog(a/ag) < 577
n~=%ag] C [ag, 2/ @+t ag], and finally apply (S.109) to obtain that

T 1 d
|M oz 1M + % = llog <a> > log opd/(2v+d) _ _pdlog2
(MTRQOM + Qg 2 o S0t d)

log2 for all a € [ap, (1 +

for all o € [ag, (1 4+ n~%)ag] C [ag, 2/ qy).
Now we further control the first two terms on the right-hand side of (S.122)). Since A\, (a) < 1
for all a € [, (1 +n7%)ap], we have that

— e A 1z
exp{—nzpngk 1 A (@)™ kn —*ZlOg)\kn }

Zk 1 an(

1/(n—p)
_ ZZ lAkn( ) an

> k=1 )\k,n(a)_levn(a)Q _(”—P)/2

- [ > ket Zrn(@)? }
it { (@)™t =1} Zg o (@)? —(n—p)/2
zz:l Zk,n(a)2 :

1+

(S.124)
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By (S.116)) and (S.117)) in the proof of Lemma we have that on the event Ay,
sup Z {)\k’n(a)*l -1} Zym(a)?

a€lao, (1-4+n—)ao] 1=

< sup  (n—p) (5&” - 5&1(3) /60 < 9nl—(v+de, (S.125)

a€lap,(1+n~°)ao]

On the other hand, for any o > 0,

D Zin(@)? = Zn(a) " Zn(a) = X,| UsUy X = X, (0§ Rap) ' X,
k=1

=W, Wo =Y Wi, (S.126)
k=1

where W,, = (Wi,,..., VVn,n)T = a()_lRa_ol/2Xn ~ N(0p, I,). Therefore, we apply the second
inequality in Lemma directly to the x? random variables of {W? :k = 1,...,n} with
z = 4log? n and obtain that for all sufficiently large n,

P inf Zin(a)? <n—4ynl
r(ae[ln Z pn(@)” <n Jﬁogn)

Qnyan] k=1

=Pr (Z Wi, <n—4y/nlog n) < exp(—4log®n). (S.127)
k=1

We combine ((5.122)), (S.124]), (S.125) and (S.127)) to obtain that with probability at least 1 —
9 exp(—4log? n), uniformly for all a € [ag, (1 4+ n)ag] and for all sufficiently large n,

inf exp {Zn(a) - Zn(aﬂ)}

a€lap,(1+n~°)ao)

n _ —(n—p)/2
14 SUP ¢, (147~ ) ao] Zkz:l {)\k’,n(a) b 1} ka(a)Q !
infae[ao,(lJrn*C)ao] 2221 Zk,n(a)2

X exp {—210g4n — glog2}
—(n—p)/2
1—(2v+d)c
> <1+9n> -exp{—2log4n—glog2}

10 —(n—p)/2 4 D
> - . _ _z
> (1—|— n(2u+d)c> exp{ 2log™ n 210g2}

(4)
> exp {—10n1*(2”+d)c —2log*n — g log 2}

>

> exp (—3log4 n), (S.128)

where in (i), we apply the relation (1 4+ 271)* < exp(1) for all z > 0 and the condition ¢ >
1/(2v +4d). O

Lemma S.25. For 7,q,,, @, defined in (S.9), for d € {1,2,3} and v € R*, there exists a large
integer Ng that only depends on v,d, T, By, 0y, g and the W;er/z(S) norms of my(-),...,mp(-),

such that with probability at least 1 — 10 exp(—4log®n), for all n > N,

sup }exp {Zn(a) — Zn(ao)} < exp <3n1/2_7> . (S.129)

a€la,,a0
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Proof of Lemma[S.25. According to (S.60) and (S.61) in Lemma we have that for all
k=1,...,nand all a € [a,, a0,

2v+d 2v+d
1< Apn() < (@) < (O‘(’) . (.130)

o a,

Let Ap(a) = {ITi-4 )\k,n(a)}l/". implies that \,(a) > 1. For any a > 0, let Z,(a) =
Ut Xy = (Zin(a),..., Znn(a)" with U, given in (S.54).

Denote the event on the left-hand side of in Lemma as Asg, such that Pr(Asy,) >
1-10 exp(—410g2 n). Then using the relation , we have that on the event As,,

exp {En(a) — Zn(ao)}

n—p, a0V (1—2m712T) 1 |Ry | M, Ry My, + Qg
<exp{ — log — = 10 5 log 1
2 a62”9&10) (1 +2n-1/2- T) |Ra0\ 27 | M] Rai M, + Q]

p)/2

@) ZZ 1)‘kn( )~ an
< e (
Zk 1 Zkn(@) H ‘
xexp{2n1/2 T pylog—+ log( ) }

_ n—p)/2
@ [zk 1 M (@) Zi >] I {Mm_wp(zwd) 10g<%)}
o

> k=1 Zi (o ) 2
_ —(n—p)/2
Zk 1 {)\kn — 1}an(a)2 1/2— p(QI/—i-d) (e7))
: . 2 Ty BT 0 (29
Zk 1Zk:n( )2 DA * 2 Og(a) ’
(S.131)
where in (i), we use the inequality
_ 149 -1/2—71
n . Pog : + 2”_1/2_ < g : (4n*1/2*7) = onl/27, (S.132)
— 2n T

for all sufficiently large n and (S.109)) similar to the derivation of (S.122)); in (ii) we use the fact
that A\, () > 1.

Notice that A; ! (a) —1 <0 for all k=1,...,n for all @ € [a,,, ag). Then using the relation

(S.34)) in the proof of Lemma, on the event Agn, uniformly for all & € [a,,, ap] and for all
sufficiently large n,

n

inf }Z DNom (@)™ = 1) Zg ()2

a€lan, a0 1=

) (A )
= inf

a€la,,,ap) 90

We combine (S.131)), (S.133)), and (S.127) together to derive that uniformly for all all a €
[,,, ], for all sufficiently large n, with probability at least 1 — 10 exp(—41log?n),

) > —nl/%7 /4, (S.133)

exp { £a(@) ~ La(a) |

X n1/2_7./4 (n p)/2
< — - n
- infaefa, ao) 2ok=1 Zkn(a)?

a€la,,,ap) 2

2 d
.exp{znl/zr+ nf P<V+>log<ao>}
8]
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. —(n—p)/2
(4) 1/2—7
< (1 71/4) - exp {2n1/2—‘f + M (log oo —i—/flogn)}

~ n—4y/nlogn 2
1\ 2 . (2v + d)
- . j2-r PV T D)
< (1 2n1/2+7) exp {Qn + 5 (log g + K log n)}
- _n1/27‘r/4
N ) (2v + d)
= - . j2-r  P\EP T A)
= { <1 2n1/2+7> exp {Qn + 5 (log g + K log n)}

(2) exp <n1/2_T/2) - exp {2n1/2_7 + p(2y2+d) (log ap + klog n)} < exp (3n1/2_7) , (S.134)

where (i) follows from ([S.127), and for (ii), we use the fact that the function (1 — x71)® is
continuous and monotonically increasing to 1/e for > 1, so (1 — 2z~ 1)* > 1/e? for x = n!/?*7
given that n is sufficiently large. O

Lemma S.26. Suppose that the sequence {w; : i = 1,...,n} satisfies S\ w; > n — cin,
maxi<i<p w; < 1 and mini<;<, w; > czn_bQ, where 0 < by < by <1, ¢1 >0, and co > 0 are all

constants. Then [[_, w; > exp (—4bacin® logn) for all n > max {cgl/bQ, (202)1/b2}.

Proof of Lemma[S.26. Given the constraints in the lemma, minimizing [[;" ; w; is equivalent
to choosing as many w;’s to reach the lower bound of ¢an =2 as possible. On the other hand,
the constraints Z?:l w; > n—cn? and maxi<ij<p w; < 1 imply that the number of w;’s that
attain the lower bound cannot be too large. Suppose that out of n terms of w;’s, w1 = ... =
wy, = con %2, where k is an integer between 1 and n. Then k must satisfy the relation (since all
wy’s satisfy w; < 1):

kean™b2 + n—k)-1>n-— ein,

which implies that & < ¢1n? /(1 — can™2). Therefore,

cqnbl

n
Hwi > (con™P2)F L 177F > (egnP2)1mean P2
=1

Finally, for all n > max cg_l/bQ7 (202)1/b2 }, we have that co > n72 and 1 —con™ < 1/2. Hence
the conclusion follows. O

Lemma S.27. For 7, q,,a, defined in , ford e {1,2,3} and v € R", there exist constants
k1 € (1/2—71,1), Cp1 > 0, and a large integer N§ that only depend on v,d,T, By, 0o, g and the
Wg+d/2(8) norms of my(+),...,my(-), such that with probability at least 1 — 10 exp(—4log? n),
for all n > Ny,

sup exp {Zn(a) - Zn(ag)} < exp (Cp,1n"" logn). (S.135)

a€lap,an)

Proof of Lemma[S5.27. According to (S.60) and (S.61) in Lemma we have that for all
kE=1,...,nand all « € [ag, @),

jt an,

Let An(cr) = {TT}_y M)}/
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If 2v+d —2 > 0, then by (S.77)) of Lemma for all @ € [ag, @y), and for all sufficiently
large n,

Z {1 - )\k,n(a)}
k=1

< p(2vt3d/24b/2)7 | (a+d)/(da+2d+b) | (Qutd)R | (2atd)/(dat2d+b) 4 R (S.137)

Given the definition of % in (S.9) and d > 1, with the choice a = 0.01 and b = 0.9,

. 2a +d
2a +d

2 dr+ ——— <1 dr < 1.
(2v + )H+4a+2d+b<’ R <

Therefore, implies that there exist constants k1 € (0,1) (k1 can be chosen close to 1)
and Cy > 0, such that > 7 _; {1 — A\pn(a)} < Cin"t.

If -1<2vr+d—-2<0(d=1andv € (0,1/2)), then for all @ € [ag, @], and for all
sufficiently large n, of Lemma implies that

Z {1 - )‘k,n(a)}
k=1

< n(6741/73d/2+b/2)ﬁ . n(2a+d)/(4a+2d+b) + n(2u+d)R . n(2a+d)/(4a+2d+b) + nie. (8138)

Again given % in (S.9) and the choice a = 0.01, b = 0.9, we have that
2a+d

2a+d
Et+———m—<1 K< 1.
(2V—i—d)/@+4a+2d+b< , dr <

Therefore, (S.138)) also implies that there exist constants k1 € (0,1) (k1 can be chosen close
to 1) and Cy > 0, such that >, ; {1 — Apn(@)} < Cin”'. Combining (S.137) and (S.138), we
have that for all sufficiently large n,

Z {1 = Xgn(a)} <Cin™, or Z M) > n— Cin™ (S.139)

Now in Lemma we set w; = A\ip, 1 = C1, by = K1, 2 = ozol’ﬂl by = (2v + d)R, and use
(1S.136|) and (S.139)) to obtain that for all sufficiently large n,

1/n
inf A\, (a) = ( inf H Ao ( > > exp {—4C1(2v + d)Rn"™ "'logn}.  (S.140)

a€lag,an] a€ ao,an]
On the other hand, (S.136]) implies that
n
D {Mknla) ™ =1} Vin(@)® > 0. (S.141)
Therefore, on the event Aj, (the event on the left-hand side of (S.110f) in Lemma where

for any a € [a,,, @y, |§a - 5&”‘/5&1) < 2n~Y277), we have that for all o € [, @], for all
sufficiently large n,

exp { £a(@) = La(ao)}
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_ —2up(1) _ —1/2—T T -1
gexp{_” p,, o 0 (1-2n ) 1, |Ral |MT R Mn+§25}}

1
2 ® ag 65 (14 2n-1/2-7) 27 |Ray| 2% |M,] Rayg M., + Qg

@

—(n—p)/2

—~
.
~

L ke 1 {Akn (@)™ =1} Zgn(a)?
Zk 1an( )

1 M, R;'M, +Q
X exp 2n1/2_7—pulogg—flog‘ L nt 6‘
ag 2 |M] Rag M, + Q|

IN

Xn(a) (n—p)/2

(4) _ 2pv
< Anla)” (n—p)/2 . 1—(n—p)/2 exp{2n1/2 T_pylogg — %log<;) P }

(47)
< exp{2C;(2v + d)rn"' logn} - exp (2n1/2 T)

(iv)
< exp{3Ci(2v + d)rn"*logn}, (S.142)

where (i) follows from (S.121]) and (S.132)); (ii) follows from (S.108) and (S.141)); (iii) follows
from ([S.140)); (iv) follows since we can choose k1 € (1/2—7,1). The conclusion follows by taking
Cp1 =3C1(2v + d)R. O

Lemma S.28. Suppose that Assumptions|(A.1), |(A.2) and|(A.4) hold. Then for all d € Z*
and v € RT, the profile posterior distribution of o given by T(a|Yy,) in s a proper posterior
almost surely P(ﬁo,ag,am for any given n > p.

Proof of Lemma[5.28 We consider a fixed n > p. Since the Matérn covariance function is
continuous in o € RT, R, is also continuous in & € RT, and so is the profile restricted likelihood
exp{Ln(a)}. Furthermore, both 7(fp|a) and 7(a) are continuous functions in a € RT by
Assumptions |(A.2) and [(A.4)l As a result, the profile posterior in is well defined as long
as the function exp{L,(a)}m(6o|a)m(c) is integrable as o — +00 and a — 0+

As a — 400, Ry — I, elementwise. Since M, is rank-p for all n > p by Assumption
M;Lr M, is invertible for each fixed n and &,. Therefore, as @ — 400, the profile restricted
likelihood exp{L, ()} becomes proportional to

e { n—p, Yo [In— MMM, +95) ' MY,

1
-+ log - —21og\MJMn+QB}}

. ~(n-p)/2
- (YnT[In—Mn(MJ]‘fn+QB) anT]Yn> MM, + 98],

which is a finite positive number almost surely Pa,, o2 0) for any given n > p. Since Assumption

says that [ 90\04) (a)da < o0, and exp{L, ()} is a continuous function in «, it follows
that the integral of exp{L, ()} (fo|a)m(c) on a € [1,+00) is finite.

Then we consider the case when o — 0+. The property of the Matérn covariance function
as @ — 0+ has been analyzed in detail in [Berger et al., 2001] and [Gu et al., 201§]. Lemma
3.3 of |Gu et al., 2018] has shown that for given n, M,, and Y, the profile restricted likelihood
function converges to zero as a — 0+ with the following rates:

N C(n,M,,Y,)a", if v € (0,1),
exp{Ln(a)} << C(n, My, Yo {log(1/a)}/?, ifv =1,
C(n, My, Y,)a, if v>1,

where C'(n, M,,Y,) is a finite positive number that depends on d, n, M, and Y, but not c.
In all three cases, exp{Ln(a)} — 0 as @ — 0+. Together with [~ 7(fo|a)7(a)der < oo from
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Assumption we conclude that the integral of exp{Lp(a)}r(fp|a)r(a) on a € (0,1) is also
finite. Therefore, [° exp{Ly,(a)}m(bo|a)m(a)da < 0o, and the profile posterior defined in
is a proper posterior almost surely P(Bo,ag,ao) for any given n > p. ]

S3 Proof of Theorems 2.1l and 2.3

In this section, we provide the proof of Theorems and [2.3]in the main text. We first prove
a useful Lemma that establishes the local asymptotic normality (LAN) condition for the
microergodic parameter 6 for a given a. This lemma is essential for showing the limiting normal
posterior for 6. In Section we present the theory on the limiting posterior distribution of
(0, «) for the case of d > 5.

S3.1 Proof of Lemma

For a given a > 0, let t = \/n — p(0 — 5a) be the local parameter. We define the following
function:

Qn(t§ CE) = exp {En(a_zy(ga + ﬁ)? Oé) - En(a—QVga’ a)} ’ 71'(00‘&)

2
— exp <_498> . (S.143)

Lemma S.29. Suppose that Assumption|(A.1) and|(A.2) hold. Then for alld € Z*,v € R, for

any fixed o > 0, for any positive sequences €1, — 0 asn — oo and 1 < s, < min (nl/G, 6;73/2

that do not depend on «, for all sufficiently large n, the o, function in (S.143) satisfies the
following upper bound on the event E1(€1n, ) = {|0a — Oo| < €1n}:

/R\Qn(t;a)ldt < Bp(a), (S.144)

where

B, (a) = 46p exp <_n6—4p> + W(go‘_a]; exp{—0.007(n — p)}

45> (0|c) 52
+ 106y exp <— L > - sup + 46y exp <—” >
12503 96(%90,%00) 7'['(90|O[) 498
N 8 <826 N 253 > sup (0] )
= s2emm )
62 Vi=p) e (300.30,) T(00la)
0log m(0|a) 7(0|a) Sn,
+46y  sup —_— sup e+ — ). (S.145)
00 96(%90,%90) 7T((90|Oé) VI —D

0€(360,260)

Proof of Lemmal[S:29. we first take the difference of the log-likelihood in (6) and the profile
restricted log-likelihood in of the main text, and use the definition of #, in of the main
text to obtain that

n_plog;+ (n = p)(0 = ba) (S.146)

[

S b 1Y (OIS S BN Al SL BN TR VY
Vin=p 2 L

En(a_2”9, a) — En(oz_g”ga, a) = —

2

41



We decompose the integral in ([S.144)) into three parts:
[lewttaliat = [ Jouttaliat+ [ Jeattialde+ [ ot alat, (5.148)
R A1 A As
where Ay = {t € R: [t| > (0o/4)\/n—p}, Ao = {t € R: s, < |t| < (0o/4)y/n — p}, and

As ={t e R: |t| < s,}, with the sequence s, as specified in the lemma.
Bound the first term in ([S.148]): We have

2 wy W(9a+ "t*P ‘ a)
on(t; ) |dt </ exp Lp(a™ 0, a) — Lo(a” Y0, a dt
[ enttoiar< [ e {£ata0.0) - 2. ) —

+2

+/ e 198 dt. (S.149)
A

The second term in ([S.149)) can be bounded by

+2

RN S— 1 _ =
e % dt < 2v/7ly - / e Y5t
/A1 [t|>(60/4)/n—p /27 203
_ 2 _
< 2/700 exp {—(”71)9(2‘9()“)} — 2/7hy exp (—”64p> , (S.150)
0

where the last inequality follows from the tail bounds for a normal random variable: if Z ~
N(0,1), then for any z > 0,

Pr(|Z] > 2) < e /2 (S.151)

For the first term in (S.149)), we note that 6 is a linear transformation of £. We use the relation
(S.146) and obtain that

/ exp {En(a_2”9, ) — En(a_Ql’ga,a)} . (aa i Tfip ‘ a> dt
Ay

_ _ 7 s ga—}— rf— [0
- N B SO e ) Kl k= A K
[t1>(60/4)v/n—p 2 O 20 (0ol

™ 504 + % o _ ~
10—0a]>60/4 7(Bo]cv) 2 0

For any constant ¢ > 0, define the event £;(e, ) = {|0, — 0o| < €}. Let 0 < e1,, < 0y/4, where
€1n, — 0 as n — oo and its order will be determined later. Then, on the event E1(€1n, @) and
{16 — 04| > 6p/4}, we consider two cases: If 6 > 6, + 6y/4, then

p ey ba oy O B0/4 f0/4 s L
o 0 — 0+ 0, 00/4+ 00 0o/4+0, bBo/i+0o+en 6
If 0 < 6, — 6p/4, then
O S T b/t 1
0 0 — 0o + 04 —00/4 + b, 0o —0p/4  Oo+e€1n —0p/4 4

This implies that on the event &1 (e, @) and {|6 — 64 > 6y/4}, we must have either 6, /6 < 2
or 0,/0 > 2. Since the function ¢(u) = u —logu — 1 is monotonically decreasing on (0,1) and
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monotonically increasing on [1, +00), we have that on the event &1 (€15, ) and {10—04| > 60/4},
either ¢(0,/6) > min{yp(5/6), p(5/4)} > 0.015. Therefore, from (S.152)), we obtain that on the
event £1(€e1p, ),

/A1 exp {En(a‘Q”e,a) _/;n(a—%ga’a)} (9 JF(Q\SB ) )
7 (0]) 0.015(n — p)
S 0—0.|>00/4 T 7(0o|cx) eXp{_Q}dQ
< VP b (0.007(n - p)), 5155

7 (olev)

where in the last inequality, we use the fact that m(f|«) is a proper prior density. Thus,

combining ([S.149)), (S.150) and (S.153)) yields that on the event £1(€1y, ),

/141 lon(t; @)|dt < 24/70g exp (_n6—4p> + (Z | Z;exp{ 0.007(n —p)}. (S.154)

Bound the second term in (S.148)): On the event £; (€1, o) and {\0—%[ < 0p/4} with 0 < €1, <
00/4, if 6 > 6, then

aa ‘904 ga 60/4 90/4 1
¢ 0 — 0o + 04, 0o/4+ 0, 60/4+0,  bo/i+00—e€, 4

SRS V. S Y. S}
+§a —90/44—5,1 ga—eo/ll Ho_fln_00/4

Hence on the event &) (e1n, ) and {|0 — 0| < 6o/4}, 64/ € (3,2). For any u € (2,3), by
simple calculus, we have

1/1 2 o611 P
e = N g 1
o3 (3-1) | <22 (5155)
Let
1 2
n(t) = Lo 0y + =), a) — Lola0,,a)| — -
9n(0) = - [ L0 (B + i), @) = L ) ST
—1
t t2
=¢| [1+ — — —.
n—p-0, 2(n —p)62

In (S.155), if we set u = 6,/0, then T (E- 1)2 =t2/[2(n — p)gg] Thus, we can obtain that on
the event &) (e1n, ) and ¢ € Ay (so that |6 — 0, < 60/4),

¢ - 2 6|13 610 — B, 3
n—p-0, 2(n —p)02 |~ 5(n — p)3/263 562
120 — 0, 2 4 106, 212
1200 —6a] 1o~ 9|_,.|9 a2 _ 22 (5.156)
504 202 5 202 5(n — p)62
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Therefore, on the event £;(e1y, ) with 0 < €1, < 0p/4,

+2

. _ (0, + rt_ o
/ \Qn(t;a)!dté/ eXP{—npw(%/@)} ( p‘ )dt+/ e Yidt
A2 A2 A2

2 (o] )
_ . ,
t2 n — p ™ (Qa + \/TTP ‘ Oé) / t L
< exp{ —— + n + e 9% dt
</, p{ 2 (¢ )‘} ~{ola) "

(4) ™ 5a+% « t2
g/ exp{ — i ( v p‘ )dt+/ e 494t
A 2062 7 (6| Az

+2

0
<  sup ™ (0]) / exp dt—l—/ e 49 dt
|0—0a|<00/4 T  (Gola) Ja, - 200" Az
t2

(g) sup ™ (Bla) : / e "3dt
6c(L60,30,) ™ (0ol t|>sn 092 [t]>sn

(iid) _ 2 2
< sup ™ (6]a) -2V 570, exp °n + 2/ exp (—8"2>
2002 405

[\

«

2 2
\/ mho exp °n ) + 2/ exp <—S”> , (S.157)

12562 4602

where (i) is from the upper bound of g,(t) in (S.156); (i) is based on the relation |0 — 6| <
0 — 0| + |00 — 00| < 0/4 + - €1 < Bo/2; (iii) follows from the normal tail inequality (S.151);
(iv) is based on the relation 8, < 8y + €1, < 0o + 60/4 < 56, /4.

Bound the third term in (S.148)): We continue to use the bound in (S.155)) and (S.156) for t € A3
on the event &1 (e1n, @) and obtain that

6[t]3 - 653

l9n(t)] < — <
5(n— p)¥/203 ~ 5(n— p)3/203

(S.158)

Therefore,

/ lon(t: )]t
A3

N " s §a+ —— o _ 2
:/A exp{—n p(p(%/@)} ( p‘ )—e 408 | (¢
3

2 _ _ s (5a + J_ ’ a) t2
exp {t (90—2 o 9;2) o n pgn(t)} _ 1‘ - sup p . / e 492 dt
It/ <5n m(0olcr) It/ <5n
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0 (% + 73_ ‘ a) f—i

+ sup b -1 x/ e %odt
|t/ <sn m(6o|c) |t <sn
0 t
t2 - n—op W(0a+ n—p ’Oé)
< 2/mby - sup |exp { (9_2 - 9;2) — gn(t)} - 1’ - sup
It <sn 4 \"0 2 It/ <sn (6| )
T ga + nt_p ‘ a)

+ 2y/70y - sup -1 (S.159)

It <5n (6o c)

For the first term in (S.159), we can choose €1, — 0 as n — oo and €1, < 0y/4, such that on
the event &1(€e1n, a), for all |t| < s, using (S.158), we have

02 2

2 o neyp 2lE-a .-,
—6‘2—9‘2)——” <nl n(t
1 (07 =02%) = 5o < g+ [Pl

s2€1n ‘ Ln —pg (t)‘ < s2e1n (200 + €1n) 3s3
T4 263 2 TS 4 (- )0} 5yn— o3

s2€1n 253

Ry = (S.160)

3
We choose sufficiently large n that satisfies €1, < 2902 and n > 122” + p, such that the upper

bound in (S.160)) is smaller than 1. Then we can apply the 1nequahty le* — 1| < 2Ju| for all
|u| <1 and obtain that

sup |exp — 1’
[t|<sn { ( ) }
o —p 252 €1n 453
<2|— L. .
<22 (90 4 ) —Fgn(t)] < Tt (S.161)

165

Furthermore, we can choose n > =32 + p such that for all |[t| < s,, on the event &;(e1p, @),

0., +t/\/n—p<Oy+em+sn/y/n—p< 390 and 0, —i—t/\/ D> 0y — €1, > 190. Then from
Assumption m (ii), we have that on the interval (26, 36o),

s §a + -1 |«
sup ( P ‘ ) < sup M. (S.162)
lt]<sn m(folcr) 6c(300,20,) T(b0l)

For the second term in (S.160)), by Assumption and the fact that €y, — 0, s,/y/n —p — 0,
we have that on the event £ (€1, a), for all sufficiently large n,

ﬂ(ga—i—ﬁ‘a)

. e wp [Rtfla) = n(eola)
It <sn m(0olcv) " 6e(300/4,360/2) (0ol
0log m(0|a) 7(0|) ~ t
< sup e I - sup 0o+ ———0o
0€(360/4,300/2) 00 6€(360/4,360/2) (6o |cv) [t|<sn vn—p
Ologm(0|«) 7(0]c) ( Sn )
< sup —_— | €1+ : (S.163)
0 (200,300) 90 0 (200,300 (6ol V= p
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Therefore, (S.159), (S.161)), (S.162)), and m S.163) together yield that on the event &1(ein, @),

63
with €1, < min <T %) and n > max (122 , 123 > +p,

/ lon(t: )]t
Az

4 2 3 9
< @ <S72’L€1’r7, 4 =2 ) - sup m(0]a)
05 N 6e (200,260 m(0o|c)
01 0 0
+2y/mhy  sup M Sup m(0]a) ' < €1 + Sn> ' (S.164)
0€(560,360) 09 6c(260,305) T(00]) N
Finally, we combine m, and ([S.164] i to conclude that on the event &1(€e1y, a)
with €, < min 26—0 %0 and n > max 122 , 12;

/ ot )| dt < 2yt exp{—(n = )04} + Yo exp(~0.007(n — p)}

7(0)) 452 52
+  sup . f\/ Smhoexp | ———5 | + 2/ exp -5
96(%907%90) W(eo‘a) 2 1259 490
4 2s3 6
+ 7\/27? (sieln 4 ——on > - sup m(0la)
‘90 m 06(%00,%90) 77(90|a)
1 0 0 n
+2y/mby  sup M sup m(0]e) . <€1n + S) ) (S.165)
vz o)l 90 oc(300,300) T(P0l) Vin=p
By adjusting the constants to be slightly larger, we obtain the bound in ([S.145). O

The proof of Theorem has used on the following lemmas.

Lemma S.30. For two nonnegative functions f and g, if their integrals are F = [ f and
G = [g, then

/‘ff_fgg 21—l

Proof of Lemma [S.30

/‘ff_ /fG gr| _ /fIG F|+Flg fl

_lé- F\ff+Ff|f gl Fflf—g!+Ff!f—g\_2f!f—g\
FG FG - G

O

Lemma S.31. For two univariate normal distributions N(u1,0?) and N(u2,0%) on R, their
total variation distance is given by

IV 1.%) = ATz )y = 20 (2215221 ) <1,

where ®(x) = [ ﬁe‘ﬁpdz is the standard normal cdf.
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Proof of Lemma[S.31 Let f;(z) be the normal density of N(u;,0?), i = 1,2. Suppose that
1 < pe without loss of generality. Then it is clear that fi(x) > fo(x) if © < (u1 + p2)/2 and
fi(z) < fa(z) if © > (u1 + p2)/2. Therefore,

IV (1, 0%) = N (a2, 0%) |y
—+00
:11_me—h@M$

2
(p1+p2)/2 +00
=3 @ pE g [ ) - A

1 — — — —
— o M2 — f1 _ M1 — K2 T1-® H1— M2\ 1—® M2 — H1
2 20 20 20 20
— 929 (“2_"“‘1> 1
20

S3.2 Proof of Theorem 2.1

Proof of Theorem [2.1. The asymptotic normality of ga, ie., \/ﬁ(ga — 90) 2 N(0, 298) asn —
o0, has already been proved in Lemma In the following, we focus on proving the normal
limit for the conditional posterior of 6.

From , the posterior density of  can be written as

R (07 00)~La (o ) £(0l)
R(61Yi,0) = e D —TwE . (S.166)
f() eﬁn(a 9,0{)7-‘- (9’@) d9 [es) eﬁn(a—2V97a)_£n(a—2u9a7a) 7r(9‘0¢) do
0 7(6ole)
We can rewrite (S.144)) in Lemma in terms of 6 = 6, + (n — p)~V/2t:
s . ) _(n=p)(0-00)? B,
/ eﬁn(a 2 9,&)*['71,(& 2 Ha,a) 7['( ‘Oé) —e 498 d9 S (il) . (8167)
R 7T(90’Oé> n—p

For the fixed a > 0, define the events & (€, ) = {|6q —a,| < €} and EY(€) = {|0a, — 0| < €} for
any € > 0. From Lemma[S.9] Pr {5’1(90n_1/2_7/2, )} >1- 4 exp(—41log?n) for all sufficiently
large n. From Lemma Pr{&(560n"1/%1logn)} > 1 — 3exp(—4log?n) for all sufficiently
large n. Since when n is sufficiently large,

£ (Bon~ Y277 /2,a) N EY (50on" " logn, a) C £1(66pn" % logn, a),

we have that Pr {£1(60pn~/2logn,a)} > 1 — Texp(—4log?n). In the expression of B,(a) in
, we set €1, = 60yn /2 logn and s, = logn which satisfies the conditions in Lemma
S.29l By Assumption for a fixed o > 0, there exists some finite constant C; > 0 that
depends on «, such that

0log m(0|a)
00

sup 7(6l) <y, sup

<O, (S.168)
e (L0, 300) T(Bol0) e (200, 300)

Hence, on the event 51(690n*1/2 logn, @), the order of B, («) can be quantified from ([S.145) in
Lemma

By(a) < 46 exp <—"6_4p> + W(g/ja) exp {—0.007(n — p)}

47



4log®n log?n
10C1 6 — 46 —
+ 10C10p exp < 12502 ) + oexp< 162
8Cy

< Con~ 1/2 log®>n — 0, as n — oo, (S.169)

(60071 1210g% n + 2(n — p)~/?log? n)+40190 (660 + 1) (n — p)~?logn

for some constant Cy > 0 that depends on 6y, p, 7(6p|a) and C; in (S.168)). This together with
(S.167)) implies that on the event 51(600n_1/2 logn, ), the denominator of (S.166)) converges to

n— —04)2
/Rexp{—( pzl(:% a) }d9:290 w/(n — p).

Now in Lemma|S.30, we set f to be the numerator of (S.166[) and g to be exp {—%}.
Using (S.169)), we obtain that on the event 81(66’0n_1/2 logn,a), as n — oo,

J

70|V, @) — a9

1 eXp{_(n—p)(@—Ga) }
2/m/(n—p)by 462

2 fy |ebn (o7 0)=Enlom0uc) 2] _ o { (2pMObe A g

w(0o|ax) 4605
- 200/7/(n —p)
B"(O:;ﬁ {jox(f) < Csn~ /2 log®n — 0, (5.170)

for some constant C5 > 0 that depends on 6y, p, m(6p|a) and C; in (S.168)).
Since Pr <{€1(690n*1/2 logn, a)}c> < Texp(—4log®n) and 3 °° | Texp(—4log®n) < co, by
the Borel-Cantelli lemma, we have shown that as n — oo almost surely Pig, ;2 o),

Hn(dayyn,a) <d0|0a,200/(n p )HTV < 2';’;(\0}) 0. (S.171)

On the other hand, Theorem 1.3 of [Devroye et al., 2018| implies that

HN (46160,263/n) = A (06]0a, 263/ (n — p)) HTV

<§ 203/(n—p) —203/n  3p
2 202 /n ~2(n—p)

— 0, asn — oo. (S.172)

Therefore, by (S.171)), (S.172), and the triangle inequality, we have

HH(dG\Yn,a) -N (dO‘%,QGg/n) HTV < Cyn~ Y2 1ogd n + 2(3]3) < Cyn 1V ?log?n — 0,

as n — oo almost surely P(,Bo,aﬁ,ao)’ for some constant Cy > 0 that depends on 6y, p, 7(6|a)
and Cy in (S.168]). This completes the proof of Theorem O

S3.3 Proof of Theorem [2.3

Proof of Theorem [2.3. It has been proved in Lemma that the profile posterior density
is well defined almost surely for every n > p. The convergence in total variation norm for the
marginal posterior distributions of 6 and « will follow trivially once the convergence for the
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joint posterior is proved. The convergence in total variation norm for the joint posterior (|18]) is

implied by adding the following relations using a triangle inequality:

n—p _ (n=p)(0-00)?
(0, a|Yy) BN % % (a]Yy)|dfda — 0, (S.173)
0
_ (n=p)(0-04)> n(0—8ug)?
R BT 7(a|Y;)doda — 0 (S.174)
2f 00 2/ " ’ '

as n — oo almost surely P(Bo,a%,ao)' We prove (S.173)) and (S.174]) respectively.

Proof of (S.173):
In Lemma [S.30} we take
f = efn(@720.0)~Lala™>u0) 1 (g1 ) . oF

_ (n=p)(0-8a)® .
462 7(6o|) . gbnla 2 ea,a)w(a)’

g==e
such that by applying Lemma we can obtain that

m—p _ (n—p)(6—84)2
/ / 5 -7 (aYn)

(6, %) 2\f@o
/ / a™20,0)=Ln(a”0a,0) . oLala”*ba:0) 1 (g]a) ()
s fo eﬁn a=?0,0)=Ln(a™200,0) . oLn(a™*"0a.0) 1 (f| )7 (ar)dfdax
B _ (n=p)(0=0a)? _
1S Jre 405 - eln(@™20a,0) 1 (fo| o) (ar)dfdox
where (with g, (¢; @) defined in (S.143))

—2v Vl,a)—Ln(« *2”‘971,04

dfda

I 80)? o)
46, X n(a@™*Y0q,a
¢ °_ e ™ (fola)m(@) dfda < (S.175)

ol =z

(n=p)(0-8a)*

) m(0]a) _ e_ 462
m(ola)

N=2

efnla” ”@w 7 (Bo|a)m(a)doda
=2 / / 0 — 0.); )| e£n @ 0o (g |0) 7 () dOd e, (S.176)
— ()0 50 8a)? e
/ / - eFn(@™000) 1 (9o 7 (o) dOdex

290\/> E(—Que )
= e”a Y (0g|a)m(a)de,
=1 (Bola)(c)

We decompose the numerator in (S.176)) into three terms:

N = N; + N2 + N3,

N1:2/"/
a, JR
vl
0 R
]
an JR

Qn ’I’L—

(S.177)

0 (Vi = B(0 = Ba); )| 5 P (g ) () d0da,

0 (Vi = p(8 = Ba); )| €5 P (g ) () d0dar,

on(V/T =0 — 0,); a)( e£n(@0ai0) 1 (9010 () dfdar, (S.178)




To show (S.173)), from (S.175)) and (S.178)), it suffices to show that N;/D — 0 for j =1,2,3 as

n — oo almost surely P(Bo,crg,ao)'

Proof of N;/ D — 0:

We consider all a € [a,,, @p]. For any € > 0, define three events

Ea(e) = { sup |§a — 6| < e}, Es(e) = { sup |§a —§a0| < e},

a€la,,,an] a€la,, ,an]

Ea(e) = {\5% ~ | < e}. (S.179)

For sufficiently large n, Lemma shows that Pr{&€3(6yn=/277/2)} > 1 — dexp(—4log?n)
for some constant 7 € (0,1/2). LemmalS.10{shows that Pr{&4(56pn"/?logn)} > 1—3exp(—4log? n).
By the triangle inequality, for sufficiently large n,

E9(66on"?logn) D E3(6on~ 77 /2) N E4(500n~? logn),

it follows that Pr{&€s(60gn~"'/2logn)} > 1 — 7exp(—4log?n).

We again use the inequality from Lemma with By, («) defined in with
€1n = 60gn"21ogn and s, = logn. Since &1 (66yn~! 2logn, a) D E2(60gn/?logn) for every
a € [a,,, @y, Lemma @l can be applied to all « € |a,,, @,] with €1, = 66gn~/?logn and s,, =
logn. Therefore, (S.167) holds uniformly for all a € [a,,,@y] on the event E2(66on~1/%logn),
such that Pr{€2(66gn"2logn)} > 1 — 7exp(—4log?n).

Integrating over the interval [a,,, @,| gives that

/ / Lo 0,00 Lo~ Fac) T(Ol0) Ot
m(6o|cv)
x eEn (@™ 000 (g |a)m () dbda
S/ nMeﬁn(a72u§a,a)ﬂ-(00’a)ﬂ'(a)da
a n—p
SUPq¢la, ,a Bn (6% Qn, e
< p e[*;: _n]p ( )/ oLn(a™? bos®) (G| ) () dev. (S.180)

=n

According to Assumption with €1, = 60gn~/2logn and s, = logn, B, («) as defined in
(S.145|) satisfies that for all sufficiently large n,

sup  Bu(a)

ae [gn 75”}

< 46y exp <_n - p> + nop exp{—0.007(n —p)}

64 infoefa, @, T(0ola)

0 4log? log?
+ sup sup ™ (0la) - 1069 exp ( 08 n> + 46 exp < o8 n)

aela, @] o100, 300) ™ (F0lcr) 12503 462

8 (690 log3 n N 210g3n) sup sp T (0cr)

% v V=D acla,anl oe(200,36,) T (Pol)

1 0
+ 490 Sup Sup M
O‘G[ana’ﬂ] 96(%90,%90) 89
m(0]) (600 logn  logn >

X sup sup +

acla, @] oe (200, 300) T(Pola) \ v V/n=p
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— 41og?
< 46 exp <_n> + exp ( ) -v/nexp{—0.007(n —p)} + nm2 . 106, exp (_ogn)

64 12562
log? 8(660 + 2) log® 1
4 46 exp <_ og 2?1) ( 02+ ) log”n - nCr2 4 4(60y + 1)fnC=1+Cr2 ogn
465 05 n—op n—op
— 0, as n — o0, (S.181)

where in the last step, we have used the fact that Cr3 < 1 and Cr 1 + Cr2 < 1/2 according to
Assumption [(A.3)]
Therefore, (S.180]), (S.181]), (S.178)), and (S.177) together imply that on the event

E2(60pn~1/%logn),
Ny 20 fi lon (V= B0 = ) )| 5@ P (G ) () d0da
D" W07 [0 oLl o) (Gpla)m(c)da
Supae[gn”;a_n;B"( )f;nn eLn (00,0 1 (ho o) () dax
S/ [T o2, (a0 (fpfa) () da
SUPqe|a,, ain] By (a)

- bo/m

as n — oo. Since Pr{€2(60pn"'/?logn)°} < Texp(—4log®n) and 3 °°, Texp(—4log?n) < oo,
by the Borel-Cantelli lemma, we have shown that Ny /D — 0 as n — oo almost surely P Bo,02.0)"

— 0, (S.182)

Proof of N3/ D — 0:

We start with an upper bound for Na:

vl )

("2 0ec0) 1 (1) dGdlar,

- a—2v —2p ,w
<2/ / 0,0)—Ln(c HQ,Ot)ﬂ-(gla)_i_e 462 77(00‘0[)

x ebn(@”?ba,0) m(a)dfda,

(_<) 2/ {/ 77(9|oz)dc9} el:”(a_Quea’a)W(a)da
0 0
a, _ (n=p)(9=0a)? e
+2/ {/ e 463 de}eﬁn(o‘ 02 1 (9| o) (o) dex
0 R

A —2vp 49 L —2vp
<2 / eEn(@700,0) 1 (0)dor + 0v/m eLn (@ 0a0) (g0 | 0) () dax, (S.183)
0 n—"prJo

N _ (n=p)(0-0a)®
oLn(a™20,0) Ly (a2 a,a)ﬂ(9|a)_e 95 w(fp|a)

where (i) follows from the fact that £,(a"20,a) < Ln(a 264, ) as b is the maximizer of
Ln(a™20, ) given a.

On the other hand, since 2v+d > 1, we choose ¢ = 1 > 1/(2v+d) in Lemma[S.24] and define
&5 to be the event that in Lemmahappens, such that Pr(€5) > 1—9exp(—4log?n).
Then on the event &5, the denominator @ can be lower bounded by

- (1+n Yag - -
D> 200/ eLnlao) eﬁn(a)_ﬁn(ao)ﬂ-(eo|a)7-‘-(a)da
n—p [a)

o1



> \Q/M exp {L’ (o) — 3log? n} /(1+n‘1)ao 7 (Oo|a)m()dex

@Q

(Z) 0\/7?071- 0 ~ 4

> ) —_ .

e exp {[,n(ao) 3log n}, (S.184)

where ¢ o = m(0p|a)m (o) - ap/4, and the inequality (i) holds because by Assumptions

andm, (Bo|ar) > m(6p|ag)/2 > 0 and 7(a) > 7(ag)/2 > 0 for all a € [ag, (1 +n 1)) and

sufficiently large n, such that faH” Hao m(0p|la)m(a)da > n~tag - 7(6p|ao) T () /4 = cron L.
We combine (S.183) and (S.184]) to obtain that

& < Lﬂ exp (3 10g4 n) /an eZn(a)fzn(CMO)ﬂ—(a)da
D — 90\/77'67“0 0
+ 2n exp (3 log? n) /n eZ"(a)_Z"(ao)ﬁ(90|a)7r(a)da. (S.185)
Cr,0 0

To upper bound the two terms in , we ﬁrst derive a sim le relation for the part exp{Z (a)—

L,(ap)}. Let E¢ be the event on Wthh in Lemma |S.25( happens, such that Pr(&g) >
1 — 10exp(—4log®n) for sufficiently large n. On the event 86, the monotonicity bound from
Lemma and the upper bound from Lemma imply that for any a € (0, «,,),

exp {Zn(a) — Zn(ag)}

= exp {Z (o) — En(gn)} - exp {[,n(gn) — En(ao)}

(%)n (v+d/2) exp (3n1/2—T)

a
= o " H/2) oxp {—(V +d/2)knlogn + 3711/2_7} ) (S.186)

where 7 € (0,1/2) and & € (0,1/2) are defined in (S.9). Since 3log*n/n'/?>~7 = 0 as n — oo,
we now plug (S.186]) in (S.185) and use Assumption |[(A.4)| to obtain that on the event £5N &g,

% < 00\7;:2“) exp {—(1/ +d/2)knlogn + 4n1/277} /0% o ") (o) da
+ 02:0 exp {—(V + d/2)knlogn + 4n1/2’7} /0% a "D (Gg|a)m () dor
< 90:;:;0 exp {—(1/ +d/2)knlogn + 4nt/?7T 4 cxnlog n}
+ 02:0 exp {—(y +d/2)knlogn + 4n'/*"7 4 cxnlog n}
— 0, as n — 00, (S.187)

where the last step follows because ¢x < (v+d/2)k by Assumptlonm (A.4){and 7 € (0,1/2). Since
Pr{(£5N&6)°} < 20exp(—4log®n) and S°°°, 20exp(—4log®n) < oo, by the Borel-Cantelli
lemma, we have shown that No/ D — 0 as n — oo almost surely P6,02,00)"

Proof of N3/ D — 0:

Similar to the derivation of (S.183]), we have the following upper bound for Ns:

o0 —2vp 490\/> 21/5
Nj < 2 / er(@70e,0) 1 (o) dar + 7 (fg|a)m(a)da. (S.188)
Qn V Qn
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(S.184) and (S.188)) imply that on the event &5,

& < L/Z exp (3 10g4 n) /OO ezn(a)—zn(ao)ﬂ-(a)da
D — eoﬁcmo T
2n ® i
+ o exp (3 log? n) / (@) =Lnle0) 1 (gola)m(ar)da. (S.189)
7,0 an

Let £7 be the event on which (S.135) in Lemma happens, such that Pr(&;) > 1 —
10 exp(—4log?n) for sufficiently large n. Similar to the proof of Ny/D — 0, on the event
&7, we use Lemma and Lemma to obtain that for any « € (@,, +00),

exp {Za(0) ~ La(oo)}
= exp {Zn(a) — Zn(@n)} - eXp {Zn(an) - Zn(ao)}

n(v+d/2)
< <> exp (Cp,1n"™ logn)

On
= ") oxp {— (v 4 d/2)Fnlogn + Cpin™ logn} (S.190)
where Cp; > 0 and k1 € (1/2 — 7,1) are given in Lemma [S.27, and % € (0,1/2) is given in

(S9). Since 3log*n/(Cp1nlogn) — 0 as n — oo, we now plug (S.190) in (S:189) and use
Assumption |(A.4)| to obtain that on the event £5NE7,

N 3/2 9]
63 < %\?Tn,o exp {—(v + d/2)knlogn + 2C, 1n"' logn} x /an "2 (0)da
2 oo
+ exp {—(v + d/2)knlogn + 2C, 1n" logn} x / "2 (o) (o) da
Cr.0 an
n3/2

< fovmens exp {—(v + d/2)rnlogn + 2C, 1n"! logn + ¢xnlogn}

2
2 exp {—(v + d/2)knlogn + 2C, 1n"t logn + ¢znlogn}
Cr.0

— 0, as n — oo, (S.191)

where the last step follows because ¢r < (v + d/2)k by Assumption |[(A.4)[and 1 € (1/2 —
7,1). Since Pr{(£5N&7)¢} < 20exp(—4log?n) and >.°° | 20 exp(—4log?n) < oo, by the Borel-
Cantelli lemma, we have shown that N3/ D — 0 as n — oo almost surely P

Proof of (S.174)):

We use Lemma [S.31] and obtain that

n—p) (0—Bc)> n(6—Bag)?
/00/ \/me_( P)4(9% ) B \/ﬁ e_ 49(;)10
o Jr|2vmbo 2/t

- /Ooo |V (e 268/ (1 = 1)) = N By, 263 /)| Fal¥r)da

Bo,03,00)

- m(a|Yy)doda

< [ NG 0) ~ NG 28 0~ 1), Fal¥adaa

+ /0 [N (Bas: 263/ (0 = ) = N (Bag, 263 /)| F(alVa)da
@ e (n— p)l/Q‘ga - 5a0| ~
g/o {2@( ) )—1}7r(a\Yn)da
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3 202/(n—p)— 2602
+/ 3 200/(n—p) Z200/n %y, )da
0 2 290/7’1

(iii) [Qn (n _p)1/2 -~ o~
< P A —
/an 2ty 0 feal(efia)de

o, 0 3p
+/0 W(a]Yn)da+/ 7(a]Yy)da + Nn—p) (S.192)

Qn

where (i) follows from the triangle inequality of total variation distance; (ii) follows from Lemma
[S.31] and Theorem 1.3 of [Devroye et all 2018]; for (iii), we use the relation ®(z) — 0.5 =
d(x) — ®(0) < ¢(0)x = x/v/2r for all x > 0 (where ¢(z) is the standard normal density), and
the direct bound |2®(z) — 1| <1 for all z € R. L

On the event £3(Aon~1/277/2), we have that n'/%|0, — 0a,| < 6on~7/2 uniformly for all
a € |a,, a,]. Together with the fact that 7(«|Y;,) is almost surely a proper probability density
from Lemma we can derive from that on the event £3(fyn~1/277/2),

-7

Qn _ 1/2 - . —T o0
/ (=P G R (alYa)da < ”f/ FalVa)da < - 0, (5.193)
a ™ Jo

o, 2/l 4 4\/7
asn — oo. Since Pr {83(9071*1/2*7/2)0} < 4exp(—4log?n) and > °° | 4exp(—4log®n) < oo, by
the Borel-Cantelli lemma, we have shown that (S.193)) holds as n — oo almost surely P Bo,02,a0)"

For the second term on the right-hand side of (S.192)), we have that by the definition ,

Qn Sn eZ"(“)*Z”(O‘O)W(GO]a)w(a)da
/ (oY, )da < (1{2_1)% = = .
0 s efn(@)=Ln(ao)r(fyla)m(a)da

The denominator is lower bounded by ¢, on ™! exp(—3 log® n) on the event £, similar to the
proof of . The numerator can be upper bounded on the event £g, using the same
derivation as in (S.185]) and (S.186]). As a result, on the event £5N &g, using ¢ < (v +d/2)k
in Assumption @, we have that

/an ~(alY)da < exp {—(v +d/2)knlogn + 3n'/2"7} {0&" a2 (o) da
0 cron~lexp(—3log® n)

< o exp {—(y + d/2)knlogn + 3n'/277 4 conlogn + 3log? n}
Cr,0 T

)

— 0, as n — oo. (S.194)

(5.194) holds as n — oo almost surely F
S 20 exp(—4log®n) < oo.
Similarly, for the third term on the right-hand side of (S.192f), we have that by the definition

(.

since Pr{(€5N&g)°} < 20exp(—4log?n) and

Bo,02,20)

/ " HalY,)da < 20 bnl@)=Enl@0)r(go|a)m(a)da
(oY, )da < - = ~ :
- fa(ql)HL Hao efn(a)=Ln(ao)r(fpla)m(a)de

On the event £5NE7, the denominator is lower bounded by cmorf1 exp(—3log4 n), and the
numerator can be upper bounded using the same derivation as in (S.190)) and (S.191)). As a
result, using ¢; < (v + d/2)R in Assumption |(A.4), we have that on 5N E7,

/Oo 7(a]Yy,)da

Qn
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L &P {~=(v+d/2)Rnlogn + Cp1n* logn} [ "Vt (a)da

cron~texp(—3loghn)
< o exp {—(v + d/2)Rnlogn + Cp1n"* logn + cznlogn + 3log* n}
Cr,0

— 0, as n — oo. (S.195)

(S.195) holds as n — oo almost surely P(
S | 20exp(—4log?n) < oo.
Finally, (S.193)), (S.194)), and ( m together imply that the right-hand side of ((S.192)

converges to zero as n — oo almost surely Pg,, 03,a0)" This has proved (S.174]), and hence has
completed the proof of Theorem [2.3] O

since Pr{(£5N&7)°} < 20 exp(—4log?n) and

Bo,0,a0)

S3.4 Limiting Posterior Distribution When d > 5

We present a theorem for the limiting posterior distribution of (6, ) when the domain
dimension d > 5 in the universal kriging model (|1|) with the isotropic Matérn covariance function
(2). The theorem is similar to Theorem for the case of d € {1,2,3} but requires more
assumptions and has some important difference in its proof from that of Theorem mainly
because that the range parameter « can be consistently estimated for d > 5 ([Anderes, 2010]).

For any €; > 0,e3 > 0, we define the set

Bo(er, €2) = {(ﬁ,@,a) ERP x RT x RT : [0/6p — 1| < €1, |a/ag — 1| < 62}. (S.196)

This set can be viewed as a neighborhood of (6y,ag). For the case of d > 5, the following
assumptions will replace Assumption |(A.4)[in the main text for the case of d € {1,2,3}.

(S.1) For the model with isotropic Matérn covariance function in with d > 5, there exist
constants 0 < k] <1/2,1/(2v+d) < k) < 1/2, ¢5 > 0 and consistent estimators 6,, for ¢
and a,, for a based on (Y, M,,), such that for any €; > 0 and €3 > 0,

P8o,03,00) ()%/90 - 1’ > 61/2) < exp{ ¢5 min [n (n"1e;) 2 }

y ([a@n/ag — 1] > €2/2) < exp{—cs min | (n"2e5) )] }

I}
20l

(S.197)

P(ﬁo 02,a0)

Bo (61 ,Eg)cﬂ]:

sup Ps.6/a2v a) (|an/ao — 1] < e2/2) < e
Bo(e1,€2)°NFn

sup Pis.0/a2v ) ()Hn/Go— 1‘ < 61/2> §exp{ C5m1n n 161 161 2
{ C5m1n

where the sieve F,, C {(,0,a) € R? x R* x R"}, such that the prior satisfies II(F?) <
n~P16) for all sufficiently large n.

Assumption m requires the existence of consistent estimators 9 and a,. The exponentlally
small tail bounds in the inequalities in imply the convergence rates of O(n~*1) and
O(n*’{é) for 6, and a,, respectively. The inequalities in will be used to construct
exponentially consistent tests for # and «, which are commonly used for showing the posterior
consistency and posterior contraction rates in the Bayesian nonparametrics literature; see for
example, Sections 6.4 and 8.2 in [Ghosal and van der Vaart, [2017].

Since Assumption is a high level condition, we explain why such estimators 9 and a,
exist for the isotropic Matern covariance function with d > 5. To the best of our knowledge,
[Anderes, 2010] is the only work that has systematically studied the fixed-domain asymptotics
for the isotropic Matérn covariance function with domain dimension d > 5. [Anderes, 2010] has
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considered a special case of our model (I]), in which (i) Y(-) is a GP with mean zero and no
regression terms m(-) " 3, and (ii) the sampling location set S,, consists of equispaced grids in a
fixed domain. For this special case, [Anderes|, 2010] proposed consistent moment estimators for
both 6 and « when d > 5 if we set their M matrix to be the identity matrix; see their Theorem
1, Theorem 2, and the discussion after the two theorems. The proofs of Theorems 1 and 2 in
[Anderes| [2010] have derived tail bound inequalities similar to (S.197), where both s} and &
can be taken as 1/2, which satisfies our condition 0 < &} < 1/2 and 1/(2v +d) < k), < 1/2
since 1/(2v +d) < 1/5 when d > 5.

The supremum in the inequalities of can often be established using a union bound
argument over the set By(€1, €2)¢ N Fp. The parameter set F,, in Assumption is typically
a bounded set whose radius increases slowly with n, such that it is a sieve to the whole pa-
rameter space of {(3,6,a) € R x R* x RT}. The supremum inequalities and the sieve are also
commonly used in Bayesian nonparametrics for showing posterior consistency and contraction
rates; see for example, Theorem 6.17, Theorem 8.9 and their proofs in [Ghosal and van der
Vaart, [2017]. We assume that the prior mass outside the sieve F,, is polynomially small, which
is usually satisfied if 3 is assigned a normal prior and (0, ) are assigned the priors described in
Section In Bayesian nonparametrics, it is often assumed that II(FY,) is exponentially small
in n, so our assumption is weaker in comparison.

Although Assumption is currently verifiable only for the special case considered in
[Anderes, 2010], we expect that the inequalities in continue to hold for more general
sampling designs and the model with regression terms in the case of d > 5, where the two con-
stants k] and &/, can be possibly smaller than 1/2 depending on the sampling designs. Detailed
construction of such consistent estimators @\n and @, for d > 5 in the general universal kriging
model can be based on the recently proposed higher-order quadratic variation techniques in
[Loh} 2015 and [Loh et al., 2021] and will be left for future investigation.

Before stating the main theorem for d > 5, we first prove two technical lemmas. Lemma|S.32]
can be used to show a theoretical lower bound of the denominator in the posterior distribution
for d > 5. Lemma [S.33) proves the posterior contraction for (6, a) for d > 5. This will be
used later for truncating the posterior to a shrinking neighborhood of (6y, ), which will be
important for deriving the limiting posterior distribution for d > 5.

Lemma S.32. Suppose that Assumptions|(A.1) m holds for d >5 and v € RT. Let
Al ={(8.0,0) eR” xR xR : |6 fol <2,
0o <0 <0(l+n?), ap(l—n"?) <a<a}
Then inf ;1 {L£.(8,0/0 ,0) = Ly(Bo, 05, a0)} = cspn™t with probability at least 1—exp(—161log®n)
for all sufficiently large n, where cs;, > 0 is a constant that depends on v,d, T, By, 08, ag and the
WVJFd/ (S) norms of my(-),. .., my(+).

Proof of Lemma[S.33 By definition of the log-likelihood function £,(83,0?,a) in and the
true model Y,, = M,, 8y + X,,, we have

0 o
Ln(B,0/0* ) — Ln(Bo, 05, cg) = 10g9f+unlog———l |}]: ||
o
2VR—1 Qa VR
Y. — M T(™ a 0 (e73) Y. — M
(V= M, ) ( o~ ) (v, - a1a)
R 1 Q'R
+ (8 — Bo) "M 20 . O X, — (8 —Bo) M, 020 O M, (8 — Bo)- (S.198)

On the right-hand side of ([S.198]), using Lemma and Lemma the first line can be
lower bounded as follows in the set Al for all sufficiently large n:
| Ra|
[ Ra|

0
——loge0 —i—ynlog——fl og

o6



Q) 1 —
> —g log(1 4+ n"2) +vnlog ago —5 ;log Ak (@) — vplog o%

(41) 2 n
> ——10g( +n72) 4+ v(n—p)log(l —n"2) + V;leog (1-n"?)
k=1

(S.199)

where (i) follows from Lemma (ii) follows from (S.60) in Lemma given that a < ag
on Al and (iii) follows from log(1 + z) < z and log(1 — z) > —2z for € (0,1/2).

2v p—1

v 1
By Lemma in the set Al | o? R — % éf) <0 is negative definite. Therefore,

2

OéQl/R;1 OéQVR;1
—<Yn—Man( Ko 0290°><Yn—Mnﬂ>zo. (.200)

For the third line of (S.198), since X,, ~ N'(0, 02 Rq,), by Lemma/S.1 9|, Pr(||og ' Ry X ||? <
n+8logn+ 16log?n) > 1 —exp(—16log® n). By Assumption (Al) using similar derivation to
(S-25) based on Lemmas [S.11}S.12/and [S.13] we have that on the set A,

p

HGOIR_I/2M (B - 50 Z j||%{a(2)Ka07 18— BOH < ez(00, ) ZHmJH vd/2( )‘ nS.

= 7=1

Therefore, by Cauchy-Schwarz inequality, with probability at least 1 — exp(—16log?n),

ROé RO(
(8= o) TMT =000 X,y — (8 — o) MT =M (8 — o)
0 0
1/2
> —(n+ 8logn + 161og? n)'/2cy (00, ag) ZHmJH WeH/2s) n=?
J=1
c2(00,0)* =~ | 19 6
I ; 0l waregs) -
> —cn2, (S.201)
where ¢] > 0 is a constant dependent on the WVJFd/Q(S) norms of my(-),...,my(-).

Finally, we combine (S.198)), (S.199), (S.200) and (S.201) to obtain that on the set A, with
probability at least 1 — exp(—161log? n),

1 2v 2v+d _ _
Ln(B, 9/0421’,04) - En(ﬁo,ffgvao) > “on  n  n an 2> C5LN 1,
for some constant cs7, > 0. This completes the proof. ]

Lemma S.33. Suppose that Assumptions|(A.1), [(A.2) and|(S.1) hold for d > 5 and v € RT.
Then the profile posterior distribution satisfies

II (|9/90 — 1| <n"log?n, |a/ag— 1] <n "2logn | Yn> — 1,
as n — 00 almost surely Pig, ;2 o)-

Proof of Lemma[S5.33. The proof proceeds in a similar way to that of the Schwartz’s theorem
for posterior consistency ([Schwartz, 1965]); see for example, Theorem 6.17 and its proof in
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Ghosal and van der Vaart, 2017]. Let ¢/, = n "1 log?n and €,, = n "2log?n. Define the
In 2n
testing function (indicator function):

T,=1 (\én/eo —1|> ¢, /2, or |an/ag — 1| > e'Qn/2> , (S.202)

where @\n and @, are the consistent estimators of # and « from Assumption Recall that the
log-likelihood function £, (3, 60/a?", a) is defined in of the main text. We have the following
decomposition:

IT (Bo (€1, €5,)° | Ya)

(T, +1-T,) fBo(e’ln,e’%)C exp {Ln(8,0/a*,a)} 7(3,6, a)dBdda

Jrpspt g+ XD {En(ﬁ’, 0 /o', o/)} (8,0, o )dp'de’'do’
(1-T,) fBo(e’ln,e’%)cmfn exp {Ln(B8,0/a*,a) — Ln(Bo, 08, 20) } (8,6, a)dBdbda
Sz s 5D {Lal 8,0 [0 o) = Lo(Bo, 03, 0) } 75,6, ') AB'd6 Aoy

Je exp {L£(B,0/0* ,a) — Ly(Bo, 03, a0) } 7(B, 0, )dBdOdex

fRPxR+><R+ exp {En(/B’, 0 /a'* o) — Ln(Bo, 03, ao)} (B, 0, a")dp'do’do’”

By Assumption |(S.1)} we have that as n — oo,

E50,02.00) (Tn) < Pigy 02.00) (|0n/00 = 1| = €1,/2) + Pgy 52 a0) ([0n/a0 — 1| > €3,/2)
< 2exp (—cs log? n). (S.204)

_'_

(S.203)

For the second term in ([S.203)), we use the same proof technique as the Schwartz’s theorem
for posterior consistency. By Assumption and the Fubini’s theorem, its numerator has
expectation upper bounded by

E(607037ao)(1 — Tn)/ exp {En(ﬂ, 0/a* ) — L,(Bo, 08, ao)} (8,0, a)dBdOda

Bo (Elln 76/2n)cm]:”

_ / Eg0.02 a0y (1 = Tn) exp { £a(8,0/0%, @) — La(fo, 02, a0)} 7(8, 0, a)dBd0da
Bo (€, .€h, )eNFr o

= / E(B,O/az",a)(l — Tn)w(ﬁ,ﬁ,a)dﬁdﬁda
Bo(€),,-€5,,)NFn

< sup E(fg}g/azu’a) {(1 — Tn)/ W(ﬁ,&,a)dﬁdﬁda}
)eNFn Bo(€],,5€5,,)°NFn

- ’ /
BO (€1n €an

< sup E(,B,O/aQV,a)(l — Tn)
Bo (€}, ,€5,)¢NFn

S sup P(ﬁﬂ/azu’a)(‘é\n/eo — 1‘ S Glln/Q)
B()(é’ln,Eén)cﬁ]:n

+ sup Pgojazv ) (I0n/a0 — 1] < €,/2)
BQ(E&H,EIQn)Cﬁ}—n

< 2exp (—cs log? n). (S.205)
Since Y 7, 2exp (—05 log? n) < 00, by applying the Markov’s inequality and the Borel-Cantelli

lemma, the numerator of the second term in ([S.203)) is upper bounded by 2 exp {—(05/2) log? n}
as n — 0o almost surely Pg, ;2 ). On the other hand, by Lemma @ for d > 5 and for all

sufficiently large n, with probability at least 1 — exp(—161log®n) the denominator of the second
term in ([S.203)) can be lower bounded by

/ exp {En(ﬁ’, 0 Ja'™ ') — Ln(Bo, 02, ag)} (8,0, o)A d8'da’
RP xRt xR+
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> /T exp {Ln(ﬁ’, 0 /a'* o) — Ln(Bo, 02, ao)} 78,0, a)dp'd0'do/

Q)
)

> exp(—cspn V) - TI(AD) > egpn=CPFD), (S.206)

for some constant cg;, > 0, where (i) follows because exp(—csrn~!) > 1/2 for large n, the
prior density (8,6, a) = 7(8]0/a* )n(f|a)r(a) is lower bounded by constant in the set Al by
Assumptions |(A.1)| and [(A.2)} and the set Al defined in Lemma [S.32] has a volume of order
n3 . n~2.n72 = n= Pt Therefore, we combine and ([S.206)) to obtain that almost
surely P(Bo,og,ao) as n — oo, the second term in is upper bounded by

(1-T,) f30(63n7€,2n)cm]:n exp {En(ﬁ, 0/a* a) — L,(Bo, 03, ao)} (5,0, a)dsd0da
fRPXRJr xR+ exXp {En(ﬁla 9,/0/2U7 O/) - En(ﬁo: 087 Oé())} W(ﬁlv 0,7 a’)dﬁ’d@’da’
< 2¢5 T exp {—(c5/2)log®n} — 0, as n — oco. (S.207)

For the third term in ([S.203)), similar to (S.205]), by the Fubini’s theorem and Assumption |(S.1)

we have that

E (5002 ,a0) /f exp {Ln(B,0/a*, &) — L(Bo, 05, ) } ©(B3,0, a)dBdOda

n

:/f E (80,02 a0) exp {Ln(B,0/a®, &) — Ln(Bo, 05, ) } ©(B3,0, a)dBdOda

C
n

= / E(5.0/a2 0)™(8, 0, @)dBdfda = II(FS) < n~PH6), (S.208)
]:c

which by the Markov’s inequality and the Borel-Cantelli lemma, implies that the numerator of
the second term in (S.203|) is upper bounded by n=GPt6) a5 n — oo almost surely P(Bo,ag,ao)'
Therefore, (S.206)) and (S.208|) imply that the second term in (S.203|) is upper bounded by

f]:% exXp {En(ﬁa 9/042V> O‘) — L,(Bo, 087 aO)} 71—(57 0, O‘)dﬁdgda

fRPXRJr xR+ exXp {[’n(ﬁla 0//0/2,/7 O/) - ‘Cn(BO’ O-(%a Oé())} w(ﬁlv 9/7 O/)dﬂ/delda/

< ¢t n~(BrH6) — cgpn 2 =0, asn — oc. (S.209)
The conclusion follows by combining (S.203]), (S.204), (S.207)), and (S.209)). O

We state and prove the following Theorem for the limiting posterior distribution of the
covariance parameters (0, «) for the case of d > 5. Theorem for d > 5 is a parallel to
Theorem in the main text for d € {1,2,3}. We emphasize that in Theorem [S.1, we only
derive the asymptotic normality for the posterior of 8, since the limiting posterior distribution of
the range parameter o will depend on the exact form of sampling design S,,. Another difference
in Theorem from Theorem is that the profile posterior distribution for o will be a
truncated distribution to the neighborhood [(1 — n~"2log? n)ag, (1 + n="2 log? n)ag), given the
posterior contraction result in Lemma

Theorem S.1. Suppose that Assumptions |(A.1), |[(A.2), [(A.3) and |(S.1) hold for d > 5 and
v € RT. The posterior distributions of 0 and o are asymptotically independent, in the sense
that the joint posterior distribution of (0, «) satisfies

Hn(de, da|Y,) — N (de}éao, 20§/n) X ﬁ*(dalYn)‘

21
o 0, (S.210)

as n — oo almost surely P( and It (da|Yy,) is the truncated profile posterior distribution

with the density

Bo,02,20)7

exp { La(a) }(aldo)

(1+n7”/2 log? n)ag _ / / /
/ {o.(1-n"" 1082 n) o } exp { L, (a) }(a’|fp)dey
max{0,(1-n og2n)ag

7A‘:T(O“Yn) =

: (S.211)
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where the profile restricted log-likelihood L, (cv) is given in of the main text and m(a|6p) is
the conditional prior density of a given 0 = 6.

Proof of Theorem [S.1] For short, let By, = Bo(n="1log?n,n""2log?n) as defined in .
For the joint posterior distribution II(df, da|Y;,), we define the truncated posterior distribution
7 (d6, da|Y,) = 11(dF, da|Y;,) - Z{(0, a) € Bon}/I1(Boy, |Yy) on the truncated support Bg,. For
all sufficiently large n, this support is a subset of Rt x RT. By Lemma the posterior
probability of the set By, converges to 1 as n — oo almost surely P Bo.02,00) which immediately
implies that

17 (d6, de|Y;,) — I1(d6, de|Y,,
|19, day,) - 11(a6, dafv,) |

= sup [IT(A]Y) ~ TI(AY,)

AeR+ xR+
IT (Bon, |Yr) I (Bon, |Yn) ’ )
as n — oo almost surely P(,Bo,ag,ao)' Therefore, to show (S.210]), it suffices to show that as
n — 0o almost surely Pg 52 ),

HHT(de,dam) N (de\@m, zeg/n) x Tt (daY;,)

— (S.213)

The rest of the proof proceeds in a similar way to the proof of Theorem with a few key
differences. Without loss of generality, we only consider those sufficiently large n such that
1—nr2 loan > 0. For short, let ay, = (1 — pRe log2 n)ag and ao, = (1 + pRe log2 n)ao.
First, (S.173) and (S.174)) in the proof of Theorem [2.3| will be replaced by

/7 _(n=p)(0—0a)*
716, a|Yy) RN w5 T alY)
0

n—p)(0—0a n(0—0ag)?
_eepeste)? - 0

dfda — 0, (S.214)

Qln

I /

as n — oo almost surely Py 2 o), Where 71(0,alYy,) is the density of II7(df,da|Y;,) and
7l (a|Yy,) is as defined in (S.211]). The lower and upper bounds in the integrals of (S.214]) and
(S:215) are because the range parameter a in both 7f(#, a|Y;) and 7' (a|Y;,) is supported on

[a1p, qvop]. Similar to (S.175]), using Lemma and the definition of g, (¢;a) in (S.143)), the
left-hand side of ([S.214)) is smaller than N'/D’, where

Q2n
-
Qln R

200 /7 [ g
D' = eLn(@™ 00 (g | o) 7 (@) day, . (S.217)
\% n—p Qln ’

For any € > 0, let £5(e) = {supae[almazn] 00 — 60| < €}, E5(e) = {Supae[am,azn] 00— bao| < €},

€) = {|§ao —6p| < €}. We can set ¢ = k), in Lemma which satisfies ¢ =k, > 1/(2v +d)
given Assumption and hence [a1y,, ag,] C [(1 —n ! 2”+d))ao, (1 + n_l/(2”+d))a0]. Thus
we can apply of Lemma to obtain that Pr{8§(1090n_(2"+d)"/2 log'n)} > 1 -
8exp(—4log?n). Lemma implies that Pr{&4(50pn"/2logn)} > 1 — 3exp(—4log®n).
Since (2v + d)k}, > 1 from Assumption by the triangle inequality, for sufficiently large n,

2
46 400

Q\F 90 2@

71 (a]Y;)d0da — 0, (S.215)

0 (V= B(0 = Ba); )| e“ (T n(gp]) () d0dar, (5.216)

&4 (60on?logn) 2 &4 (100on~+ %2 10g 1) N &4 (500n 2 log n),

and hence it follows that Pr { EL(60on=1/2 log n)}>1-11 exp(—4log?n).
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Lemma still applies when d > 5 and 81(6(9071_1/2 logn,a) D E4(66gn~?logn) for
every a € [ain, a2y Also, under Assumption |(A.3) the inequality and convergence in
in the proof of Theorem [2 E still holds. Since [Oém, agn] - [7,“ Qy), we apply Lemma with

= 60pn"/2logn and s, = logn and obtain from and that

, o 9 _(=p)(0-6a)? .
“20,0) Lo (02 Fa,0) TOQ) | oL@ 0) 1 (g | 0)m(a) dbdar
. *(6ola)
su o Q2n _ouq
S pOéE[aln,QQn] n( ) / eﬁn(ﬂé 2 90”0‘)7[-(90|a)77‘(a)d0( — O7 as 1n — oQ.
n— p Qln

Therefore, similar to (S.182)), we have that on the event 5'2(6«9071_1/2 logn),

N _ 2 e on (VB0 — B )| e B (B
o< BoyE [ ol Ba)n(Gola)(a)da

Aln

SUPqela , X9 B"(a) n —2vg,
cletgaezn] S0 R ofn(07H 00.0) (G o) (@) da

<
T D [ ebalePae)n(fg|a)m(a)da

qln
Supae[aln,agn} Bn(Oé)
- 90\/77
where the last step follows from (S.181). This has proved (S.214).

For (S.215)), similar to (S.192) and (S.193), on the event £5(106gn~ (2 +Dr2 10g% n), we have
that for all sufficiently large n,
405 w5 |7 (a]Y,)doda

A ~ v

aon (n_p)l/Q - ~
104 — 04, |7 (oY) da

— 0, as n — oo,

_ (n=p)(0-0a)* 0a)? NG _ n(0-0ag)?
€

IA

Q2n
n(2u+d)l€’2+1/210g4n/ ’ 71 (alYy)da
«

in

IN

o
NS
(1)

< in_l/2 log*n — 0, as n — oo, (S.218)

where (i) follows from the condition x4 > 1/(2v + d). This has proved (S.215). Therefore,
(S.214]) and ([S.215)) together imply (S.213]), and (S.213|) together with (S.212) proves Theorem

.1 O

S4 Proof of Propositions and

In this section, we provide the proof of Propositions and in the main text, which
verify Assumptions |(A.3)| and |(A.4)| on the prior, respectively.

Proof of Proposition[2.7): (i) Since m(f|la) = m(0) and does not depend on «, we have that
8log+9(0‘a) = 7/(0)/m(0). Since 7(#) > 0 and 7'(f) = dm(#)/df is continuous on RT, is
satisfied for all sufficiently large n since

Jlog(6|c)

< SUDge (6 /2,260) 7'(0) o
00

sup sup < - <n"m
infoe g, /2,20,) T(0) ’

a€la,an] 0€(60/2,200)
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for arbitrary Cr 1 > 0.
The prior density 7(6) has finite supremum and positive infimum on (6y/2, 26y). Hence
is satisfied for all sufficiently large n since

0
sup sup 7T(0|a) < Sup96(90/27290) ﬂ-( )

- < TLCﬂ',Z’
a€la, a@n] 0€(60/2.200) T(Oola) ~ infoc (g, /2,260) 7(0)

for arbitrary Cr 2 > 0. Since C ; and Cj 2 can be arbitrarily small, Cr 1 +Cr 2 < 1/2 is satisfied.
Finally, is satisfied for all sufficiently large n since m(6p) > 0 and for all sufficiently large n,

inf  logm(fplar) = log m(fy) > —n==,

a€la,an

for arbitrarily small Cr 3 > 0.

(ii) If 7(«) is supported on a compact interval [, asg], then all SUPaela, a,) Can be replaced by
SUPgea;,a.]- Based on the conditions, for all sufficiently large n,

0log (0| <

C’7r,l
a0 "

sup sup
ac [a1 ,042] 96(90/2,200)

)

for arbitrary Cr 1 > 0.
Since m(f|a) > 0 for all (6,a) € RT x RT, for all sufficiently large n,

Olog m(0|a) -

Cﬂ,2
a0 "

sup sup
a€[a1 ,CVQ] 9€(00/2,290)

)

for arbitrary Cro > 0. Since Cr; and Cr2 can be arbitrarily small, Cr 1 + Cr2 < 1/2 is
satisfied.
Since 7(f|a) > 0 is continuous in a € R, for all sufficiently large n,

inf logm(fpla) = inf logm(fplar) > —nCm3,

a€lag,az] a€lag,az]

for arbitrarily small Cr 3 > 0.

(iii) If the prior of o2 is independent of «, then by the relation § = o2a?”, the prior of 6 given o

is T(0]a) = m2(0/a?")/a®, where we use 7,2(-) to denote the prior density of o2. Therefore,

Alogm(0la) _ 7":,2 (0/a?)
00 T a?m 2(0/a?v)"

For the transformed beta family density, the derivative is

/ (71 +172) <UT’2>72/%2 [72 =M+ (sz)l/q

) = o0 P @

Therefore, for all sufficiently large n,

o\
Olog () ‘72*7*(71+7)(ba2y) ‘
sup sup —2 < sup sup -
a€la, @n] 0€(60/2,200) 00 a€lay, an] 0€(00/2,200) bya2V (b(fz») [+ (bo?%) ]
2y —
<Aool 2t o
’700 ")/90
for arbitrary Cr 1 > 0.
5 S 7(0|a) < . < 0 >’Y2/W—1 B2/ 4 93/7 Y1+72
up up < sup sup 0
a€la,,,an) 0€(00/2,2600) 77(00|05) a€la,,,an] 0€(60/2,200) A bl/va2v/v + o1/7
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9\ 2/ 1 g\ /1
< sup max <> ) () < ntr2,
0¢(60/2,200) to to

for arbitrary Cro > 0. Since Cr; and Cr2 can be arbitrarily small, Cr 1 + Cro2 < 1/2 is
satisfied.

: , L(y1 + 72) <72 ) 6o
inf logw(0plar) >  inf —2vloga —log ————+—— 4+ —=—-1]1l0
acloman] © (Bola) a€lay, dn { & & (1)L (72) gl % ba?v

()]}

r 0
—2vklogn — log LA () (1 +72) + (72 - 1) -0
Y

F(y)l(v2)  \ v ®
()]

for arbitrarily small Cr 3 > 0. O

— (7 +72) log

v

% - 1‘ 2v(k + k)logn — (11 +72) log |1

= —logn = —nm3,

Proof of Proposition[2.5 We will verify only (20) with 0 < &; < (v + d/2)F for each conditions
in the list. The verlﬁcatlon of (21 with 0 < ¢z < (v 4 d/2)k is similar and omitted.

For p(«) that satisfies (i), we use the change of variable u = a/%! to obtain that

/ A"+ () da S/ 272 o (_a61>da

Qn

1 [ 1 [
< L [T a2y st gmug,, o / /2 41} /511~ g,
01 Jao 1 Jo
1
= gr (67 H{n(v +d/2) +1}), (S.219)
where I'(z) = [;¥ u* 'e “du is the gamma function. Using the Stirling’s approximation for

gamma functions (I'(z) < 2v/2nz(z/e)” for all large = > 0), we have that for sufficiently large
n?

U (67 {n(v+d/2) + 1})
< 24/2m07 (v + d/2) + 1} (767 {n(v +d/2) + 11) Hnlkd/241) (S.220)

From ([S.219) and (S.220]), we can see that will be satisfied if for all sufficiently large n,

-1
25;1\/27r5;1{n(y +df2) + 1} (e to7 n(v + dj2) +13)" A YDHY
< exp(¢znlogn).
A comparison of the orders in n on both sides immediately shows that this relation holds for
all sufficiently large n, as long as (51_1(1/ + d/2) < ¢;. Since ¢; can be chosen as any constant
between 0 and (v+d/2)F, it suffices to have 6; ' (v+d/2) < (v+d/2)R, or equivalently §; > 1/%.

For p(«) that satisfies (ii), we use the change of variable u = n%a and the Stirling’s
approximation to obtain that

/ an(u+d/2)p(a)da < / n(l/+d/2)n63 exp <_n62a> da

an
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< s 52{n(l/+d/2)+1}/ n(v+d/2) gy, < pds—o2{n(vd/2) +1}/ /2 gy,

So g, an

— pds— 62{"(”+d/2)+1}1“(n(1/+d/2)+1)
< n53—52{”(V+d/2)+1} . 2\/271‘{71(1/ ¥+ d/2) + 1} « (e_l{n(lj + d/2) })n (v+d/2)+

From the last display, will be satisfied if for all sufficiently large n,

x (e Mn(v+d/2) + 1})n(y+d/2)+1 < exp(cynlogn).

A comparison of the orders in n on both sides immediately shows that this relation holds for
all sufficiently large n, as long as —d2(v + d/2) + (v + d/2) < ¢;. Since ¢ can be chosen as

any constant between 0 and (v + d/2)F, it suffices to have (1 — d2)(v + d/2) < (v + d/2)R, or
equivalently do > 1 — %K. O

S5 Proof of Theorem [2.6) and Corollary [2.7]

In this section, we provide the proof of Theorem and Corollary [2.7] for the limiting
distribution for 1-dimensional Ornstein-Uhlenbeck process. Before that, we first elaborate on
the possible choices of prior 7(a)) and its hyperparameters that satisfy the relaxed Assumption

(A.4’)| on the tails of 7(a).

e If we take m(«) to be the gamma density 7(a) = @oﬂfle*bo‘, then for all sufficiently large
n?

o, n—E a
\/ﬁ/ Var(a)da = \/ﬁ/ b—a“+1/2_1e_bada
0 o I(a)

< Vnb? /nm 0t +1/2-19, — b ~(at1/2)+1/2,
0

= T(a) (a+1/2)0(a)"
oo o ba
and /n Var(a)da = +/n — /2 g mbagy,
ap nF F(CL)
\/ﬁba /oo —ba/2 Qbafl N
< e P 2da = T \/nexp(—bn~/2).
I(a) Ju= I'(a)
To satisfy in Assumption [(A.4’), we need the condition —k(a + 1/2) +1/2 < 0, or
a> (k" — 1) / 2. Therefore Assumptlon m (A.4")|holds for the gamma prior density m(a) with
hyperparameters a > (k! —1)/2 and all b > 0.
e If we take m(a) to be the inverse gamma density () = Fb(a)a (a+1)e=b/e then similar to

the derivation above, we obtain that Assumption |(A.4") holds for the inverse gamma prior
density 7(a) with hyperparameters a > (£~ — 1)/2 and all b > 0.

o If we take m(«) to be the inverse Gaussian density m(a) = 4/ 27:’()(3 exp {—b(afz)Q} for a >

2a?

0,b > 0, then for all sufficiently large n,

\F/ Jar(a da—f/ Fexp{ aa)2}da

< Vny — exp(b/a) / 712 exp {—bt/(2a%)} dt

nk
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<Jn —exp(b/a) /Ooexp{—bt/(4a2)}dt

nk

4i zi exp(b/a)y/n exp {—bnﬁ/(4a2)} — 0,

b
4 v Van(a)da=yn bla—af’l
an nan QT « . 27Ta3ep 2&2 «

<+/n exp(b/a)/ a” exp{ —ba/(2a%)} dov

<+/n —exp(b/a) /(:O exp {—ba/(2a)} da
2a® | b

= 20 o= exp(bfa)yiexp {~bn/(2a%)} = 0

Therefore, the inverse Gaussian density () satisfies in Assumption |[(A.4’) for all hy-
perparameter values of a > 0 and b > 0.

o If we take 7(«) to be the generalized beta density of the second kind:

D +72) (a/b)r2/7=1
L(v1)T(y2) by[1 + (a/b) /]t

m(a) =

with parameters b > 0,y > 0,71 > 0,72 > 0, then for all sufficiently large n,

Vi [ Van(eaa = ya [1 [0 (0

¥2) by[1 + (/b)) t72

(1
11(’Y1 + 72) n/n a'yg/'y 1dCK
~ 02/ T ()L(v2)  Jo
POit72) oyt
072/ 740 (71)T (72) ’

. e [PTOntm) (et
R e R

F(’Yl +72) Jn
T2 (a/b)~ /74
< o) V" o @)
_ Pontm) mjreye
b1/ T (1)L (72)

To satisfy (24 in Assumption we need the conditions —kvy/y + 1/2 < 0 and
—Fv /v + 1/2 < 0, or equivalently, 72/ > 1/(2k) and ~1/v > 1/(2g). Therefore, if 7(«)
is the generalized beta density of the second kind, then it satisfies Assumption if its
hyperparameters (b,~y,v1,7v2) satisfy y1/y > 1/(28) and v2/v > 1/(2k).

S5.1 Proof of Theorem [2.6]

Recall that for Case (i) in Section of the main text, we observe the 1-dimensional
Ornstein-Uhlenbeck process without regression term Y (-) = X(:) ~ GP(0,03Kq,,) on the

grid s; = i/n, for i = 1,...,n. Since Y (s;) = X(s;) for all i = 1,...,n in this case, we have
n—1
AIZZ Sz ) ZXS’L Sz—i—l A3—Z~X
=2
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In the following, for any random variable Z,, we write Z,, < 1 to denote that Z,, is lower

bounded away from zero and upper bounded from infinity as n — oo in P(Ug,ao)-probability.

The Op(-) notation refers to the true probability measure P
We introduce two technical Lemmas and

0'(2)7a0) :

Lemma S.34. Under the model setup of Theorem[2.6, we have the following results:

(Z) Ay + A3 —245 >0 a.s. P(

0'(2)7040);

(ii) Ay + A3 — 245 <1 asn — o0 a.s. P

0'8 7a0) ;

(ii) [Ar — Az[ = Op(1) as n — oo in P

P(O’%,OKO);

037a0)—pmbability, and |A; — Az| = log2 n as n — oo a.s.

(iv) A1/n =<1 and As/n <1 asn — oo in P52 o) -Probability;
(v) |us| =n|A; — As|/A; = Op(1) as n — oo in P42 a0)-probability;

(vi) vi =n(A1 — 245 + A3) /A1 < 1 asn — o0 in P -probability;

Ug7a0)

.. Ay As—A2 _ . .
(vid) m =1+0,(n71) asn — oo in P52 a0)-Probability;

(viii) Uniformly over all o € [0,n/9],

(Ale—Qa/n _ ZAQG_O‘/" + A3) _ [Al <% . A1X1A2>2 n AlAjl—Ag]

=0, (n—3/2) ’

2 2
o Al—AQ AIAS_A2
Ay (n N ) T
as n — oo in P(o(z]’ao)—pmbability;;

(iz) Uniformly over all a € [0,n/9],

V1 —e2a/n = 2;0[ |:1 + O(n_5/12) ’

as n — o0.

Proof of Lemma[8-37. (i) By definition, A; + Az — 245 = 77 [X (si11) — X (s:)]* > 0 almost
surely P(Ug’ao).

(ii) Let Wi, = [X (s4) —e’o‘o/”X(si_l)]/\/Jg(l —e~200/n) for i = 2,...,n. Then by the Markov
property of Ornstein-Uhlenbeck process, W, ’s are i.i.d. N(0,1) random variables, such that
Wi, is independent of X (s;_1), and X (s;) = e /"X (s;_1) + \/03(1 — e200/M )W, ,,, for i =
2,...,n. We can derive that

n—1
A1 + A3 — 2A2 = Z |:X(Si+1) — e_ao/nX(Si) — (1 — e_ao/n)X(Si)} ?
=1
n—1 n—1
= 3 [ (sie) — 0/ X ()] 4 Y01 om0/ (s

i=1 i=1
n—1

+23 (1 - e /M) X (sy) [X(sm) - e_"‘o/”X(si)] . (S.221)
i=1
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The first term in (S.221]) is

n

1 9 n 2 n
[X(Si—i-l) o efao/nX(Si)] — Zag(l o ef2a0/n)Wi2,n _ 00a0[1n+ 0(1)] Z ‘/Vz%nv

i=1 =2 =2

using a Taylor expansion of 1 —e™* around = = 0. Since W;,’s are i.i.d. N(0,1) random
variables, we have that n=1 Y"1 , I/V2 — 1 as n — oo almost surely P

The second term in (S.221)) is

02,20)"

n—1 2
Do (1= e M2 ()2 < 22 sup X (s)?,
=1 T sel0,1]
For the Ornstein-Uhlenbeck process, supyejo ] X (5)2 < oo almost surely Pl62,a9)- Therefore,
S (1 —e@0/m)2X (5;)% = O(1/n) almost surely P2 o).
The third term in (S.221]) can be upper bounded by
n—1
2 Z(l —e /") X (s;) [X(SH-I) —e /"X (s;)
i=1
n—1
=2 Z \/‘7(2)(1 —e7200/m) (1 — e~ */™") X (5;) Wit n
2Bl [+ of1)]
= 32 Z; X (s)Wit1n
Q\faoa ’[1+ 0(1)]
< n \ Z X 87« Z+1 n
2 1
< \faooao 1+ o(1) sup X (s Z i (S.222)
\/ﬁ \ s€[0,1]

which shows that the third term is O(n~'/2) almost surely P62,a0)-

In combination with (S.221)), we have shown that A; + A3 — Ay — o2ag = 0y > 0 as n — oo
almost surely P(037a0)> which means that A; + Ag — Ay < 1.

(iii)
Ay — Ay < % A1+ Ag — 24, + %[X(sl)Q + X(s2)2.
Since X(s1) ~ N(0,03), X(sn) ~ N(0,02), we have X(s1) = O,(1) and X(s,) = Op(1).

Furthermore, by the Borel-Cantelli lemma, X (s;) < logn and X (s,) < logn as n — oo almost
surely P,z o). Then the conclusion follows by combining these relations with Part (ii).

(iv) First Ag/n < Sups€[071]X(S)2 < oo almost surely P2 ,,). The expectation of Asz/n is
E(62,a0)(As/n) = Yoy E (62 a0) (X (si )?)/n = of. To calculate the variance of As, we let Tj; =
[X (s;) — em@0li=il/n X (s;)] /\/0(2) (1 — e~2e0li=jl/n) for any ¢ # j and 4,5 = 1,...,n. By the
Markov property of the OU process, T;; ~ N(0,1). Therefore, given that each X (s;) ~ N(0, 03),
E(52 a0) [X(51)%] = 08, B(52,00) [X(51)°] =0, B2 00) [X (5:)*] = 30, we have that

Var(g o) (Ag/n)
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Z Var(og,ao) (X(SZ)Q) + Z COV(CT%,O{O) (X(Si)27 X(SJ)Q)
i=1 itj

Bw‘ —

:N)‘ —

i#]

2n0§ + Z

i#]

3[\')‘ =

{27/“73 + Z |:E(0'(2),oc0) (X(SZ)2X(3])2) - E(o‘%,ao) (X(S’L)Q) E(O’g,ao) (X<S])2):|

2
E(ag,ao) ([eaolij/nX(sj) + /o2 (1 _e—2a0|i—j|/n)j’i,:| X(sj)2> _Uél

1
= 312000 + >
i

E(ag,ao) {e—2aoi—jl/nx(sj)4 + Jg (1 _ e—2ao|i—j|/n> TZ%-X(SJ')Q

+2X(s5)* - \/ag (1- 2eaolij/n)n} — ag‘;] }
1 4
=3 2nog + Z

i#]
1 _ o
= E{Qnag + 203 Ze 2a0ld ]Vn}
i#]
0l { 1 N 2(n _ 1)672a0/n _ 2nef4ag/n + 262a0(n+1)/n}
= 40 — .

n2 (1 _ 672010/71)2

30_64)6—2040|i—j‘/n + 0.61 (1 _ e—QQO‘Z‘_jV”) +0— 0-61] }

4,—2a
oye 0
Therefore, as n — 0o, we have Var(agao)(Ag/n) = L

For any small number € € (0,1), we can apply the one-sided Chebyshev’s inequality (or
Cantelli’s inequality) to obtain that as n — oo,

Pr (A3/TL S E(U(Q)’ao)(Ag/n)(l _ 6))

< Var(ag,ao) (A3/n) e—20¢0/a(2)

- 2 —2a 2 2
Var("g’O‘O)(Ag/n) +e? [E(Ug,ao)(A?)/TL)} ¢ O/ao + €

Therefore, for any € € (0,1), Pr (43/n > (1 — €)og) > 0 for all sufficiently large n, which implies
that As/n is lower bounded as n — oo in P52 o)-Probability (or equivalently, As/n does not

< 1.

converge to zero as n — oo in P(gg,ao)—probability).

Since A; < Az, Aj/n is also upper bounded as n — oo in P(Ug7a0)—probability. Since
Ai/n = Ag/n — [X(s1)? + X(sn)?] /n and [X(s1)* 4+ X(sn)?] /n — 0 as n — oo in P
probability, we can see that A;/n is also lower bounded as n — oo in P(Ugjao)—probability.

U(%,OKO)_

(v) Since uy, = (A1 — A2)/(A1/n), the conclusion follows from (iii) and (iv).
(vi) Since v, = (A1 — 2A2 + A3)/(A1/n), the conclusion follows from (ii) and (iv).

(vii) Using the notation of u, and v, in Parts (v) and (vi), we have

1— A1A3 — A% _ (Al - A2)2 . uz
A (A1 — 245 + Ag) N Aq (A1 — 245 + Ag) N nvs

From Parts (v) and (vi), we have that u2/(nv,) = Op(n~!) as n — oo in P52 ap)-probability.

(viii) We have
A16_2a/n — 2A26_a/n + As
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A — Ay]? (A — Ag)?
= —ee/my L2 oy, AT AT
Ay [(1 e M) A } + A1+ A 2 e
Ay — A]? AAs — A3
_ o _a/n _ 1 2 1433 2 22
A1 |:(1 (§] ) Al :| + Al . (S 3)
Now if we replace 1 — e=®/™ with a/n for all a € [0,n!/9], then the difference would be
2 2
—2a/n —a/n B g . Al — A2 A1A3 — AQ
(Ale 2A2€ + Ag) Al (TL 7141 + 7141
_ A1 — A2 2 (6 A1 — A2 2
< — a/my 217420 (2 A1 T L2
< |:(1 © ) Ay :| n A
2(A; — A
- A 1_e—a/n+2+w .‘1_e—a/n_g’
n Ay n
(i) 1/6 1/3
< (Aln + A1 — A2|> %a (S.224)
n n

where (i) follows from the fact that 1 —e™® < x and |z — (1 —e™®)| < 22/2 for all z > 0. (S.224))
implies that

2

2 2
o Al—AQ AlAB_AQ
Ay (n h ) T

15 (A0 4|4y - A

n2 Ay Az—A2
Aq

<

Using Parts (ii), (iii), (iv) and (vii) together with the definition of @,,, we observe that

nl/3 (A”,f“ Ay — A2|) /3 (n1/6 + log? n)
° 2 j : _
n2 AlAj*AQ n? (A1 + Az — 242)(1 + Op(n1))
1

nl/3 nl/6 s
< ) — —3/2
= T o,m (” ) ’

as n — 00 in P2 ,)-probability. Hence the conclusion follows.

(ix) For a € [0,n'/5], a/n < n™%% — 0 as n — oo. With the Taylor expansion of 1 — e~
around z = 0, as n — oo almost surely P(U(%’ao),

V1—e 20/ = \/2: [14+0(n=5/6)] = \/? 140012

and the o(1) term is uniformly over all o € [0, n!/9]. O

Lemma S.35. Define a normalized log profile likelihood function

LT a) 1 Mg ((ArAs = AT L) m
Li(a) =Lp(a" 04, a) + 5 log < A + 5 log 5
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1
= —g log <A1e_2a/n —240e7/" 4 Ag) +t3 log (1 — e_QQ/”)

n A1As — A% 1 n
Z*(a) in (S.225) is well defined for all sufficiently large n in P(Ug,ao)-probabz'lity. Then, under
the model setup of Theorem [2.6] and Assumptions|[(A.2),[(A.3), and|[(A.4]’), the integrals

/000 exp {Z* (a)} w(Oola)m(a)de, and /000 exp {E*(a)} 7(a)da

are lower bounded by positive constants in P(U(%’ao)—probability. Furthermore, the following con-
vergence relations hold

/Ooo exp {Z*(a)} —Vaexp {(O[;;:"‘)Q} 7 (0| )7 (a)dex — 0, (S.226)
/OOO exp{z*(a)}—\/aexp{—w;v?’y} W(a)da—)(), (S.227)
/Ooo 17 (a]Yn) — me(aYy)| da — 0, (S.228)

as n — oo in Pz o\ -probability, for w(a|Ys) given in Theorem and 7. (a|Yy,) given in
Theorem [2.6.

Proof of Lemma[S5.35. Based on Part (vii) of Lemma (A1A3 — A3)/A; > 0asn — oo
in P((,g’ao)—probability. Therefore, L. (a) in (S.225)) is well defined for all sufficiently large n in
P62 ap)-Probability.

We first prove the convergence in P(Ugyao)—probability in , and that the integral
I exp{L.(a)}m(fp|a)m(a)de is lower bounded by positive constant in P52 ,0)-Probability.
Note that the only difference between and (S.227)) is that 7m(0g|a)m () is replaced by
m(a). The integral condition in Assumption guarantees that in the following deriva-
tion, all 7(6p|a)m(a) can be replaced by 7(a). Therefore, in the derivation below, we will only
prove for the integrals involving 7(fp|a)m(c), and the proof of and lower boundedness
of [° exp{L.(c)}m(ar)da follow similarly.

Proof of (|S.226|):

Define the following quantities

le/on exp{z*w)}—ﬂexp{—(a;ﬁ}
N, = / e {Z@} nlajn(a)da,

Vo= [ vaew {—@‘g“)} (B0l (a)da,

*

D= /Ooo Vaexp {(O‘_“)Q} 7(0o|a)w(a)dev.

20,

1/6

m(Bola)r(a)da,

We define an auxiliary “variance” v, = n(A;As — A3)/A? which is positive as n — oo in
P -probability given Parts (i) and (vii) of Lemma Then, we have that uniformly for
all a € [0,nY/9], as n — oo in P(Ugjao)—probability,

exp {Z*(a)} — Vaexp {—WH

0d,a0)

20y
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|14 — Ay gy S0 ey - {_(a ~ u*)2}
(Ale—2a/n _ 2A2€—a/n + Ag)n/2 p 20,
[(A143 — A3)/A]"2Va [1+ O(n=>1?)]

9 n/2
0 (3 ) s 2] o, o)

(#2)

2 Va |14 0,(n~1)]

n Vs

(i)

97 —n/2
< Op(n75/12)_\/a 1+717/(a_,6u*)] +\/&exp{_(a—u*)2}

exp(g{(a;,;:*f—log 1+(a;£:*)2]}> -1
w oa—1u n [ (o —uy)? 1
(S)C%(”_U3)+"¢56Xp{__(Qa:JQ}' me (2{(nﬁ;9} ) 1]

11/6
(%) Op(n™'?) + Varexp {_(a —u.)’ } T [(O‘ _Nu*)2]

20, 2 NUx

X

(? Op(n™3) + 0,(n*12-1-nj2 - n~11%) = 0, (n~%/3). (S.229)
In the derivations above, (i) follows from Lemma (vii) and (viii); (ii) follows from the fact
that [1 4+ O, (n_3/2)]_"/2 = 1+ O,(n~"?) and the definitions of u, and @,; (iii) follows from
the triangle inequality; (iv) follows from Lemma (v), (vi), and the fact that a € [0,n!/9],
hence (a — u,)%/(2v,) < n'/?, and the inequality 0 < = —log(1 + x) < z'/6 for all > 0; (v)
follows from the inequality e* — 1 < 2z for z € (0,1) and for sufficiently large n; (vi) follows
from a comparison of orders.

On the other hand, if we replace v, with v, then Part (vii) of Lemma implies that
(5* — v*)/v* = Op(n_l) as n — oo in P(Ugyao)—probabﬂity. Therefore, uniformly for all a €
[0, n1/6], as n — oo in P(Ugﬂo)—probability,

(a — u)?- Oy(nY)
o (14 Op(n 1))

(o — us)? (Vs — V) B
Ve Use

< 0y 1Y) = Oy (n~2%),

and hence by |e” — 1] < 2|z for all |z| < 1/2,

Voo e {2

QU 204

_ aexp{__@l;;?ﬁg} exp{-_@l—-uﬁgﬁh-—v*)}__l

2V, Vs
N2
< aexp{—(a 5 us) } )
Vx

(0 — ) (Ts — v4)

Vi Use

<0, (n1/12 1. n_2/3) = 0,(n"1?). (S.230)
We combine ([S.229)) and ([S.230)) with the triangle inequality to conclude that uniformly for all
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€ [0,n/6], as n — oo in P52 a0)-Probability,

exp {Z*(a)} — Vaexp {_(a;@u*)z}‘ < 0,(n793%) + 0,(n~Y?) < 0,(n~°/3%). (S.231)

As a result, we have that there exists a constant C; > 0 such that as n — oo in P(
probability,

§,0)”

N, < Cyin /36 / 7(fole)m(a)de — 0. (S.232)
0

For NQ, since (A1 Az — A3)/A; >0 asn — oo in P(Jg,ao)—probability, we have that

Ny = /n jﬁ exp {E*(a)} 7(fole)m(a)da

/oo [(A1A5 — A3)/A1]"2\ /5 (1 — em2e/m)
= nl/6 (Ale—Qa/n _ 2A2e—a/n + Ag)n/2

/ > (A ds — AD)/AV2\ [ (1= e2em) (fola)m(a)d
5 T(boja)T(a)da

v {Al (1= emarm) — Az A?} (A A5 — Ag)/Al} "

< /:(, \/WW(HOM)W(a)da

< / h Var(fola)r(a)da — 0, (5.233)
1/6

m(0p|a)m(a)de

asn — oo in P(U a0)” -probability according to Assumption since K < 1/6.
For N3, similarly we have that as n — oo in P(Ug’ao)—probability,

Vo= [ vaew {”g“z} (6ol (a)da

oo
< / Var(Gpla)m(a)da — 0. (S.234)
nl/6
Hence, ([S.226|) follows by combining ((S.232)), (S.233]), and (S.234)) using the triangle inequality.

Proof of the lower boundedness of [;* exp {Z* (a)} 7(0p|a)m(a)da:

We first derive a lower bound for D. By Lemma (v), |ux| < Cs for some constant Cs > 0
as n — 00 in Pg2 oy-probability. By Lemma [S.34] (vi), v. > Cp for some constant Cs > 0 as
n — 00 in P,z . )-probability. By Assumptions|(A.2) and [(A.4)l infep 2 7(6o|a)7 (o) > C7 >
0 for some constant C7. This implies that there exists a constant Cg > 0, such that

D> /12 Vaexp {—W} 7(0oa)m(a)da > Cy /12exp {—W} da

204 20

2 2
> C7/ exp {—(Q;CCS)} da =Cs >0, (S.235)
1 6

as n — 00 in P2 ,)-probability.

Now given the convergence in ([S.226), we have that as n — oo in Fi,2 ,.)-probability,

05,20)”
/Oooexp{z*(a)} m(0ola)m do‘_/ \/anp{ (;ﬁ}ﬂwo‘a)ﬂ(a)da
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This and (S.235]) together imply that
0 ~
/ exp {ﬁ*(a)} m(Oo|a)m(a)da
0

/000 exp {Z*(a)} 7(Op|la)m(a)da — /000 Vaexp {_(a;:,f} 7(Op|a)m(a)da
> Cg/2, (S.236)

>D -

as n — oo in P((7 a0)” -probability, which proves the lower boundedness.
We note that as stated at the beginning of this proof, proving the convergence in ([S.227)) and

the lower boundedness of [ exp {Z* (a)} 7(a)da follows exactly the same procedure as proving

(S.226) and the lower boundedness of [ exp {Z*(a)} 7(0p|a)m(a)de under Assumption |[(A.47)]
and is therefore omitted.

Proof of (S.228)):

Based on the definitions of 7(a|Y;) and 7, («|Y},), by Lemma the convergence in (|S.228)
holds true if the following relation holds as n — oo, in P(a(z)’ao)—probability,

Jo ‘eXp {Z*(a)} —Vaexp {—%H m(Oo|a)m(ov)dex
fo aexp{ %}da

which follows from (S.226]) and (S.235[). Hence the proof for Lemma is complete. O

— 0, (S.237)

Proof of Theorem [2.6]

Proof of Theorem[2.6., We first prove the convergence in . The proof follows the same
process in the proof of Theorem with some differences due to the new Assumption
The conclusion of Theorem is proved by showing (S.173) and (S.174). We show them
respectively under the new Assumption We notice that since p = 0 in Theorem

n—p=mnin (S.173) and (S.174]).
Proof of ((S.173)):

Using the same notation as in the proof of Theorem we define N1, No, N3, and D as in
and . The first step of showing Ni/D — 0 is exactly the same as in the proof
of Theorem since this step only relies on Assumptions |(A.2)| and |(A.3), which are both
assumed in Theorem as well. The main differences lie in the next two steps of showing
Ng/D—>Oand N3/D—)O.

Proof of N3/ D — 0:
Using the upper bound of Ng in (S.183)), together with the definition of D in (S.177)), we
have that

Ny _ 25 e n(a)da + BHE [t ool I (fofa)m(a)da
b~ PoAT [ ebnlo™ o m(fola)m(a)da
\/ﬁfog” exp {E* o }7[‘ a)da Qfog" exp {Z*(a)}ﬂ(ﬁgm)ﬂ(a)da

= — = , S.238
Qgﬁfooo exp {E* (a)}ﬂ(00|a)7r(a)da fooo exp {E*(a)}w(90|a)7r(a)da ( )

where £, () is the normalized log profile likelihood defined in (S.225).
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We now show the first term in (S.238) converges to zero in probability. For the numerator,
by the definition of £, («), since (A; Az — A2)/A; > 0 asn — oo in P42 o)-Probability, we have
that

\/ﬁ/% exp { L.(a) }r(e)da

_m / (A Az — A3) /A2 n
- Ale—Qa/n — 2496~ a/n + A3)n/2

_ f/n [(A1 43 — 142)/Al]n/2 w2 g(l — e 20/M)r(a)da
41 (1ot - g Aa)  (Audy — A4y

<\F/” 1/ e=20/n)

<m /O Jar(a)da, (5.239)

(1 — e 20/7)7(a)da

where in the last step, the first ratio in the integral is less than 1 and we have used 1 —e™* < z
for all z > 0. By in Assumption |[(A.4’), we have that this upper bound goes to zero as
n — oo. Therefore, \/n fog" exp {E }7r )Jda — 0 as n — oo in P( -probability. Since

a§,a0)”

the denominator o/ [, exp {Z* )} (6o|a)m(a)de is lower bounded by positive constant in

P o2, ag)~Probability according to Lemma (in (S.236))), we have that the first term in ([S.238)
a

converges to zero as n — oo in P(Ug’ao)—pro bility.
We then show the second term in (S.238|) converges to zero in probability. For the numerator,
similar to (S.239)), we have that

«

/ " exp { L. (a) }r(00]a) m(a)dor < / S (Bla)r(a)da
0 0

which converges to zero as n — oo since a,, — 0 as n — 0o and [;° v/ar(6o|a)m(e)da is finite
according to Assumption Therefore, with the lower bounded denominator, the second
term in also converges to zero as m — oo in P(g .ap)-Probability. This together with
(S-239) has shown that No/D — 0 as n — oo in P62 ap)-Probability.

Proof of N3/ D — 0: Using the upper bound of N3 in (S.188]), together with the definition of D
in (S.177)), we have that

N3 _ 2f°° Ln (o )w(a)da+ 400f foo O A7 (fo|a)m(a)da

D~ 29°‘f o ebnle - 9% 7(0p|)m(a)da

_ vn eXpN{/J* @) }r(a)da N 2 [ exp {NZ*<CV>}7F(90|OJ)7T(OJ)dOé
Oo/7 [, exp {E*(a)}ﬂ(%]a)w(a)da [ exp { L.(@) }r(Bola)m(a)da

For both terms in the denominators are lower bounded by p081t1ve constants in P,z )
probability by Lemma 5l Using the same derivation as in , the numerator in the first
term of ([S.240)) can be upper bounded by

(S.240)

f exp{ﬁ ) (e da<f/ Var(a)da

which converges to zero as n — oo by in Assumption |(A.4’)l The numerator in the second
term of (S.240) also converges to zero since @, — 00 as n — oo and [;° /am(bo|a)m(a)da
is finite according to Assumption |[(A.4")l Therefore, it follows that N3/D — 0 as n — oo in
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P -probability. Thus, the convergence in ({S.173)) happens as n — oo in P(ngao)—probability.

0’87050)

Proof of (S.174)):
Compared to the proof of (S.174)) in the proof of Theorem the upper bounds in (S.192))

and ([S.193)) still hold. We only need to show the convergence in ([S.194)) and (5.195) using the
new Assumption In particular, using the definition of £,(«) in (S.225]), we have

| #alvida = Jo oxp {L(e) }m(ola)m(a)da
0 " I exp { Lo (@) (fola)m(a)da

which converges to zero in P Ugvao)—probability as already shown above in the proof of N/ D — 0.
Similarly, faoz 7(a|Y,)da — 0 in P(Ugyao)—probability as shown in the proof of N3/D — 0.
Therefore, the convergence in ([S.174)) happens as n — co in P(U&ao)—probability. This completes
the proof of the convergence in .

For the proof of the convergence in (26]), we notice that
n(0—0ag)> n(0—0ag)?
\/ﬁ R . \/ﬁ a0 .

F(alY;) —
/0 /RQ\/EGOQ Tal¥n) = 5 g

= / |T(|Yy) — me(a]Yy,)| dae — 0,
0

-7y (a]Yy,)| dfda

as n — oo in P(Ug7a0)—pr0bability, by (S.228|) of Lemma Then follows from and

the triangle inequality. O

S5.2 Proof of Corollary
Proof of Corollary[2.7 Recall that for Case (ii) in Section of the main text, we observe

the 1-dimensional Ornstein-Uhlenbeck process with a constant regression term m;(-) = 1, so
Y () =Bo+ X(-) ~ GP(0,02K,,,) on the grid s; = i/n, for i = 1,...,n, where 3 denotes the
n—1 n
true mean parameter. In Corollary we have defined By = > /"5 Y (s;), Ba = >, Y(5i),
and Al, AQ, A3 as in " » B
We briefly explain the derivation of the expressions for 6, and L, (a) in Corollary With
M,, = 1,, using the expression of R, in Section it follows that

(n—2) (1 —e /") 42
14 e-a/n

By — Bje=@/n
14 e-a/n

M, Ry My, = . M RG'Y, =

We then plug in these formulas to the expression of 0o in and Zn(a) in with Qg = 0pxp
to obtain the expressions for 5,1 and Zn(a) in Corollary We notice that the profile restricted
log-likelihood £, () is defined up to an additive constant.

Similarly, we obtain the normal conditional posterior of § in of the main text, by
plugging the formulas above to the conditional posterior of 5 in of the main text. The con-
vergence in total variation norm of follows directly from Theorem under Assumptions
(A1} [(A-2)}[(A.3)} and [(A.4)}

Next, we prove that the posterior of g is inconsistent for Fy. We already know that the
conditional posterior of 3 is given by 8|Yy, 0, ~ N (pn, v,), where

By — Bie™®/" 0 (1+ e_a/”)
n = ) /Un - .
o = = 2) (1 —eo/m) 1 2 [(n—2)1—eo/m)+2]a
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Let ®(z) = [* —L_¢=#"/2dz be the standard normal cumulative distribution function. For a
00 2

given ¢y > 0 whose value will be chosen later, using the mean value theorem, we have that

H(|B_/BO‘ > €0|Yn,0,a) - 1_H(|B_/BO| S 60|Yn,9,01)
_ Pot+eo—pn\ o (Bo—€ —pn
‘1‘{‘D< Vo ) q)< NG >}

1 2¢0 o 77
= _— X —_—
V2T, P 2up,
260
>1— :
- V2T,
for some value z1 € [By — €0 — pin, Bo + €0 — pn], where the inequality follows from the bound
exp (—21/(2v,)) < 1.
Let £9 = {a € [a,,, @n]}. Then under Assumptions |[(A.1)H(A.4)l Theorem implies that

(H( €1, — I g\Yn)‘ 5 0as 1 — oo almost surely Py, 2 o). (5194) and (S195) in the
proof of Theorem imply that II(£§|Y,) — 0 as n — oo almost surely P(,Bo,ag,oco)' Therefore,

(S.241)

II(€5 [Yn) — 0 as n — oo almost surely Pg, ;2 ). This implies that given any n € (0,1/4), any
d € (0,1/4), there exist two numbers 0 < oy < a2 < oo and a sufficiently large integer Ni, > 0
(a1, g, N{, are dependent on 7, 0), such that for all n > Ny, Pr (II(AS,, | Ya) <6/2) > 1—-n/2,
where we let A3, = {a € [a1, az]}.

We find the limit of v,. For the a1, as above, it is clear that using Taylor series expansion
for e™*, we have that as n — oo,

sup  n|l— e~/ — a/n| = 0. (S.242)

a€lar,as]

Therefore, for a given 8 > 0, as n — oo,

20 ‘
sup (v, — ——| — 0. (S.243)
a€lor,az] " a(a + 2)
(S.241) and (S.243)) imply that by choosing Nj, to be large, for all n > N7, on the event As,,
Up > m, such that

1_‘[(|18 - 50| > €0|Yn707a)

2¢€0 2¢p [aa(ag +2)
>l-—>1-— =1-2 —_ - S.244
n V27T/Un 27 - €0 77'9 ( )

7 =
20(a+2)

Let Agy = {|6— 6| < n~1/21og? n}. Under Assumptions |(A.1){(A.4)| Theorem [2.3/and Lemma

5.10) imply that II(Af, [Y) — 0 as n — oo almost surely Fg ;2 o). In other words, for any
small 7 € (0,1/4), any small § € (0,1/4), there exists a large integer Nj;, such that for all
n > Ni,, Pr(II(A4, |Y,) < §/2) > 1 —n/2. Therefore, together with Pr (II(AS,, | Y,) <§/2) >
1—n/2 for all n > N7, we have that Pr(II(AS, U A%, |Y;,) < d) > 1—nfor all n > max(N{,, Ni;),
which implies that II(As, N A4y, |Y) > 1 — 0 happens with P(Boﬂ(z)’ao)—probability at least 1 — 7
for all n > max(Nj,, N7;). On the event II(As, N Ay, |Yy,) > 1 — 6 for all n > max (N7, Niy),

(|8 = Bol > €0|Yn) = Emag,daly;) IL(8 — Bol > €0|Yn, 0, )]
= Enas,da|y;,) (18 — Bol > €0|Yn, 0, @) - Z(Aszn N Asp)]
+ EH(dQ,da\Yn) [H(‘B - /30’ > EO‘Y'M 0, Oé) ’ I( gn U‘Alcln)]

(@) az(ag + 2
> Er1(a0,dalv;) Hl — 2¢p 2;93/2)} - I(Asn, ﬂAzm)]
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209 (g + 2)

=< 1—2¢ 0

II( A3, N Ay, |Y5)

200(az + 2)

>(1—(5) 1 — 2¢g 0
0

, (S.245)

where Erj(g,daly,) denotes the posterior expectation with respect to (6, a); the inequality (i)

follows because 6 > 6y — n~2log?n > 6y/2 on the event Ay, for n > N/, and the second
expectation in the previous line is nonnegative.

On the right-hand side of ([S.245]), we can set § = 1/2 and ¢y = %, /Weg-m) (eo depends on

ay and hence depends on 1), such that (S.245)) leads to Pr(II(|8 — Bo| > €0]Yyn) > 1/4) >1—1n
for all n > max(N{, Ni;). The conclusion of Corollary [2.7|follows by taking €y = %, /Wegﬁ),
do = 1/4, and Ny = max(Nj,, Ni;).

S6 Proof of Theorems in Section [3

In this section, we present the proofs of Theorems -2 B3] and [3:4] in Section [3] of the

main text.

S6.1 Proof of and Theorem (3.1
Derivation of v, (s*;02, ) in (30):
Define b, (s*) = m(s*) — M,] R;'r,(s*). First we recall that

BlYs 0, o N (MBS My + 95) ™ MRS Yo, 0 (M By My +95) ™)

Given Y, the GP predictive distribution for Y (s*) is
Y ()Y, B, 02, 0 ~ N <§?(s*; B,a), o? [1 — ra(s*)TRglra(s*)D ,

where

(5% 8,0) = m(s) B+ ra(s”) TRZL (Vo — MoB) = ra(s7) RV + ba(s) 6.

Therefore, by the law of iterated expectation, we can integrate out § and obtain that
Y (s*)|Yy, 0%, a still follows a normal distribution, whose mean is

E {f/(s*)\Yn,U?, a} = EmymgzjaE {Y(s*)]Yn,ﬁ, 02, a} = Emymaz,a {?(s*; ﬁ,a)}
= ra(s") T RS Yy + bo(s*) T (M,] Ry M, + Q) ™ M, R;'Y,, (S.246)
and by the law of total variance, the variance of Y (s*)|Y,,, 02, o is
Var {}N/(s*)\Yn,a2,a}
= Vargyy, 2.0 { V(5" 8,0) } + Bgpy, 020 {VarlY (s)|Ys, 8,02, o]}
= 02ba(s*) T (M, RS M, + Q) ba(s*) + 02 [1 . ra(s*)TRglra(s*)} , (S.247)

which has proved .
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Proof of Theorem[3.1. The proof of Part (i) closely follow Theorem for a given o > 0, and
the proof of Part (ii) closely follow Theorem for the joint posterior of (6, «). The two proofs
are highly similar and we only show the proof of Part (ii) below, while the proof of Part (i)
follows similarly.

We first use the reparameterization § = o2a?" to replace o by 0. By the definition of
vn(s*;0%,a) in , we have the following decomposition of ratios:

vp(s0%,0)  vp(s0%a) ' Vn(s*;aao/a%’,a)

va(s%00/a, @) vy (500, /0%, q)  Vals'ibo/a®,a) ]

Using the formula for v,,(s*;02, ), we can see that for any s* € S\ Sy,

vn(s%; 0%, Q) o? 0
Vi (8*: 00y /02, Q) B Oy /% a7
Vn(s*;gao/ozm’,a) B gao/az” B 67%
vn(s*;:0p/a? ) 0o/ a?v 0o’

(S.248)

Recall that Lemma has proved that for the event £4(¢) = {|§a0 — 6| < €},
Pr {54(59071_1/2 log n)c} < 3exp(—4log?n)

for all sufficiently large n. Let & = {|0/0a, — 1| > n~/2logn}. Then by Theorem as
n — 00, almost surely P(ngao),

 n(0=8ag)?

(€ |Y,, —/OO/ \/ﬁe 05 . F(alY,)doda| — 0. S.249
(Es1Yn) o e 2700 (alYn) ( )

(For Part (i), we simply use Theorem [2.1]instead and replace I (€5 |Y;,) in (S.249) by I1 (€5 Yy, @)
and remove the integral over «, similarly for the rest of the proof.)
On the event £4(56gn~1/?1logn) N Es, for all sufficiently large n,

—-1/2

’0 — 5% > gaon

logn > (6 — 50on "2 logn)n"%logn > (6/2)n~"/?logn.

Using the normal tail inequality (S.151f), the integral in (S.249)) can be bounded by

_ n(0-0ag)?

/ / vn e Y .F(a|V,)d0do
0 Jes 2/l

7n(97§a0)2 o
< / ~ vn e Y df- / 7(a]Yy,)da
‘079a0|>970n*1/2 logn 2ﬁ90 0
< exp (— log? n/16) — 0, as n — oo. (S.250)

Therefore, by combining (S.248), (S.249) and (S.250) and noticing that £4(56pn~"/?logn, a)

happens almost surely P(ag,a o) a8 m — 00 by the Borel-Cantelli lemma, we have that

1I sup Y,
s*€S\Sn

:n( f Yn> =11 (€5 |Yn) = 0, as. P

2,a>

vin(s*; 5,10/042”, a)

*.
vn(s*; 0 1/2

— 1 >n"

logn

— —1 >n_1/210gn

O

(S.251)

0370‘0) :




The relation of ([S.248) and the almost sure convergence property of 54(5«9071_1/ 2logn) also
implies that

V(8% éao/am’, a)

-1
vn(s8*;00/a?, )

> 5n =12 logn‘Yn>

11 sup
s*€S\ Sn
Gy

(e

For n sufficiently large, we have 5n~1/2logn < 1/5. Hence, |§a0/¢90 —1] < 1/5 and gao/ﬂo <6/5
as n — oo almost surely P(a%,ao)' We combine (S.251]) and (S.252)) to obtain that

II sup Ya
s*€S\ Sn
vn(s*; 0%, a) Vi (s%; gao/aQV, a)

II sup — —1
(s*GS\Sn V(5% 009 /02, ) Va(s*;60/a?, a)

II{ sup V"(Sj; L)) | Vn(s™; 9~a0/0‘2ya @)
s*€S\Sn | | Vn(8%; 00, /02, @) vn(s*;6p/a?, @)
Vi (8% 9~a0/a2”, a)

-1/2) ‘Y
Vn(S*;HO/O‘ZVaO‘) }>7n osn n)

<II § sup Vn(sf;o'Q,a) —
9 5€8\Sn | V(8% 00 /02, )

Vi (8% gao /oz2”, a)

V(8% 00/a?”, a)

" > 5n /2 logn‘Yn> =0, as. P2 4 (5.252)

2

vn(s*; 0%, a)

] — 1‘ > 7n_1/2logn

v (8% 00/a®, a

-1/2

> Tn

logn

)

2

IN

-1

+ sup -1

s*€S\Sn

> 7”12 logn‘Yn>

2’ Oz)
Vi (8% 0a /%, @)
Vi (s%; 9~a0/a2”, )

vn(s*;60p/a? ;@)

vn(s*; 0

SH( sup —1

s*€S\Sn

> n /2 log n‘Yn>

-1

+1I sup
s*€S\Sn

> 5n 12 logn’Yn>

—>07 a.s. P(2 )

00,0

vn(si0%a) ;= 1‘ =16/600 — 1], this has also proved that

Since supg-es\ s, (5" 00/ @)

0
II ( — — 1‘ > 7n*1/210gn
to
This completes the proof. O
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S6.2 Proof of Theorems [3.2] and 3.3l
Proof of Theorem [3.2. Proof of Part (i):

First, we show the existence of the sequence ¢,(a). Since the two Gaussian measures
GP(0, (00/a?*)K,,) and GP(0,02K,,.) are equivalent, by Assumption [(A.5)] Equation (3.4)
in [Stein, [1990a] implies that there exists a positive sequence ¢1, () — 0 as n — oo, such that

E(O’(Q),Oéo) {en(s*; Oé)2} 1

sup — 1] < S6in(a@).
s2€8\ S | E(8o/a2v ) {en (5% )2} 27"
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Notice that for a small € € (0,1/2), |a/b — 1| < e implies that a/b > 1 — € and hence [b/a —1| <
la/b—1]/|a/b] < €/(1 —€) < 2¢. Therefore, for sufficiently large n, ¢1,(a) < 1/7 and

E 9y /02v o) {€n(s*; )}

—1
E(U(%,ao) {en(s*; a)2}

< Gpp(@). (S.254)

sup
s*€S\ Sn

Theorem 1 and Lemma 2 of [Stein, 1990b| further imply that there exists a positive sequence
Gon(a) = 0 as n — oo, such that

E(9y /a2 ) {en(s*; a)2}

-1
E(UgyaO) {en(s*; ao)Q}

< Gon(@). (S.255)

sup
s*€S\Sn

See our Lemma below for more details. Therefore, we can set ¢, () = max{i, (), son(a)}

and ¢, (o) — 0 as n — oo.
For abbreviation, let €2, (a) = max {8n"%/2logn,¢,(c) }. Then based on (S.254) and Theo-

rem we have that
Y, a>

E n(s*: 2
H( sup ) {en(s a)}_l
=11 sup Vn(s* ?9/04221;7 @) ) E0y/a2v a) {en(:‘*; a2)2}
$TES\Sn va(s*; 00/, @) E(a(z),ao) {en(s*; )%}

> 2€9y, ()

€5\ Sn E(g o) Len(s%a)?}

— 1| > 2¢9,, ()

Ya, oz)

E gy /02 a) {en(s50)?} | | viu(s*;0/02, a) '
(90/0! CV n ) )
<II sup — 1| > e (a)|Yy, o
(S*GS\Sn E(UO ) {en(s a)2} V”(S*;GO/OZQV’O{) 2 ( )}
E 2 ) {€ (s*;a)?}
(6o/a?v,@) \En

+1II sup — 1| > eop(a)|Y,,a | . S.256

<5*63\sn E3.00) {en(5% )2} s 850

The second term on the right-hand side of (S.256) is zero, due to (S.254) and ez, (a) > ¢ (a) >
Sin(a). In the first term on the right-hand side of (S.256)), using (S.254) and the fact that
Gin(a) < 1/7 for sufficiently large n, we have from (S.256|) that

E *. 2
! ( o {en(s 7a) } -1 Ynaa>

sup
Y., a)

€8\ 8n | E(02,a0) {En(s%50)%}
*, 2v
§H< sup vn(s%;0/0™, a) —1’>7n_1/210gn

> 262n(a)

n *. 0 2v
<II|{ sup v (S*’ /a2,a) —1’>762n(05)
s*eS\ Sy | Vn(s8%60/a? ) 8

Y, — 0, as. P
$ES\ Sn Vn(S*;HO/OJQV,(X) naOé) , a.8 (0,(2)’&0)7

following the result of TheoremPart (i). This has proved the first convergence in Theorem
Part (i). The proof of the second Convergence in Theorem- 3.2| Part (i) is similar, by instead using
S.255)) and replacing all E( (02,00) {en s* a) } in the display above by E(U o) {en s* ao)z}.

Proof of Part (ii):

Let €3, = max(8n~"/2logn,s,). Let & = {a € [a,,,@n]}. By Assumption for all
sufficiently large n, on the event &y,

sup B /a2 ) {e" (s7; O‘)Q}

-1 S Sn < 1/7,
#€5\8n | B(o2,a0) {n(s*; )%}
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E(9y/a2v ) {en(s*; a)Q}

-1
E(Ug,ao) {en(g*; a0)2}

sup
s*€S\Sn

Therefore, we have that

- ( E20) {en(s"0)°} )

< g, < 1/7.
sup

Yn
s*€S\Sn E(Ug,ao) {€n(8*; O‘)Z} )

_— sup Vn(g:; 9/a22”, ) ‘ E(9o/a2" a) {en(*s*; 022}
s*€S\Sn va(s*;00/a®, a) E(o(z),ao) {en(s*;a)?}

> 2€e3n, &g

-1

> 2e3p, &g )Yn>

<II| sup Egy/a2+.a) {en(s%0)°} . va(s";60/0%, @) - 1‘ > €3n,E9 Y,
B s*€S\ Sy E(o’%,ao) {en(s*; 04)2} Vn(S*; HO/CYZV’ Oé) ’
E(g. /a2 o) 1€n (5% a)?
+1I sup (90/2’){ (* 2)}—1 > €3n,E9 |Yn
s*€S\ Sn E(O’%,Ozo) {en(s ;a) }
*. 2v
<II sup (s 0/0™,0) 1> 7 ?logn, &y |Y,
s*€S\ Sn VW(S*;GO/OﬂyaO‘)
Eg jo2v o) {en(s*;0)?
+1II| sup 00/ ) { (* 2)}—1 > 6ny E9 | Yo
s€85\Sn | E(o2,a0) {en(s% )%}
vn(s*;0/0?, a) _1/9
<II (s*es}sll\)s T e 1| > 7 Y2lognlY, | = 0, a.s. Plo2 a0 (S.257)
where the last convergence follows from Theorem [3.1) Part (ii).
On the other hand, for the event £F, Theorem implies that for the event
E(y2. o) {en(s*; a)?
E10 = sup (o, ){ ( " )2} — 1| > max (16n*1/2logn,2§n> né&s,
s*€S\Sn E(O‘g,a()) {en(s ;a) }
as n — 00, almost surely P2 ),
\/ﬁ 7n(075<210)2
II(E10 |Yn —/ e 0 .7 (a]Y,)dOda| — 0. S.258
@0l - [ 337 (0l%,) (5.258)

But from (S.194)) and (S.195)) in the proof of Theorem it follows that as n — oo, almost
surely P(

0'(2),06())7

\/ﬁ _ "(9—§a0)2

/ e W .F(a|Y,)d0da < / #(a|Ys)d0da — 0. (8.259)
£10 2v/700o €5

Therefore, ([S.258) and (S.259) imply that IT (€10 [Yn) — 0 almost surely P,z ) asn — oo. The

first convergence in Theorem [3.2| Part (ii) follows by combining this with (S.257). The second
convergence in Theorem Part (ii) follows from the similar argument as above by replacing

all B2 o) {en(s*; @)%} by (2 o) {€n(s"5 00)?} 0

Define KL(Py, P,) = [log(dP;/dP,)dP; to be the Kullback-Leibler divergence between two
measures P; and P, where dP; /dP, is the Radon-Nickdym derivative of P; with respect to Ps.
For two mean zero Gaussian processes with Matérn covariance functions UZ-ZK%V (1=1,2), let
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P((:g ai) be the joint Gaussian distribution of the observations X (s1), ..., X(sy). Then one can

show that 2R )
(n) m y_1 Oyfay| 01
KL <P(01,a1)’ P(”%:OQ)) 2 {log |02 Ra, | n o3 tr (o, Ral)} '
For d € {1,2,3}, let us consider two equivalent Gaussian measures with Matérn covariance

functions 03 K, and 02K, ., such that o3a3” = 0y = o2a?. Let

(n) (n) () pn)
rn(a) = KL (P(%’ao),P( )) + KL (P( ’a),P(%’aOQ
_ a2y tr (R Ray) + o (Ra1R,) (S.260)
20 21/ a T 202V ap "t - :

Then due to the equivalence, for any given a > 0, under Assumption |(A.5)| that S,, is dense
in S = [0,7]% as n — oo, the sequence {r,(a)}°; is increasing with n to a ﬁmte limit r(a) =
limy, o0 () ([Ibragimov and Rozanovl [1978]), which satisfies r(a) = KL(P(U a0)r Plo2a)) +

), where KL(F(g2 o), Po2,0)) and KL(P(52 4); P2 o)) are the limits of

KL(P(p2 0): P2 g
KL(P(n) ) ) and KL( ((02) 0)’ P((nz) ) as n — oo (|Kullback et al., |[1987]); see Section 3
5 95

(02,00) ~ (02,0)
of [Stein, 1990b].

The following lemma is a result from [Stein, 1990b].

Lemma S.36. Suppose that d € {1,2,3}, v € RT, and Assumption holds. Consider two
mean zero Gaussian processes with Matérn covariance functions U%Kao,,, and JQKQ,Z,, where
020l = 0y = o%a® and o > 0 is given. If 1,(+) is defined as in and r(a) =
limy, o0 Tn(¥), then as n — oo,

)

7a0)

E en(s*:a)?
sup (037040){ ( )2 } — 1| <2v/r(a) — rp(a) — 0, (S.261)
seS\ Sy | Bo2,a){en(s%; )2}
E n(5%; Q)2
wp | Berale (s* @) 2} 1| < 4yr{@) —1fa) — 0. (S.262)
s*€S\Sn E(Jg,ao){en(s ;Oéo) }

Proof of Lemma[5.36. Using similar notation to [Stein| [1990Db], we let

E2a n(s*; ) Ee n )2
an(s*;a) _ (03, 0){6 (S 05) 2} _, Ein(s*; O{) _ {8 s* Ozo } Y

E(U&ao){en(s*;o‘o) f E(a2,a {en(s*;0)?}

E n *, 2 » E 2 . *; 2
bn(s*;a) — (027‘)‘){6 (S ,CYO) } B 17 bn(s*;a) _ ( 37 0){6 (8 Od } 1

E(s2 q) {en(s*; oz)z}

In |[Stein), 1990b], their Theorem 1, Lemma 2 and the analysis in Section 3 imply that for every
given o > 0, as n — 00,

E(U(Q)QO) {en(s*; a0)2}

0< sup [bn(s*; @) + by (s*; oz)} < 2[r(a) — rp(a@)], (S.263)
s*€S\ Sn

sup  |ba(s™; )| < VA[r(a) — rp(a)] max{1, 4[r(a) — rp ()]} < 2\/ —rp(a), (S.264)

s*€S\ Sn

and similarly  sup ‘gn(s*;oz)‘ <2¢/r(a) —rp(a), (S.265)
s*€S\Sn

where (i) follows because r,(«) increases to r(a) as n — oco. Therefore, (S.261)) follows from

(S-265) and the definition of by, (s*; ).

Using the relation

[1+ an(s™s )] [1+ (s 0)] = [1+ ba(s%50)] |14 Ba(s"0)|
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and the fact that a,(s*;a) > 0, we can obtain that

sup  an(s*;a) < sup [bn(s*;a) —I—En(s*;a) + bn(s*;a)bn(s*;a)]

S*ES\Sn S*ES\Sn
< sup |ba(s0) +ha(si0)| + sup  [bals"a)ba(s"s )|
S*ES\Sn S*ES\Sn
(4)
< 2[r(a) — 1a()] + 4[r(@) — a(a)]
<6[r(a) —rp(a)], (S.266)

where (i) follows from ([S.263]), (S.264]) and (S.265).

On the other hand, by the definition of a,(s*; @) and by (s*; @), we have

Sup E(UQ,a){en(S*; a)2} 1l = an(s™;a) +1 _1
s*€S\ Sn E(gg,ao){en(s*;a0)2} s*eS\Sn | 1 +gn(s*;a)
“ ) — bp(s*a)| (@) 3 3 ~
= sup an(s ’al n(s% @) < - sup ap(sa)+ = sup bn(s*;a)‘
S ES\ S 1+ bp(s*; ) 2 s es\ 80 2 ¢ e5\ 8,

(id)
< 9r(a) — rp(a)] + 3v/r(a) — rp()
(i

§) 4/r(a) — 1y (@),

where (i) follows from that a,(s*;a) > 0 and for all sufficiently large n, r(a) — (o) < 1/81
so |bn(s*; )| < 1/3 by (S.265)); (ii) follows from (S.265) and (S.266); and (iii) follows from
r(a) —rp(a) < 1/9 as n — oco. This has proved (S.262)). O

Proof of Theorem[3.3. We verify Assumption [(A.6)| for this special case. We can calculate that

r,(a) = Lt (Ry'Ray) + % tr (Ry Ra) — 1

2(10
_a | n (n —1)ae= /M (e=@/" — g=0/m)
2000 oo 1 —e2a/n
ap (n — 1)ag e~ @0/ (e=0/n — g=a/)
— — 2
+ 20 nt [e% 1— e—2a0/n n (S 67)
The Taylor series expansion of the first term in (S.267) over all « € [a,,, @,] gives
a |, n (n—1)a e_a/"(e_a/” — e_o‘o/”)
20 () 1 —e2a/n
n  (a—a)(a+ag+2)  (ad —a?)(ag+3)
=-+ +
2 4oy 12a0n
(a? — ad)(ad + dag — a?) 1
— . 2
+ 1Bagn? +0 7 (S.268)

The order of the remainder is at most O(n_5/ 2) since @, < n%9% and a, = n—0-05,
By symmetry, for the second term in (S.267)), we have

Qg (n — 1)ag e~/ (e=0/n _ g=a/n)
2 |" a 1 — e 2a0/n
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n  (ag—a)a+ag+2)  (a?—ad)(a+3)

2 4o 12an
(@ —a?)(a? + 4a — ad) 1
— . S.269
+ 48an? +0 nd/2 ( )
Therefore, ([S.267)), (S.268)), and (S.269)) together imply that
(a—ap)?(a+ag+2) (a—ag)(a+a)
r,(a) = -
daayg 4aagn
N2 3
(e —ag)*(a+ ap) Lo 1 7
48aayn? nb/2
and
_ _ (a—ag)*(a+ag+2)
r(a) = nh_)ngO r,(a) = T .
Therefore, uniformly over all « € [a,, @],
(@ —ap)*(a+ap) (a—ag)(a+ap)? 1
_ = o|—=|. S.270
r(@) —ta(e) daagn + 48aagn? * nb/2 ( )

By (S.261)) in Lemma and the uniformity over all « € [a,,, @, ], we obtain that for sufficiently
large n,

sup sup
a€la,,,an] s*€S\ Sn

E(a%,ao){en(s*;a)2} 1 ?
E(Oo/az”,a) {en(s*; 05)2}

a— 204 (6%
< sup Af(a)—rp(a)] < sup X0 (aFao)

Oée[gn,an} ae[@yﬂa’ﬂ] noag
< s 2(a+ ap) . <a N ap 2> < 2(a, + o) ~max{(an_ 040)27 (o, — 040)2}
a€la,, ,0in] n Qo @ n QnQQ a,Qq
3, max (a—", %) = B
< ag’ < 3n—1an <an + aU) < 4n2m+5—1. (8.271)
n Qg a,

Since E(Uaao){en(s*; )’} > E(Qo/a2u’a){€n(8*; @)?}, it follows from that
E(Oo/a2”,a){€n(8*;a)2} _
E (52 ) {en(5750)?}
E(Ug’ao){en(s*; Q)Q}/E(go/a2u7a){€n($*;a)2} -1
= sup sup
a€la, @] s €S\ Sn E(Ug’ao){en(s*; a)2}/E(90/a2u7a){en(s*; @)%}

E(U%,ao){en(s*;a)2} 1
E g0 /02v a) {en(s*; a)2}

sup sup
a€la,,,an] s*€S\ Sn

a€la,,,an) s*€S\ S
< op(Fta/2)-1/2,

< sup sup [

(S.272)
From ([S.262)) in Lemma we obtain that for sufficiently large n,

2
E 9y /a2 0) {€n(s*; @)?}

E(U(2)7a0) {en(s*; 040)2}

sup sup
a€la,,,an] s*€S\ Sn

-1
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_ 2
< sup 5(a OZ[)) (a - ao) < sup M . <a + X 2>
ae[ﬁnvan} naao OZE[Qn,an} n ao @
— __ -~ Qn  QQ
S 5(0471 + CVO) . max { (ani_ 040)2, (gn - 040)2 } S 60£n max (ao’ Q ) S 7n2ﬁ+§—1'
n QnQo a,Qp n
Therefore, for sufficiently large n,
E . *; 2 -
sup sup (6o/a? ,a){enﬁs Oéi } —1| < gn(Fte/2)-1/2 (S.273)
a€la,,,an] s*€S\ Sn E(gg,ao) {en(s ; CM()) }

Based on (S.272) and (S.273)), we conclude that Assumption |(A.6)| is satisfied with ¢, =

3n~Y/2+(E+5/2) - Therefore, the posterior convergence rates of asymptotic efficiency in Theo-
rem [3.2| become max (1671_1/2 logn,26,) = 6n~1/2+(F+5/2) 45 n — co. This completes the proof
of Theorem [3.3] O]

S6.3 Proof of Theorem [3.4]

We introduce some concepts from scattered data approximation. For technical details, we
refer the readers to the book [Wendland, |2005]. For a generic kernel function K(-,-) on S, we
define the power function (Chapter 11 of [Wendland, [2005]) as

1/2
P(s: K,Sy,) = {K(s, 5) — K(Sn,s)TK(Sn,Sn)’lK(Sn,s)} , foranyseS,  (S.274)

where S,, = {s1,...,50}, K(Sn,s) = (K(s1,5),...,K(sn,5))", and K(S,,S,) is the n x n
covariance matrix with entries { K(Sy,Sn)}ij = K(ss,5;5) for 4,5 = 1,...,n. The power function
Pk s, (s) plays an important role in error estimates of kriging interpolation. We cite the following
results from [Wendland, [2005]:

Lemma S.37. ([Wendland, 2005] Theorem 11.4) For any f € Hy, let fr, = (f(s1),..., f(sa))".
Then

£(5) = 1K (S0,S0) T K (S0,8)| < Il PUsi K, ), for any s €S

Proof of Theorem[3.. By Assumption and Lemma |mjl%,,, is finite for any
(0%2,a) e RT xRt and for all j =1,...,p.

Define m;,, = (m;(s1),...,m;(s,))", for j = 1,...,p. Then Lemma shows that for any
a>0,any se Sandeach j=1,...,p,

[ (s) — ra(s) T Ry 'y < \\mjwwa(%/a%)mwp(s; (00/0) Ko, S1)- (5.275)

Therefore, using the definition of b, (s) in ., for any s* € S\ Sy,

p
— 2
ba( Z |m] — ra )TRalmj’n‘
p
P(s"; (60/0™ ) Ko Sn)* D mjl30, o (S.276)
i=1 ’

85



By the inequality (B.4) and the subsequent argument in the proof of Theorem 2 in [Wang et al.,
2019], for any « > 0,

. T -1 > . T _
Amin <Mn Ra Mn) = IQ{I,.TS%I\:;D Amin (MI MZ) /p A(Mmp)' (8277)

Therefore, using the reparameterization § = o2a?” and the definition of v, (s*; 02, ) in ,
we can combine (S.276)) and (S.277) and obtain that for any (02,a) € Rt x R*,

va(s* 02, a)
= o2 {1 - ra(s*)TRglra(s*)} +0%ba ()T (M R M, + Q5) ba(s")
0 0 O

< ?P(s*; (00/0* VKb, Sn)? + —— -
0

-1
i . Tp—1 *\ T *
Jo o din (Mn R Mn) ba(5) Tba(s")

4 *, 2v 2 1 90 P 2
< %P(s s (0o/a™ ) Koy, Sn) {A(Mn,p) az,,z;||mj||ﬂ(90/azymw +1p. (S.278)
J:

Because S = [0, T]¢ is compact and convex with positive Lebesgue measure, and S,, is dense
in S by Assumption |(A.5)] Theorem 5.14 of [Wu and Schabackl 1993] has shown that for a
constant C\ 1 > 0 that depends on 03, o, v,d, T and for all sufficiently large n,

sup P(s*; 00 Kog ., Sn) < Cyah%, . (S.279)
s*eS

Therefore, the upper bound for v,(s*; 08, ) in the first convergence of Theorem in the
main text immediately follows from the upper bounds in (S.278) and (S.279)), by setting 6 = 6y
and a = ag:

sup v (s*; 08, a0) < Cyq [CmUSA(Mn,p)fl +1] h?gljl
s*eS

Now we turn to the second convergence in Theorem where (02, ) is randomly drawn

from the posterior distribution II(-|Y;,). We notice that Assumption [(A.6’)[can be equivalently
written as

P(s*: (0 QVKaVSn2
sup sup (87(0/a ) WV ) _

1| < G, (S.280)
a€la,,,an] s*€S\ Sn P(3*§ UgKOéo,lMSn)Q "

for a deterministic sequence ¢, — 0 as n — oo. It is trivial to see that if s* € &, then
P(s*;(0p/a®)Knr,Sn) = P(s*;08Kag vy Sn) = 0.

We recall from the proof of Theorem Part (ii) that &9 = {a € [a,,an]}, and that
Theorem and its proof implies that II(£§|Y,,) — 0 as n — oo almost surely Pl62,6)- This
implies that given any 7 € (0,1), any ¢ € (0, 1), there exist two numbers 0 < o < ag < oo and
a sufficiently large integer Nj, (a1, a2, Ni, are dependent on 7,4), such that for all n > Nj,,
Pr(Il(a € [a1,a2] | Yn) <1-4§/2) <n/2.

On the other hand, in the proof of Theorem has shown that II(|6/6p — 1| >
Tn~2logn | Y,) — 0 as n — oo almost surely in P(ag,ao)' This implies that for a sufficiently
large N1,, such that for all n > Nj, Pr(I1(|0/6y — 1| < Tn~'/?logn) <1 —§/2) < n/2. Define
the event

£y = {]6/00 — 1] <7 Ylogn, and a € [al,ag]} . (S.281)
Then for all n > N{, = max(Njy, N{3),

Pr (II(€5, |Y;) > )
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r (H(]G/Ho —1| > Y2logn, or a ¢ [a1, ) | Vy) > (5)
< Pr (H(|0/«90 1> logn | Y,) > §/2, or I(a ¢ a1, as] | V) > 5/2)

P
P
< Pr(11(|0/60 — 1| > Tn~?logn | ;) > 5/2) +Pr(I(a ¢ [, a9] | Yn) > 6/2)
g =, (S.282)

which can be equivalently written as Pr (II(£11]Y,) >1—0) >1—1n.
Therefore, we combine (S.278)), (S.279)), (S.280]), and the posterior convergence of 6 to 6
above together, and obtain that on the event £1, for all n > Nj,,

sup vi(s*;0°, @)
s*eS

p
1 9o

0 * v —
< - [sup P(s*; (6o/a? )Ka,uasn)2:| : {/\(Mn,p) 7 > I3 e, + 1}

0 s*eS j=1

< <1 + 7" /2 logn> . [(1 + &) sup P(s*;agKamy,Sn)Z}
s*eS

X | MM, Tt — 1 ; 1
MM S § (22) DIl *

0

(i7)

< (1470 10gn) (1+6,) C211%,
. 90 o 2u+d ) p )
A(Mnap) W max <Oéo) ; 1 62(007 Oéo) ]Zl Hmj||Wg+d/2 +1
(i)

< C’v,2 [CV,3CmA(Mn7p)_1 + 1] h?s‘l:“ (8283)

X )

where the inequality (i) follows from a; < o < ay on &£, the inequality , and the
relation between the RKHS norms of # g, a2k, and Hyz2g, , in Lemma (ii) follows
from (S.279) and the equivalence between the Matérn RKHS norm and the Sobolev norm in
Lemm in (iii), the constant Cyo > sup,s; (1+ Tn=Y2logn) (1 +¢,) C?,, which de-
pends on o3, ap,v,d,T, and Cy 3 = (6p/a3") max{ (ag/ao)2V+d , 1}02(00,a0)2, which depends
on 1,9, 0(2],040, v,d,T.

Finally, we combine and to conclude that for all n > Nj,,

Pr <H [SUP Vi (s*10%, @) < Cya [Cy 3CnA (M, p) " + 1] W
s*ES

Yn] >1—5)>1—17.

Setting N3 = N, completes the proof. O

S7 Additional Simulation Results for Universal Kriging Model
with Regression Terms

We present additional simulation results for the universal kriging model with regression

terms Y (s) = m(s) " By + X (s) for s € S, and X(-) ~ GP(0,03Ka, ). We consider three values

of the smoothness parameter v = 1/2, v = 1/4 and v = 3/2. We still set S = [0,1]¢ and S, to

be the regular grid as in Sectionfor d =1,2. For the d =1 case, we let m(s) = (1, s, 82, 53)—r
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for s € [0
and By =

2. 2v

,1] and By = (1,0.66,—1.5,1)". For d = 2, we let m(s) = (1,31,52,3%,5152,32 T
(1

2

,—1.5,-1.5,2,1,2)T for s = (s1,s9) € [0,1]2. The true covariance parameters are
=2for v =1/2,1/4,3/2. We impose the noninformative improper

prior (Bl0?, ) o< 1 on 3, corresponding to 23 = 0px,. The prior specification for (6, «) and
the posterior sampling and estimation procedures are all the same as in Section

For v = 1/2, we report the posterior means and variances of (0, a) from both the true
posterior distribution and the limiting posterior from Theorem as well as the W5 distance
between these two distributions in Tables and We have similar observation to Tables

and [2] for the model without regression terms in Section [4] of the main text. The marginal
posterior of 6 is close to the normal limiting distribution whose center is increasingly close to
0o = 2 with a shrinking variance as n increases. The marginal posterior of @ maintains a large

posterior variance. The approximation errors from the limiting marginal posterior distributions

of @ and « decrease as n increases. Figure illustrates the convergence of posterior densities
for the d = 1 case, which shows similar convergence to that in Figure [2]in the main text.

Table S.1: Parameter estimation and Wasserstein-2 distances between the true posterior and the limiting poste-

riors in Theorem for the model with v = 1/2, d = 1 and with regression terms m(:)' 8. E(-|Y;), Var(-|Y;),
E(:|Y), and Var(:|Ys) are the posterior means and variances under the true posterior, the limiting posterior in

Theorem [2.3] and the limiting posterior in Theorem [2.6] The true parameter values are 6y = 2 and ap = 1. All

numbers are averaged over 100 macro replications. The standard errors are in the parentheses.

d=1

n =25 n = 50 n = 100 n = 200 n = 400
E(0]Y,) | 2.7152 (0.0826)  2.3743 (0.0505)  2.2113 (0.0333) _ 2.0659 (0.0193)  2.0334 (0.0130)
Var(9]Y,) | 1.3074 (0.0800)  0.3269 (0.0143)  0.1162 (0.0036)  0.0465 (0.0009)  0.0214 (0.0003)
CE(6]Y.) | 1.9597 (0.0630)  2.0529 (0.0436)  2.0664 (0.0311)  1.9983 (0.0188)  2.0004 (0.0127)
Var(0]Y,) | 0.3204 (0.0007)  0.1604 (0.0003)  0.0802 (0.0002)  0.0399 (0.0001)  0.0200 (0.0000)
E(alY,) | 9.4697 (0.3697)  8.5853 (0.4230)  8.2324 (0.4578)  8.1480 (0.4035)  7.5458 (0.3547)
Var(a|Y,) | 67.3011 (4.6625) 46.8428 (4.0312) 39.2354 (3.5382) 36.8218 (2.9984) 31.6578 (2.4480)
" B(alY,) | 85783 (0.3278)  8.1409 (0.3872)  8.0208 (0.4350)  8.0678 (0.4043)  7.5148 (0.3569)
Var(alYs) | 56.5017 (4.0339) 42.9200 (3.6248) 37.2086 (3.3029) 35.9076 (2.9028) 31.5305 (2.4689)
=1 n=2 n=50 n=100 n=200 n—400
P 00812 03834  0.1672  0.0753 _ 0.0370
W (T@0Y). A (40]0a0 %2)) | (0'0360)  (0.0152) (0.0050) (0.0018) (0.0008)
_ 13446 07517 05161 04720  0.3998
Wa(ll(da|Yn), I(dalYs)) (0.0679) (0.0521) (0.0380) (0.0269)  (0.0203)

Table S.2: Parameter estimation and Wasserstein-2 distances between the true posterior and the limiting poste-
riors in Theorem for the model with v = 1/2, d = 2 and with regression terms m(:)" 8. E(-|Y,), Var(:|Y),
E(:|Y»), and \,/;r(|Yn) are the posterior means and variances under the true posterior and the limiting posterior
in Theorem @ The true parameter values are g = 2 and ap = 1. All numbers are averaged over 100 macro

replications. The standard errors are in the parentheses.

d=2 n = 107 n = 207 n = 307
E(0]Y,,) 2.0309 (0.0307)  2.0139 (0.0146)  1.9947 (0.0096)
Var(6]Ys) 0.0884 (0.0026)  0.0210 (0.0003)  0.0090 (0.0001)
I o1/ 7% 2.0223 (0.0320)  2.0099 (0.0146)  1.9927 (0.0097)
Var(6]Y,) 0.0800 (0.0001)  0.0200 (0.0000)  0.0089 (0.0000)
N 10 0 T 1.1007 (0.0179)  1.0905 (0.0197)  1.0981 (0.0252)
Var(a|Yy) 1.0745 (0.0441)  1.0086 (0.0352)  1.0276 (0.0578)
Eyn) | 1.1028 (0.0179)  1.0767 (0.0427) 1.0871 (0.0240)
Var(a|Yy) 1.0952 (0.0462)  1.0019 (0.0444) 1.0192 (0.0588)
W (H(d0|Yn),N @9‘5%, @)) 0.0595 (0.0215)  0.0167 (0.0055) 0.0086 (0.0025)
Wa(II(da|Yy), TI(da|Ys)) 0.1011 (0.0365) 0.1020 (0.0459)  0.0963 (0.0458)

Similar to Table[3]in Section [4of the main text, we further compute the asymptotic efficiency
measure for the model with regression terms, using the relative error of GP predictive variance
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n =50 n =100
3.0 3.0
25— -7 25
— —
\ +- —_— -
— —— ~ N\ =< —————— — —_——
D20 SO o D2 eSS e T T
r—_\—)— by PPV @r\‘—» S50 X
w === 77 7 — ple.al%) v = _re.aix,)
e B, 26%/n) x T . Py
= —— < N(6[Bq,,263/n) x Tat|X,) — — N(8I80,, 263/ 1) x Ti(a(|Xn)
1.0 — b 1.0 — b
0 10 20 30 0 10 20 30
a a
n =200 n =400

— (8, alX,)
— N(B]84,,262/n) x T{a(|X,)
— 8,

15 - n(evf“xn) 15
— N(8]84,,262/n) x T{a(|X,)
— 5,

Figure S.1: Contour plots of the true joint posterior density (0, a|Y;) (in red) and the limiting posterior density
N (0|64, 263 /1) x 7(a|Yy) (in blue) in Theorem for the 1-d Ornstein-Uhlenbeck process with sample size
n = 50,100, 200, 400 in the model with regression terms m(-)Tﬁ. The dashed line is the “ridge” REML ga (given
in @), the value of 6 that maximizes the joint likelihood for each given a. The true parameter values are 6y = 2
and ag = 1.

to the oracle predictive variance defined as

rn(s*) = ;

Vn(S*;U 7a)
vn(8%:03,00)

—1, (S.284)

over a large number of testing points s* from the Latin hypercube design, where v, (s*; 02, ) is
given in . We again use 1000 testing points in S = [0, 1] for the d = 1 case, and 2500 testing
points in S = [0,1]? for the d = 2 case. The posterior expectations of r,(s*) are reported in
Table We can see that for both d = 1 and d = 2 cases, the GP predictive variance based
on a randomly drawn (02, «) from the posterior has a decreasing relative error to the oracle
predictive variance as n increases.

Table S.3: The posterior means of the ratio of predictive variance defined in maximized over 2500 testing
points s* for the model with v = 1/2 and with regression terms m(-)" 8, averaged over 100 macro replications.
The standard errors are in the parentheses.

d=1 n=25 mn=50 mn=100 n=200 n=400
E [ max rn(s*)|Ya] 0.5452 0.3197 0.2055 0.1201 0.0795
s*eS* (0.0520)  (0.0245)  (0.0142) (0.0082)  (0.0055)
d=2 n=102 n=20° n=302
E [ max rn(s*)|Ya] 0.1458 0.0861 0.0696
s*eS* (0.0105)  (0.0054)  (0.0041)

For v = 1/4, we summarize the estimation and prediction results of in Tables and
m For v = 3/2, we summarize the results in Tables and All results are averaged
over 100 macro simulations. In particular, Tables [S.4] [S.7 and [S.§ provide the estimation
results for marginal posterior means, variances, and the W5 distance to the limiting distribution
for the parameters 6 and «, in d = 1 and d = 2 cases. Tables[S.6]and [S.9| provide the prediction
results for the asymptotic efficiency measure r,(s*) defined in .

Overall, the tables for v = 1/4 and v = 3/2 show similar trends as the tables for v = 1/2.
The marginal posterior distribution of # becomes concentrated around the true value 6y = 2
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as n increases in all cases, and the normal limiting distribution is accurate in approximation.
The marginal posterior of o does not converge to the true value g = 1 with a non-shrinking
variance. The asymptotic efficiency measure r,(s*) decreases quickly to zero as n increases for
all cases except the case of v = 3/2,d = 1, where r,(s*) seems to decrease slower with n.

Table S.4: Parameter estimation and Wasserstein-2 distances between the true posterior and the limiting poste-
riors in Theorem for the model with v = 1/4, d = 1 and with regression terms m(:)" 8. E(-|Y,,), Var(:|Yy),
E(-|Y»), and \//;1"(|Yn) are the posterior means and variances under the true posterior and the limiting posterior
in Theorem The true parameter values are g = 2 and ap = 1. All numbers are averaged over 100 macro
replications. The standard errors are in the parentheses.

d=1 n=25 n = 50 n = 100 n = 200 n = 400
E(0]Y,) | 2.5804 (0.0795)  2.3458 (0.0493)  2.2013 (0.0332)  2.0612 (0.0193)  2.0331 (0.0129)
Var(0]Y,,) | 1.0144 (0.0620)  0.3020 (0.0124)  0.1143 (0.0035)  0.0457 (0.0009)  0.0215 (0.0003)
E(0]Y,) | 1.9593 (0.0630)  2.0576 (0.0437)  2.0680 (0.0312)  1.9980 (0.0187)  2.0004 (0.0127)

— o~
— o~

( ( (
Var(0|Yy) 0.3204 (0.0007) 0.1604 (0.0003) 0.0802 (0.0002) 0.0399 (0.0001) 0.0200 (0.0000)
E(alY,) | 10.6603 (0.2895) 10.0808 (0.4566)  9.2320 (0.4538)  9.3252 (0.4351)  8.7252 (0.3941)
Var(alY,) | 96.3202 (4.4944)  78.058 (6.4254)  59.2596 (5.3221) 56.6530 (4.9028) 49.7329 (4.0853)
" B(alY,) | 9.8786 (0.2713)  9.6640 (0.4221)  8.9950 (0.4364)  9.2310 (0.4351)  8.7241 (0.3947)
%JI'(CMD/;L) 83.3761 (3.9361) 71.4120 (5.7540) 56.1845 (5.0395) 55.3350 (4.7184)  49.4396 (4.0132)
d=1 n =25 n =50 n=100 n=200 n =400
~ 202 0.8028 0.3450 0.1562 0.0709 0.0366
W (1a0Y). A (40]00. 52)) | (0'0201)  (0.0100) (0.0041) (0.0016) (0.0008)
1.4547 0.9177 0.6772 0.5813 0.5626
(0.0580)  (0.0667) (0.0403) (0.0336) (0.0287)

Wa(II(da|Yy,), I(da|Ya))

Table S.5: Parameter estimation and Wasserstein-2 distances between the true posterior and the limiting poste-
riors in Theorem for the model with v = 1/4, d = 2 and with regression terms m(:)" 8. E(-|Y;), Var(:|Yy),
E(:|Y»), and Var(:|Y,,) are the posterior means and variances under the true posterior and the limiting posterior
in Theorem The true parameter values are 6y = 2 and ap = 1. All numbers are averaged over 100 macro
replications. The standard errors are in the parentheses.

d=2 n = 107 n = 207 n = 307
E(@]Y,) 2.0277 (0.0303) 2.0138 (0.0146) 1.9951 (0.0096)
Var(6]Y,) 0.0880 (0.0026)  0.0209 (0.0003)  0.0089 (0.0001)
By | 2.0228 (0.0316) 2.0104 (0.0146)  1.9928 (0.0097)
Var(6]Y,) 0.0800 (0.0001)  0.0200 (0.0000)  0.0089 (0.0000)
T U E(yn) 1.1063 (0.0134)  1.1009 (0.0154) 1.1035 (0.0196)
Var(a|Yy,) 1.1027 (0.0328)  1.0606 (0.0366) 1.0937 (0.0519)
By, | 1.0986 (0.0125) 1.0844 (0.0157) 1.0903 (0.0186)
Var(a|Y,) 1.0958 (0.0319)  1.0411 (0.0392) 1.0632 (0.0511)
Wa (H(dom),/\/ @0‘5%, @)) 0.0584 (0.0239) 0.0169 (0.0053) 0.0086 (0.0026)
Wa(IL(da|Y,), I(da|Y,)) 0.1099 (0.0422)  0.1075 (0.0475) 0.1037 (0.0433)

Table S.6: The posterior means of the ratio of predictive variance defined in maximized over 2500 testing
points s* for the model with v = 1/4 and with regression terms m(:) 8, averaged over 100 macro replications.
The standard errors are in the parentheses.

d=1 n=25 mn=50 mn=100 n=200 n=400

E [ max ra(s")[Ya] 0.4872 0.3088 0.2019 0.1188 0.0794

s*eS* (0.0434)  (0.0232) (0.0141) (0.0082)  (0.0055)
d=2 n=102 n=20% n=230°
E [ max rn(s*)|Ya] 0.1480 0.0868 0.0697
s*es* (0.0111)  (0.0053)  (0.0041)
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Table S.7: Parameter estimation and Wasserstein-2 distances between the true posterior and the limiting poste-
riors in Theorem for the model with v = 3/2, d = 1 and with regression terms m(:)" 8. E(-|Y,), Var(:|Yx),
E(:|Y,), and \7;r(|Yn) are the posterior means and variances under the true posterior and the limiting posterior
in Theorem 23] The true parameter values are o = 2 and ap = 1. All numbers are averaged over 100 macro
replications. The standard errors are in the parentheses.

d=1 n=25 n =50 n = 100 n = 200 n = 400
E(0]Y,) | 2.8495 (0.0913)  2.3841 (0.0507) 2.2177 (0.0344) 2.0674 (0.0196)  2.0305 (0.0142)
Var(6]Y,) | 1.6724 (0.1238)  0.3364 (0.0162)  0.1167 (0.0038) 0.0466 (0.0009)  0.0215 (0.0003)

CE0Y,) | 1.9658 (0.0664)  2.0504 (0.0427)  2.0693 (0.0319) 1.9972 (0.0189)  1.9983 (0.0139)
Var(6]Y;,) | 0.3204 (0.0007)  0.1604 (0.0003)  0.0802 (0.0002) 0.0399 (0.0001)  0.0200 (0.0000)
E(a]Y,) | 6.0370 (0.3310)  5.0376 (0.2576)  4.8005 (0.3143) 5.0102 (0.2890)  4.2705 (0.2080)
Var(a|Y,) | 17.9624 (1.5519) 11.4256 (0.8790) 9.3582 (0.7143) 9.6294 (0.6663) 7.9125 (0.5840)

" E(a|Y.n) | 5.5050 (0.2907)  4.8298 (0.2484)  4.7126 (0.3044) 4.9523 (0.2834)  4.2357 (0.2059)
Var(a|Y,) | 15.6473 (1.3884)  10.5893 (0.7763) 9.0112 (0.6664) 9.5040 (0.6710)  7.8498 (0.5704)

d=1 n =25 n = 50 n=100 n =200 n =400

1.1592 0.3972 0.1710 0.0781 0.0366

W (11(0]0), N (0], 52)) (0.0540)  (0.0155) (0.0063) (0.0021)  (0.0009)
0.6743 0.3400 0.2608 0.2630 0.2205
(0.0486)  (0.0185) (0.0193) (0.0165) (0.0124)

Wa(II(da|Yy,), II(da|Ya,))

Table S.8: Parameter estimation and Wasserstein-2 distances between the true posterior and the limiting poste-
riors in Theorem for the model with v = 3/2, d = 2 and with regression terms m(:)" 8. E(-|Y,), Var(:|Yx),
E(:|Y»), and \E(|Yn) are the posterior means and variances under the true posterior and the limiting posterior
in Theorem @ The true parameter values are g = 2 and ap = 1. All numbers are averaged over 100 macro
replications. The standard errors are in the parentheses.

d=2 n = 107 n = 207 n = 307
E(0]Y,,) 2.0504 (0.0315) 2.0162 (0.0148) _ 1.9956 (0.0096)
Var(6]Ys) 0.0953 (0.0029) 0.0211 (0.0003)  0.0091 (0.0001)
By, | 2.0293 (0.0328)  2.0118 (0.0149)  1.9936 (0.0097)
Var(6]Y,) 0.0800 (0.0001)  0.0200 (0.0000)  0.0089 (0.0000)
R 10 0 T 1.1005 (0.0451)  0.9758 (0.0304)  1.0077 (0.0445)
Var(a|Yy,) 0.8706 (0.0676)  0.6304 (0.0363) 0.6375 (0.0474)
Eyn) | 1.1206 (0.0481)  0.9722 (0.0306) 0.9976 (0.0434)
Var(a|Yy) 0.9128 (0.0737)  0.6283 (0.0356) 0.6353 (0.0479)
W (H(d9|Y )N @9 oy 220 )) 0.0732 (0.0327)  0.0184 (0.0066) 0.0102 (0.0046)
Wa(I(da|Yy), T(da|Ys)) 0.0801 (0.0470)  0.0672 (0.0349)  0.0651 (0.0394)

Table S.9: The posterior means of the ratio of predictive variance defined in (37) maximized over 2500 testing
points s* for the model with v = 3/2 and with regression terms m(-) " 3, averaged over 100 macro replications.
The standard errors are in the parentheses.

d=1 n=25 n=50 n=100 n=200 n=400
E [ max ra(s)|Y,] | 05196 04218 03957 03152 0.2998
srest (0.5916)  (0.1615) (0.2152)  (0.1874) (0.1255)

d=2 n=102 n=20> n=230°
E [ max ra(s7)|Ya] 0.1773 0.0935 0.0806
s+ e (0.0122)  (0.0052)  (0.0083)
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