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Gaussian process models typically contain finite-dimensional parameters
in the covariance function that need to be estimated from the data. We study
the Bayesian fixed-domain asymptotics for the covariance parameters in a
universal kriging model with an isotropic Matérn covariance function, which
has many applications in spatial statistics. We show that when the dimen-
sion of domain is less than or equal to three, the joint posterior distribution
of the microergodic parameter and the range parameter can be factored in-
dependently into the product of their marginal posteriors under fixed-domain
asymptotics. The posterior of the microergodic parameter is asymptotically
close in total variation distance to a normal distribution with shrinking vari-
ance, while the posterior distribution of the range parameter does not con-
verge to any point mass distribution in general. Our theory allows an un-
bounded prior support for the range parameter and flexible designs of sam-
pling points. We further study the asymptotic efficiency and convergence
rates in posterior prediction for the Bayesian kriging predictor with covari-
ance parameters randomly drawn from their posterior distribution. In the spe-
cial case of one-dimensional Ornstein–Uhlenbeck process, we derive explic-
itly the limiting posterior of the range parameter and the posterior conver-
gence rate for asymptotic efficiency in posterior prediction. We verify these
asymptotic results in numerical experiments.

1. Introduction. Gaussian processes (GP) have been widely used in spatial statistics,
computer experiments, machine learning and many other fields. In this paper, we consider
the observation from the following spatial Gaussian process regression model, known as the
universal kriging model (Chapter 3, Section 3.4, [17]):

Y(si) = m(si)
�β + X(si) for i = 1, . . . , n.(1)

In the model (1), Sn = {s1, . . . , sn} is a sequence of distinct sampling points in the fixed do-
main S = [0, T ]d , and 0 < T < ∞ is a known constant and the dimension d ∈ {1,2,3}. Such
a dimension d is of primary interest in spatial statistics. Here, m(·) = (m1(·), . . . ,mp(·))� is
a p-dimensional vector of linearly independent and known deterministic functions defined on
S , and β ∈ R

p is the regression coefficient vector. In applications, m1, . . . ,mp can include
the constant function 1, and hence β can include an intercept term. In the model (1), X(·) is
a mean-zero Gaussian stochastic process X = {X(s) : s ∈ S}. We assume that the covariance
function of X is the isotropic Matérn covariance function given by

Cov
(
X(s),X(t)

) = σ 2Kα,ν(s − t) = σ 2 21−ν

�(ν)

(
α‖s − t‖)νKν

(
α‖s − t‖)

,(2)

for any s, t ∈ S , where ν > 0 is the smoothness parameter, σ 2 > 0 is the variance (or partial
sill) parameter, and α > 0 is the inverse range (or length-scale) parameter, Kν(·) is the mod-
ified Bessel function of the second kind [40] and ‖ · ‖ is the Euclidean norm. The Matérn
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covariance function is popular in applications of spatial statistics and computer experiments
because the smoothness parameter ν provides flexibility in controlling the smoothness of
sample paths [64]. The observed data from the model (1) are Yn = (Y (s1), . . . , Y (sn))

�. Pa-
rameter estimation and prediction of Y(·) at a new spatial location (known as kriging) is based
on Yn. For simplicity, we call α the range parameter in the rest of the paper.

In Bayesian inference on GP models [20, 30], it is common practice to assign prior dis-
tributions on the regression coefficient β and the covariance parameters (σ 2, α), and the
prediction of Y(s∗) at a new location s∗ is based on the posterior distribution of (β, σ 2, α).
There is abundant literature in Bayesian spatial statistics on speeding up the costly GP pos-
terior computation for spatial data sets with a large sample size n ([5, 19, 27, 31, 54], etc.)
However, there is a clear lack of theoretical understanding of the asymptotic properties of the
Bayesian posterior distributions of covariance parameters (σ 2, α). This theory is important
because in Bayesian inference, instead of taken as fixed values, the covariance parameters
(σ 2, α) are randomly drawn from their posterior using sampling algorithms such as Markov
chain Monte Carlo (MCMC), which eventually affect the posterior prediction performance
of the GP model.

To illustrate our motivation, we fit a Bayesian universal kriging model in (1) to the sea
surface temperature (SST) data. The data set is obtained from National Oceanographic Data
Centres (NODC) World Ocean Database (https://www.ncei.noaa.gov/products/world-ocean-
database) and corresponds to sea surface temperature measured by remote sensing satel-
lites on August 16, 2016. The data we test come from the Pacific Ocean between 45◦–48◦
north latitudes and 150◦–153◦ west longitudes. The original data set is high resolution on a
0.025◦ × 0.025◦ fine grid. We choose subsets of size {400,800,1200,1600,2000} on equi-
spaced grids. For the regressors m(·), we include all p = 10 monomials of the latitude and
longitude up to degree 3, since on average SST is lower at higher latitudes. We set ν = 1/2,
and assign a flat prior π(β) ∝ 1 on β , an inverse gamma prior with shape and rate parameters
both equal to 2 on σ 2 and an independent Uniform(0.01,300) prior on α. The marginal pos-
terior densities of α and θ = σ 2α are shown in Figure 1 below. As the sample size increases,
the marginal posterior density of the parameter θ = σ 2α seems to contract faster with n than
that of the range parameter α. Even with sample size n = 2000, the posterior of α still has a
relatively large uncertainty. It is natural to ask the following questions: (i) Do the posteriors of
(σ 2, α) (or (θ,α)) converge, and if so, at what rates? (ii) How does the posterior uncertainty
in (σ 2, α) affect the posterior prediction of the response Y(·) at a new location?

We provide an answer to (i) by studying the limiting posterior distributions of the covari-
ance parameters (σ 2, α) in the Matérn covariance function in (2), under the fixed-domain
asymptotics (or infill asymptotics) framework [59, 64, 85]. We further answer (ii) and show
that the randomness in (σ 2, α) in general does not affect the posterior prediction performance.
To the best of our knowledge, this paper is the first theoretical work on the fixed-domain
asymptotics for the Bayesian posterior distribution of the finite-dimensional parameters in
Gaussian process covariance functions. In the following, we explain the reasons we adopt the
fixed-domain asymptotics regime and the main technical challenges.

1.1. Why fixed-domain asymptotics? In the fixed-domain asymptotics regime, the do-
main S remains fixed and bounded regardless of the increasing sampling size n. This implies
that as n goes to infinity, the sampling points Sn become increasingly dense in the domain
S , leading to increasingly stronger dependence between adjacent observations in Yn. Besides
the fixed-domain asymptotics regime, there are also increasing-domain asymptotics [48] and
mixed-domain asymptotics [13], in which the domain is assumed to increase as n goes to
infinity and, therefore, the minimum distance between two adjacent sampling points is either
not decreasing or decreasing slowly with n.

https://www.ncei.noaa.gov/products/world-ocean-database
https://www.ncei.noaa.gov/products/world-ocean-database
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FIG. 1. Example of the Sea Surface Temperature (SST) data. Top left: The SST data in North Pacific Ocean and
the target region of our sampled data. Top right: The SST data in the target region. Bottom left: The marginal
posterior densities of θ = σ 2α for sample sizes n = 400,800,1200,1600,2000. Bottom right: The marginal
posterior densities of α for sample sizes n = 400,800,1200,1600,2000. The posterior densities are based on
2000 MCMC draws.

Compared to these alternatives, the fixed-domain setup has several advantages. First and
foremost, a fixed domain matches up with the reality in many spatial applications. The ad-
vances in remote sensing technology make it possible to collected spatial data in larger vol-
ume and higher resolution in a given region [66]. The motivating example above of the SST
data from NODC has millions of observations with high resolution on the 0.025◦ × 0.025◦
fine grid (about 2 ∼ 4km range). Second, since the model (1) has a stationary Matérn covari-
ance function, this stationarity assumption of GP is more likely to hold on a fixed domain
rather than an expanding domain. Therefore, the fixed-domain asymptotics regime is more
suitable for interpolation of spatial processes; see Section 3.3 of [64] for a cogent argument.
Third, [86] has shown that the fixed-domain asymptotics has better parameter estimation per-
formance than the increasing-domain asymptotics.

1.2. What are the main difficulties in Bayesian fixed-domain asymptotics? Theoretically,
the increasingly stronger spatial dependence among the observed data Yn in fixed-domain
asymptotics leads to a lack of consistent estimation for the covariance parameters (σ 2, α)

[85] and, therefore, poses significant challenges to theory development. When the dimen-
sion of sampling points d = 1,2,3, a well-known fixed-domain asymptotics result [85] says
that it is only possible to consistently estimate the microergodic parameter θ = σ 2α2ν in an
isotropic Matérn covariance function, but not the individual variance parameter σ 2 and the
range parameter α. The microergodic parameter is defined to be the parameter that uniquely
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determines the Gaussian measure induced by a Gaussian process, such that different values of
microergodic parameter will lead to mutually orthogonal Gaussian measures; see Section 6.2
of [64] for a detailed explanation on this definition. On the other hand, both the variance
and range parameters (σ 2, α) can be consistently estimated if d ≥ 5, with the case of d = 4
still open [1]. Nevertheless, the cases with d = 1,2,3 are of primary interest in spatial and
spatiotemporal applications and will be our main focus.

The standard Bayesian asymptotic theory consists of results such as posterior consistency,
posterior convergence rates, and the Bernstein–von Mises (BvM) theorem [23]. For para-
metric models, the BvM theorem typically relies on the local asymptotic normality (LAN)
condition and the existence of uniformly consistent tests; see, for example, Chapter 10 in [71].
Since no consistent frequentist estimator exists for (σ 2, α) under fixed-domain asymptotics,
one cannot expect to establish posterior consistency for (σ 2, α). Instead, we will consider the
microergodic parameter θ = σ 2α2ν , which can be consistently estimated, and reparametrize
the covariance function (2) by (θ,α). Crowder [18] is an early work on the asymptotic nor-
mality of maximum likelihood estimator (MLE) in the presence of dependent observations
and nuisance parameters. We will establish the LAN condition for the microergodic param-
eter θ , uniformly over a wide range of values of the “nuisance” range parameter α. Such a
uniform LAN condition based on data with increasingly stronger dependence is new in the
literature and differs significantly from the LAN in classic parametric models with indepen-
dent or weakly dependent data. The asymptotic normality for microergodic parameter θ is
crucial and guarantees the posterior prediction performance of Y(·) at a new location.

For Bayesian inference on the GP covariance parameters, the only theoretical work we are
aware of is [56], who have worked under the increasing-domain asymptotics regime and have
established that the joint posterior of all parameters in the tapered covariance functions con-
verges to a limiting normal distribution. This is similar to the classic BvM theorem since the
dependence among data does not get stronger under increasing-domain asymptotics. A key
assumption in [56] is that the observed covariance matrix have lower and upper bounded
eigenvalues, which no longer holds under fixed-domain asymptotics.

We define some universal notation. Let R+ = (0,+∞). For two positive sequences an

and bn, we use an � bn and bn � an to denote the relation lim supn→∞ an/bn < +∞, and
an � bn to denote the relation an � bn and an � bn. For any integers k,m, we let Ik be the
k × k identity matrix, 0k and 1k be the k-dimensional column vectors of all zeros and all
ones, 0k×m be the k × m zero matrix. For any generic matrix A, cA denotes the matrix of
A with all entries multiplied by the number c, and |A| denotes the determinant of A. If A is
positive semidefinite, then λmin(A) and λmax(A) denote the smallest and largest eigenvalues
of A. Let N (μ,
) be the normal distribution with mean μ and covariance matrix 
. Some-
times to highlight the random variable Z ∼ N (μ,
), we also write the normal measure as
N (dz|μ,
).

The remainder of the paper is organized as follows. In Section 2, we introduce the basic
model setup and present the main theorems on limiting posterior distribution of covariance
parameters under fixed-domain asymptotics. Section 3 presents the theory on asymptotic
efficiency in posterior prediction. Section 4 presents some empirical results from simulation
study to verify the main theory. Section 5 includes some discussion on further extensions. The
technical proofs of all theorems, propositions, lemmas, corollaries and additional simulation
results are in the Supplementary Material [42].

2. Limiting posterior distribution for covariance parameters.

2.1. Bayesian model setup. We consider the Bayesian estimation of (β, σ 2, α) in the
model (1) based on the observed data Yn. Throughout the paper, we assume that the domain
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dimension satisfies d ∈ {1,2,3}, and that the smoothness parameter ν > 0 is fixed and known.
Estimation of the smoothness parameter ν is an important research topic with some recent de-
velopments in frequentist literature [45, 46]), but is beyond the scope of the current paper. We
let the true parameter values in the Matérn covariance function that generates X be (σ 2

0 , α0)

and let the true regression coefficient vector be β0. We use the notation X ∼ GP(0, σ 2
0 Kα0,ν),

and hence Y ∼ GP(m�β0, σ
2
0 Kα0,ν).

Let Yn = (Y (s1), . . . , Y (sn))
�. Let Mn be the n × p matrix by stacking the row vectors

m(si)
� for i = 1, . . . , n. Throughout the paper, we assume that Mn is a rank-p matrix without

loss of generality, since all our results are asymptotic with n → ∞. Let Rα be the implied
n×n Matérn correlation matrix on Sn indexed by α, whose (i, j)th entry is Rα,ij = Kα,ν(si −
sj ), for i, j ∈ {1, . . . , n}. We omit the dependence of Rα on ν. The covariance matrix of Xn

is then σ 2Rα . Therefore, the model (1) can be equivalently written as Yn = Mnβ + Xn. The
log-likelihood function based on Yn is

Ln

(
β,σ 2, α

) = −n

2
logσ 2 − 1

2
log |Rα| − 1

2σ 2 (Yn − Mnβ)�R−1
α (Yn − Mnβ).(3)

We study the Bayesian posterior distribution based on the log-likelihood (3). We follow
the common practice in Bayesian spatial modeling literature [5, 19, 27, 31, 50, 54], etc.) and
assign the conjugate normal prior on β , given by

β|σ 2, α ∼ N
(
0p, σ 2�−1

β

)
,(4)

which uses a rescaling with σ 2, and the prior precision matrix �β ∈ R
p×p is assumed to be

symmetric positive semidefinite. Here, we can set the prior mean to be 0p without any loss
of generality. This is because if the prior is β|σ 2, α ∼ N (μβ,σ 2�−1

β ) and the prior mean

is μβ �= 0p , we can always define a new response variable Y ′(s) = Y(s) − m(s)�μβ , the
new regression coefficient vector β ′ = β − μβ , and rewrite the original model (1) as Y ′(s) =
m(s)�β ′ + X(s) for s ∈ S , where Y ′(s) is still fully observable on Sn given that m(·) is
observable and μβ is known. Furthermore, we allow the precision matrix �β to be arbitrarily
small, leading to a prior of β with arbitrarily large variance. In particular, all our later theory
covers the extreme case of improper noninformative prior π(β|σ 2, α) ∝ 1 [6, 26], which
corresponds to �β = 0p×p . The joint posterior density of (β, σ 2, α) is then π(β,σ 2, α|Yn) ∝
exp{Ln(β,σ 2, α)}π(β|σ 2, α)π(σ 2, α). Since π(β|σ 2, α) is the normal prior density, it is
straightforward to obtain the conditional posterior of β:

β|σ 2, α,Yn ∼ N
(
β̃α, σ 2(

M�
n R−1

α Mn + �β

)−1)
,(5)

where β̃α = (M�
n R−1

α Mn +�β)−1M�
n R−1

α Yn and the subscript is to highlight its dependence
on α but not σ 2. We can further integrate out β and obtain the marginal posterior density of
the covariance parameters (σ 2, α). We write π(σ 2, α|Yn) ∝ exp{Ln(σ

2, α)}π(σ 2, α), where
the restricted log-likelihood Ln(σ

2, α) is given by

Ln

(
σ 2, α

) = − 1

2σ 2 Y�
n

[
R−1

α − R−1
α Mn

(
M�

n R−1
α Mn + �β

)−1
M�

n R−1
α

]
Yn

− n − p

2
logσ 2 − 1

2
log |Rα| − 1

2
log

∣∣M�
n R−1

α Mn + �β

∣∣.(6)

In spatial statistical theory, it is well known [85] that the parameters (σ 2, α) cannot be
consistently estimated under fixed-domain asymptotics. The main reason is that for two
Gaussian measures GP(0, σ 2

j Kαj ,ν) (j = 1,2) on the space of sample paths on the domain

S = [0, T ]d and d ∈ {1,2,3}, they are equivalent (or mutually absolutely continuous) as long
as σ 2

1 α2ν
1 = σ 2

2 α2ν
2 , and they are orthogonal otherwise. As a result, one cannot tell from a
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finite sample which parameter values (σ 2
j , αj ) (j = 1,2) are correct. Empirically, this phe-

nomenon has been also observed [1, 22]. Despite the lack of consistent estimator for (σ 2, α),
the microergodic parameter θ = σ 2α2ν can still be consistently estimated [85]. For a fixed
α > 0, we maximize Ln(σ

2, α) with respect to σ 2 (and so θ ) to derive the restricted maximum
likelihood estimator (REML), given by

(7) σ̃ 2
α = 1

n − p
Y�

n

[
R−1

α − R−1
α Mn

(
M�

n R−1
α Mn + �β

)−1
M�

n R−1
α

]
Yn, θ̃α = α2νσ̃ 2

α .

In (7), we have slightly extended the meaning of REML such that we can account for general
prior precision matrix �β , including the special case of �β = 0p×p where β can be viewed
as normal random effects of m(·), such that σ̃ 2

α (and θ̃α) can be viewed as the conventional
REML of σ 2 (and θ ) in random effects models. We can plug in θ̃α in (3) to obtain the profile
restricted log-likelihood of α (up to an additive constant), which plays an important role in
our theory:

L̃n(α) ≡ Ln

(
α−2ν θ̃α, α

)
= −n − p

2
log

{
1

n − p
Y�

n

[
R−1

α − R−1
α Mn

(
M�

n R−1
α Mn + �β

)−1
M�

n R−1
α

]
Yn

}
(8)

− 1

2
log |Rα| − 1

2
log

∣∣M�
n R−1

α Mn + �β

∣∣ − n − p

2
.

The frequentist asymptotic normality for the MLE of θ has been studied for the model (1)
without the regression term, that is, Y(·) ≡ X(·) ∼ GP(0, σ 2Kα,ν). For this simplified model,
[83] first studied the special case of d = 1 and ν = 1/2, followed by [21, 76, 85] and [37] for
a general ν > 0. If α ∈ [α1, α2] for some constants 0 < α1 < α2 < ∞, the MLE of θ , denoted

by θ̂ , satisfies that
√

n(θ̂ − θ0)
D→ N (0,2θ2

0 ) as n → ∞ under fixed-domain asymptotics,

where θ0 = σ 2
0 α2ν

0 is the true value, and
D→ is the convergence in distribution.

We study the fixed-domain asymptotic limit for the Bayesian posterior distribution of
(σ 2, α) based on the log likelihood (6). We reparametrize the model using (θ,α), with
θ = σ 2α2ν being the microergodic parameter. This reparametrization has been suggested in
[64] (p. 175) and also used in recent Bayesian GP works such as [22]. For the consistency of
notation, we will still maintain the parametrization of (σ 2, α) for the log-likelihood functions
and quantities related to the probability distributions, such as P(β,σ 2,α) for the probability dis-
tribution of GP(m�β,σ 2Kα,ν). The change of variable from σ 2 to θ = σ 2α2ν is often clear
from the context. We assign prior distributions on (θ,α) and write the joint prior density as
π(θ,α) = π(θ |α)π(α). The joint posterior density of (θ,α) is given by

π(θ,α|Yn) = exp{Ln(θ/α2ν, α)}π(θ |α)π(α)∫ ∞
0

∫ ∞
0 exp{Ln(θ ′/α′2ν, α′)}π(θ ′|α′)π(α′)dα′ dθ ′ .(9)

We will use �(dθ,dα|Yn) to denote the posterior probability measure with the density in (9).

2.2. Main results. We first present the limiting posterior distribution of θ conditional
on a fixed α > 0. Let L2(S) be the space of square integrable functions on S and ‖f ‖2 be
the L2(S) norm of f for any f ∈ L2(S). Let j = (j1, . . . , jd) with j1, . . . , jd ∈ N, |j | =∑d

i=1 ji , and Dj be the partial differentiation operator of order j. For k > 0, define the Sobolev
space Wk

2 (S) = {f ∈ L2(S) : ‖f ‖2
Wk

2 (S)
= ∑

j∈Nd :|j|≤k ‖Djf ‖2
2 < ∞}. We make the following

assumptions.

(A.1) mj ∈ Wν+d/2
2 (S) for each j = 1, . . . , p. Mn is a rank-p matrix for all Sn with

n ≥ p.



3340 C. LI

(A.2) The prior of β given (σ 2, α) is N (0p, σ 2�−1
β ) for a symmetric positive semidefinite

matrix �β . The conditional prior density of θ given α, π(θ |α), is a proper prior density that
is continuously differentiable in θ , continuous in α, and finite everywhere for all θ ∈ R

+ and
α ∈ R

+. π(θ |α) does not depend on n. π(θ0|α) > 0 for all α > 0.

Assumption (A.1) is the regularity assumption on the regression functions m1, . . . ,mp . By

Theorem 10.35 of [78], Wν+d/2
2 (S) is norm equivalent to the reproducing kernel Hilbert

space (RKHS) associated with the Matérn kernel σ 2
0 Kα0,ν . As a result, Assumption (A.1) im-

plies that m1(·), . . . ,mp(·) are smoother functions than the sample paths from GP(0, σ 2Kα,ν)

for any (σ 2, α) ∈ R
+ × R

+; see, for example, Corollary 4.15 of [35]. Such a smoothness
assumption is necessary. Otherwise, if m1, . . . ,mp are rougher functions than the sam-
ple path of X, their roughness will overwhelm the information contained in the smoother
GP(0, σ 2

0 Kα0,ν), and one cannot expect to estimate any covariance parameter consistently,
including θ . As argued in page 12 of [64], m1(·), . . . ,mp(·) in applications are often highly
regular functions such as monomials, which are infinitely differentiable on S and, therefore,
satisfy Assumption (A.1). Assumption (A.2) on π(θ |α) is mild and satisfied in most applica-
tions.

For two probability measures P1,P2, let ‖P1(·) − P2(·)‖TV = supA |P1(A) − P2(A)|,
where the supremum is taken over all measurable sets A.

THEOREM 2.1 (Limiting Distribution for Conditional Posterior). Suppose that α > 0 is
fixed and does not depend on n. Under Assumptions (A.1) and (A.2), the REML θ̃α defined in

(7) is asymptotically normal, with
√

n(θ̃α − θ0)
D→ N (0,2θ2

0 ) as n → ∞. Furthermore, the
conditional posterior distribution of θ given α > 0 satisfies that∥∥�(dθ |Yn,α) −N

(
dθ |θ̃α,2θ2

0 /n
)∥∥

TV � n−1/2 log3 n → 0,(10)

as n → ∞ almost surely P(β0,σ
2
0 ,α0)

, where θ̃α is given in (7), and �(·|Yn,α) is the conditional
posterior probability measure of θ given a fixed α > 0 with the density

π(θ |Yn,α) = exp{Ln(θ/α2ν, α)}π(θ |α)∫ ∞
0 exp{Ln(θ ′/α2ν, α)}π(θ ′|α)dθ ′ .(11)

Theorem 2.1 shows that under fixed-domain asymptotics, the REML θ̃α is asymptotically
normal, and the conditional posterior π(θ |Yn,α) is asymptotically close the normal distribu-
tion N (θ̃α,2θ2

0 /n) in total variation distance. Some comments are in order.
First, to the best of our knowledge, Theorem 2.1 is the first in the literature to establish

both frequentist and Bayeisan asymptotic normality for the microergodic parameter θ for
any ν > 0 and d ∈ {1,2,3} in the universal kriging model (1) with regression terms m(·)�β .
Most of the existing frequentist fixed-domain asymptotic theory has considered either only
the GP model with mean zero and no regression terms [1, 4, 21, 37, 76, 85], or only for
some particular values of ν (such as ν = 1/2 in [3, 12, 14, 74, 83, 84] and ν = 3/2 in [44]).
Theorem 3 of [83] has shown the asymptotic normality for the MLE of θ in the GP model
with regression terms, but only for the special case of ν = 1/2 and d = 1, and their proof
techniques cannot be generalized to any ν > 0 and d > 1. Our proof is based on the general
RKHS theory and spectral analysis of isotropic Matérn covariance functions; see Section
S1 of the Supplementary Material [42]. Theorem 3 of [83] almost needs that m1, . . . ,mp ∈
W1

2 ([0,1]) in the special case of ν = 1/2 and d = 1, that is, they are bounded functions
with square integrable derivatives (following the comments after their Theorem 3), which is
exactly the same as the space Wν+d/2

2 (S) assumed in our Assumption (A.1).
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Second, if the model (1) does not have regression terms m(·)�β , that is, if p = 0 and we
observe Yn = Xn directly from GP(0, σ 2

0 Kα0,ν), then the REML θ̃α in (7) coincides with the
MLE of θ , and 2θ2

0 is also the asymptotic variance of this MLE [37, 76].
Third, the posterior convergence of (10) Theorem 2.1 has a similar format to the classic

BvM theorem in regular parametric models for independent data, such as Theorem 8.2 in [41]
and Theorem 10.1 in [71], where the limiting normal distribution is centered at the MLE with
variance equal to the asymptotic variance of MLE. However, the classic BvM theorem usually
relies on the LAN condition and the existence of uniformly consistent tests (Theorem 10.1 in
[71]), which can be readily verified for models with independent and weakly dependent data.
The main technical challenge for proving Theorem 2.1 is to establish the LAN condition
for data with increasingly stronger dependence under fixed-domain asymptotics. We need
the asymptotic normality of the REML θ̃α at a given range parameter α > 0, which can be
different from the true α0. Our proof leverages the spectral analysis of Matérn covariance
functions (see Section S1.4 in the Supplementary Material [42], which has also been used in
the previous works for the MLE of θ for GP with mean zero ([21, 76] and [37]), though they
have not considered the model with regression terms as ours. Finally, we provide an explicit
convergence rate n−1/2 log3 n for the convergence in total variation distance. The log3 n term
is mainly used to ensure the strong mode of almost sure convergence.

In most spatial applications, the range parameter α is unknown and assigned a prior π(α).
Next, we present a much stronger theorem for the limit of the joint posterior distribution of
(θ,α) ∈ R

+ × R
+. The consistency of the REML of θ and the nonexistence of consistent

frequentist estimator for α indicates that the posterior of θ should converge to a normal limit,
while the posterior of α does not necessarily converge to any fixed value under fixed-domain
asymptotics. We prove this idea rigorously.

We define two small positive constants κ and κ that depend on the smoothness ν > 0 and
the dimension d (d ∈ {1,2,3}), together with two deterministic sequences αn and αn:

κ = 1

2
min

{
0.9

(2d + 0.94)(8ν + 3d − 0.9)
,

1

4(3ν + d)
,0.01

}
, αn = n−κ ,

κ = 1

2
min

{
0.9

(2d + 0.94)(8ν + 5d + 0.9)
,

1

2(2ν + d)
,0.01

}
, αn = nκ.

(12)

The choices of κ and κ in (12) are not unique and can be replaced by other sufficiently
small positive numbers; see Lemma S.20 in the Supplementary Material [42]. By definition,
αn → 0 and αn → +∞ as n → ∞, and both are in slow polynomial rates. A key result below
is that uniformly for all α in the slowly expanding interval [αn,αn], the difference between
θ̃α and θ̃α0 converges to zero at a faster rate than n−1/2.

LEMMA 2.2 (Monotonicity and Uniform Convergence of θ̃α). Suppose that Assumption
(A.1) holds. Then for the REML θ̃α defined in (7):

(i) θ̃α is a nondecreasing function of α for all α ∈ R
+;

(ii) There exists a large integer N1 and a positive constant τ ∈ (0,1/2) that only depend
on ν, d, T ,β0, θ0, α0 and the Wν+d/2

2 (S) norms of m1(·), . . . ,mp(·), such that for all n > N1,

Pr
(

sup
α∈[αn,αn]

√
n|θ̃α − θ̃α0 | ≤ θ0n

−τ
)

≥ 1 − exp
(−2 log2 n

)
,

where Pr(·) denotes the probability under the true probability measure P(β0,σ
2
0 ,α0)

.

Lemma 2.2 involves a new discovery in part (i) that the REML θ̃α is monotone in α for
the universal kriging model (1). The monotonicity of θ̃α for the universal kriging model (1)
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has significantly extended the previous work of [37], which only considered the MLE of θ

for GP with mean zero. Previously [76] has shown that |θ̃α − θ̃α0 | can be small, but only
for a fixed and known value of range parameter α and only for GP with mean zero. In part
(ii) of Lemma 2.2, we make a novel utilization of the monotonicity of θ̃α in α, and prove in
Lemma 2.2 that the difference |θ̃α − θ̃α0 | can be uniformly small over an expanding interval
[αn,αn] for the more general model (1) with regression terms. Even though the REML θ̃α de-
fined in (7) is in fact a stochastic process indexed by α, our techniques using the monotonicity
property of θ̃α have the advantage of completely circumventing any empirical process argu-
ment. Our proof of part (ii) also develops a much strengthened concentration inequality for
θ̃α using more detailed spectral analysis of Matérn covariance functions than [76].

The nondecreasing property of θ̃α in (7) is crucial for both establishing the uniform con-
vergence of θ̃α on the interval [αn,αn] and understanding the asymptotic behavior of the joint
posterior π(θ,α|Yn). Based on the uniform convergence in Lemma 2.2, a heuristic argument
to extend the limiting conditional posterior in Theorem 2.1 to the joint posterior π(θ,α|Yn)

is as follows: For each α ∈ [αn,αn], the conditional posterior π(θ |Yn,α) can be approxi-
mated by the normal distribution N (θ̃α,2θ2

0 /n). Since the center θ̃α only differs from θ̃α0

by a higher order term O(n−1/2−τ ), this normal distribution can be further approximated by
N (θ̃α0,2θ2

0 /n), whose mean parameter only depends on the data Yn but not α. Hence, the
limiting distribution of θ is approximately independent of α.

To solidify this idea, we need additional prior conditions to ensure that the posterior prob-
abilities outside the interval [αn,αn] can be made small, such that the convergence to the
normal limit inside [αn,αn] is dominant in driving the asymptotics of the joint posterior
π(θ,α|Yn). We specify the following general assumptions on the prior densities π(θ |α) and
π(α).

(A.3) There exist positive constants Cπ,1, Cπ,2, and Cπ,3 that can depend on ν, d, T ,α0,

θ0, such that 0 < Cπ,1 + Cπ,2 < 1/2, 0 < Cπ,3 < 1 and for αn and αn defined in (12), for all
sufficiently large n,

sup
α∈[αn,αn]

sup
θ∈(θ0/2,2θ0)

∣∣∣∣∂ logπ(θ |α)

∂θ

∣∣∣∣ ≤ nCπ,1,(13)

sup
α∈[αn,αn]

sup
θ∈(θ0/2,2θ0)

π(θ |α)

π(θ0|α)
≤ nCπ,2,(14)

inf
α∈[αn,αn] logπ(θ0|α) ≥ −nCπ,3 .(15)

(A.4) The marginal prior π(α) is a proper and continuous density function on R
+. π(α)

does not depend on n. π(α0) > 0.
∫ ∞

0 π(θ0|α)π(α)dα < ∞. There exist positive constants
cπ < (ν + d/2)κ and cπ < (ν + d/2)κ for κ and κ defined in (12), such that for αn and αn

defined in (12), and for all sufficiently large n,

max
{∫ αn

0
α−n(ν+d/2)π(α)dα,

∫ αn

0
α−n(ν+d/2)π(θ0|α)π(α)dα

}
≤ exp(cπn logn),

(16)

max
{∫ ∞

αn

αn(ν+d/2)π(α)dα,

∫ ∞
αn

αn(ν+d/2)π(θ0|α)π(α)dα

}
≤ exp(cπn logn).

(17)

We will discuss these two assumptions in greater detail after presenting our main theorem for
the joint posterior of (θ,α).
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THEOREM 2.3 (Limiting Distributions for Joint and Marginal Posteriors). Under As-
sumptions (A.1), (A.2), (A.3) and (A.4), the posterior distributions of θ and α are asymptoti-
cally independent, in the sense that the joint posterior distribution of (θ,α) satisfies∥∥�(dθ,dα|Yn) −N

(
dθ |θ̃α0,2θ2

0 /n
) × �̃(dα|Yn)

∥∥
TV → 0,(18)

as n → ∞ almost surely P(β0,σ
2
0 ,α0)

, where �̃(dα|Yn) is the profile posterior distribution with
density π̃(α|Yn) given by

π̃(α|Yn) = exp{L̃n(α)}π(α|θ0)∫ ∞
0 exp{L̃n(α′)}π(α′|θ0)dα′ ,(19)

where the profile restricted log-likelihood L̃n(α) is given in (8) and π(α|θ0) is the conditional
prior density of α given θ = θ0. Furthermore, this profile posterior density π̃(α|Yn) is well
defined for any given n ≥ p almost surely P(β0,σ

2
0 ,α0)

. As a result, the total variation distance

between �(dθ |Yn) and N (dθ |θ̃α0,2θ2
0 /n) converges to zero, and the total variation distance

between �(dα|Yn) and �̃(dα|Yn) converges to zero, as n → ∞ almost surely P(β0,σ
2
0 ,α0)

.

Theorem 2.3 provides a clear description of the limiting behavior of the joint posterior of
(θ,α) in the universal kriging model (1). Under fixed-domain asymptotics, the microergodic
parameter θ and the range parameter α have asymptotically independent posterior distribu-
tions. The posterior of θ is centered at the REML θ̃α0 and the variance is the same 2θ2

0 /n

as the asymptotic variance of REML θ̃α0 in Theorem 2.1. In fact, according to part (ii) of
Lemma 2.2, the center θ̃α0 can be replaced by θ̃α1 for any fixed α1 > 0, since α1 will be even-
tually covered by the slowly expanding interval [αn,αn], and the difference between θ̃α0 and

θ̃α1 is negligible compared to the limiting normal standard deviation
√

2θ2
0 /n.

The posterior convergence of microergodic parameter θ with a varying range parameter α

shows that we can consistently estimate the equivalent class of Gaussian measures using the
Bayesian procedure even if the range parameter α has possibly large posterior uncertainty.
An important consequence is that based on a random draw of parameters (θ,α) from the
posterior, the predictive variance at a new location is asymptotically close to the predictive
variance based on the true parameters (θ0, α0). We will elaborate this in Section 3.

Theorem 2.3 has three advantages in its generality. First, the theorem works for the uni-
versal kriging model with regression terms m(·)�β . Second, it allows an unbounded prior
support for α, which is not available in previous frequentist fixed-domain asymptotics liter-
ature. Third, the theorem does not require any assumption on the design points Sn. In other
words, the asymptotic factorization and normality works for arbitrary design of the sampling
points Sn, not even requiring Sn to be dense in the domain S . Theorem 2.3 also shows that
the marginal posterior density of α can be approximated by the more abstract profile poste-
rior with density π̃(α|Yn), which is based on the profile restricted likelihood of α. Using the
result in [26], we can show that this profile posterior is always well defined. On the other
hand, without further assumptions on Sn, it is not likely that the form of the profile posterior
density π̃(α|Yn) can be simplified. In general, this profile posterior of α does not necessar-
ily converge to any point mass. In Theorem 2.6 below, for a special case of 1-dimensional
Ornstein–Uhlenbeck process (Matérn with ν = 1/2) observed on an equispaced grid without
regression terms, we approximate π̃(α|Yn) using an explicit density of α that asymptotically
does not contract to any fixed value with high probability. Such nonconverging property of
π(α|Yn) explains the seemingly slow convergence of posterior of α in our SST data example
in Section 1. We also demonstrate this phenomenon using simulation examples in Section 4.

The difficulty in the estimation of range parameter α is a well-known problem in the GP
literature [38]. Gaussian processes with different values of α but the same microergodic pa-
rameter θ in the Matérn covariance function (2) can have similar sample paths [22], making
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it difficult to infer an appropriate value for α from the data. Zhang [85] and many others have
observed that for a fixed value of θ > 0, Ln(θ/α2ν, α) has a long right tail in 1/α that creates
problem for finding the MLE of α. The sampling distribution of the MLE of α does not show
any sign of convergence as n → ∞. For Bayesian inference, [26] identifies prior conditions
using the objective priors in [6] for robust estimation of 1/α in finite samples. Though we do
not study point estimation of α, our technical proofs have derived some new properties for
the profile posterior π̃(α|Yn), which could be of independent interest for Matérn covariance
functions; see Section S2 of the Supplementary Material [42] for details.

Theorem 2.3 works for the domain dimension d ∈ {1,2,3}. For completeness, we also de-
rive a similar theorem for the limiting joint posterior distribution when d ≥ 5 under additional
assumptions; see Section S3.4 of the Supplementary Material [42].

2.3. On the prior assumptions. We discuss the two technical prior assumptions (A.3)
and (A.4). The inequalities (13) and (14) in (A.3) require that the conditional prior π(θ |α)

does not vary too dramatically in a neighborhood of θ0 and in the slowly expanding interval
[αn,αn]. The interval (θ0/2,2θ0) in principle can be replaced by any neighborhood of the true
parameter θ0, such as (θ0 − δ0, θ0 + δ0) for some 0 < δ0 < θ0. The inequality (15) in (A.3)
requires that the prior assigns a minimum of exp(−nCπ,3) prior mass on the true parameter
θ0 uniformly over all α ∈ [αn,αn]. Such minimal prior mass assumption is often necessary
for achieving the basic posterior consistency in Bayesian models [23]. In particular, we can
verify Assumption (A.3) for the following examples of the prior π(θ |α), some of which are
commonly used in applications.

PROPOSITION 2.4. Suppose that the prior π(θ |α) does not depend on the sample size n.
Then Assumption (A.3) holds in either one of the following cases:

(i) π(θ |α) = π(θ) is independent of α. π(θ) has continuous first derivative on R
+ and

π(θ) > 0 for all θ ∈ R
+.

(ii) π(α) is supported on a compact interval [α1, α2], with constant lower and upper
bounds 0 < α1 < α2 < ∞. π(θ |α) is positive for all (θ,α) ∈R

+ ×R
+, continuous in α ∈ R

+,
and has continuous first derivative with respect to θ on R

+ for all α ∈ R
+.

(iii) The prior of σ 2 is independent of α and belongs to the broad distribution family of
the generalized beta of the second kind (or the Feller–Pareto family, [2], with the density

π(σ 2) = �(γ1+γ2)
�(γ1)�(γ2)

(σ 2/b)γ2/γ−1

bγ [1+(σ 2/b)1/γ ]γ1+γ2
with parameters b > 0, γ > 0, γ1 > 0, γ2 > 0.

Proposition 2.4 shows that Assumption (A.3) about π(θ |α) is satisfied by a wide range
of prior distributions on θ with continuously differentiable densities. Case (i) says that (A.3)
holds as long as the priors of θ and α are independent. Case (ii) says that (A.3) holds as long
as the support of the prior of α is bounded away from zero and infinity. Compactly supported
priors for the range parameter α have been widely used in Bayesian spatial statistics literature;
see, for example, [5, 19, 27, 55], etc. Case (iii) provides the example in which an independent
prior is assigned on the variance parameter σ 2 instead of on θ . The generalized beta of the
second kind (or Feller–Pareto family, [2, 10]) has polynomially decaying tails at both σ 2 →
0+ and σ 2 → +∞. This family covers a wide range of continuous distributions on (0,+∞)

including the half-Student’s t distributions, the F distributions, the log-logistic distributions,
the Burr distributions and many others [2]. Case (iii) mainly illustrates that if π(α) has a
full support on [0,+∞), then π(θ |α) cannot decay too fast in the two tails. For example, if
π(θ |α) has exponentially decaying tails at either θ → 0+ and θ → +∞, then (A.3) is not
satisfied when π(α) has a full support on [0,+∞). Fortunately, most spatial applications use
a compactly supported prior for α, and (A.3) is satisfied as in Case (ii).

Next, we discuss Assumption (A.4), which imposes some technical conditions on the tail
behavior of π(α) as α → 0+ and α → +∞.
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PROPOSITION 2.5. Let κ, κ,αn,αn be defined in (12). If a nonnegative function p(α)

for α > 0 satisfies either one of the following conditions:

(i) p(α) ≤ exp(−αδ1) for all α > αn, for some constant δ1 > 1/κ and for all sufficiently
large n;

(ii) p(α) ≤ nδ3 exp(−nδ2α) for all α > αn, for some constant 1 − κ < δ2 ≤ δ3 < ∞ and
all sufficiently large n;

then there exists a constant 0 < cπ < (ν + d/2)κ such that for all sufficiently large n,∫ ∞
αn

αn(ν+d/2)p(α)dα ≤ exp(cπn logn).(20)

Similarly, if a nonnegative function p(α) for α > 0 satisfies either one of the following con-
ditions:

(i) p(α) ≤ exp(−α−δ1) for all 0 < α < αn, for some constant δ1 > 1/κ and for all suffi-
ciently large n;

(ii) p(α) ≤ nδ3 exp(−nδ2/α) for all 0 < α < αn, for some constant 1 − κ < δ2 ≤ δ3 < ∞
and all sufficiently large n;

then there exists a constant 0 < cπ < (ν + d/2)κ such that for all sufficiently large n,∫ αn

0
α−n(ν+d/2)p(α)dα ≤ exp(cπn logn).(21)

Whilst having formulated Proposition (2.5) for a generic function p(α), we have in mind
to apply it to the priors π(α) and π(θ0|α)π(α) in (16) and (17) in Assumption (A.4). Since∫ ∞

0 π(θ0|α)π(α)dα < ∞ as in (A.4), the tail conditions on π(θ0|α)π(α) are the same as the
tail conditions on π(α|θ0). Two types of tail decaying conditions are given in Proposition 2.5.
In the first case, the tail of π(α) or π(α|θ0) decays at the exponential power rate exp(−αδ1)

in the right tail (or exp(−α−δ1) in the left tail), with some lower conditions on δ1 depending
on the values of κ (or κ). This condition requires that π(α) and π(α|θ0) decay very fast in
the right (or left) tail. One example of π(α) is that α1/min(κ,κ) follows the inverse Gaussian
distribution, since the inverse Gaussian distribution has exponentially decaying tails at zero
and infinity. In the second case of Proposition 2.5, we allow the tails of π(α) and π(α|θ0)

to be upper bounded by some exponential rate in α that depends on n. These tail decaying
conditions in Proposition 2.5 and Assumption (A.4) can ensure that the convergence to a
normal limit will be dominant in the joint posterior of (θ,α).

We remark that the tail conditions in (A.4) are often stronger than necessary in practice.
This is partly because we have made no assumption on the design of the sampling points
Sn. Even when Sn is highly unevenly distributed in S or is not dense in the full space of S ,
Theorem 2.3 still holds true under (A.4), which allows the prior π(α) to have a full support
in [0,+∞). If one is willing to impose more assumptions on Sn, for example, the maximum
distance between two adjacent points decreases at a certain rate to zero, then it is possible to
relax the tail conditions in (A.4). Furthermore, such assumptions on the sampling design Sn

may also improve how fast the total variation distance between the joint posterior distribution
�(dθ,dα|Yn) and its limiting distribution in Theorem 2.3 converges to zero. For a general
smoothness parameter ν, analyzing the effect of design Sn inevitably requires more sophis-
ticated matrix theory for the properties of the Matérn correlation matrix Rα and the related
quantities Y�

n R−1
α Yn and |Rα| as α → 0+ and α → +∞, since these two terms determine

the properties of the profile restricted log-likelihood function (8). We will see in Theorem 2.6
below that in a special case when the sampling points are from an equispaced grid, the tail
conditions in (A.4) can be significantly weakened and the conclusion of Theorem 2.3 can
hold for a broader class of priors on α.
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2.4. Limiting posterior distribution for 1-dimensional Ornstein–Uhlenbeck process For
a concrete example of Theorem 2.3, we consider the special case of d = 1, S = [0,1], and ν =
1/2 in the Matérn covariance function. The covariance function becomes Cov(X(s),X(t)) =
σ 2 exp(−α|s − t |) for s, t ∈ [0,1], which is also known as the exponential covariance func-
tion. The resulted stochastic process X is the 1-dimensional Ornstein–Uhlenbeck process
[52]. We assume that the sampling points in Sn are on the equispaced grid with si = i/n for
i = 1, . . . , n. For the regression terms, we consider two different cases:

(i) Model (1) without the regression term m(·)�β , that is, p = 0, Y(s) = X(s) for any
s ∈ [0,1], which implies that Yn ∼ N (0, σ 2

0 Rα0);
(ii) Model (1) with a constant regression term, that is, p = 1, m1(·) ≡ 1, β ∈ R, Y(s) =

β + X(s) for any s ∈ [0,1], which implies that Yn ∼ N (1nβ0, σ
2
0 Rα0), where 1n denotes the

n-dimensional column vector of all 1’s.

For Case (i), we derive an explicit formula for the limiting posterior of α and relax the con-
dition on the tail of π(α) in the new Assumption (A.4’). For Case (ii), we show that the
posterior of β does not converge to the true parameter β0 as n → ∞.

For the model in Case (i), the frequentist MLE of (θ,α) under fixed-domain asymptotics
has been extensively studied in [14, 21, 83, 84], etc. Since si = i/n for i = 1, . . . , n, the
inverse matrix R−1

α is given by

(
R−1

α

)
ii =

{(
1 − e−2α/n)−1

, i = 1, n,(
1 + e−2α/n)

/
(
1 − e−2α/n)

, i = 2, . . . , n − 1,(
R−1

α

)
i,i+1 = (

R−1
α

)
i+1,i = −e−α/n(

1 − e−2α/n)−1
, i = 1, . . . , n − 1,

and all other entries of Rα are zero. Furthermore, the determinant of Rα is |Rα| = (1 −
e−2α/n)n−1. Since the model does not contain β , the profile restricted log-likelihood in (8)
has the explicit form

L̃n(α) = −n

2
log

(
A1e−2α/n − 2A2e−α/n + A3

) + 1

2
log

(
1 − e−2α/n)

,(22)

where A1 =
n−1∑
i=2

Y(si)
2,A2 =

n−1∑
i=1

Y(si)Y (si+1),A3 =
n∑

i=1

Y(si)
2.(23)

For the prior of α, instead of Assumption (A.4), we use a weaker alternative assumption.

(A.4’) The marginal prior π(α) is a proper and continuous density on R
+. π(α) does

not depend on n. π(α0) > 0.
∫ ∞

0 π(θ0|α)π(α)dα < ∞.
∫ ∞

0
√

απ(θ0|α)π(α)dα < ∞.∫ ∞
0

√
απ(α)dα < ∞. Furthermore, for αn and αn defined in (12), the following relations

hold as n → ∞:

√
n

∫ αn

0

√
απ(α)dα → 0,

√
n

∫ ∞
αn

√
απ(α)dα → 0.(24)

Assumption (A.4’) is considerably weaker than Assumption (A.4). Assumption (A.4’) only
requires that π(α) and π(θ0|α)π(α) (or equivalently, π(α|θ0)) to have polynomially decay-
ing tails at zero and infinity, compared to the exponential power tails as in Proposition 2.5.
With appropriate choice of hyperparameters, π(α) in (A.4’) can be taken as gamma, inverse
gamma, inverse Gaussian, or the family of generalized beta of the second kind defined in
Proposition 2.4; see the beginning of Section S5 in the Supplementary Material [42] for de-
tailed discussion on the choice of hyperparameters.
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THEOREM 2.6. Consider the model (1) with p = 0, d = 1, S = [0,1], ν = 1/2, and
observations Yn on the equispaced grid si = i/n for i = 1, . . . , n. Suppose that Assumptions
(A.2), (A.3), and (A.4’) hold. Then∥∥�(dθ,dα|Yn) −N

(
dθ |θ̃α0,2θ2

0 /n
) × �̃(dα|Yn)

∥∥
TV → 0,(25) ∥∥�(dθ,dα|Yn) −N

(
dθ |θ̃α0,2θ2

0 /n
) × �∗(dα|Yn)

∥∥
TV → 0,(26)

as n → ∞ in P(σ 2
0 ,α0)

-probability, where θ̃α0 = n−1α2ν
0 Y�

n R−1
α0

Yn, the profile posterior distri-

bution �̃(dα|Yn) has the density π̃(α|Yn) ∝ exp{L̃n(α)} · π(α|θ0) with L̃n(α) given in (22),
and the distribution �∗(dα|Yn) has the density

π∗(α|Yn) ∝ √
α exp

{
−(α − u∗)2

2v∗

}
· π(α|θ0) for all α ∈ R

+,

where u∗ = n(A1 − A2)

A1
, v∗ = n(A1 − 2A2 + A3)

A1
,

and A1,A2,A3 are defined in (23). Furthermore, |u∗| � 1, v∗ > 0 and v∗ � 1 as n → ∞ in
P(σ 2

0 ,α0)
-probability. Therefore, π(α|Yn) does not converge to any point mass distribution as

n → ∞ in P(σ 2
0 ,α0)

-probability.

Theorem 2.6 provides a concrete form for the limiting joint posterior distribution of (θ,α)

in the 1-dimensional Ornstein–Uhlenbeck process under fixed-domain asymptotics. Since the
model does not contain β , we write P(σ 2

0 ,α0)
instead of P(β0,σ

2
0 ,α0)

in Theorem 2.6. Compared
to Theorem 2.3, Theorem 2.6 shows the same limiting distribution under the weaker (A.4’).
Furthermore, Theorem 2.6 simplifies the profile posterior density π̃(α) to a more explicit
form π∗(α|Yn), which is a polynomially tilted normal density [9] times the conditional prior
density π(α|θ0). The “normal” part of π∗(α|Yn) is centered at u∗ with scale v∗. Both center
u∗ and the scale v∗ are of constant order in P(σ 2

0 ,α0)
-probability. Moreover, (A.2) and (A.4’)

ensure that π(α|θ0) is positive for all α ∈ R
+. Therefore, the limiting distribution π∗(α|Yn)

has a continuous and positive density with a nonshrinking variance on R
+. If π(α|θ0) does

not depend on n, then as a result of the convergence in total variation distance in (26), the
marginal posterior π(α|Yn) also cannot converge to any point mass distribution as n → ∞.
Therefore, the posterior of α does not converge to the true parameter α0. This Bayesian
asymptotic result matches with the frequentist theory in [85] that there exists no consistent
estimator for α under fixed-domain asymptotics.

Next we consider Case (ii). To simplify the expressions, we assume the noninformative
prior π(β|σ 2, α) ∝ 1 which corresponds to �β = 0p×p in Assumption (A.2). We notice that
in Case (ii), m1(·) ≡ 1 and it is infinitely differentiable on [0,1] with all derivatives equal to
zero. Hence it lies in Wν+d/2

2 ([0,1]) for any ν > 0 and d ∈ {1,2,3}, and Assumption (A.1)
is satisfied. We have the following corollary from Theorem 2.3.

COROLLARY 2.7. Consider the model (1) with p = 1, m1(·) ≡ 1, π(β|σ 2, α) ∝ 1, d = 1,
S = [0,1], ν = 1/2, and observations Yn on the equispaced grid si = i/n for i = 1, . . . , n.
Suppose that Assumptions (A.2), (A.3) and (A.4) hold. Then

β|Yn, θ,α ∼ N
(

B2 − B1e−α/n

(n − 2)(1 − e−α/n) + 2
,

θ(1 + e−α/n)

[(n − 2)(1 − e−α/n) + 2]α
)
,(27) ∥∥�(dθ,dα|Yn) −N

(
dθ |θ̃α0,2θ2

0 /n
) × �̃(dα|Yn)

∥∥
TV → 0, ,(28)
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as n → ∞ almost surely P(β0,σ
2
0 ,α0)

, where the profile posterior distribution �̃(dα|Yn) has

the density π̃(α|Yn) ∝ exp{L̃n(α)} · π(α|θ0), and the formulas of θ̃α and L̃n(α) are given by

θ̃α = α(1 − e−2α/n)−1

n − 1

{(
A1e−2α/n − 2A2e−α/n + A3

) − (1 − e−α/n)(B2 − B1e−α/n)2

(n − 2)(1 − e−α/n) + 2

}
,

L̃n(α)

= −n − 1

2
log

{(
A1e−2α/n − 2A2e−α/n + A3

) − (1 − e−α/n)(B2 − B1e−α/n)2

(n − 2)(1 − e−α/n) + 2

}

+ 1

2
log

1 + e−α/n

(n − 2)(1 − e−α/n) + 2
,

where B1 = ∑n−1
i=2 Y(si), B2 = ∑n

i=1 Y(si), and A1,A2,A3 are as defined in (23).
Furthermore, for any η ∈ (0,1/4), there exists constants ε0 > 0, δ0 ∈ (0,1) and a large

integer N2, such that Pr(�(|β − β0| > ε0|Yn) > δ0) > 1 − η for all n > N2. Therefore, the
posterior distribution of β is inconsistent for the true parameter β0.

Corollary 2.7 provides a concrete example that the posterior of β is not consistent under
fixed-domain asymptotics. In fact, this can be seen from the conditional posterior variance
of β given in (27). For a fixed α, this variance is close to 2θ0/[α(α + 2)] as n → ∞ since
θ drawn from the posterior is close to θ0. Therefore, the posterior variance of β does not
vanish as n → ∞. We expect that this is also true for general m(·) functions, since one
cannot expect to consistently estimate the regression coefficients β only based on a single
sample path Y(·). This echoes the frequentist result that the MLE of β is inconsistent under
fixed-domain asymptotics; see, for example, Lemma 5 of [25].

2.5. Relation to previous Bayesian results. Relation to previous BvM results. In the pres-
ence of nuisance parameters, [57] and [8] have developed general machinery for proving BvM
results in the presence of possibly nonparametric nuisance parameters. They assume that the
model depends on an identifiable parameter and a nuisance parameter. Bickel and Kleijn [8]
first establish a LAN result for each value of the identifiable parameter inside a neighborhood
of the “least-favorable submodel,” which is a contracting neighborhood of the nuisance pa-
rameter around the minimizer of the Kullback–Leibler divergence. Then their Theorem 4.2
gives the integral LAN property with integration over the nuisance parameter. They further
proposes a rate free BvM theorem in their Corollary 5.2 that allows a noncontracting poste-
rior for the nuisance parameter, which can be related to the posterior distribution of α in our
GP model.

Despite the similarity, we adopt a more direct proof technique for the GP model with
isotropic Matérn covariance function, instead of checking the condition on Hellinger distance
in [8] for uniform tests. There are several additional challenges. First, the likelihood function
in our GP model cannot be written in an independent product form. The design of the sam-
pling points Sn is arbitrary, making R−1

α and |Rα| completely intractable. This determines
that the LAN condition in our model is fundamentally different from that for independent
or weakly dependent data considered in [8]. We instead use the tools of RKHS theory and
spectral analysis to establish the LAN condition for θ . We integrate out θ for each given α

and obtain the profile posterior distribution of α as in (19). Second, our LAN condition holds
uniformly over all α ∈ [αn,αn], but we still need to handle those α outside [αn,αn]. We
derive sufficient tail conditions on π(α) such that the posterior probability outside [αn,αn]
vanishes as n → ∞. This involves detailed analysis on the properties of the profile posterior
distribution in (19); see Section S2 of the Supplementary Material [42].
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In the broader sense, our work contributes a new example to the literature of limiting
posterior distribution for nonregular models; see, for example, [9, 15, 16, 34, 39], etc.

Relation to partially identified models. Our theorems for the covariance parameters can
also be related to the Bayesian literature of partially identified models. Such models have
been studied extensively in statistics and econometrics literature, but only for independent
and weakly dependent data [29, 47, 67]. In partially identified models, the probability distri-
bution of the data is compatible with a set of different parameter values. This parameter set
is referred to as the identification region. As a result, consistent point estimator for the true
parameter does not exist, though one can still consistently estimate the identification region.
The asymptotic property of posterior distributions in partially identified models have been
studied in [15, 28, 32, 33, 49], etc. However, the Bayesian theory from these works only ap-
plies to independent data and weakly dependent data, and does not apply to our GP model.
Depending on the assumptions, the limiting posterior of the nuisance parameter can either
only depend on the prior [49], or depend on the prior and some asymptotically deterministic
function of the identifiable part of the parameter vector [32].

Our paper contributes a new example to the Bayesian partial identification literature. Con-
sider the model (1) with isotropic Matérn covariance function σ 2Kα,ν and without regres-
sion terms, that is, Y(·) = X(·). Under fixed-domain asymptotics, the distribution of Yn is
asymptotically compatible with any parameters on the curve �θ0 = {(σ 2, α) ∈ R

+ × R
+ :

σ 2α2ν = θ0}, which is the identification region in our problem. Different from [49], our
Theorem 2.3 shows that both the prior and the data Yn play important roles in the poste-
rior of α. The data Yn influences the posterior through the profile restricted likelihood func-
tion. Different from [32], Theorem 2.6 shows that the influence from Yn is always stochas-
tic instead of asymptotically deterministic, as the polynomially tilted normal distribution
π∗(α|Yn) has a scale v∗ dependent on Yn and not converging to any point limit asymptot-
ically.

3. Asymptotic efficiency and convergence rate of posterior prediction. The limiting
theorems in Section 2 shows that the posterior of the microergodic parameter θ in the Matérn
covariance function satisfies the same n−1/2-convergence to a normal limit. This result has an
important implication for the Bayesian GP (or kriging) prediction with covarinace parameters
randomly drawn from the posterior distribution at a new location s∗ ∈ S\Sn, that is, s∗ is an
arbitrary point in S but different from the sampling points Sn. We first show that for the
general model (1), the Bayesian GP predictive variance is almost equal to the one with a
known θ0. Then we discuss the detailed posterior asymptotic efficiency for the model without
regression terms and the convergence rates for the model with regression terms. We also
present results both for a fixed α and for a range of α values.

Consider the linear prediction (or kriging) of Y(s∗) using the data Yn. Let rα(s∗) =
(Kα,ν(s1 − s∗), . . . ,Kα,ν(sn − s∗))� be the correlation vector between s∗ and {s1, . . . , sn}.
Then under a possibly misspecified model Y ∼ GP(m�β,σ 2Kα,ν), the best linear unbiased
predictor (BLUP) for Y(s∗) using (Section 1.5 of [64]) is

Ŷ
(
s∗;β,α

) = m
(
s∗)�

β + rα
(
s∗)�

R−1
α (Yn − Mnβ).(29)

This kriging predictor only depends on (β,α) but not σ 2. Now under the Bayesian setup,
we randomly draw (β, σ 2, α) from the posterior �(·|Yn) to predict Y(s∗). We denote the
predicted variable as Ỹ (s∗). Using the Gaussian process predictive distribution, we have

Ỹ
(
s∗)|Yn,β,σ 2, α ∼ N

(
Ŷ

(
s∗;β,α

)
, σ 2{

1 − rα
(
s∗)�

R−1
α rα

(
s∗)})

.
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We can integrate out β using (5) to derive that

Ỹ
(
s∗)|Yn,σ

2, α ∼ N
(
Ŷ

(
s∗;α)

,vn

(
s∗;σ 2, α

))
,

where Ŷ
(
s∗;α) = rα

(
s∗)�

R−1
α Yn + bα

(
s∗)�(

M�
n R−1

α Mn + �β

)−1
M�

n R−1
α Yn,

vn

(
s∗;σ 2, α

)
(30)

= σ 2{
1 − rα

(
s∗)�

R−1
α rα

(
s∗)} + σ 2bα

(
s∗)�(

M�
n R−1

α Mn + �β

)−1
bα

(
s∗)

,

and bα

(
s∗) = m

(
s∗) − M�

n R−1
α rα

(
s∗)

, for any s∗ ∈ S.

The detailed derivation of (30) is in Section S6.1 of the Supplementary Material [42]. This
normal predictive distribution is the same as in equation (2.4) of [30], which is for the special
case of �β = 0p×p . The predictive variance of Ỹ (s∗), vn(s

∗;σ 2, α) in (30), is the main focus
of this section, because it directly quantifies the Bayesian uncertainty of GP prediction.

We first show that if (σ 2, α) is randomly drawn from the posterior �(·|Yn), then the GP
predictive variance vn(s

∗;σ 2, α) is almost equal to vn(s
∗; θ0/α

2ν, α), that is, as if the true
microergodic parameter θ0 were known. We notice that vn(s

∗;σ 2, α) is random due to the
randomness in the posterior distribution of (σ 2, α).

THEOREM 3.1 (Posterior asymptotic efficiency compared to the half oracle model).

(i) Under Assumptions (A.1) and (A.2), for any fixed α > 0, as n → ∞, almost surely
P(β0,σ

2
0 ,α0)

,

�

[
sup

s∗∈S\Sn

∣∣∣∣ vn(s
∗;σ 2, α)

vn(s∗; θ0/α2ν, α)
− 1

∣∣∣∣ > 7n−1/2 logn
∣∣∣Yn,α

]
→ 0.

(ii) Under Assumptions (A.1), (A.2), (A.3) and (A.4), as n → ∞, almost surely P(β0,σ
2
0 ,α0)

,

�

[
sup

s∗∈S\Sn

∣∣∣∣ vn(s
∗;σ 2, α)

vn(s∗; θ0/α2ν, α)
− 1

∣∣∣∣ > 7n−1/2 logn
∣∣∣Yn

]
→ 0.

Theorem 3.1 shows that the GP predictive variance at an arbitrary new location s∗ eval-
uated under the measure P(β,σ 2,α) is asymptotically equal to the predictive MSE evaluated
under the measure P(β0,θ0/α

2ν ,α). Part (i) and part (ii) are the direct consequence of Theo-
rem 2.1 for the posterior of θ given α and Theorem 2.3 for the joint posterior of (θ,α),
respectively. We also give the explicit convergence rate n−1/2 logn, in which the logn factor
is to ensure the almost sure convergence. Theorem 3.1 shows that the prediction performance
from a random draw of (θ,α) from the posterior is as good as the “half oracle” model with
the true microergodic parameter θ0 and the same range parameter α. It is half oracle be-
cause Theorem 3.1 has not yet set the range parameter at the true α0 and compared with
vn(s

∗; θ0/α
2ν
0 , α0). On the other hand, Theorem 3.1 only requires the same conditions as

Theorem 2.3.
In the following, we will compare vn(s

∗;σ 2, α) with vn(s
∗; θ0/α

2ν
0 , α0), the predictive

variance from the full oracle model where both θ and α are set at their true values. We
first study a simplified model without regression terms and prove the asymptotic efficiency
in posterior prediction with respect to the full oracle model, and then consider the general
model (1) and show the same optimal posterior convergence rates as the full oracle model.



BAYESIAN FIXED-DOMAIN ASYMPTOTICS 3351

3.1. Posterior asymptotic efficiency without regression terms. In this subsection, we con-
sider a special case of the model (1) where the regression term m(·)�β is absent and the model
simplifies to

Y(s) = X(s) for any s ∈ S, X ∼ GP
(
0, σ 2Kα,ν

)
.(31)

We observe Yn ∼ N (0, σ 2
0 Rα0) at the sampling points Sn. This is equivalent to setting p = 0.

For this model, we prove the strong result that vn(s
∗;σ 2, α) with (σ 2, α) randomly drawn

from the posterior is asymptotically equal to vn(s
∗; θ0/α

2ν
0 , α0) and quantify the convergence

rate. We need the following dense assumption.

(A.5) The sequence of Sn = {s1, . . . , sn} is getting dense in S = [0, T ]d as n → ∞, in the
sense that sups∗∈S min1≤i≤n ‖s∗ − si‖ → 0 as n → ∞.

The sets S1,S2, . . . are increasingly dense in the fixed domain S , so that we can predict at
any new location accurately. But we do not require the sequence S1,S2, . . . to be nested.

In the model (31), the BLUP of Y(s∗) is Ŷ (s∗;α) = rα(s∗)�R−1
α Yn, and vn(s

∗;σ 2, α) =
σ 2{1 − rα(s∗)�R−1

α rα(s∗)} from (30). We notice that in this case, another interpretation of
vn(s

∗;σ 2, α) is the GP prediction mean squared error of the BLUP Ŷ (s∗;α) [37]. That is, if
we let en(s

∗;α) = Ŷ (s∗;α) − Y(s∗), then vn(s
∗;σ 2, α) = E(σ 2,α){en(s

∗;α)2}. The optimal
“oracle” predictive MSE using the true parameters is vn(s

∗;σ 2
0 , α0) = E(σ 2

0 ,α0)
{en(s

∗;α0)
2}.

Under the true model GP(0, σ 2
0 Kα0,ν), the predictive MSE based on a misspecified α is

E(σ 2
0 ,α0)

{
en

(
s∗;α)2} = σ 2

0
{
1 − 2rα

(
s∗)�

R−1
α rα0

(
s∗) + rα

(
s∗)�

R−1
α Rα0R

−1
α rα

(
s∗)}

.

We are interested in whether E(σ 2,α){en(s
∗;α)2}, the predictive MSE under the true mea-

sure E(σ 2
0 ,α0)

{en(s
∗;α)2}, and the oracle predictive MSE E(σ 2

0 ,α0)
{en(s

∗;α)2} are close to each
other. In a series of works [58–60, 62, 63] and [65], Stein has systematically studied the GP
prediction problem and shown that if an incorrect Gaussian process model is used for pre-
diction, the predictive variance at s∗ is asymptotically equal to the predictive variance at s∗
using the incorrect model but evaluated under the true Gaussian process model, as long as
the two Gaussian measures are compatible (or mutually absolutely continuous). For our GP
model with mean-zero and isotropic Matérn covariance function with d ∈ {1,2,3}, the com-
patibility of the incorrect model GP(0, σ 2Kα,ν) and the true model GP(0, σ 2

0 Kα0,ν) simplifies
to the equivalence condition σ 2α2ν = θ0 = σ 2

0 α2ν
0 , that is, they have the same microergodic

parameter θ0. If the equivalence condition holds, then [58, 59] and [60] have shown that for
the model without regression terms (31), as n → ∞,

(32) sup
s∗∈S\Sn

∣∣∣∣ E(σ 2,α){en(s
∗;α)2}

E(σ 2
0 ,α0)

{en(s∗;α)2} − 1
∣∣∣∣ → 0, sup

s∗∈S\Sn

∣∣∣∣ E(σ 2,α){en(s
∗;α)2}

E(σ 2
0 ,α0)

{en(s∗;α0)2} − 1
∣∣∣∣ → 0,

which is called asymptotic efficiency in linear prediction. The first convergence shows that
for the BLUP (29), the predictive MSEs are almost the same under either the incorrect Gaus-
sian measure P(σ 2,α) or the true Gaussian measure P(σ 2

0 ,α0)
. The second convergence shows

that the predictive MSEs obtained from the incorrect model GP(0, σ 2Kα,ν) is asymptotically
equal to the optimal predictive MSE from the true model GP(0, σ 2

0 Kα0,ν).
Using the weakened conditions in [62], Theorem 4 of [37] shows that in the model (31),

for a given α > 0, the prediction based on the MLE of σ 2 for a fixed α > 0 satisfies that

sup
s∗∈S\Sn

∣∣∣∣ E(σ̃ 2
α ,α){en(s

∗;α)2}
E(σ 2

0 ,α0)
{en(s∗;α)2} − 1

∣∣∣∣ → 0,

as n → ∞ almost surely P(σ 2
0 ,α0)

, where σ̃ 2
α = n−1Y�

n R−1
α Yn is the MLE of σ 2.
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Motivated by these works, we establish the Bayesian version of (32), called asymptotic
efficiency in posterior prediction, which is the posterior asymptotic efficiency compared to the
full oracle model. In Bayesian inference, we randomly draw (σ 2, α) from the joint posterior
distribution, and compute the predictive MSE at a new location s∗ ∈ S\Sn using the Gaussian
measure P(σ 2,α).

For a given α > 0, we define the following sequence ςn(α), which will be useful:

ςn(α) = max
{

sup
s∗∈S\Sn

∣∣∣∣E(θ0/α
2ν ,α){en(s

∗;α)2}
E(σ 2

0 ,α0)
{en(s∗;α)2} − 1

∣∣∣∣,
(33)

sup
s∗∈S\Sn

∣∣∣∣E(θ0/α
2ν ,α){en(s

∗;α)2}
E(σ 2

0 ,α0)
{en(s∗;α0)2} − 1

∣∣∣∣}.

For a given α > 0, as n → ∞, Theorem 3.1 of [58] shows that the first rate in ςn(α) in (33)
converges to zero, and Theorem 1 of [60] further implies that the second rate in ςn(α) in (33)
converges to zero. To handle a random range parameter α, we need the following uniform
convergence condition.

(A.6) There exists a positive deterministic sequence ςn → 0 as n → ∞, such that
supα∈[αn,αn] ςn(α) ≤ ςn for the sequence ςn(α) defined in (33).

We have the following theorem for the prediction MSE in the model (31).

THEOREM 3.2 (Posterior asymptotic efficiency compared to the full oracle model under
(31)).

(i) (For a fixed α) Under Assumptions (A.2) and (A.5), as n → ∞, almost surely P(σ 2
0 ,α0)

,

�

[
sup

s∗∈S\Sn

∣∣∣∣ E(σ 2,α){en(s
∗;α)2}

E(σ 2
0 ,α0)

{en(s∗;α)2} − 1
∣∣∣∣ > max

{
16n−1/2 logn,2ςn(α)

}∣∣∣Yn,α

]
→ 0,

�

[
sup

s∗∈S\Sn

∣∣∣∣ E(σ 2,α){en(s
∗;α)2}

E(σ 2
0 ,α0)

{en(s∗;α0)2} − 1
∣∣∣∣ > max

{
16n−1/2 logn,2ςn(α)

}∣∣∣Yn,α

]
→ 0,

where ςn(α) is given in (33);
(ii) (For random α) Under Assumptions (A.2), (A.3), (A.4), (A.5) and (A.6), as n → ∞,

almost surely P(σ 2
0 ,α0)

,

�

[
sup

s∗∈S\Sn

∣∣∣∣ E(σ 2,α){en(s
∗;α)2}

E(σ 2
0 ,α0)

{en(s∗;α)2} − 1
∣∣∣∣ > max

(
16n−1/2 logn,2ςn

)∣∣∣Yn

]
→ 0,

�

[
sup

s∗∈S\Sn

∣∣∣∣ E(σ 2,α){en(s
∗;α)2}

E(σ 2
0 ,α0)

{en(s∗;α0)2} − 1
∣∣∣∣ > max

(
16n−1/2 logn,2ςn

)∣∣∣Yn

]
→ 0,

(34)

where ςn is given in Assumption (A.6).

We emphasize again that E(σ 2,α){en(s
∗;α)2} = vn(s

∗;σ 2, α) and E(σ 2
0 ,α0)

{en(s
∗;α0)

2} =
vn(s

∗;σ 2
0 , α0) for the model (31) without regression terms. Part (i) of Theorem 3.2 establishes

two posterior convergence results. The first convergence is about the ratio of the predictive
MSEs using a misspecified range parameter α evaluated under the measure P(σ 2,α) and the
true measure P(σ 2

0 ,α0)
, which implies that these two predictive MSEs are asymptotically equal.

The second convergence is about the ratio of the predictive MSEs using the incorrect model
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P(σ 2,α) and the full oracle optimal predictive MSE using the true model P(σ 2
0 ,α0)

. This implies
that the predictive MSE computed with random parameters (θ,α) drawn from the posterior
can asymptotically recover the exact full oracle optimal predictive MSE. Both convergence
rates depend on two parts: one is the posterior convergence rate of θ to θ0, which is as fast
as n−1/2 logn; the other is the convergence rate from the convergence of the two ratios in the
definition of ςn(α) in (33), which has been shown before by [58] and [60].

Part (ii) of Theorem 3.2 is similar to part (i) with the same interpretation of asymptotic
efficiency, except that α is also random and (σ 2, α) is drawn from their joint posterior. Fur-
thermore, Assumption (A.6) is used to guarantee the uniform convergence over the majority
of α values in the interval [αn,αn]. Part (ii) shows that the predictive MSE computed from
randomly drawn (σ 2, α) from the posterior is asymptotically equal to the oracle optimal pre-
dictive MSE with the true parameters.

We emphasize that the posterior asymptotic efficiency in Theorem 3.2 automatically im-
plies that E(σ 2,α){en(s

∗;α)2} with (σ 2, α) randomly drawn from the posterior must always
converge at exactly the same rate to zero as E(σ 2

0 ,α0)
{en(s

∗;α0)
2}, regardless of how fast

E(σ 2
0 ,α0)

{en(s
∗;α0)

2} converges to zero. Therefore, the posterior asymptotic efficiency is
stronger than posterior convergence rate results.

To clarify the rate ςn in Assumption (A.6), we revisit the 1-dimensional Ornstein–
Uhlenbeck process in Case (i) in Section 2.4 and derive an explicit form for ςn.

THEOREM 3.3. For the case of d = 1, ν = 1/2, S = [0,1] and equispaced grid si = i/n,
for i = 1, . . . , n, Assumption (A.6) is satisfied with ςn = 3n−1/2+(κ+κ/2), where κ and κ are
defined in (12). As a result, under Assumptions (A.2), (A.3), (A.4), (A.5), as n → ∞, almost
surely P(σ 2

0 ,α0)
,

�

[
sup

s∗∈S\Sn

∣∣∣∣ E(σ 2,α){en(s
∗;α)2}

E(σ 2
0 ,α0)

{en(s∗;α)2} − 1
∣∣∣∣ > 6n−1/2+(κ+κ/2)

∣∣∣Yn

]
→ 0,

�

[
sup

s∗∈S\Sn

∣∣∣∣ E(σ 2,α){en(s
∗;α)2}

E(σ 2
0 ,α0)

{en(s∗;α0)2} − 1
∣∣∣∣ > 6n−1/2+(κ+κ/2)

∣∣∣Yn

]
→ 0.

To prove Theorem 3.3, we use the result in [60] and relate the rate ςn in Assumption
(A.6) to the convergence rate of the finite sample version of the symmetrized Kullback–
Leibler divergence between two equivalent Gaussian measures toward its limit. Since κ and
κ are both small positive numbers as given in (12), the two posterior convergence rates for
asymptotic efficiency in Theorem 3.3 are both close to the rate n−1/2.

3.2. Optimal rates for GP predictive variance with regression terms. We now consider
the general universal kriging model (1) with the regression term m(·)�β . Like Theorem 3.2,
we also need a similar assumption to Assumption (A.6).

(A.6’) There exists a positive deterministic sequence ς̃n → 0 as n → ∞, such that

sup
α∈[αn,αn]

sup
s∗∈S\Sn

∣∣∣∣(θ0/α
2ν)[1 − rα(s∗)�R−1

α rα(s∗)]
σ 2

0 [1 − rα0(s
∗)�R−1

α0 rα0(s
∗)] − 1

∣∣∣∣ ≤ ς̃n.(35)

Because the relative error in (35) is exactly the second relative error in the definition of ςn(α)

in (33), Assumption (A.6’) is weaker than and implied by Assumption (A.6). Therefore,
by Theorem 3.3, we can take ς̃n = 3n−1/2+(κ+κ/2) for 1-dimensional Ornstein–Uhlenbeck
process in Assumption (A.6’).
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To quantify the convergence rate of vn(s
∗;σ 2, α), we follow the literature on kriging and

define the fill distance given a set of design points Sn = {s1, . . . , sn} as

hSn = sup
s∈S

min
si∈Sn

‖s − si‖.(36)

The fill distance quantifies the space-filling properties of Sn. The convergence rates of kriging
in Model (1) can often be expressed as a function of hSn [69, 77, 78, 80]. Then we have the
following theorem on the posterior convergence rate of Bayesian GP predictive variance.

THEOREM 3.4. Suppose that Assumptions (A.1), (A.2), (A.3), (A.4), (A.5) and (A.6’)
hold. Let Cm = ∑p

j=1 ‖mj‖2
Wν+d/2

2 (S)
. For an index set I ⊆ {1, . . . , n}, let |I| be its cardi-

nality and MI be the submatrix of Mn with row indexes in I . Assume that for each Sn,
λ(Mn,p) = maxI⊆{1,...,n},|I|=p λmin(M

�
I MI)/p > 0. Then for any η, δ ∈ (0,1), there ex-

ist large constants Cv,1 > 0,Cv,2 > 0 that depend on σ 2
0 , α0, ν, d, T , and a large constant

Cv,3 > 0 and large integer N3 that depend on η, δ, σ 2
0 , α0, ν, d, T , such that for all n > N3,

sup
s∗∈S

vn

(
s∗;σ 2

0 , α0
) ≤ Cv,1

[
Cmσ 2

0 λ(Mn,p)−1 + 1
]
h2ν
Sn

and

Pr
(
�

[
sup
s∗∈S

vn

(
s∗;σ 2, α

) ≤ Cv,2
[
Cv,3Cmλ(Mn,p)−1 + 1

]
h2ν
Sn

∣∣∣Yn

]
> 1 − δ

)
> 1 − η.

Theorem 3.4 essentially shows that with (σ 2, α) randomly drawn from the posterior dis-
tribution �(·|Yn), the Bayesian GP predictive variance vn(s

∗;σ 2, α) converges to zero at
almost the same rate as the oracle predictive variance vn(s

∗;σ 2
0 , α0) using the true parame-

ters (σ 2
0 , α0), as n → ∞ in P(σ 2

0 ,α0)
-probability. Given that the posterior support of (σ 2, α)

is unbounded, sups∗∈S vn(s
∗;σ 2, α) with vn(s

∗;σ 2, α) defined in (30) could be potentially
very large if σ 2 is large. However, our Theorem 3.4 shows that the posterior convergence rate
can still be controlled even with (σ 2, α) randomly drawn from the posterior with unbounded
support. The proof of Theorem 3.4 crucially depends on the limiting posterior distribution of
(θ,α) proved in Theorem 2.3.

The convergence rates of GP predictive error have been extensively studied in the fre-
quentist literature ([58, 69, 77, 81], etc.) Wu and Schaback [79] has shown that the squared
L2 kriging prediction error for the GP with a Matérn covariance function, fixed covariance
parameters, and no regression terms is O(h2ν

Sn
) for sufficiently small hSn . Ritter [53] and

[69] have proved that for the GP with isotropic Matérn σ 2
0 Kα0,ν and no regression terms, the

optimal convergence rate of squared L2 kriging prediction error is n−2ν/d , which is also a
lower bound and not improvable. This optimal rate n−2ν/d can be attained when Sn has the
quasi-uniform design, such as a regular grid in S , such that hSn � n−1/d ; see Table 1 of [69].
If Cmλ(Mn,p)−1 in Theorem 3.4 is of constant order, then Theorem 3.4 provides the up-
per bound of the order h

2ν/d
Sn

� n−2ν/d for the Bayesian GP predictive variance vn(s
∗;σ 2, α)

with a quasi-uniform design Sn, which matches up with the optimal rate of squared L2 krig-
ing prediction error.

The multiplicative factor Cmλ(Mn,p)−1 in the upper bounds in Theorem 3.4 is due to the
regression terms m(·)�β . The same factor also appears in the frequentist kriging error bound
in Theorem 2 of [77] under a fixed covariance functions. By Assumption (A.1), Cm is already
a constant. In many applications, the term λ(Mn,p) is bounded from below by constant for
fixed p as n → ∞, for example, when Sn is either some regular grid in S or drawn from
some sampling distribution [77]. Then Theorem 3.4 leads to the optimal convergence rate for
the posterior predictive variance with randomly drawn (σ 2, α).
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In the special case of p = 1, m1(·) ≡ 1, and Matérn with d = 1 and ν = 1/2, [51] has
shown the stronger frequentist asymptotic efficiency in linear prediction. Therefore, one can
possibly establish the Bayesian posterior asymptotic efficiency similar to Theorem 3.2 for
this special case. However, posterior asymptotic efficiency for the general universal kriging
model (1) with p > 1 regression functions, a general smoothness parameter ν > 0 and d ∈
{1,2,3} is technically very challenging and likely to involve more demanding assumptions
on the functions m1(·), . . . ,mp(·) and the sampling design of Sn. While we leave this general
problem for future research, we provide some empirical evidence of this posterior asymptotic
efficiency in the simulation study in Section S7 of the Supplementary Material [42].

Our results on convergence rates are not directly comparable with the previous literature on
Bayesian Gaussian process regression, such as [70, 72, 73, 82], etc., since our model assumes
a random sample path Y(·) from a GP instead of a deterministic true function, and our model
does not contain the additional measurement error as in these works.

4. Simulation study. We verify our limiting theorems and posterior asymptotic effi-
ciency using several numerical examples. In this section, we consider the 1 and 2-dimensional
Ornstein–Uhlenbeck process with ν = 1/2 in the isotropic Matérn covariance function with-
out the regression terms m(·)�β . We provide additional simulation results for the model with
regression terms m(·)�β for ν = 1/2,1/4,3/2 and dimension d = 1,2 in Section S7 of the
Supplementary Material [42].

In the model without regression terms, we have Y(s) = X(s) for s ∈ S , d = 1,2 and
X(·) ∼ GP(0, σ 2

0 Kα0,1/2). The main purpose is to verify Theorems 2.3 and 2.6. The true co-
variance parameters are σ 2

0 = 2, α0 = 1, and θ0 = 2. We assign independent gamma priors to
θ and α, with the same shape parameter 1.1 and rate parameter 0.1. This prior satisfies As-
sumptions (A.2), (A.3) and the right tail condition (the second relation of (24)) in (A.4’), but
does not satisfy the left tail condition (the first relation of (24)) in (A.4’); see Proposition 2.4.
We will see that empirically this prior still yields convergent results.

We consider two cases with dimensions d = 1 and d = 2. For the d = 1 case, we set
S = [0,1] and the sampling points of Sn to be the grid si = 2i−1

2n
(i = 1, . . . , n), for n =

25,50,100,200,400. For the d = 2 case, we set S = [0,1]2 and the sampling points of
Sn to be the regular grid (2i−1

2m
,

2j−1
2m

) (i, j = 1, . . . ,m), for m = 10,20,30 and n = m2.
Then we draw Yn from the mean zero Gaussian process with the ν = 1/2 Matérn covariance
function observed on Sn. We use the random walk Metropolis algorithm (RWM) to draw 5000
samples after 1000 burn-ins from the joint posterior �(dθ,dα|Yn) and the limiting posterior
N (dθ |θ̃α0,2θ2

0 /n) × �̃(dα|Yn) in Theorem 2.3, respectively. For the d = 1 case, we further
use RWM to draw 5000 samples from the limiting posterior N (dθ |θ̃α0,2θ2

0 /n) × �∗(dα|Yn)

in Theorem 2.6.
We compare the true posterior distribution with the limiting posterior distributions using

two criteria: (a) the closeness of our limiting distributions in Theorems 2.3 and 2.6 to the true
posterior, and (b) the convergence of the two asymptotic efficiency measures in (32) with
(θ,α) drawn from the joint posterior. For (a), since it is difficult to evaluate the total variation
distance between two 2-dimensional posterior distributions based on finite posterior samples,
we instead compute the Wasserstein-2 (W2) distance between the marginal posteriors for θ

and α, respectively. The W2 distance between two 1-dimensional distributions F1 and F2 has
the simple expression W2(F1,F2)

2 = ∫ 1
0 [F−1

1 (u) − F−1
2 (u)]2 du, where F−1

1 and F−1
2 are

the corresponding quantile functions. With finite samples from F1 and F2, W2(F1,F2) can
be accurately estimated by replacing F−1

1 and F−1
2 with the empirical quantile functions [43].

In our simulation study, we replace F1 and F2 with �(dθ |Yn) and N (dθ |θ̃α0,2θ2
0 /n) for θ ,

and �(dα|Yn) and �̃(dα|Yn) for α, respectively. For the d = 1 case, we also compute the W2
distance between �(dα|Yn) and �∗(dα|Yn). The convergence in W2 distance is equivalent to
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TABLE 1
Parameter estimation and Wasserstein-2 distances between the true posterior and the limiting posteriors in
Theorems 2.3 and 2.6 for the model with ν = 1/2, d = 1 and without regression terms. E(·|Yn), Var(·|Yn),

Ẽ(·|Yn), Ṽar(·|Yn), E∗(·|Yn), and Var∗(·|Yn) are the posterior means and variances under the true posterior, the
limiting posterior in Theorem 2.3, and the limiting posterior in Theorem 2.6. The true parameter values are
θ0 = 2 and α0 = 1. All numbers are averaged over 100 macro replications. The standard errors are in the

parentheses

d = 1 n = 25 n = 50 n = 100 n = 200 n = 400

E(θ |Yn) 2.6795 (0.0763) 2.1932 (0.0434) 2.1467 (0.0269) 2.0740 (0.0202) 2.0320 (0.0139)
Var(θ |Yn) 0.9825 (0.0557) 0.2441 (0.0096) 0.1031 (0.0026) 0.0455 (0.0010) 0.0212 (0.0003)

Ẽ(θ |Yn) 2.0404 (0.0592) 1.9357 (0.0391) 2.0214 (0.0193) 2.0130 (0.0251) 2.0028 (0.0136)
Ṽar(θ |Yn) 0.3197 (0.0007) 0.1599 (0.0003) 0.0798 (0.0002) 0.0399 (0.0001) 0.0200 (0.0000)
E(α|Yn) 3.1924 (0.2459) 2.9803 (0.2527) 2.7392 (0.2049) 2.9947 (0.2819) 2.5075 (0.2044)
Var(α|Yn) 5.3673 (0.8032) 4.0441 (0.6657) 2.9987 (0.4264) 3.7074 (0.6484) 2.5080 (0.3876)

Ẽ(α|Yn) 2.9717 (0.2246) 2.8767 (0.2389) 2.6941 (0.2001) 2.9534 (0.2791) 2.5012 (0.2044)
Ṽar(α|Yn) 4.5474 (0.6732) 3.7045 (0.5762) 2.9094 (0.4093) 3.6840 (0.6396) 2.4664 (0.3818)

E∗(α|Yn) 2.5267 (0.1789) 2.6534 (0.2135) 2.5873 (0.1874) 2.9105 (0.2723) 2.4933 (0.2044)
Var∗(α|Yn) 2.5207 (0.3018) 2.7894 (0.3862) 2.5783 (0.3414) 3.3733 (0.5548) 2.4291 (0.3660)

W2(�(dθ |Yn), 0.8051 0.3000 0.1449 0.0706 0.0335

N (dθ |θ̃α0 ,
2θ2

0
n )) (0.0326) (0.0101) (0.0042) (0.0024) (0.0010)

W2(�(dα|Yn), 0.3175 0.1807 0.1260 0.1303 0.1073
�̃(dα|Yn)) (0.0290) (0.0183) (0.0086) (0.0099) (0.0077)
W2(�(dα|Yn), 0.8972 0.4259 0.2131 0.1583 0.1095
�∗(dα|Yn)) (0.0874) (0.0504) (0.0211) (0.0160) (0.0075)

the weak convergence plus the convergence in the second moment [75]. Therefore, it provides
useful empirical evidence for convergence in the posterior means and variances of θ and α.
Theoretically, [11] has shown that the Wasserstein distance provides an upper bound for the
total variation distance between two kernel smoothed densities from discrete draws.

For the d = 1 case, Table 1 reports the estimated posterior means under the true posterior
�(·|Yn), the limiting posterior �̃(·|Yn) in Theorem 2.3, the limiting posterior �∗(·|Yn) in
Theorem 2.6, and the W2 distances between the marginal posteriors. The posterior mean esti-
mates of the microergodic θ are accurate for the true value θ0 = 2 and the posterior variance
decreases as n increases. As expected, the posterior mean estimates of α are not consistent
for the true α0 = 1, and show no sign of convergence for all three distributions. For the ap-
proximation accuracy, we can see that the W2 distance between the true marginal posterior
of θ and the normal limit in our theorem decreases quickly to zero as n increases. Further-
more, the W2 distances between the true marginal posterior of α and the two approximations,
the profile posterior �̃(dα|Yn) and the polynomially tilted normal distribution �∗(dα|Yn)

in Theorem 2.6 also show clear decreasing trends toward zero as n increases. These em-
pirical observations have verified our limiting distributions in Theorems 2.3 and 2.6 for the
1-dimensional Ornstein–Uhlenbeck process.

For the d = 2 case, the results are summarized in Table 2, showing similar trends to those
from the d = 1 case. The posterior mean estimates of θ are accurate with standard errors
decreasing with n. The posterior mean estimates of α happen to be close to α0 = 1, though
both the true posterior variance and the asymptotic posterior variance remain above 0.4 as n

increases. The W2 distance between the true marginal posteriors and the limiting posteriors
in Theorem 2.3 converges to zero as n increases. This has verified the limiting distribution in
Theorem 2.3 for the 2-dimensional process.
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TABLE 2
Parameter estimation and Wasserstein-2 distances between the true posterior and the limiting posteriors in

Theorem 2.3 for the model with ν = 1/2, d = 2 and without regression terms. E(·|Yn), Var(·|Yn), Ẽ(·|Yn) and
Ṽar(·|Yn) are the posterior means and variances under the true posterior and the limiting posterior in

Theorem 2.3. The true parameter values are θ0 = 2 and α0 = 1. All numbers are averaged over 100 macro
replications. The standard errors are in the parentheses

d = 2 n = 102 n = 202 n = 302

E(θ |Yn) 2.0211 (0.0258) 2.0152 (0.0135) 1.9959 (0.0097)
Var(θ |Yn) 0.0835 (0.0022) 0.0203 (0.0003) 0.0089 (0.0001)

Ẽ(θ |Yn) 2.0150 (0.0262) 2.0110 (0.0134) 1.9939 (0.0096)
Ṽar(θ |Yn) 0.0798 (0.0002) 0.0200 (0.0000) 0.0089 (0.0001)

E(α|Yn) 1.0936 (0.0479) 1.1317 (0.0456) 1.0909 (0.0397)
Var(α|Yn) 0.5054 (0.0392) 0.4864 (0.0352) 0.4500 (0.0266)

Ẽ(α|Yn) 1.1094 (0.0486) 1.1392 (0.0459) 1.0941 (0.0397)
Ṽar(α|Yn) 0.5131 (0.0406) 0.4796 (0.0348) 0.4385 (0.0261)

W2(�(dθ |Yn),N (dθ |θ̃α0 ,
2θ2

0
n )) 0.0652 (0.0024) 0.0185 (0.0008) 0.0090 (0.0003)

W2(�(dα|Yn), �̃(dα|Yn)) 0.0547 (0.0030) 0.0514 (0.0024) 0.0505 (0.0021)

Figure 2 illustrates the convergence of posterior densities for the d = 1 case. With n = 50,
there exists noticeable difference between the true posterior and the limiting posteriors. But
their difference gradually disappears as n increases. Furthermore, as n increases, the posterior
shrinks along the θ direction, but remains spread out in the α direction. The “ridge” of the
joint posterior is the REML θ̃α , which increases with α as proved in Lemma 2.2, but becomes
flatter as n increases, indicating the convergence from θ̃α to θ0 = 2 over all values of α.

For the posterior asymptotic efficiency in (b), we compute the two asymptotic efficiency
measures in (32) and Theorems 3.2 and 3.3 empirically, using the posterior samples of (θ,α).
To approximate the supremums, we take the maximum of the ratios that depend on the ran-
dom (σ 2, α) drawn from the posterior:

(37) r1n

(
s∗) =

∣∣∣∣ E(σ 2,α){en(s
∗;α)2}

E(σ 2
0 ,α0)

{en(s∗;α)2} − 1
∣∣∣∣ and r2n

(
s∗) =

∣∣∣∣ E(σ 2,α){en(s
∗;α)2}

E(σ 2
0 ,α0)

{en(s∗;α0)2} − 1
∣∣∣∣

over a large number of testing points s∗ from the Latin hypercube design. We use 1000 testing
points in S = [0,1] for the d = 1 case, and 2500 testing points in S = [0,1]2 for the d = 2
case. Let the testing set be S∗. We report the estimated posterior mean E[maxs∗∈S∗ r1n(s

∗)|Yn]
and E[maxs∗∈S∗ r2n(s

∗)|Yn]. The results are summarized in Table 3. The simulation results
show that the posterior means of the two ratios in (37) decrease as n increases, and their
standard errors also decrease. This is observed for both 1 and 2-dimensional domains.

5. Discussion Our theory has answered the two questions from the SST example in Sec-
tion 1. For question (i), Theorems 2.3 and 2.6 in Section 2 show that the posterior of the
microergodic parameter θ converges to a normal limit at the parametric rate, while the poste-
rior of the range parameter α does not converge to any point mass in general. For question (ii),
Theorems 3.1, 3.2, 3.3 and 3.4 in Section 3 show that the predictive performance based on
the covariance parameters randomly drawn from their posterior distribution is asymptotically
as good as the oracle predictive performance based on the true covariance parameters.

We discuss several future directions based on the current work. In many spatial ap-
plications, one may also add a measurement error term to the model, such that Y(si) =
m(·)�β + X(si) + ε(si) for i = 1, . . . , n with a noise process {ε(s) : s ∈ S} that is inde-
pendent of X. Often it is assumed that ε(s) ∼ N (0, τ 2) for all s ∈ S . The parameter τ 2 is
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FIG. 2. Contour plots of the true joint posterior density π(θ,α|Yn) (in red), the limiting posterior den-
sity N (θ |θ̃α0 ,2θ2

0 /n) × π̃(α|Yn) in Theorem 2.6, equation (25) (in blue), and the limiting posterior density

N (θ |θ̃α0 ,2θ2
0 /n) × π∗(α|Yn) in Theorem 2.6, equation (26) (in grey), for the 1-d Ornstein–Uhlenbeck process

with sample size n = 50,100,200,400 in the model without regression terms. The dashed line is the “ridge”
REML θ̃α given in (7). The true parameter values are θ0 = 2 and α0 = 1.

the nugget parameter [17]. From the frequentist fixed-domain asymptotic theory, it is already
known [61] that the presence of nugget parameter τ 2 will significantly change the conver-
gence rate of the microergodic parameter θ , due to the convolution with Gaussian noise. For
example, as shown in [14] for the 1-dimensional Ornstein–Uhlenbeck process (ν = 1/2) on
an equispaced grid, the convergence rate of the MLE of θ deteriorates from n−1/2 to n−1/4,
though both θ and the nugget τ 2 can still be consistently estimated; see also the recent de-

TABLE 3
The posterior means of the two ratios of predictive MSEs defined in (37) maximized over 2500 testing points s∗
for the model with ν = 1/2 and without regression terms, averaged over 100 macro replications. The standard

errors are in the parentheses

d = 1 n = 25 n = 50 n = 100 n = 200 n = 400

E[maxs∗∈S∗ r1n(s∗)|Yn] 0.5129 0.2804 0.1796 0.1232 0.0823
(0.0442) (0.0197) (0.0125) (0.0082) (0.0055)

E[maxs∗∈S∗ r2n(s∗)|Yn] 0.4958 0.2626 0.1741 0.1188 0.0804
(0.0447) (0.0198) (0.0126) (0.0082) (0.0055)

d = 2 n = 102 n = 202 n = 302

E[maxs∗∈S∗ r1n(s∗)|Yn] 0.1887 0.0736 0.0702
(0.0104) (0.0051) (0.0041)

E[maxs∗∈S∗ r2n(s∗)|Yn] 0.1827 0.0718 0.0705
(0.0101) (0.0050) (0.0041)
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velopment in [68]. Therefore, in the Bayesian setting, we expect that the limiting posterior
distribution of (θ,α, τ 2) will be dramatically different from those in Theorems 2.3 and 2.6.

In the proof of Lemma 2.2 and Theorem 2.3, we have derived many useful properties
of the spectral density of Matérn covariance functions. These derivations can be possibly
extended to the tapered Matérn covariance functions [21, 76] and the generalized Wendland
(GW) covariance functions [24], whose spectral densities also have polynomially decaying
tails [7, 36]. As shown in Lemma 1 of [7], for the GP model with mean zero, the MLE of
the GW microergodic parameter also has the monotonicity property. Therefore, with suitable
modification, we expect that our technical proofs can be generalized to a broader class of
covariance functions whose spectral densities share similar tail behavior to Matérn.

We have only considered the isotropic Matérn covariance functions. For anisotropic
Matérn covariance functions, the existing fixed-domain asymptotic theory is very limited.
Only a few special cases such as ν = 1/2 [84], ν = 3/2 [44] and d > 4 [1] have been stud-
ied, while the theory for the anisotropic Matérn with a general ν > 0 and d = 1,2,3 remains
unknown. We leave these directions for future research.
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SUPPLEMENTARY MATERIAL

Supplementary Material to “Bayesian fixed-domain asymptotics for covariance pa-
rameters in a Gaussian process model” (DOI: 10.1214/22-AOS2230SUPPA; .pdf). Tech-
nical proofs of all the theorems, lemmas, propositions and corollaries in the main text, as well
as additional simulation results for the universal kriging model with regression terms.

Codes for “Bayesian fixed-domain asymptotics for covariance parameters in a Gaus-
sian process model” (DOI: 10.1214/22-AOS2230SUPPB; .zip). A zipped folder of R codes
for the simulation studies in both the main text and the Supplementary Material.
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