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Simulation is commonly used to study the random behaviors of large-scale stochastic systems with correlated

inputs. Since the input correlation is o�en induced by latent common factors in many situations, to facilitate

system diagnostics and risk management, we introduce a factor-based Bayesian framework that can improve

both computational and statistical e�ciency, and also provide insights for system risk analysis. Speci�cally,

we develop a �exible Gaussian copula based multivariate input model that can capture important properties

in the real-world data. A nonparametric Bayesian approach is used to model marginal distributions and it

can capture the properties, including multi-modality and skewness. We explore the factor structure of the

underlying generative processes for the dependence. Both input and simulation estimation uncertainty are

characterized by the posterior distributions. In addition, we interpret the latent factors and estimate their

e�ects on the system performance, which could be used to support diagnostics and decision making for

large-scale stochastic systems. Our approach is supported by both asymptotic theory and empirical study.
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1 INTRODUCTION
In the current interconnected world, the decision makers o�en face stochastic systems in large

scale [46]. Simulation has become an important tool that is routinely used for designing and

improving systems in a wide variety of �elds, including manufacturing, supply chains and �nancial

investments. As the systems become more complex and su�er from various sources of uncertainty,

the decision makers are interested in correctly assessing system random behaviors, which could be

quanti�ed by a vector of quantiles or functions of quantiles, e.g., conditional value-at-risk (CVaR).

In this paper, a new simulation methodology is introduced to correctly assess the risk performance

for large-scale stochastic systems with correlated inputs.

�e choice of input models, de�ned as the driving stochastic processes in the simulation experi-

ments, has a direct impact on system performance estimation, and further a�ects decision making,
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such as ordering decisions in supply chains and investment decisions in portfolio management.

�us, to correctly assess the system random behaviors, input models should faithfully capture the

important properties in the underlying physical processes, including heterogeneity, multi-modality,

skewness and dependence. �ese properties are observed in the real data from automotive, electron-

ics, biopharmaceutical and �nancial industries [1, 9, 43, 51]. �e studies [2, 9, 44] and our empirical

study also indicate that they could impact the system performance, especially risk behaviors.

Underlying unknown input models are o�en estimated from �nite real-world data with error,

called input uncertainty. �ere exist both input and simulation estimation errors. Ignoring either

source of error could lead to unfounded con�dence in the simulation assessment of system perfor-

mance. Further, it is necessary to e�ciently use the real-world data to reduce the overall estimation

uncertainty of system performance.

Based on methodologies developed for quantifying the input model estimation uncertainty,

existing approaches on input uncertainty can be divided into frequentist and Bayesian approaches;

see the review in [6, 39, 50]. �e frequentist approaches typically study the sampling distributions

of point estimators of underlying input models. Since it could be hard to get the exact sampling

distributions in many situations, the asymptotic approximation, including the normal approximation

and the bootstrap, is o�en used to quantify the input model estimation uncertainty; see for example

[5, 7, 8, 17, 18]. �e asymptotic approximation is valid when the amount of real-world data is

large. Compared to frequentist methods, Bayesian approaches derive the posterior distributions

quantifying the input uncertainty and they do not need a large-sample asymptotic approximation

for their validation. It is also straightforward for Bayesian approaches to incorporate the prior

information about the underlying input models. See [54] for more detailed discussion on the

comparison of frequentist and Bayesian approaches. In this paper, we focus on developing a new

Bayesian approach.

Considering the amount of information required to construct a joint distribution, especially as

the dimension of input models increases, we assume that multivariate input models are characterized
by marginal distributions and the dependence. �is assumption is commonly used in the simulation

literature [12]. �us, to correctly assess system performance, we need to faithfully capture the

important features in the marginal distributions and the dependence. In this paper, we consider

continuous input random variables.

Since the real-world data for each component o�en represent the variability coming from

various latent sources of uncertainty, it could induce important properties, such as multi-modality,

skewness and tails. For example, in a production system, a single raw material is shared by various

production lines. �e di�erent stochastic status of production lines could induce the heterogeneity

and multi-modality in the raw material demand data. �e skewness and tails could be caused by

the contamination in the production lines which leads to throwing away batches of products. �ese

properties can have a great impact on system performance, e.g., the service levels in the inventory

systems [2]. �us, failing to capture them could lead to poor estimates for system performance.

Various approaches have been proposed in the literature to capture the important properties

in the marginals (or univariate inputs); see the review and the tutorials on input uncertainty

[6, 39, 50]. Many among them limit their choices of input models to parametric families with

unknown parameter values, and characterize the input uncertainty by the posterior distributions

of input parameters; see for example [13, 47, 54]. Among the parametric approaches, Johnson

Transformation System (JTS) is relatively �exible. It can match any feasible combination of �rst

four moments and capture a wide variety of unimodal and bimodal distributional shapes [13, 14].

However, parametric approaches tend to be limited, and the selected family may not be �exible
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enough to capture the rich properties in the real-world data. Model selection error does not

disappear as the amount of real-world data increases.

�us, Bayesian Model Averaging (BMA) was introduced to account for both families and pa-

rameters value uncertainty [19]. It was further extended to separate the input uncertainty and

the simulation estimation error in [56, 57]. �e family uncertainty is quanti�ed by the posterior

probabilities of a few pre-speci�ed candidate parametric distributions. However, BMA relies on

the assumption that all data are generated from a single true candidate distribution [15]. Without

strong prior information about the distribution families of underlying physical processes, it could

be hard to select appropriate candidate parametric distributions.

Considering that the real-world data represent the variability caused by various latent sources of

uncertainty, we proposed a nonparametric Bayesian approach based on the Dirichlet Processes

Mixture (DPM) to quantify the input uncertainty [53]. DPM approach was originally introduced in

the statistics community; see for example [52], [25] and [30]. Since DPM models the underlying

generative process, this approach provides a natural choice to characterize the input data coming

from various latent sources of uncertainty. �us, it can capture the important properties in the

marginal distributions. �e posteriors of �exible distributions can automatically account for

the uncertainty of both model selection and parameter values. �e nonparametric approach is

asymptotically consistent under very general conditions, and it also demonstrates good and robust

�nite-sample performance [53].

In the simulation literature, various approaches were proposed to model input with dependence;

see the review in [12]. Cario and Nelson introduced NORmal-To-Anything (NORTA) which can

represent and generate random vectors with �exible marginal distributions and a correlation matrix

[16]. However, since NORTA is based on moment-matching, it fails to represent an arbitrary

feasible combination of marginals and a correlation matrix [55]. �is issue becomes more severe as

the dimension of input models increases [31]. Biller and Corlu proposed the use of Gaussian copula

(GC) to model input joint distributions [10], which can avoid the NORTA infeasible issue. �ey

further reviewed the copula-based multivariate input models that can capture the tail dependence

in [11].

For large-scale stochastic systems with potential high-dimensional input models, we could have

a limited amount of real-world data [9]. For example, in high-tech manufacturing industries, there

could exist a large variety of products and a limited amount of real-world demand data because

products tend to have the short life-cycle [35]. Since there are many correlation parameters to be

estimated, statistical tests could suggest ignoring the whole dependence [9], which is important for

the system risk performance assessment.

Correlated inputs could be induced by latent common factors in many situations. For example, in a

project planning network, the activity durations for di�erent tasks could be correlated because

they are a�ected by the same nuisance factors, e.g., weather conditions. In inventory management

for maintenance, the breakdowns of di�erent components of complex systems, e.g., a jet engine

and semiconductor production lines, could be dependent because they are impacted by the same

underlying factors, e.g., the operating temperature. In portfolio investment, the return rates of

di�erent stocks could be dependent because they are impacted by common factors, e.g. the economic

indicators of a certain industry.

In this paper, we propose a factor-based Bayesian framework so that we can correctly estimate

the risk performance of stochastic systems with potential high-dimensional correlated inputs.

Motivated by [45], we �rst develop a Gaussian copula based input model that can faithfully capture

the important properties in real-world data, improve both computational and statistical e�ciency,

and facilitate the risk analysis for large-scale stochastic systems. We use the nonparametric Bayesian
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approach developed in [53] to model marginal distributions and explore the factor structure of

the underlying generative processes for the dependence. �en, since our input models can not

be speci�ed by a �xed number of parameters, direct simulation is used to propagate the input

uncertainty to outputs. Our framework delivers a posterior distribution and a credible interval

(CrI) quantifying the overall uncertainty of system risk performance estimate. We can provide

insights of underlying factors and estimate their e�ects on the system risk performance. �erefore,
our approach can correctly and e�ciently assess the system risk behaviors, provide insights about the
correlation, and further facilitate decision making to improve the system performance.

In sum, the main contributions of this paper are as follows.

• Since the input correlation could be induced by latent common factors in many situations,

we explore the factor structure in the correlation. Compared to the Gaussian copula

model without exploring the factor structure in [10], our approach could improve both

computational and statistical e�ciency.

• We develop a factor-based Bayesian framework quantifying the overall uncertainty of the

system risk performance estimates. We prove the asymptotic estimation consistency for

the input models and the system performance.

• Our framework can provide insights of underlying factors. We further propose a procedure

to estimate their e�ects, which could support diagnostics and decision making for large-

scale stochastic systems.

• Since the marginal distributions tend to have relatively dominant impact on the system

performance, we propose a �exible multivariate input model with nonparametric marginal

distributions and a factor structure for the correlation. It can capture the important proper-

ties in real-world data, including heterogeneity, multi-modality, skewness and dependence.

• Even though there exists some simulation literature on assessing system risk performance,

such as [34] and [36], the existing studies on the input uncertainty tend to focus on the

system mean performance. In this paper, we study the impact of input uncertainty on the

system risk performance characterized by a vector of percentiles.

In the next section, we provide a formal description of the problem of interest. In Section 3,

we introduce a �exible multivariate input model and propose a factor-based Bayesian framework

accounting for both input and simulation estimation uncertainty. We further interpret the latent

common factors and estimate their e�ects on the system risk behaviors in Section 4. An empirical

study on portfolio management is used to study the �nite-sample performance of our input model

and factor-based Bayesian framework in Section 5, and we conclude this paper in Section 6.

2 PROBLEM STATEMENT AND PROPOSED APPROACH
Given input models, denoted by F , the simulation outputs can be wri�en as Y(F ) =
{(Yr1(F ),Yr2(F ), . . . ,Yr L(F )), r = 1, 2, . . . ,R}, where R is the number of replications and L is the

run length. For example, in the inventory control, F is the distribution of product demands and Yr `
is the overall cost occurring in the `th ordering time period. Notice that the simulation outputs

depend on the choice of input models F that could be composed of mutually independent univariate

and multivariate joint distributions. For notation simpli�cation, suppose that there is only one

multivariate joint distribution in F with the dimension, denoted by d .

We assume that the input joint distribution F is characterized by marginal distributions, denoted by
{F1, F2, . . . , Fd }, and a correlation matrix, denoted by C. For an arbitrary feasible combination of

marginals and a correlation matrix, there exists a Gaussian copula representation

F (x1,x2, . . . ,xd ) = Φd

(
Φ−1

[
F1(x1)

]
,Φ−1

[
F2(x2)

]
, . . . ,Φ−1

[
Fd (xd )

]
; C

)
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where Φd (·) and Φ(·) denote the d-dimensional multivariate and univariate standard normal distri-

butions. Gaussian copula can be interpreted as a transformation,

X
Uj=Fj (X j )
−→ U

Z j=Φ−1(Uj )
−→ Z

for j = 1, 2, . . . ,d, where U follows a multivariate uniform distribution and Z follows a multivariate

normal distribution, Z ∼ Nd (0,C); see [38, 49]. �e unknown true input joint distribution, denoted

by F c , has the corresponding Gaussian copula representation speci�ed by (F c
1
, F c

2
, . . . , F cd ,C

c ).

In this paper, we propose a �exible multivariate input model to capture the important properties

in the marginal distributions F c
1
, F c

2
, . . . , F cd and the correlation matrix Cc

. We model the marginals

by a nonparametric Bayesian approach based on DPM [53]. Compared with parametric and BMA

approaches, DPM does not require any strong prior information on the distribution families of

F c
1
, F c

2
, . . . , F cd and it can capture the important properties, including multi-modality and skewness.

In addition, considering that the correlated inputs could be induced by latent common factors in

many situations, we explore the factor structure in the correlation Cc
. It not only improves the

estimation e�ciency of input model, but also provides insights of the dependence, especially for

large-scale stochastic systems.

�e underlying unknown input model F c is estimated bym real-world data, denoted by a (m ×d)

matrix X
(0)
m ≡

(
X(0)

1
,X(0)

2
, . . . ,X(0)m

)>
, with X(0)i

i .i .d .
∼ F c for i = 1, 2, . . . ,m. �e input uncertainty is

quanti�ed by the posterior distributionp(F |X(0)m ). Since the input joint distribution could be speci�ed

by (F1, F2, . . . , Fd ,C), the posterior distribution quantifying the input estimation uncertainty could

be wri�en as p
(
F1, F2, . . . , Fd ,C|X

(0)
m

)
. Since it is analytically and computationally intractable to do

Bayesian inference on the marginals F1, F2, . . . , Fd and the correlation matrix C simultaneously, a

two-stage estimation is typically used to do inference on the marginals and dependence separately

[38, 49]. In the �rst stage, we estimate each marginal distribution F cj from the real-world data of

the jth component, denoted by X
(0)

jm ≡ {X
(0)

j1 ,X
(0)

j2 , . . . ,X
(0)

jm}, for j = 1, 2, . . . ,d with the estimation

uncertainty quanti�ed by the posterior distribution

p(Fj |X
(0)

jm) ∝ p(Fj ) · p(X
(0)

jm |Fj )

where p(Fj ) denotes the prior and p(X(0)jm |Fj ) represents the likelihood of data X
(0)

jm . In the second

stage, the marginals can be taken as “nuisance parameters” and the inference on the correction

C is based on the summary statistics of C, denoted by D(X(0)m ), independent of the marginals; see

Section 8.3 in [48] and [33, 45]. We characterize the estimation uncertainty of the correlation matrix

by the posterior distribution p(C|D(X(0)m )). �us, the posteriors of the marginals and the correlation

matrix can quantify the input uncertainty. Since the inference on dependence is only based on the

summary statistics instead of the full real-world data, this two-stage approach simpli�es estimation

at the cost of only using partial information in the data. However, for continuous random vectors,

this inference is asymptotically e�cient [33].

We generate B posterior samples of input model to quantify the input uncertainty, denoted by

{F̃ (1), F̃ (2), . . . , F̃ (B)}, where F̃ (b) ≡
(
F̃ (b)

1
, F̃ (b)

2
, . . . , F̃ (b)d , C̃

(b))
for b = 1, 2, . . . ,B. In this paper, we

use ·̃ to denote the posterior sample. �e sampling procedure for marginal distributions described

in [53] can generate B samples for the marginal distributions, F̃ (b)j ∼ p(Fj |X
(0)

jm), for b = 1, 2, . . . ,B

and j = 1, 2, . . . ,d . �en, we generate B samples of correlation matrix, C̃(b) ∼ p(C|D(X(0)m )), for

b = 1, 2, . . . ,B by following the procedure in Section 3.1.

Given an input model F , a vector of quantiles of simulation outputs, denoted by q(F ) =
(q1(F ),q2(F ), . . . ,qγ (F )) with corresponding probabilities 0 < p1 < p2 < . . . < pγ < 1, is used to
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characterize system random behaviors, where γ denotes a �xed positive integer, q`(F ) ≡ sup{q ∈
< : GY (F )(q) ≤ p`} for ` = 1, 2, . . . ,γ and GY (F ) is the cumulative distribution of the simulation

output Y (F ).
�e number of active input parameters, de�ned as parameters specifying the posterior sample of

input model, F̃ (b) for b = 1, 2, . . . ,B, depends on the estimated number of clusters for the marginal

distributions and the estimated number of factors for input correlation. Since the number of

parameters changes at di�erent posterior samples of input model, it is challenging to construct

a metamodel for system response. �us, the direct simulation is used to propagate the input

uncertainty to outputs. At each sample F̃ (b), let Y(b) ≡ Y(F̃ (b)) denote the simulation outputs. �e

simulation estimation uncertainty is characterized by the posterior distribution p(q(F̃ (b))|Y(b), F̃ (b)).
Let q̃(b) = q̃(F̃ (b)) denote a random draw from this posterior.

�erefore, in this paper, without strong prior information on the input model and the sys-

tem response, a factor-based Bayesian framework is proposed to estimate the true quantiles

q(F c ) = (q1(F
c ),q2(F

c ), . . . ,qγ (F
c )). It delivers a posterior and a CrI accounting for both input and

simulation estimation uncertainty. Speci�cally, the input uncertainty is quanti�ed by F̃ ∼ p(F |X(0)m )

and at any F̃ , the simulation estimation uncertainty is quanti�ed by q̃(F̃ ) ∼ p(q(F̃ )|Y(F̃ ), F̃ ). �e

overall estimation uncertainty for the quantiles is quanti�ed by the posterior of the compound

random vector q̃(F̃ ). Our factor-based framework can e�ciently use the real-world data X
(0)
m and

reduce the estimation uncertainty of quantile responses. In addition, we can provide insights of

the underlying common factors explaining the correlation and estimate their e�ects on the system

risk performance, which could facilitate diagnostics and decision making for large-scale stochastic

systems.

3 A BAYESIAN FRAMEWORK FOR RISK ANALYSIS
In this section, we propose a factor-based Bayesian framework to quantify the overall estimation

uncertainty of system risk performance. In Section 3.1, we develop a �exible multivariate input

model with nonparametric marginals and factor structure for the correlation. �e input uncertainty

is characterized by the posterior distribution of input model. �en, at each posterior sample of input

model, we explore detailed simulation outputs and a nonparametric Bayesian approach is used to

do inference on the system quantile response in Section 3.2. A�er that, a hierarchical sampling

procedure is developed to deliver a posterior distribution and a CrI for system risk performance

accounting for both input and simulation estimation uncertainty in Section 3.3. We show that

as the amount of real-world data and the computational budget go to in�nity, the system risk

performance estimates converge to the true values.

3.1 Input Modeling and Input Uncertainty�antification
We propose a �exible input model that can capture the important properties in the marginals

and dependence respectively. Without strong prior information on the distribution families of

marginals, a nonparametric Bayesian approach in Section 3.1.1 can capture the key properties and

quantify the estimation uncertainty for marginals. Since the correlation could be induced by latent

common factors in many cases, a factor model is used to explain the dependence in Section 3.1.2.

�en, sampling approaches are proposed to do inference on the correlation matrix and the factor

model in Sections 3.1.3 and 3.1.4. We prove the asymptotic consistency of the number of factors

and the input joint distribution in Sections 3.1.5 and 3.1.6.

3.1.1 Nonparametric Marginal Distributions. Nonparametric DPM was introduced to quantify

the input uncertainty for unit variate input models in [53]. Here, we brie�y review it. Since the
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input data for each component could come from various latent sources of uncertainty, the density

of the jth marginal distribution is modeled with DPM

fj (x) =
+∞∑̀
=1

πj`hj (x |ϕϕϕ j`)

for j = 1, 2, . . . ,d , where πj` denotes the mixing weights and the kernel density function hj (·|ϕϕϕ j`)
is chosen based on the support of the distribution F cj . �e mixing distribution of parameters{
(πj`,ϕϕϕ j`)

+∞
`=1

}
, which is

∑+∞
`=1

πj`δϕϕϕ j` (δa is the Dirac function at a), is drawn from the Dirichlet

process DP(α j ,G0j ), where α j is the dispersion parameter and G0j is the base measure. Given the

real-world data of the jth component X
(0)

jm , the number of active clusters is �nite and bounded from

above bym.

DPM for the jth marginal distribution is speci�ed by three key components: the kernel density

hj (·), the dispersion parameter α j , and the base distribution G0j . Considering the support of F cj
commonly used in the simulation, we developed DPM models with three types of kernel densities,

including Gaussian, Gamma and Beta, which account for the real-world data that are supported on

the whole real line<, the half real line<+, and a �nite interval [a1,a2] with −∞ < a1 < a2 < ∞
in [53]. Notice that the scaled version of DPM with Beta kernel could be applicable to continuous

distributions with a �nite support interval. Since DPM with a larger value of α j tends to generate

samples of the input density fj (·) with more distinct active clusters, we infer the appropriate value

of α j from the real-world data. In addition, we chooseG0j to be as noninformative about the mixing

parameters ϕϕϕ j · as possible, and meanwhile take into account the ease of implementation. See the

detailed description on the nonparametric univariate distribution in our study [53].

�e posterior distribution p(Fj |X
(0)

jm) is derived to characterize the estimation uncertainty for the

marginal Fj with j = 1, 2, . . . ,d . Following the sampling procedure developed in [53], we can draw

samples F̃ (b)j ∼ p(Fj |X
(0)

jm) with b = 1, 2, . . . ,B quantifying the marginal estimation uncertainty.

3.1.2 Factor Model for Correlated Inputs . Since the correlation between di�erent components

of Xi could be induced by latent common factors in many situations, we explore the factor model

explaining the dependence in the latent random vector Zi

Zi = Ληηηi + ϵ i

where Λ is a (d ×k) loading matrix with k denoting the number of common factors, a (k × 1) vector

ηηηi ∼ Nk (0, Ik ) represents common factors with Ik denoting a (k × k) identity matrix, and a (d × 1)

vector ϵ i ∼ Nd (0,ΣΣΣ) represents Gaussian noises having the (d × d) diagonal covariance matrix

ΣΣΣ = C − ΛΛ>. �e common factors ηηηi and the noises ϵi are independent. �e correlation matrix C
has o�-diagonal terms

Cj j′ =

k∑
h=1

λjhλj′h for j , j ′ with j, j ′ = 1, 2, . . . ,d . (1)

To simplify the inference procedure, we consider the scaled random vector of Zi , denoted by Qi ,

following the factor model

Qi = Ληηηi + ϵi (2)

with the noise (d × 1) vector ϵi ∼ Nd (0, Id ). �us, the covariance matrix of Qi is Ω = ΛΛ> + Id .
Denote the data for scaled latent random vector by Qm ≡

(
Q1,Q2, . . . ,Qm

)>
. A�er doing the
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39:8 WEI XIE, Cheng Li, and Pu Zhang

inference with the factor model in Equation (2), we can get

Zi j = Qi j/

√√√
1 +

k∑
h=1

λ2

jh . (3)

λjh = λjh/
√

1 +
∑k
h=1

λ2

jh and ϵ i j = ϵi j/
√

1 +
∑k
h=1

λ2

jh . Let Zm ≡
(
Z1,Z2, . . . ,Zm

)>
. By Equa-

tion (1), the loading matrix Λ or Λ can characterize the correlation matrix C.
Here, we discuss the intuitions for modeling the input correlation with the factor model in

Equation (2). First, in many situations, the input correlation could be induced by underlying

common factors. For example, in the portfolio management example studied in Sections 5.2–5.3, the

correlations among return rates of di�erent stocks could be induced by various industry indexes.

�us, the factor model can be used to model the generative processes for the input correlation.

Second, for many cases, the underlying factors represent aggregated e�ects, such as the industry

indexes in the stock management example. Even though each component, e.g., the individual

stock return rate, typically does not follow normal distribution, the normality assumption on the

underlying factors, e.g., industry indexes, could hold by applying the central limit theorem.

Exploring the factor model on the input correlation leads to some bene�ts. First, the factor

model can improve both computational and statistical e�ciency. For the real-world data with

limited sample size and relatively high dimension, the Gaussian copula factor model is more

parsimoniously parametrized. �us, it can reduce the computational time for the inference and

improves the estimation accuracy. Second, since the factor model in (1) could model the generative

processes for the input correlation, it can provide insights of underlying factors, which could

facilitate the risk analysis for large-scale stochastic systems.

3.1.3 Bayesian Inference on the Correlation Matrix C and the Loading Matrix Λ. In this sec-

tion, suppose that the number of common factors k is known. Given m real-world data, X
(0)
m =(

X(0)
1
,X(0)

2
, . . . ,X(0)m

)>
, we make inference on the correlation matrix C and the loading matrix Λ. If

the marginals F c
1
, F c

2
, . . . , F cd are known, we can have the corresponding data on latent variables Z by

applying the transformation Z (0)i j = Φ−1

[
F cj (X

(0)

i j )
]

for i = 1, 2, . . . ,m and j = 1, 2, . . . ,d . For contin-

uous marginals, there exists a one-to-one mapping between X(0)i and Z(0)i . Since Z(0)i
i .i .d .
∼ Nd (0,C)

for i = 1, 2, . . . ,m, it is easy to derive the posterior distribution p
(
C|Z(0)

1
,Z(0)

2
, . . . ,Z(0)m

)
; see [26].

However, the marginal distributions F c
1
, F c

2
, . . . , F cd are unknown, and the only information for

the transformation Φ−1

[
F cj (·)] is an increasing function. Based on the marginal likelihood described

in [48], the extended rank likelihood was proposed in [33] to generate a set of the (m × d) data

matrixZm that is consistent with real-world data in terms of the relative order,

D
(
X
(0)
m

)
≡ {Zm : X (0)i j < X (0)i′j ⇒ Zi j < Zi′j }.

�us,Zm is independent on the marginals and only depends on the correlation C.

Given the data Zm ∈ D(X
(0)
m ), the posterior p(C|Zm ∈ D(X

(0)
m )) could be used to quantify the

uncertainty of C. Since the marginal distributions are unknown,Zm consistent with X
(0)
m is not

unique. To account for the impact from unknown marginals on the dependence estimation, we

further generate samples of Zm from D
(
X
(0)
m

)
. �erefore, the uncertainty of correlation matrix

could be characterized by p(C|X(0)m ) ≡ E

[
p
(
C|Zm ∈ D(X

(0)
m )

) ]
.

Since C is invariant to the orthogonal rotation of Λ, it is well known that the factor model has

identi�cation problems [1, 45]. Here we apply a commonly used set of constraints on the loading
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matrix Λ or Λ: lower triangular matrix with all diagonal entries positive. Denote the restrict space

by ΘΛ. Given k , these constraints uniquely identify the factor loadings.

For the Bayesian inference on the loading matrix, a Gaussian prior satisfying the constraints is

used,

λjh |ψjh


∼ N(0,ψjh) if j > h

∼ TN(0,ψjh , 0) if j = h

= 0 if j < h

for j = 1, 2, . . . ,d and h = 1, 2, . . . ,k , whereψjh controls the prior variation of the loading of the

hth factor on the jth component and TN(0,ψjh , 0) denotes the normal with mean 0, varianceψjh
and truncated to be positive. �e prior forψjh is Inverse-Gamma (α0/2, β0/2), where α0 and β0 are

the hyper-parameters. Let ΨΨΨ denote a (d ×k)matrix having elementsψjh . Let H = (ηηη1,ηηη2, . . . ,ηηηm)
>

and Hh represents the hth column of H with h = 1, 2, . . . ,k . Let Q ·j denote the jth column of Qm
with j = 1, 2, . . . ,d .

A Gibbs sampler is developed to generate posterior samples of parameters (Λ,H,ΨΨΨ) and latent

variablesZm . �e conditional posteriors of Λ, ΨΨΨ, H are given in Equations (4)–(6)

λjh |ψjh ,Q ·j ,H



∼ N

(
vjh

m∑
i=1

ai jhηih ,vjh

)
if j > h

∼ TN

(
vjh

m∑
i=1

ai jhηih ,vjh , 0

)
if j = h (4)

= 0 if j < h

ψjh |λjh ∼ Inverse-Gamma

(
α0 + 1

2

,
β0 + λ

2

jh

2

)
(5)

ηηηi |Qi ,Λ ∼ Nk

(
(ΛTΛ + Ik )−1ΛT Qi , (Λ

TΛ + Ik )−1

)
(6)

with i = 1, 2, . . . ,m, j = 1, 2, . . . ,d and h = 1, 2, . . . ,k , where vjh =
( ∑m

i=1
η2

ih + ψ
−1

jh

)−1

and

ai jh = Qi j −
∑
h′,h λjh′ηih′ . �e detailed derivation for Equations (4)–(6) is provided in the online

appendix. By the extended rank likelihood [33, 45], the conditional distribution of Zi j is

Zi j |Λ,ηηηi ∼ TN

(
k∑

h=1

λjhηhi ,
1

1 +
∑k
h=1

λ2

jh

,Z `
i j ,Z

u
i j

)
(7)

where TN(u,σ 2,a,b) denotes the normal with mean u, variance σ 2
and truncated to (a,b), Z `

i j =

max{Zi′j : X (0)i′j < X (0)i j } and Zu
i j = min{Zi′j : X (0)i′j > X (0)i j }. Given Λ, we can get Qm from Zm by

applying Equation (3).

�erefore, the Gibbs sampling can deliver posterior samples of the correlation and loading

matrices, Λ̃ ∼ p(Λ|X(0)m ) and C̃ ∼ p(C|X(0)m ). �e main steps in each iteration are in Algorithm 1.
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Notice that the Gibbs sampler considers the uncertainty introduced from unknown marginals.

ALGORITHM 1: Gibbs Sampler to Generate Posterior Samples for Correlation and Loading Matrices

Input: �e real-world data X
(0)
m

Output: Posterior samples of Λ̃ and C̃
1 Initialize the latent variablesZm ∈ D(X

(0)
m ), initialize the common factors H, the loading matrix Λ and the

hyper-parameters ΨΨΨ by sampling from the priors.

2 Generate a sample λjh for j = 1, . . . ,d and h = 1, . . . ,k by using Equation (4)

3 Generate a sampleψjh for j = 1, . . . ,d and h = 1, . . . ,k by using Equation (5)

4 Generate a sample ηηηi for i = 1, . . . ,m by using Equation (6)

5 Generate latent variables Zi j by using Equation (7), and then obtain Qi j by applying Equation (3) for

i = 1, . . . ,m and j = 1, . . . ,d
6 Repeat Steps 2-5 to generate posterior samples of loading matrix Λ̃ and correlation matrix C̃ by applying

Equation (1).

3.1.4 Bayesian Inference on the Number of Common Factors k . Given a �xed number of common

factors k , we develop a sampling procedure to do Bayesian inference on the loading and correlation

matrices in Section 3.1.3. However, k is typically unknown, and factor models with di�erent k
could lead to the same correlation matrix; see [27] for this identi�cation issue. Since the value of k
controls the complexity of input model, we want to �nd the factor model with the smallest number

of common factors explaining the input correlation, which could reduce the input uncertainty and

also facilitate the interpretation of the correlated input.

In this section, we discuss a procedure to �nd the factor model with the smallest number of

common factors. Speci�cally, a Bayesian sampling approach, the Reverse Jump Monte Carlo Markov

Chain (RJMCMC), is used for the model selection; see [42]. It searches through models with di�erent

number of factors and selects the simplest one explaining the correlation. Denote the smallest

number of factors that can explain the true correlation matrix Cc
by k0

, and suppose that it is much

smaller than d . We set the range of possible numbers of factors as K ≡ {1, 2, . . . ,kmax}, and ensure

that kmax is large enough with kmax ≥ k0
. By Section 2.2 of [42], the largest possible number of latent

factors kmax is bounded from above by the relation d(d + 1)/2 − d(kmax + 1) + kmax(kmax − 1)/2 ≥ 0.

In our empirical study, a uniform prior is imposed on k , p(k) = 1/kmax for any k ∈ K .

Suppose that the current model isMk with k common factors and loading matrix Λk . A new

candidate modelMk ′ is generated according to the transition probabilities J (k → k ′). In our study,

we use the following transition probabilities:

• If k = 1, J (k → k ′) = 1 if k ′ = k + 1, and = 0 otherwise;

• If k = kmax, J (k → k ′) = 1 if k ′ = k − 1, and = 0 otherwise;

• If 1 < k < kmax, J (k → k ′) = 0.5 if k ′ = k + 1 or k ′ = k − 1, and = 0 otherwise.

It ensures that the number of factors between each move can only increase or decrease by one

within the range K . �en, a Metropolis-Hasting approach is used to determine whether to accept

the movement.

Based on the study [42], the Bayesian sampling procedure with RJMCMC for the inference on

the number of common factors, the loading and correlation matrices is presented in Algorithm 2. In

Step 1, we have preliminary MCMC analysis for each k ∈ K by following the sampling procedure

described in Section 3.1.3, which allows us to estimate the posterior moments of loading matrix for

any �xed k . In Steps 2 to 6, we �nd the proposal distribution and then apply the Metropolis-Hasting

approach to do model selection. In our empirical study, we let the proposal distribution дk ′(Λk ′) to

be N(bk ′,aBk ′), where bk ′ and Bk ′ denote the approximate posterior mean and covariance matrix

estimated from the preliminary MCMC analysis, and a denotes the scaling parameter. Similar to
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Equation (4), we generate samples of Λk ′ satisfying the lower triangular with positive diagonal

entries. In Step 7, we update the number of common factor k , and then generate samples of loading

matrix Λk by following the procedure in Section 3.1.3. By repeating Steps 2 to 7, we can get

posterior samples of (k,Λk ), and further obtain samples of C by applying Equation (1). �erefore,

with posterior samples of marginal distributions obtained in Sections 3.1.1 and the correlation

matrix obtained in this section, {F̃ (b)
1
, F̃ (b)

2
, . . . , F̃ (b)d , C̃

(b)}Bb=1
, we can quantify the input uncertainty.

ALGORITHM 2: A Gibbs Sampler with RJMCMC for Posterior Inference of k , Λk and C

Input: �e real-world data X
(0)
m

Output: Posterior samples of k,Λk , C̃
1 Preliminary MCMC analysis: For each k ∈ K , run the Gibbs sampling procedure described in Section 3.1.3.

Initialize a starting value of k ∈ K for the model search.

2 repeat
3 Draw a candidate number of factors k ′ from J (k → k ′).

4 Draw a loading matrix Λ̃k ′ from the proposal distribution дk ′(Λk ′).

5 Compute the accept ratio

β = min

{
1,
p(Zm |k

′, Λ̃k ′)p(Λ̃k ′ |k
′)p(k ′)

p(Zm |k,Λk )p(Λk |k)p(k)

дk (Λk )J (k
′ → k)

дk ′(Λ̃k ′)J (k → k ′)

}
. (8)

With probability β , accept the move to the k ′-factor model, and set k = k ′. Otherwise, keep k
unchanged.

6 until convergence;
7 Within the updated model: Generate a new posterior sample of Λk by applying the sampling procedure

described in Section 3.1.3. �en, update the mean and variance parameters of дk (Λk ) by applying the

approach proposed in [32].

8 For b = 1, . . . ,B, redo step 3-5 and step 7 to draw a posterior sample of (k,Λk ). Calculate C̃(b) by applying

Equation (1).

3.1.5 Posterior Consistency of the Number of Common Factors. In this section, we show that the

number of common factors can be consistently estimated by the sampling procedure in Section 3.1.4

and it converges to the smallest value k0
. We assume that the true correlation matrix Cc has a sparse

representation of k0 factors: Cc = ΛcΛc> +Σc , where Λc
is a (d ×k0) lower triangular loading matrix

with positive diagonal entries and Σc
is a (d × d) diagonal matrix with all diagonal entries positive.

For any k ∈ K , we de�ne a model spaceMk with k factors as

Mk =
{
C : C = ΛΛ> + Σ such that Λ ∈ ΘΛ and Σ has all diagonal entries positive

}
.

From Section 2.2 of [42], even under the restrictions that Λ and Λ are lower triangular with positive

diagonal entries, the factor model still has the identi�cation issue:M1 ⊂ M2 ⊂ · · · ⊂ Mkmax
, and

Cc ∈ Mk for all k0 ≤ k ≤ kmax. �us, the factor model belongs to the so-called singular models,
where Gaussian approximation of the posterior distribution fails to hold asymptotically [21, 22].

However, the posterior distribution on the spaceMk still allows a di�erent asymptotic approxi-

mation in the form of (2.7) in [22]. Let p
(
Zm ∈ D(X

(0)
m ) | Mk

)
= EC

[
p
(
Zm ∈ D(X

(0)
m ) | C,Mk

) ]
and Ĉk = argmaxC∈Mk

p
(
Zm ∈ D(X

(0)
m ) | C,Mk

)
be the marginal likelihood ofZm and the maxi-

mum likelihood estimator of C on the modelMk . Similar to the relation (2.7) and the assumptions

(A1)–(A3) in [22], we make the following assumptions on the factor model.
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(A1) For any k ∈ K , p
(
Zm ∈ D(X

(0)
m ) | Mk

)
has the asymptotic expansion asm →∞,

logp
(
Zm ∈ D(X

(0)
m ) | Mk

)
= logp

(
Zm ∈ D(X

(0)
m ) | Ĉk ,Mk

)
− tk logm + sk log logm +Op (1), (9)

where {tk } and {sk } with 1 ≤ k ≤ kmax are two sequences of positive constants which

depend on the true number of factors k0
, and {tk } is strictly increasing in k .

(A2) For any integers k1,k2 that satis�es k1,k2 ∈ {k
0,k0 + 1, . . . ,kmax}, the likelihood ratio

p
(
Zm ∈ D(X(0)m ) | Ĉk1

,Mk1

)
/p

(
Zm ∈ D(X(0)m ) | Ĉk2

,Mk2

)
is bounded from above by

constant in probability asm →∞.

(A3) For any integer k < k0
(if k0 > 1), there exist positive constants δk such that p

(
Zm ∈

D(X(0)m ) | Ĉk ,Mk
)
/p

(
Zm ∈ D(X

(0)
m ) | Ĉk0 ,Mk0

)
< exp(−δkm) in probability asm →∞.

(A4) For any integers k1,k2 ∈ K , the prior on models satis�es that p(Mk1
)/p(Mk2

) is bounded

from above by constant.

In the above assumptions, tk can be considered as the learning coe�cient which is dependent on

the data generating distribution, while sk is related to the multiplicity of tk ; see [22, 23] for more

details about tk and sk . Assumption (A1) is the asymptotic expansion (2.7) in [22]. �e expansion is

satis�ed by the factor model with the sequence {tk } strictly increasing in k . �is implies that for

k0 ≤ k1 < k2 ≤ kmax, the second term on the right-hand side of Equation (9) penalizes the larger

modelMk2
more than the smaller modelMk1

. As a result, this together with Assumption (A2)

implies that among all the modelsMk with k ≥ k0
, the posterior favors the most parsimonious

model, which is the true model with k0
nonzero common factors. Assumption (A3) is used to

rule out those models with too few factors. Assumption (A4) is a mild assumption on the prior of

models, which is satis�ed trivially by the uniform prior.

Under Assumptions (A1)–(A4), �eorem 3.1 shows that as the amount of real-world data goes

to in�nity m → ∞, the posterior p(Mk | Zm ∈ D(X
(0)
m )) converges to the k0

-factor model. �us,

under the constraints speci�ed by ΘΛ, the posterior sample of loading matrix Λ converges to Λc
.

Theorem 3.1. Suppose that Assumptions (A1)–(A4) hold. �en the posterior of k consistently
estimates the true number of factors k0, i.e. the posterior satis�es p

(
Mk0 | Zm ∈ D(X

(0)
m )

)
→ 1 in

probability asm →∞.

�e sampling procedure in Section 3.1.4 penalizes over- and under-parameterized fac-

tor model. Suppose that we choose the proposal distribution дk (Λk ) to be the pos-

terior distribution p(Λk |k,Zm) and the uniform prior is used for the number of com-

mon factors p(k). We can show that the part in the accept ratio in Equation (8),

p(Zm |k
′, Λ̃k ′)p(Λ̃k ′ |k

′)p(k ′)дk (Λk )/[p(Zm |k,Λk )p(Λk |k)p(k)дk ′(Λ̃k ′)], equals to the marginal like-

lihood ratio p(Zm ∈ D(X
(0)
m ) | Mk ′)/p(Zm ∈ D(X

(0)
m ) | Mk ). By applying Assumptions (A1)–(A2),

for k0 < k ≤ kmax, we have

p
(
Zm ∈ D(X

(0)
m ) | Mk

)
/p

(
Zm ∈ D(X

(0)
m ) | Mk0

)
≤ exp[−(tk − tk0 ) logm/2]. (10)

By applying Assumption (A3), for 1 ≤ k < k0
, we have

p
(
Zm ∈ D(X

(0)
m ) | Mk

)
/p

(
Zm ∈ D(X

(0)
m ) | Mk0

)
≤ exp(−δ0m/2). (11)

See the proof of �eorem 3.1 in the appendix for the derivation of Equations (10)–(11). �us, Step (1)

of the sampling procedure in Section 3.1.4 tends to accept the moves to the k0
-factor model and the

acceptance ratio goes to 1 as m → ∞. �e empirical study in Section 5.1 demonstrates that the

sampling procedure has good �nite-sample performance on the model selection.
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3.1.6 Asymptotic Convergence of Input Model Estimation. In this section, we show the asymptotic

convergence of the estimated input model. Since the input joint distribution is characterized by

the marginal distributions and a correlation matrix, �eorem 3.2 shows that under Conditions (B1)

and (B2), as the amount of real-world data m goes to in�nity, the estimated input joint distribution

speci�ed by (F̃1, F̃2, . . . , F̃d , C̃) uniformly converges to the true input distribution speci�ed by

(F c
1
, F c

2
, . . . , F cd ,C

c ). �e proof for �eorem 3.2 is provided in the online Appendix.

(B1) �e prior of correlation matrix, denoted by p(C), has positive mass on any open neighbor-

hood of Cc
de�ned based on the Frobenius norm.

(B2) �e true correlation matrix Cc
has a factor decomposition in k0

factors (1 ≤ k0 ≤ d).

(B3) �e DPM posterior is consistent at each Fj with j = 1, 2, . . . ,d : if F̃j is drawn from the

posterior p(Fj |X
(0)

jm), then ‖F̃j − F cj ‖∞ converges to zero in probability as m → ∞ for all

j = 1, 2, . . . ,d , where ‖F̃j − F
c
j ‖∞ = supx ∈<

��F̃j (x) − F cj (x)��.
Theorem 3.2. Suppose that Conditions (B1), (B2) and (B3) hold, and F̃j is a posterior sample

of marginal distribution from p(Fj |X
(0)

jm) obtained by DPM for j = 1, 2, . . . ,d . Let C̃ be a sample of

correlationmatrix drawn fromp(C|X(0)m ). �e posterior sample F̃ has the Gaussian copula representation

F̃ (x1,x2, . . . ,xd ) = Φd

(
Φ−1

[
F̃1(x1)

]
,Φ−1

[
F̃2(x2)

]
, . . . ,Φ−1

[
F̃d (xd )

]
; C̃

)
.

�en almost surely under the true input model F c , the posterior sample F̃ (x1,x2, . . . ,xd ) uni-

formly converges to F c (x1,x2, . . . ,xd ), i.e. ‖F̃ − F c ‖∞
p
→ 0 as m → ∞, where ‖F̃ − F c ‖∞ =

sup(x1,x2, ...,xd )∈<d

��F̃ (x1,x2, . . . ,xd ) − F
c (x1,x2, . . . ,xd )

��.
Assumption (B3) requires that the DPM posteriors of all marginal distributions to be consistently

in the supremum norm of distribution functions, i.e. the Kolmogorov-Smirnov norm. Since the

Kolmogorov-Smirnov norm is weaker than the total variation norm, (B3) readily holds for all DPM

posteriors that are strongly consistent. �e strong consistency of DPM has been well studied for the

DPM of normals; see for example, [28, 29], etc.

3.2 Bayesian Inference for the�antile Response
In Section 3.1, we provide a Bayesian approach to generate posterior samples of the input model,

F̃ (b) with b = 1, 2, . . . ,B, quantifying the input uncertainty. At each sample F̃ (b), we run simulations

to estimate the system performance characterized by a vector of quantiles. In this paper, we focus

on the steady state behaviors. Since the distribution of simulation output Y (F̃ (b)) is unknown and

it also depends on the input model F̃ (b), the nonparametric Bayesian approach proposed in [24, 41]

is used to quantify the simulation estimation uncertainty.

For a generic input model F which is a posterior sample of input model in our framework, the

simulation outputs are Y(F ) ≡ {(Yr1(F ),Yr2(F ), . . . ,Yr L(F )), r = 1, 2, . . . ,R} with the number of

replications R and the runlength L. We are interested in simultaneously estimating the quantiles

of Y (F ) listed in the vector q(F ) ≡
(
q1(F ),q2(F ), . . . ,qγ (F )

)
with probabilities 0 = p0 < p1 < p2 <

. . . < pγ < pγ+1 = 1. �e values of q0(F ) and qγ+1(F ) depend on the limits of the support for the

simulation output distribution GY (F ). Since quantiles q =
(
q1,q2, . . . ,qγ

)
divide all the outputs

in Y(F ) into γ + 1 groups, an approximate likelihood, denoted by s(·|q), follows a multinomial

distribution [24, 37, 41]

s (Y(F )| q) =
(

RL

µ1, µ2, . . . , µγ+1

) γ+1∏̀
=1

(p` − p`−1)
µ`

(12)
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where µ` =
∑

1(q`−1,q` ](Y(F )) denotes the number of entries in Y(F ) located in the range (q`−1,q`]
for ` = 1, 2, . . . ,γ +1. �is approximate likelihood is used in the posterior inference, by p(q|Y(F )) ∝
p(q)s(Y(F )|q). �e prior p(q), such as a truncated normal distribution used in our empirical study,

can guarantee the restriction q1 ≤ q2 ≤ . . . ≤ qγ . Since the prior is not conjugate, MCMC with a

Metropolis-Hasting step is used for posterior inference; see the procedure in [24].

At any �xed input model F , �eorem 3.3 shows the asymptotic consistency of the approximate

posterior from (12) for each quantile q`(F ) with ` = 1, 2, . . . ,γ ; see the proof of Proposition 1 in

[40]. �e convergence of the ratio p(q |Y(F ))/p(q`(F )|Y(F )) to zero for any q , q`(F ) indicates that

the approximate posterior from (12) asymptotically concentrates around the true system response

quantiles q`(F ), as the number of simulation outputs RL increases. �en, by applying the continuous

mapping theorem, we have the consistency for the vector of quantiles q(F ) and other risk measures

that are continuous functions of quantiles.

(C1) For every posterior sample of input model F from the procedure in Section 3.1, the distribu-

tion of the simulation outputGY (F ) is continuous at the quantiles q`(F ) for all ` = 1, 2, . . . ,γ .

Theorem 3.3. (Lancaster and Jun [40] Proposition 1) Suppose that Condition (C1) holds. �en
for any given input model F , if q , q`(F ) for all ` = 1, 2, . . . ,γ and 0 < GY (F )(q) < 1, the ratio
p(q |Y(F ))/p(q`(F )|Y(F )) converges in probability to zero as RL→∞,.

3.3 Procedure to Construct CrIs for the Risk Analysis
Built on our previous study [54], in this section, we provide the procedure in Algorithm 3 to

construct the percentile CrIs for the quantile responses accounting for both input and simulation

estimation uncertainty. It includes main steps as follows. Given a �nite amount of real-world

data, we generate posterior samples of input model, F̃ (b) with b = 1, 2, . . . ,B, quantifying the

input uncertainty in Step 1. Each sample F̃ (b) is speci�ed with marginals (F̃ (b)
1
, F̃ (b)

2
, . . . , F̃ (b)d ) and

the correlation matrix C̃(b). �en, at each F̃ (b), we run simulations with the runlength L and

replications R, get the outputs Y(b), and draw a sample q̃`,b from the posterior p(q`(F̃
(b))|Y(b), F̃ (b))

for ` = 1, 2, . . . ,γ quantifying the simulation estimation uncertainty in Steps 3 and 4. A�er that,

we construct the percentile CIs for quantiles (q1,q2, . . . ,qγ ) in Step 6. �e similar procedure can be

applied to other performance measures that are continuous functions of quantiles.

�eorem 3.4 shows the asymptotic consistency of the CrIs in (13). Under Conditions (B1), (B2)

and (B3), �eorem 3.2 shows that the posterior distribution p(F |X(0)m ) converges to F c as the amount

of real-world data m → ∞. According to �eorem 3.3, at any given posterior sample of input

model F̃ (b) for b = 1, 2, . . . ,B, the posterior distribution p(q` |Y(F̃ (b))) converges to the true quantile

q`(F̃
(b)) as the simulation budget RL→∞ for ` = 1, 2, . . . ,γ . Condition (D1) below assumes the

continuity of quantile curve q`(F ) around the true input model F c with respect to the distance

de�ned by the in�nity norm, ‖F −F c ‖∞. By applying the triangular inequality, we can show that the

CrI in (13) shrinks to q`(F
c ) as RL→∞ andm →∞. �is convergence result is conditional on both

the posterior samples F̃ (1), F̃ (2), . . . , F̃ (B) and the simulation outputs Y(F̃ (1)),Y(F̃ (2)), . . . ,Y(F̃ (B)).
�e proof for �eorem 3.4 is in the online Appendix. Notice that this asymptotic consistency is fully

driven by RL,m →∞ but does not require B →∞. For a vector of quantiles and risk measures that

are continuous functions of quantiles, the consistency directly follows by applying the continuous

mapping theorem. �e empirical study in Section 5 demonstrates that our approach has good

�nite-sample performance.

(D1) For any ϵ > 0, there exists δ > 0 such that for any input model F , ‖F − F c ‖∞ < δ implies

|q`(F ) − q`(F
c )| < ϵ for ` = 1, 2, . . . ,γ .
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ALGORITHM 3: Construct CrIs for System Risk Performance

Input: �e real-world data X
(0)
m

Output: Percentile credible intervals for the quantile responses, CrI(q`) with ` = 1, 2, . . . ,γ
1 Specify the priors for marginals and the correlation matrix. Apply Gibbs samplers described in Section 3.1 to

generate B posterior samples of input model (F̃
(b)
1
, F̃
(b)
2
, . . . , F̃

(b)
d , C̃

(b)) with b = 1, 2, . . . ,B.

2 for b = 1, 2, . . . ,B do
3 Generate Z i .i .d .

∼ Nd (0, C̃(b)) and do transformation to obtain the input data X with

X j =
(
F̃
(b)
j

)−1
[
Φ

(
Z j

) ]
for j = 1, 2, . . . ,d . Use these data to drive simulations and get the outputs

Y(b) = Y(F̃ (b)).
4 Apply the inference in Section 3.2 and generate a posterior sample q̃`,b ∼ p(q`(F̃

(b))|Y(b), F̃ (b))) for

` = 1, 2, . . . ,γ .

5 end
6 Record the (1 − α)100% percentile CrIs quantifying the overall uncertainty for quantile q` ,

CrI(q`) = [q̃`,( dBα/2e), q̃`,( dB(1−α/2)e)] (13)

where q̃`,(b) is the bth order statistic with q̃`,(1) ≤ q̃`,(2) ≤ · · · ≤ q̃`,(B) for ` = 1, 2, . . . ,γ .

Theorem 3.4. Suppose that Conditions (B1), (B2), (B3), (C1) and (D1) hold, then conditional on
F̃ (1), F̃ (2), . . . , F̃ (B) and Y(F̃ (1)),Y(F̃ (2)), . . . ,Y(F̃ (B)), the CrI in Equation (13) asymptotically converges
in probability to the true quantile response q`(F c ) for each ` = 1, 2, . . . ,γ , as the simulation budget
RL→∞ and the amount of real-world datam →∞.

Following the similar procedure in [53], we can estimate the contributions from both input and

simulation uncertainty. If the simulation uncertainty dominates the input uncertainty, additional

simulation runs could further reduce the simulation estimation uncertainty. As we collect more

simulation outputs, we can update our belief on quantiles by applying the Bayes’ rule and stop the

simulation when the contribution from the simulation estimation uncertainty reaches the desired

level.

4 FACTOR STRUCTURE FOR DECISION MAKING
In this section, we further explore the factor structure of the input dependence to guide decision

making for the risk analysis. First, we interpret the common factors to get insights of underly-

ing generative processes for correlated inputs. �en, we propose a procedure to estimate their

e�ects on the system performance, which could guide decision making to improve the system

random behaviors. For example, the inventory management for a jet engine maintenance could

involve ordering decisions for hundreds of components. �e simultaneous breakdowns of di�erent

components can be induced by various lurking factors, e.g., the operating temperature and the

contamination. �us, based on the loading matrix, we could identify the active latent factors, and

further �nd the dominant factors that have obvious impacts on the system performance so that

one can develop strategies to improve the system performance.

To identify the latent factors, we �rst need to specify the number of common factors k . According

to the literature on data analytics with factor model [1, 42], we take the mode of posterior p(k |X(0)m ),

denoted by
ˆk , as the true value. �eorem 3.1 shows that

ˆk asymptotically converges to k0
. �e

empirical study in Section 5 also demonstrates that the sampling procedure in Section 3.1.4 has a

good �nite-sample performance on determining k and the interpretation is robust to the model

selection.
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�en, given the ˆk-factor model, the posterior mean of p(Λ|X(0)m ,k = ˆk), denoted by Λ̂, is used as a
summary of the factor loadings for interpretation. �e factor loadings represent the impact of the

common factors on each component. From Equation (1), larger absolute values of
ˆλjh and

ˆλj′h
imply stronger correlation between the jth and j ′th components induced by the hth common factor,

where h = 1, 2, . . . , ˆk . In addition,
ˆλ

2

jh ∈ [0, 1] gives the proportion of variance of Z j explained by

the hth factor. �us, components with large loading ˆλ
2

jh can be used to identify the hth factor.

A�er identifying
ˆk latent common factors, we propose a procedure to estimate the e�ect of

each factor and also the e�ect of the whole correlation (all
ˆk factors) on the system quantile, say

q. We �rst generate B0 posterior samples of input model quantifying the input uncertainty in

Step 1. Given �nite real-world data and simulation budget, let QF ,Q0 and Q−h represent random

variables characterizing the quantile estimation uncertainty when the input model includes the

whole correlation, no common factor (no input correlation) and all but the hth factor. By following

the procedure in Section 3.3, we generate their posterior samples, denoted by q̃F ,b , q̃0,b and q̃−h,b
for b = 1, 2, . . . ,B0, in Steps 3, 4 and 6–7 correspondingly. �en, ∆Q0 = Q0 − QF characterizes

the impact from the whole correlation and ∆Q−h = Q−h −QF characterizes the impact from the

hth factor. We obtain their posterior samples, ∆q̃0,b = q̃0,b − q̃F ,b and ∆q̃−h,b = q̃−h,b − q̃F ,b for

b = 1, 2, . . . ,B0 and h = 1, 2, . . . , ˆk in Step 8. We further construct the percentile CrIs quantifying

the estimation uncertainty of the e�ects from the whole correlation and the hth factor in Step 11.

To reduce the estimation uncertainty for these e�ects, we run simulations in Steps 3, 4 and 7 with

common random numbers. Similar procedure can be applied to a vector of quantiles and other

performance measures that are functions of quantiles.

To study the e�ect of the hth factor, we set the hth column of loading matrix to be zero in Step 6,

which requires that the order of underlying factors is �xed at posterior samples of loading matrix.

However, when there exists any diagonal entry of loading matrix Λ close to 0, the identi�cation

constraint of positive diagonal entries is weakened, and the order of common factors may switch

among the posterior samples. To control this issue, we �rst permute the factors for each posterior

sample of loading matrix. Suppose that a factor could have an either large or small e�ect on input

components, and each component is highly associated with a single factor. For each posterior

sample of loading matrix, we can reorder the columns based on the �rst large entry in the factor

loadings. Speci�cally, for any posterior sample Λ̃, let sh = argminj {|
˜λjh | > ∆λ} denote the �rst

large entry corresponding to factor h, where ∆λ represents a threshold to distinguish large factor

loadings with small ones. In the empirical study, we set ∆λ = 0.5. We permute columns of Λ̃ such

that s1 < · · · < s ˆk . �e permutation of factors can make the posterior samples of loading matrix

having the same order of factors as long as the estimation error is not too large. Further, according

to [42], to avoid the sign-switching identi�cation issue, we switch the sign of each factor in Λ̃ so

that
˜λsh,h > 0 for h = 1, 2, . . . , ˆh.

5 EMPIRICAL STUDY
In this section, we �rst study the input model estimation for marginal distributions and the

correlation matrix in Section 5.1. �en, we use a portfolio management example to demonstrate

the impact of exploring the factor structure in the input correlation on the system risk performance

estimation in Section 5.2. A�er that, we interpret the latent common factors and estimate their

e�ects on the system quantile performance in Section 5.3.
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ALGORITHM 4: Estimate the E�ects of Factors on System Risk Performance

Input: �e real-world data X
(0)
m

Output: Percentile credible intervals for the e�ects from common factors on the quantile response: CrI(∆Q0)

and CrI(∆Q−h ) for h = 1, 2, . . . , ˆk

1 Fix the number of common factors to be
ˆk . Implement the procedure in Section 3.1.3 to generate posterior

samples of the input model, F̃ (b) ≡ (F̃
(b)
1
, F̃
(b)
2
, . . . , F̃

(b)
d , C̃

(b)) and Λ̃
(b)

for b = 1, 2, . . . ,B0.

2 for b = 1, 2, . . . ,B0 do
3 Run simulations at input models F̃ (b). �en, by following the procedure in Section 3.3, obtain posterior

samples q̃F ,b .

4 Run simulations at input models without dependence F̃
(b)
0
≡ (F̃

(b)
1
, F̃
(b)
2
, . . . , F̃

(b)
d , Id ). �en, by following

the procedure in Section 3.3, obtain posterior samples q̃
0,b .

5 for h = 1, 2, . . . , ˆk do
6 Suppose the hth factor is removed. Obtain posterior samples of the loading matrix without the hth

common factor, denoted by Λ̃
(b)
−h , through se�ing the hth column of Λ̃

(b)
to be zero. �en, by

applying Equation (1), obtain samples C̃(b)
−h .

7 Run simulations at input models F̃
(b)
−h ≡ (F̃

(b)
1
, F̃
(b)
2
, . . . , F̃

(b)
d , C̃

(b)
−h ). �en, by following the procedure

in Section 3.3, obtain posterior samples q̃−h,b .

8 Obtain the posterior samples, ∆q̃
0,b = q̃0,b − q̃F ,b and ∆q̃−h,b = q̃−h,b − q̃F ,b for b = 1, 2, . . . ,B0

and h = 1, 2, . . . , ˆk .

9 end
10 end
11 Record the (1 − α)100% percentile CrIs quantifying the overall uncertainty for ∆Q0 and ∆Q−h with

h = 1, 2, . . . , ˆk

CrI(∆Q0) = [∆q̃
0,( dB0α/2e),∆q̃0,( d1−B0α/2e)]

CrI(∆Q−h ) = [∆q̃−h,( dB0α/2e),∆q̃−h,( d1−B0α/2e)]

where ∆q̃
0,(b) and ∆q̃−h,(b) denote the bth order statistics with ∆q̃

0,(1) ≤ ∆q̃
0,(2) ≤ · · · ≤ ∆q̃

0,(B0) and

∆q̃−h,(1) ≤ ∆q̃−h,(2) ≤ · · · ≤ ∆q̃−h,(B0).

5.1 Input Model Estimation
Our study in [53] demonstrates that our DPM based Bayesian nonparametric approach has be�er

�nite-sample behaviors compared to many existing approaches on input modeling, such as �nite

mixture and empirical distribution. In this section, we �rst use two test examples to compare

the performance of DPM with that of a �exible parametric approach, JTS, in modeling marginal

inputs. Since we consider each marginal distribution separately, for notation simpli�cation, we

drop the subscript for input component temporarily. �e �rst example is a Gumbel distribution,

Gumbel(µ, β), with the location parameter µ = 0.1 and the scale parameter β = 0.2. It has heavy-

tails and large skewness. �e second example is a skewed t distribution, skewed-t(ξ ,ω,α ,d f ), with

the location parameter ξ = 0, the scale parameter ω = 0.5, the slant parameter α = 8 controlling

the skewness, and the degree of freedom d f = 10; see [3, 4] for the detailed information about

skewed-t distribution.

To compare the goodness of �t obtained from DPM and JTS, we record the Kolmogorov-Smirnov

(KS) distance, de�ned by Dm ≡ sup

x ∈<
|F c (x) − F̂m(x |X

(0)
m )|, and Anderson-Darling (AD) distance,

de�ned by A2

m ≡ m
∫
|F c (x) − F̂m(x |X

(0)
m )|

2w(x)dF c (x), measuring the di�erence between the
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underlying true distribution F c (·) and the distribution estimated bym real-world data X
(0)
m , denoted

by F̂m(·), where the weight function is w(x) = 1/(F c (x)(1 − F c (x))). Since the AD distance places

more weight on the tails of F c , it can detect the discrepancies at the tails be�er. According to [26],

the posterior predictive distribution with density, de�ned by
ˆfm(x |X

(0)
m ) =

∫
f (x |F )dP(F |X(0)m ), is

used to assess the �t of input model. Since the true input from both examples has unbounded

support, we use DPM with Gaussian kernel. Table 1 reports the mean and standard deviation (SD)

(SD is inside the parenthesis) of KS and AD distances obtained by JTS and DPM when the sample

size is m = 30, 50, 200. �e results are estimated based on 100 macro-replications. Table 1 indicates

that DPM has be�er ��ing performance and the advantage is more obvious in the second example

with multiple modes.

Table 1. The mean and SD of KS and AD distances obtained by using JTS and DPM

Example 1: Gumbel m = 30 m = 50 m = 200

JTS

Dm 0.114 (0.043) 0.083 (0.034) 0.046 (0.017)

Am 12.429 (4.214) 9.250 (3.813) 4.695 (1.702)

DPM

Dm 0.095 (0.042) 0.076 (0.031) 0.042 (0.016)

Am 10.594 (4.375) 8.134 (3.206) 4.319 (1.658)

Example 2: Skewed-t m = 30 m = 50 m = 200

JTS

Dm 0.166 (0.019) 0.114 (0.012) 0.081 (0.009)

Am 13.712 (1.780) 10.839 (1.243) 6.745 (0.584)

DPM

Dm 0.071 (0.021) 0.052 (0.017) 0.028 (0.007)

Am 7.216 (2.518) 5.330 (1.958) 2.806 (0.452)

�en, to study the impact of exploring factor structure on the inference of input correlation,

we compare the mean and SD of the estimation error of correlation matrix, de�ned as Error(C) =
E[‖C̃ − Cc ‖|X

(0)
m ], obtained by using GCF and GC models with and without exploring the factor

structure in the underlying input correlation, where ‖ · ‖ denotes the Frobenius norm. We also

study the �nite-sample behavior of the estimated number of common factors.

In the test example, the marginal distributions are Gumble with di�erent locations but scale

equal to 0.1, the correlation matrix is generated by a factor model with k0 = 1, 3 when d = 10, 30

and k0 = 3, 10 when d = 100; see the appendix for the true marginal parameters and correlation

matrices. To study the robust behavior of our approach, we set m = 30, 50, 200, and record the

mean and SD (inside the parenthesis) of Error(C) in Table 2. �e results are estimated based on 100

macro-replications. In each macro-replication, we �rst generatem real-world data X
(0)
m by using

F c to mimic the data collection. �en, we generate B = 1000 posterior samples of C̃ by using the

sampling procedure in Sections 3.1.3 and 3.1.4, and calculate the posterior mean of ‖C̃ − Cc ‖ to

obtain Error(C). Since the number of factors are usually far less than the dimension [42], in our

empirical study, we set kmax = 5 when d = 10, 30, and set kmax = 20 when d = 100. We discuss the

impact of choice for kmax later. In the preliminary MCMC analysis, for each k ∈ {1, 2, . . . ,kmax},

we run 5000 iterations a�er 2000 burn-in iterations, and record a posterior sample for every 10

iterations to avoid serial dependence in the MCMC. �e sample mean and variance of these posterior

samples are used to determine the proposal distributions for the RJMCMC sampling procedure. �e

uniform prior is used for the number of factors k . For the loading matrix, non-informative priors

are used,ψjh ∼ Inverse-Gamma(α0/2, β0/2) with α0 = 1 and β0 = 1. We compare the performance

of GCF with the GC; see the implementation of GC in [33].
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Table 2. The mean and SD of Error(C) obtained by using GCF and GC.

m GC: Error(C) GCF: Error(C)

d = 10,k0 = 1

30 1.182 (0.257) 0.880 (0.216)

50 0.813 (0.166) 0.735 (0.138)

200 0.540 (0.073) 0.542 (0.085)

d = 10,k0 = 3

30 2.241 (0.260) 1.794 (0.225)

50 1.613 (0.238) 1.332 (0.185)

200 0.827 (0.115) 0.824 (0.121)

d = 30,k0 = 1

30 NA 3.894 (0.463)

50 3.150 (0.477) 2.286 (0.683)

200 1.194 (0.153) 1.189 (0.176)

d = 30,k0 = 3

30 NA 6.538 (1.257)

50 4.963 (0.782) 3.920 (0.709)

200 2.415 (0.368) 2.362 (0.355)

d = 100,k0 = 3

30 NA 11.485 (2.089)

50 NA 8.623 (1.704)

200 6.437 (1.278) 5.740 (1.136)

d = 100,k0 = 10

30 NA 18.264 (3.820)

50 NA 13.672 (2.749)

200 10.531 (2.260) 8.652 (1.815)

Table 2 demonstrates that the mean and SD of estimation error of input correlation matrix

obtained by using GCF is much smaller than that of GC when the amount of real-world datam is

relatively small. Since the number of parameters in the correlation matrix increases dramatically

as d increases, GC does not work when d = 30,m = 30 and d = 100,m = 30, 50, indicated by “NA”

in Table 2. Asm increases, the estimation errors from GC and GCF decrease and become close to

each other.

Since the factor model could simplify the input model, it reduces the estimation error of the

correlation matrix and also takes less computational time. �e empirical study in this section is

ran on one node of the DRP cluster with two eight-core 2.6 GHz Intel Xeon E5-2650 processors

and 128GB of system memory. We select the case with d = 30 and k0 = 3 to compare the running

time of GCF and GC. When m = 50, the average running time of GC is 76.78 (0.092) seconds, while

that of GCF is 51.63 (0.088). When m = 200, the average running time of GC is 347.16 (1.540) while

that of GCF is 107.31 (0.292). �erefore, by exploring the factor structure in the input correlation, GCF
requires less computational e�ort to achieve be�er estimation accuracy. �ese advantages become more
obvious as the dimension of input model increases.

�eorem 3.1 shows that the estimated number of factors asymptotically converges to k0
. To

study the �nite-sample behavior, Table 3 records the average frequency of the number of factors

with 1000 posterior samples. �e results are estimated based on 100 macro-replications. We can

observe that the estimated number of factor shows convergence to k0
asm increases. Even asm is

relatively small, the posterior mode ˆk tends to equal to the true value k0.
�e choice of kmax typically depends on the expert’s opinion. Here, we also study the e�ect of

selecting di�erent kmax on the estimation accuracy for the correlation matrix and the posterior

mode of k . We use the above example with d = 30,k0 = 3, and set kmax = 5, 10, 15 respectively. In

Table 4, the results of Error(C) and the frequency of k are estimated based on 100 macro-replications.
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Table 3. The average frequency of estimated number of factors in 1000 posterior samples.

m k = 1 k = 2 k = 3 k = 4 k = 5

d = 10,k0 = 1

30 662.3 171.5 96.2 46.8 23.2

50 794.7 113.6 72.8 16.5 2.4

200 918.2 52.3 19.0 10.5 0

d = 10,k0 = 3

30 2.5 26.3 747.8 140.0 83.4

50 0.8 8.7 851.6 125.5 13.4

200 0 1.1 908.3 87.0 3.6

d = 30,k0 = 1

30 562.4 243.7 118.2 52.5 23.2

50 726.0 173.4 62.6 30.1 7.9

200 880.5 69.3 34.1 13.8 2.3

d = 30,k0 = 3

30 52.6 103.4 528.7 202.5 112.8

50 28.7 96.2 650.9 147.3 76.9

200 13.2 48.5 814.8 89.6 33.9

m k < 3 k = 3 k = 4 k = 5 k > 5

d = 100,k0 = 3

30 14.1 378.5 265.2 167.3 174.9

50 5.6 449 291.5 175.6 78.3

200 1.4 511.8 321.4 146.9 18.5

m k < 10 k = 10 k = 11 k = 12 k > 12

d = 100,k0 = 10

30 63.8 223.6 262.1 209.5 241.0

50 25.0 273.7 279.6 223.5 198.2

200 10.8 328.6 306.9 190.7 163.0

�e choice of kmax has li�le e�ect on the estimation error for the correlation matrix, Error(C).
Larger kmax could overestimate k . However, the posterior mode

ˆk tends to equal to the true value

k0
, especially whenm increases.

Table 4. The estimation error Error(C) and the average frequency of k estimate under di�erent kmax when
d = 30 and k0 = 3

kmax Error(C) k < 3 k = 3 k = 4 k = 5 k > 5

m = 30

5 6.510 (1.162) 142.4 539.6 223.8 94.2 0

10 6.858 (1.093) 57.2 452.7 286 123.5 80.6

15 6.376 (0.788) 16.4 407.6 311.9 144.3 119.8

m = 50

5 4.149 (0.870) 117.2 664.7 152.1 66 0

10 4.275 (0.803) 40.3 552.8 229.5 102.9 74.5

15 4.227 (0.748) 6.1 426.2 256.6 146.7 164.4

m = 200

5 2.437 (0.503) 58.5 806.5 85.8 49.2 0

10 2.425 (0.488) 15.8 728.9 126.5 67.2 61.6

15 2.430 (0.409) 1.3 683.6 148.3 87.7 79.1

5.2 System Risk Performance Estimation
In this section, we use a Portfolio Management (PM) example to study the �nite-sample performance

of our Bayesian framework. An investigator buys d = 10 stocks with the return rates, denoted by
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X = (X1,X2, . . . ,Xd ). Denote the units of stocks held by the investigator by θθθ = (θ1,θ2, . . . ,θd ).

We want to estimate the quantiles of overall return rate Y =
∑d

j=1
θ jX j .

�e underlying input model is a Gaussian copula with Gumbel marginal distributions and the

correlation matrix Cc
having a factor structure with k0 = 3. Suppose that the correlation between

the components of X is induced by various industry indexes. �e �rst three components are

stocks return of automotive companies, the next four components are stocks return of health

care companies, and the remaining three are stocks return of semiconductor companies. �e true

loading matrix is

Λc> =


0.893 0.870 0.863 0.231 0.218 0.196 0.218 0.167 0.201 0.226

0.000 0.196 0.188 0.835 0.861 0.873 0.860 0.184 0.193 0.240

0.000 0.000 0.243 0.231 0.202 0.180 0.175 0.878 0.864 0.828

 . (14)

By applying Equation (1), we can calculate the underlying correlation matrix Cc
whose

elements give the true correlations between di�erent stock returns. �e correlations

within each industry are around 0.8 while those across di�erent industries are about

0.3. �e unknown marginals are Gumbel distributions with location parameters equal to

0.245,−0.205, 0.095, 0.045,−0.155, 0.095, 0.195, 0.045, 0.095,−0.155, and all scale parameters equal

to 0.1.

�e portfolio is de�ned by unknown parameters θθθc = (4, 2, 3, 2, 3, 2, 4, 2, 2, 3). We run a side

experiment to estimate the true quantiles of the portfolio return, qc
1

and qc
2

with probabilities

p1 = 5% and p2 = 10%, by using n = 10
7

samples of stock returns. �e estimated quantiles are

qc
1
= −0.6228 and qc

2
= −0.0293 with the 95% con�dence intervals (CIs) equal to [−0.6253,−0.6212]

and [−0.0311,−0.0276]. �e (1 − α)100% CI for the pth quantile is obtained by using the `-th and

u-th order statistics, where ` = np − z
1− α

2

√
np(1 − p) and u = np + z

1− α
2

√
np(1 − p); see [20].

To study the performance of our approach, suppose that we do not know the true input model

and the system response. We use the DPM with Gaussian kernel to model marginal distributions

and use GCF to model the correlated input. �e unknown input model is estimated bym “real-world

data” generated from F c . A�er that, we run simulations, estimate the quantiles of the overall return

rate and construct CrIs for the quantiles. To further study the robustness of our approach, we set

the size of real-world data m = 30, 50, 200 and the run length L = 100, 1000. Let B = 1000. �en,

we perform Bayesian inference for the quantiles by using 500 MCMC iterations a�er 1000 burn-in

iterations.

Tables 5 shows the mean and SD (in the parenthesis) of the quantile estimation error, de�ned by

Error(q̄`) = |q̄` − q
c
`
| with q̄` = E[q` |X

(0)
m ,Y] for ` = 1, 2, and the width of 95% CrI in Equation (13)

obtained by using GC and GCF for the input model, where X
(0)
m and Y represent the real-world

input data and simulation outputs. �e results in Tables 5 are based on 100 macro-replications. As

m and L increase, the system response quantile estimation becomes more accurate and less variable.

Compared to GC, the advantage of GCF is more obvious as the sample sizem becomes smaller.

5.3 Estimating the E�ects of Factors
In this section, we interpret the underlying common factors and then estimate their e�ects on the

quantile response. We use the PM example described in Section 5.2 with d = 10, k0 = 3, m = 50

and L = 1000 to demonstrate the representative performance of our approach given the real-world

data X
(0)
m and the simulation outputs Y.

According to Table 3, when d = 10, k0 = 3 and m = 50, we have the posterior mode of the

number of common factors
ˆk = 3. However, to study the robustness of the factor interpretation

over the estimation error of the number of factors, we analyze the models with k = 3, 4, which have
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Table 5. The mean and SD of the quantile estimation error Error(q̄`) and the CrI width |CrI(q`)| with ` = 1, 2

obtained by using GC and GCF.

m = 30, L = 100 Error(q̄1) Error(q̄2) |CrI(q1)| |CrI(q2)|

GCF 0.278 (0.243) 0.221 (0.186) 1.818 (0.233) 1.507 (0.184)

GC 0.396 (0.294) 0.320 (0.255) 1.823 (0.229) 1.514 (0.180)

m = 30, L = 1000 Error(q̄1) Error(q̄2) |CrI(q1)| |CrI(q2)|

GCF 0.252 (0.217) 0.204 (0.193) 1.225 (0.117) 1.016 (0.088)

GC 0.367 (0.265) 0.283 (0.212) 1.324 (0.132) 1.089 (0.101)

m = 50, L = 100 Error(q̄1) Error(q̄2) |CrI(q1)| |CrI(q2)|

GCF 0.237 (0.203) 0.194 (0.168) 1.277 (0.125) 0.983 (0.084)

GC 0.318 (0.239) 0.265 (0.220) 1.385 (0.140) 1.026 (0.097)

m = 50, L = 1000 Error(q̄1) Error(q̄2) |CrI(q1)| |CrI(q2)|

GCF 0.208 (0.179) 0.170 (0.114) 0.942 (0.103) 0.788 (0.072)

GC 0.278 (0.203) 0.241 (0.135) 1.004 (0.090) 0.820 (0.075)

m = 200, L = 100 Error(q̄1) Error(q̄2) |CrI(q1)| |CrI(q2)|

GCF 0.132 (0.087) 0.105 (0.066) 1.036 (0.093) 0.904 (0.081)

GC 0.137 (0.082) 0.108 (0.064) 1.075 (0.094) 0.933 (0.086)

m = 200, L = 1000 Error(q̄1) Error(q̄2) |CrI(q1)| |CrI(q2)|

GCF 0.106 (0.069) 0.080 (0.053) 0.784 (0.062) 0.690 (0.053)

GC 0.105 (0.062) 0.078 (0.048) 0.776 (0.059) 0.682 (0.050)

relatively high selection probabilities. We use the posterior mean of the factor loading Λ̂ as the

summary for interpretation. To avoid order-switching and sign-switching among posterior samples

of the loading matrix, we reorder and transform Λ̃ according to the description in Section 4, and set

the threshold ∆λ = 0.5. We �rst study the loading matrix for the model with k = 3 factors, denoted

by

Λ̂
>

3
=

[0.880 0.882 0.862 0.311 0.269 0.225 0.232 0.255 0.323 0.237

0 0.048 −0.046 0.795 0.814 0.821 0.780 −0.026 −0.076 −0.015

0 0 0.048 0.285 0.251 0.252 0.259 0.837 0.802 0.790

]
.

�e factor structure of Λ̂
3

is quite similar to that of Λc
in Equation (14). It reveals the strong corre-

lations among three groups of components: Components 1–3, Components 4-7, and Components

8-10 are associated with three underlying factors. �is information could be used to identify the

underlying factors. �en, we study the posterior mean of loading matrix for the model with k = 4

factors, denoted by

Λ̂
>

4
=


0.872 0.825 0.804 0.165 0.175 0.214 0.197 0.107 0.153 0.253

0 0.274 0.183 0.790 0.843 0.795 0.859 −0.194 −0.231 0.031

0 0 0.235 0.331 0.301 0.286 0.170 0.836 0.766 0.815
0 0 0 0.268 0.218 0.304 0.103 −0.341 −0.181 −0.309

 .
Since all elements in the last column of Λ̂

4
are close to zero, the last factor is redundant. By

removing this factor, we obtain the similar interpretation with that from Λ̂
3
. �us, the interpretation

of underlying factors is robust to the estimation uncertainty of the loading matrix and the number of
factors.

A�er identifying the underlying common factors, we further estimate their e�ects on the system

quantiles for two portfolio investment strategies:
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(1) Portfolio 1 with θθθc = (4, 2, 3, 2, 3, 2, 4, 2, 2, 3),
(2) Portfolio 2 with θθθc = (4, 2, 3, 20, 30, 20, 40,2, 2, 3).

In Portfolio 1, we invest almost evenly in each stock, and in Portfolio 2, we invest much more in

stocks 4-7 associated to health care companies; see Section 5.2.

By following the procedure in Section 4, we record the results of the e�ects of underlying factors

in Table 6. For Portfolio 1, all the CrIs do not cover 0 and have positive lower bound. Ignoring

any factors leads to overestimation on the quantile response. We also note that ignoring all the

factors leads to much larger estimation bias, and factor 2 has the largest impact on the quantile

response. In Portfolio 2, only the factor 2 has a signi�cant impact on the quantile response, since

the portfolio invests much more on the stocks associated with factor 2 than the others. In such

situations, ignoring the other factors does not bring signi�cant estimation bias. Notice that since

the CrI accounts for both input and simulation estimation uncertainty, as m and L increase, the

power to detect the e�ects of underlying factors increases.

Table 6. The CrIs quantifying the e�ects of underlying factors on the 5% and 10% quantiles q1 and q2 for
Portfolios 1 and 2.

Portfolio 1 Portfolio 2

q = q1 q = q2 q = q1 q = q2

CrI(∆Q0) [1.405, 1.933] [1.097, 1.492] [6.228, 8.917] [4.852, 7.108]

CrI(∆Q−1) [0.094, 0.651] [0.064, 0.529] [−1.239, 1.761] [−1.056, 1.465]

CrI(∆Q−2) [0.364.0.919] [0.273, 0.716] [4.843, 7.641] [3.801, 6.071]

CrI(∆Q−3) [0.043, 0.603] [0.031, 0.492] [−1.174, 1.824] [−1.045, 1.562]

6 CONCLUSION
In this paper, we propose a �exible multivariate input model characterized by marginal distributions

and a correlation matrix. Without strong prior information on the families of marginal distributions,

a Bayesian nonparametric approach is used to capture the important properties in each marginal,

including multi-modality and skewness. Since the input correlation could be induced by latent

common factors in many situations, a factor model is proposed to e�ciently explain the input

correlation. �en, given �nite real-world data and simulation resource, a Bayesian framework is

developed to deliver a CrI quantifying the overall uncertainty of system risk performance estimates.

Our approach can improve both computational and statistical e�ciency. It allows us to interpret

the underlying factors and provide insights of input correlation, especially for large-scale stochastic

systems. We further propose a procedure to estimate the e�ects of factors on the system risk

behaviors characterized by a vector of quantiles.

ACKNOWLEDGMENTS
�e authors acknowledge helpful advice from Barry L. Nelson and �omas R. Willemain. �ey

thank the associate editor, three anonymous referees for helpful comments and corrections.

REFERENCES
[1] O. Aguilar and M. West. 2000. Bayesian Dynamic Factor Models and Portfolio Allocation. Journal of Business &

Economic Statistics 18 (2000), 338–357.

[2] A. Akcay, B. Biller, and S. Tayur. 2011. Improved Inventory Targets in the Presence of Limited Historical demand data.

Manufacturing and Service Operations Management 13, 3 (2011), 297–309.

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date: October 2017.



39:24 WEI XIE, Cheng Li, and Pu Zhang

[3] Adelchi Azzalini and Antonella Capitanio. 2003. Distributions Generated by Perturbation of Symmetry with Emphasis

on a Multivariate Skew t-Distribution. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 65, 2

(2003), 367–389. h�p://www.jstor.org/stable/3647510

[4] A. Azzalini, A. with the collaboration of Capitanio. 2014. �e Skew-normal and Related Families. Cambridge University

Press.

[5] R. R. Barton. 2007. Presenting A More Complete Characterization of Uncertainty: Can It Be Done?. In Proceedings of
the 2007 INFORMS Simulation Society Research Workshop. INFORMS Simulation Society, Fontainebleau.

[6] R. R. Barton. 2012. Tutorial: Input Uncertainty in Output Analysis. In Proceedings of the 2012 Winter Simulation
Conference, C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher (Ed.). IEEE, 67–78.

[7] R. R. Barton, B. L. Nelson, and W. Xie. 2014. �antifying input uncertainty via simulation con�dence intervals. Informs
Journal on Computing 26 (2014), 74–87.

[8] R. R. Barton and L. W. Schruben. 1993. Uniform And Bootstrap Resampling of Input Distributions. In Proceedings of
the 1993 Winter Simulation Conference. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.,

503–508.

[9] B. Biller, A. Akcay, C. Corlu, and S. Tayur. 2014. A Simulation-based Support Tool for Data-driven Decision Making:

Operational Testing for Dependence Modeling. In Proceedings of the 2014 Winter Simulation Conference (WSC ’14).
899–909.

[10] B. Biller and C. G. Corlu. 2011. Accounting for Parameter Uncertainty in Large-Scale Stochastic Simulations with

Correlated Inputs. Operations Research 59 (2011), 661–673.

[11] B. Biller and C. G. Corlu. 2012. Copula-based Multivariate Input Modeling. Surveys in Operations Research and
Management Science 17 (2012), 69–84.

[12] B. Biller and S. Ghosh. 2006. Multivariate Input Processes. In Handbooks in Operations Research and Management
Science: Simulation, S. Henderson and B. L. Nelson (Eds.). Elsevier, Chapter 5.

[13] B. Biller and C. Gunes. 2010. Introduction to Simulation Input Modeling. In Proceedings of the 2010 Winter Simulation
Conference, B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yucesan (Eds.). Piscataway, New Jersey: Institute

of Electrical and Electronics Engineers, Inc.

[14] B. Biller and B. L. Nelson. 2009. Modeling and Generating Multivariate Time-series Input Processes Using a Vector

Autoregressive Technique. ACM Transactions on Modeling and Computer Simulation 13, 3 (2009), 211–237.

[15] C. M. Bishop. 2006. Pa�ern Recognition and Machine Learning. Springer, New York.

[16] M.C. Cario and B. L. Nelson. 1997. Modeling and Generating Random Vectors with Arbitrary Marginal Distributions and
Correlation Matrix. Technical Report. Department of Industrial Engineering and Management Sciences, Northwestern

University.

[17] R. C. H. Cheng and W. Holland. 1997. Sensitivity of Computer Simulation Experiments to Errors in Input Data. Journal
of Statistical Computation and Simulation 57 (1997), 219–241.

[18] R. C. H. Cheng and W. Holland. 2004. Calculation of Con�dence Intervals for Simulation Output. ACM Transactions
on Modeling and Computer Simulation 14 (2004), 344–362.

[19] S. E. Chick. 2001. Input distribution selection for simulation experiments: Accounting for input uncertainty. Operations
Research 49 (2001), 744–758.

[20] W. J. Conover. 1980. Practical Nonparametric Statistics. John Wiley and Sons, New York.

[21] M. Drton. 2009. Likelihood ratio tests and singularities. �e Annals of Statistics 37 (2009), 979–1012.

[22] M. Drton and M. Plummer. 2013. A Bayesian information criterion for singular models. arXiv preprint (2013). arXiv:

1309.0911v3.

[23] M. Drton, B. Sturmfels, and S. Sullivant. 2007. Algebraic factor analysis: tetrads, pentads and beyond. Probability
�eory and Related Fields 138 (2007), 463–493.

[24] D. B. Dunson and J. A. Taylor. 2005. Approximate Bayesian Inference for �antiles. Journal of Nonparametric Statistics
17 (2005), 385–400.

[25] M. D. Escobar and M. West. 1995. Bayesian Density Estimation and Inference Using Mixtures. Journal of the American
Statistical Association 90, 430 (1995), 577–588.

[26] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian Data Analysis (2nd ed.). Taylor and Francis Group,

LLC, New York.

[27] J. F. Geweke and K. J. Singleton. 1980. Interpreting the Likelihood Ratio Statistic in Factor Models when Sample Size is

Small. Journal of the American Statistical Association 75, 369 (1980), 133–137.

[28] S. Ghosal, J. K. Ghosh, and R. V. Ramamoorthi. 1999. Posterior consistency of Dirichlet mixtures in density estimation.

Annals of Statistics 27, 1 (1999), 143–158.

[29] S. Ghosal and A. W. van der Vaart. 2007. Posterior convergence rates of Dirichlet mixtures at smooth densities. Annals
of Statistics 35, 2 (2007), 697–723.

[30] J. K. Ghosh and R. V. Ramamoorthi. 2003. Bayesian Nonparametrics. Springer–Verlag, New York.

ACM Transactions on Modeling and Computer Simulation, Vol. 9, No. 4, Article 39. Publication date: October 2017.

http://www.jstor.org/stable/3647510


A Factor-Based Bayesian Framework for Risk Analysis in Stochastic Simulations 39:25

[31] S. Ghosh and S.G. Henderson. 2002. Properties of the NORTA Method in Higher Dimensions. In Proceedings of the
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7 APPENDIX (INTENDED FOR AN ONLINE COMPANION)
7.1 Derivation of Conditional Posteriors for the Parameters in GCF
In this section, we derive the conditional posteriors for the Gibbs sampler described in Section 3.1.3.

We �rst consider the loading matrix with element λjh . If j < h, by applying constraints for

identi�cation, λjh = 0. If j > h, the posterior for λjh is

λjh |ψjh ,Q ·j ,H ∝ p(λjh |ψjh)

m∏
i=1

p(Qi j |λj ·,ηηηi )

∝ exp

(
−
λ2

jh

2ψjh

)
m∏
i=1

exp

[
−
(Qi j −

∑k
h′=1

λjh′ηih′)
2

2

]
∝ exp

(
−
λ2

jh

2ψjh

)
m∏
i=1

exp

{
−

[
(Qi j −

∑
h′,h λjh′ηih′) − ηihλjh

]
2

2

}
∝ exp

{
−
(
∑m

i=1
η2

ih +ψ
−1

jh )λ
2

jh − 2

[∑m
i=1
(Qi j −

∑
h′,h λjh′ηih′)ηih

]
λjh +

∑m
i=1
(Qi j −

∑
h′,h λjh′ηih′)

2

2

}
∝ exp

[
−
(λjh −vjh(

∑m
i=1

ai jhηih))
2

2vjh

]
∼ N

(
vjh

m∑
i=1

ai jhηih ,vjh

)

where vjh =
( ∑m

i=1
η2

ih +ψ
−1

jh

)−1

and ai jh = Qi j −
∑
h′,h λjh′ηih′ . If j = h,

λjh |ψjh ,Q ·j ,H ∝ p(λjh |ψjh)

m∏
i=1

p(Qi j |λj ·,ηηηi ) ∼ TN

(
vjh

m∑
i=1

ai jhηih ,vjh , 0

)

where TN
(
vjh

∑m
i=1

ai jhηih ,vjh , 0
)

denotes Normal distribution with mean vjh
∑m

i=1
ai jhηih , vari-

ance vjh and truncated to be strictly positive.

�en, we derive the conditional posterior forψih . Given the priorψjh ∼ Inverse-Gamma

(
α0

2
,
β0

2

)
,

by applying Bayes’ rule,

p(ψjh |λjh) ∝ p(ψjh)p(λjh |ψjh)

∝ ψ
−
α

0

2
−1

jh exp

(
−

β0

2ψjh

)
ψ
− 1

2

jh exp

(
−
λ2

jh

2ψjh

)
∝ ψ

−
α

0
+3

2

jh exp

(
−
β0 + λ

2

jh

2ψjh

)
∼ Inverse-Gamma

(
α0 + 1

2

,
β0 + λ

2

jh

2

)
.
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A�er that, we derive the conditional posterior for ηηηi . Given the prior ηηηi ∼ Nk (0, Ik ), by applying

Bayes’ rule,

p(ηηηi |Qi ,Λ) ∝ p(ηηηi )p(Qi |ηηηi ,Λ)

∝ exp

(
−ηηηTi ηηηi/2

)
exp

[
−
(Qi − Ληηηi )

T (Qi − Ληηηi )

2

]
∝ exp

(
−

QT
i Qi − 2QT

i Ληηηi +ηηη
T
i Λ

TΛηηηi +ηηη
T
i ηηηi

2

)
∝ exp

[
−
ηηηTi ηηηi − 2QT

i Λ(Λ
TΛ + I)−1ηηηi

2(ΛTΛ + I)−1

]
∼ N

(
(ΛTΛ + I)−1ΛT Qi , (Λ

TΛ + I)−1

)
.

7.2 Proof for Theorem 3.1
Proof: We show that for the number of factors k , p

(
k , k0 | Zm ∈ D(X

(0)
m )

)
→ 0 in probability as

m →∞. We divide all the models into two separate groups: (i)Mk ⊃ Mk0 with k0 < k ≤ kmax; (ii)

Mk ⊂ Mk0 with 1 ≤ k < k0
. For models in the group (i), from (A1) we have

log

p
(
Zm ∈ D(X

(0)
m ) | Mk

)
p

(
Zm ∈ D(X

(0)
m ) | Mk0

) = log

p
(
Zm ∈ D(X

(0)
m ) | Ĉk ,Mk

)
p

(
Zm ∈ D(X

(0)
m ) | Ĉk0 ,Mk0

) − (tk − tk0 ) logm

+ (sk − sk0 ) log logm +Op (1)

(∗)
= Op (1) − (tk − tk0 ) logm + (sk − sk0 ) log logm +Op (1)

(∗∗)

≤ −
tk − tk0

2

logm,

where (*) comes from (A2), and (**) holds for su�ciently largem since tk > tk0 and log logm � logm.

Let ∆t = mink>k0 (tk − tk0 ) > 0. Let the constant upper bound in (A4) be c1 > 0. �en we have

∑
k0<k≤kmax

p
(
Mk | Zm ∈ D(X

(0)
m )

)
p

(
Mk0 | Zm ∈ D(X

(0)
m )

) ≤ ∑
k0<k≤kmax

p
(
Zm ∈ D(X

(0)
m ) | Mk

)
p(Mk )

p
(
Zm ∈ D(X

(0)
m ) | Mk0

)
p(Mk0 )

≤ c1

∑
k0<k≤kmax

m−
tk −tk0

2 ≤ c1kmaxm
− ∆t

2 . (15)

In (A3), let δ0 = min
1≤k<k0 δk . For models in the group (ii), we have

log

p
(
Zm ∈ D(X

(0)
m ) | Mk

)
p

(
Zm ∈ D(X

(0)
m ) | Mk0

) = log

p
(
Zm ∈ D(X

(0)
m ) | Ĉk ,Mk

)
p

(
Zm ∈ D(X

(0)
m ) | Ĉk0 ,Mk0

) − (tk − tk0 ) logm

+ (sk − sk0 ) log logm +Op (1)

(∗)

≤ − δ0m − (tk − tk0 ) logm + (sk − sk0 ) log logm +Op (1)

(∗∗)

≤ −
δ0

2

m,
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where (*) follows from (A3), and (**) holds for su�ciently largem since logm �m and log logm �
m. �en we have

∑
1≤k<k0

p
(
Mk | Zm ∈ D(X

(0)
m )

)
p

(
Mk0 | Zm ∈ D(X

(0)
m )

) ≤ ∑
1≤k<k0

p
(
Zm ∈ D(X

(0)
m ) | Mk

)
p(Mk )

p
(
Zm ∈ D(X

(0)
m ) | Mk0

)
p(Mk0 )

≤ c1

∑
1≤k<k0

e−
δ

0

2
m ≤ c1kmaxe

−
δ

0

2
m . (16)

By combining (15) and (16), we obtain

p
(
k , k0 | Zm ∈ D(X

(0)
m )

)
=

∑
k,k0 p

(
Zm ∈ D(X

(0)
m ) | Mk

)
p(Mk )∑

1≤k≤kmax

p
(
Zm ∈ D(X

(0)
m ) | Mk

)
p(Mk )

=

∑
k0<k≤kmax

p
(
Zm ∈ D(X

(0)
m ) | Mk

)
p(Mk )∑

1≤k≤kmax

p
(
Zm ∈ D(X

(0)
m ) | Mk

)
p(Mk )

+

∑
1≤k<k0 p

(
Zm ∈ D(X

(0)
m ) | Mk

)
p(Mk )∑

1≤k≤kmax

p
(
Zm ∈ D(X

(0)
m ) | Mk

)
p(Mk )

=
1

1 +

[∑
k0<k≤kmax

p
(
Mk |Zm ∈D(X

(0)
m )

)
∑

1≤k≤k0 p
(
Mk |Zm ∈D(X

(0)
m )

) ]−1
+

1

1 +

[ ∑
1≤k<k0 p

(
Mk |Zm ∈D(X

(0)
m )

)
∑
k0≤k≤kmax

p
(
Mk |Zm ∈D(X

(0)
m )

) ]−1

≤
1

1 +

[∑
k0<k≤kmax

p
(
Mk |Zm ∈D(X

(0)
m )

)
p
(
Mk0 |Zm ∈D(X

(0)
m )

) ]−1
+

1

1 +

[∑
1≤k<k0

p
(
Mk |Zm ∈D(X

(0)
m )

)
p
(
Mk0 |Zm ∈D(X

(0)
m )

) ]−1

≤
1

1 + (c1kmax)
−1m

∆t
2

+
1

1 + (c1kmax)
−1e

δ
0

2
m
.

�us, asm →∞, we have p
(
k , k0 | Zm ∈ D(X

(0)
m )

)
→ 0. 2

7.3 Proof for Theorem 3.2
Proof: For any generic matrix A, let ‖A‖ =

√
tr(AA>) denote the Frobenius norm of A. We

�rst show that as m → ∞, the correlation matrix estimate is consistent in the Frobenius norm,

‖C̃ − Cc ‖
p
→ 0 asm →∞. Suppose that the posterior sample C̃ is generated by a

˜k-factor model.

For any δ > 0, by �eorem 1 in [45], we have that almost surely under the true input model F c ,

lim

m→∞
P(‖C̃ − Cc ‖ ≤ δ |Zm ∈ D(X

(0)
m ), ˜k ≥ k0) = 1. (17)
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�en, by accounting for the �nite sampling uncertainty forX
(0)
m and the model selection uncertainty

of
˜k , we have that for any δ > 0, almost surely under F c ,

lim

m→∞
P

(
‖C̃ − Cc ‖ ≤ δ | X(0)m

)
= lim

m→∞

(
E
Zm ∈D(X

(0)
m ) |X

(0)
m

) {
E

˜k |Zm ∈D(X
(0)
m )

[
P(‖C̃ − Cc ‖ ≤ δ |Zm ∈ D(X

(0)
m ), ˜k)

]}
(∗)
=

(
E
Zm ∈D(X

(0)
m ) |X

(0)
m

) {
lim

m→∞
E

˜k |Zm ∈D(X
(0)
m )

[
P(‖C̃ − Cc ‖ ≤ δ |Zm ∈ D(X

(0)
m ), ˜k)

]}
=

(
E
Zm ∈D(X

(0)
m ) |X

(0)
m

)
{

lim

m→∞

[
P( ˜k ≥ k0 |Zm ∈ D(X

(0)
m ))P(‖C̃ − Cc ‖ ≤ δ |Zm ∈ D(X

(0)
m ), ˜k ≥ k0)

+P( ˜k < k0 |Zm ∈ D(X
(0)
m ))P(‖C̃ − Cc ‖ ≤ δ |Zm ∈ D(X

(0)
m ), ˜k < k0)

]}
(∗∗)
=

(
E
Zm ∈D(X

(0)
m ) |X

(0)
m

) [
lim

m→∞
P(‖C̃ − Cc ‖ ≤ δ |Zm ∈ D(X

(0)
m ), ˜k ≥ k0)

]
(∗∗∗)
= 1.

where (*) follows by applying the dominated convergence theorem, (**) follows by applying

�eorem 3.1, and (***) follows by applying Equation (17). �erefore, the correlation matrix estimate

converges to the true correlation matrix in probability, C̃
p
→ Cc

asm →∞.

According to Assumption (B3), for any F̃j ∼ p(Fj |X
(0)

jm) with j = 1, 2, . . . ,d , we have ‖F̃j −

F cj ‖∞
p
→ 0 asm →∞. �is implies that for any �xed (x1,x2, . . . ,xd ) in the support of F c , we have

F̃j (x j )
p
→ F cj (x j ) asm →∞. �en, by applying the continuous mapping theorem, we have

F̃ (x1,x2, . . . ,xd ) = Φd

(
Φ−1

[
F̃1(x1)

]
,Φ−1

[
F̃2(x2)

]
, . . . ,Φ−1

[
F̃d (xd )

]
; C̃

)
p
→ Φd

(
Φ−1

[
F c

1
(x1)

]
,Φ−1

[
F c

2
(x2)

]
, . . . ,Φ−1

[
F cd (xd )

]
; Cc

)
= F c (x1,x2, . . . ,xd ).

Since both F̃ and F c are distribution functions and F c (x1,x2, . . . ,xd ) is continuous for all

(x1,x2, . . . ,xd ) ∈ R
d

, the input distribution F̃ uniformly converges to F c in probability, i.e.

‖F̃ − F c ‖∞
p
→ 0 asm →∞. 2

7.4 Proof for Theorem 3.4
Proof: Let F̃ (b) to be a posterior sample from p(F |X(0)m ), Y(F̃ (b)) to be the simulation outputs driven

by F̃ (b) with runlength L and replications R, and q̃(b) = q̃(F̃ (b)) to be a sample from the posterior

p(q(F̃ (b))|Y(F̃ (b)), F̃ (b)). By applying �eorem 3.2, we have ‖F̃ (b) − F c ‖∞
p
→ 0 as m → ∞. �en,

under Condition (D1) on the continuity of q`(F ) with respect to F for each ` = 1, 2, . . . ,γ , by

applying the continuous mapping theorem, we have |q`(F̃ ) − q`(F
c )|

p
→ 0 asm →∞. �eorem 3

implies that at any F̃ (b), the quantiles drawn from the approximate posterior p(q` |Y(F̃ (b)), F̃ (b))
converge in probability to the exact quantile, i.e.,

|q̃`(F̃
(b)) − q`(F̃

(b))|
p
→ 0 as RL→∞,

for ` = 1, 2, . . . ,γ , where R and L depend on the input model F̃ (b). �en by the triangular inequality

|q̃`(F̃
(b)) − q`(F

c )| ≤ |q̃`(F̃
(b)) − q`(F̃

(b))| + |q`(F̃
(b)) − q`(F

c )|,
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we have |q̃`(F̃ )−q`(F
c )|

p
→ 0 as RL→∞ andm →∞ given the sampled input model F (1), . . . , F (B),

where R and L depend on the �nitely many input models F (1), . . . , F (B). Since this relation holds

for each ` = 1, 2, . . . ,γ , it implies that both q̃`,( dBα/2e) and q̃`,( dB(1−α/2)e) converge to q`(F
c ) in

probability. �us, CrI(q`) shrinks to q`(F
c ) in probability as RL→∞ andm →∞, conditional on

the sampled input models F (1), . . . , F (B) and the simulation outputs Y(F (1)), . . . ,Y(F (B)). 2

7.5 Marginal Distributions, Loading and Correlation Matrices Λc and Cc Used in
Section 5.1

In this section, we provide the underlying marginal distributions Fj for j = 1, . . . ,d , loading matri-

ces Λc
and Cc

used in the empirical study in Section 5.1. All marginals are Gumbel distributions

with the scale parameter equal to 0.1 but di�erent location parameters. When d = 10, the location

parameters are [0.245,−0.305, 0.095,−0.355,−0.155, 0.095, 0.195,−0.155, 0.095,−0.255]. When

d = 30, the location parameters are [0.245,−0.305, 0.095,−0.355,−0.155, 0.095, 0.195,−0.155, 0.095,
−0.255, 0.145, 0.045,−0.355, 0.095,−0.155, 0.095,−0.255, 0.045, 0.245,−0.305,−0.205, 0.195, 0.045,
−0.255, 0.195, 0.095,−0.155,−0.205,−0.255, 0.245]. Since it is di�cult to show all location

parameters for d = 100, we present the procedure to generate them. We generate 100 values from

N(0.045, 0.15) as the location parameters.

Suppose that Λc
has d rows and k columns. Let λcjh with j = 1, 2, . . . ,d and h = 1, 2, . . . ,k denote

the elements of Λc
. �e underlying correlation matrix Cc

can be obtained based on Equation (1).

�e loading matrix of the examples when d = 10,

as k0 = 1,Λc =



1.98

1.93

2.04

1.82

1.73

1.88

1.71

1.91

1.88

1.60



; as k0 = 3,Λc =



1.98 0 0

2.13 0.06 0

2.04 0.04 0.08

0.02 1.88 0.12

0.03 2.09 0.09

0.08 2.14 0.04

0.01 2.01 0.01

0.01 0.05 2.15

0.08 0.06 2.06

0.1 0.03 1.83



.
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�e loading matrix of the examples when d = 30,

as k0 = 1, we have Λc =



1.98

1.93

2.04

1.82

1.73

1.88

1.71

1.91

1.88

1.60

1.93

1.95

1.88

2.01

1.96

1.89

2.13

1.86

1.94

1.97

2.01

2.02

1.87

1.92

1.90

2.00

1.78

1.99

2.08

1.87



; as k0 = 3, we have Λc =



1.98 0 0

2.13 0.01 0

2.04 0.01 0.01

2.02 0.01 0.01

2.03 0.01 0.01

2.08 0.01 0.01

2.01 0.01 0.01

2.01 0.01 0.01

1.98 0.01 0.01

1.90 0.01 0.01

0.01 2.06 0.01

0.01 2.04 0.01

0.01 1.88 0.01

0.01 2.09 0.01

0.01 2.14 0.01

0.01 2.01 0.01

0.01 2.05 0.01

0.01 2.06 0.01

0.01 2.03 0.01

0.01 1.96 0.01

0.01 0.01 1.97

0.01 0.01 2.00

0.01 0.01 2.08

0.01 0.01 1.92

0.01 0.01 2.09

0.01 0.01 2.04

0.01 0.01 2.01

0.01 0.01 2.15

0.01 0.01 2.06

0.01 0.01 1.83



.

Since it is di�cult to show the loading matrices for the examples with d = 100, we present the

procedure to generate them. For cases with k0 = 3, we let the �rst 30 components to be highly

associated with the �rst factor, components 31 to 70 highly associated with the second factor

and the last 30 components highly associated with the third factor. For cases with k0 = 10, we

let that component j is highly associated with factor dj/10e. For loading elements λcjh where the

j-th component is highly associated with the h-th factor, we generate values from N(1.8, 0.05).

Otherwise, we generate values from Uniform(0, 0.2).

accepted October 2017
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