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Abstract

The Gibbs posterior is a useful tool for risk minimization, which adopts a Bayesian

framework and can incorporate convenient computational algorithms such as Markov

chain Monte Carlo. We derive risk bounds for the Gibbs posterior using some general

nonasymptotic inequalities, which can be used to derive nearly optimal convergence rates

and select models to optimally balance the approximation errors and the stochastic er-

rors. These inequalities are formulated in a very general way that does not require the

empirical risk to be a usual sample average over independent observations. We apply

this framework to studying the convergence rate of the GMM risk (generalized method

of moments) and deriving an oracle inequality for the ranking risk, where models are

selected based on the Gibbs posterior with a nonadditive empirical risk.

1 Introduction

The Gibbs posterior is a random method of empirical risk minimization obtained

from an analogy of statistical physics, where the empirical risk is identified with the
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energy and low probabilities are assigned to high energy configurations. The method

has recently been recognized by researchers from various fields, for example, informa-

tion theorists (Zhang 1999, 2006), econometricians (Chernozhukov and Hong 2003), and

statisticians (Jiang and Tanner 2008). Due to its Bayesian flavor, the Gibbs posterior

allows application of convenient computational algorithms such as Markov chain Monto

Carlo (Chernozhukov and Hong 2003, Belloni and Chernozhukov 2009, Chen, Jiang and

Tanner 2010). Given observed data D = {Di, i = 1, 2, ..., n}, the general form of Gibbs

posterior Q is defined as a probability measure constructed from an empirical risk Rn:

Q(dθ) =
e−λRn(θ)π(dθ)∫

Θ
e−λRn(θ′)π(dθ′)

, (1)

where θ is the parameter of interest, Θ is the space of θ, Rn(θ) is an empirical risk

function that depends on both θ and the sample D, λ is a positive scalar and π is a prior

distribution over Θ. We will sometimes use θ̃ ∼ Q to denote a random variable that is

generated from the Gibbs posterior Q, when it is intended to be distinguished from a

dummy argument θ, or θ′, of a risk function or of a probability density.

Compared to the posterior distribution derived from a likelihood based procedure, the

Gibbs posterior may no longer have the usual interpretation of conditional probability

given observed data unless λRn(θ) is exactly the negative log-likelihood. However, it can

achieve better risk performance under model misspecification compared to the likelihood

based Bayesian method, since the Gibbs posterior is directly associated with the risk

function of interest (Jiang and Tanner 2008, Yao, Jiang and Tanner 2011).

Although the Gibbs posterior has been studied in different fields, the emphases placed

and the terminologies used have been differed. Information theorists have used the term

“Gibbs posterior” from the analogy to statistical physics, and have mostly considered the

“additive empirical risk” (such as the classification error in machine learning), which is

proportional to a sum over n terms from n independent subjects and corresponds to the

additive energy of n noninteracting subsystems in statistical physics. Econometricians

used the term “quasi-Bayesian” or “Laplace-type” posterior, and without referring to the

statistical physics analogy, have been able to include more general nonadditive empirical

risks such as the GMM (generalized method of moment) criterion function.

The emphasis of econometric research has been on using the Gibbs posterior to do
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parametric inference (e.g., Chernozhukov and Hong 2003), which often studies the asymp-

totic distribution of the posterior based parameter estimates that typically involves reg-

ularity assumptions such as identifiability. The emphasis of information theorists, on the

other hand, has been on the risk performance of the Gibbs posterior. While the study

of risk performance can be regarded as an intermediate step for the parametric inference

under identifiability conditions, it is sometimes an important problem itself, for example,

when the risk is the probability of misclassification in machine learning. We note that

although the approach used by information theorists usually involves fewer assumptions

compared to the approach used by econometricians, they also get weaker results with

these assumptions – that is, they only obtain bounds on the risk, but not a finer, distri-

butional characterization of the risk.

In a recent work of the same style as the information theoretic literature, Jiang and

Tanner (2008, Proposition 6) have established a nonasymptotic and assumption-free re-

lation between the risk performance of Gibbs posterior and a probability of uniform large

deviation, which allows for a theoretical study of the risk performance of Gibbs posterior

in very general situations, including dependent data (e.g., Jiang and Tanner 2010) and

panel data (e.g., Yao et al. 2011). In principle this general relation is applicable to accom-

modate nonadditive empirical risks such as the GMM criterion function. However, the

relation in Jiang and Tanner (2008) does not always lead to sharp risk convergence rates.

The connection they made to the large deviation rate |Rn(θ) − ERn(θ)| = Op(n
−1/2)

entails a similar risk convergence rate, which is not optimal for many situations when the

optimal rate is of order Op(n
−1).

The contributions of the current paper will include the following:

1. We extend the approach of Jiang and Tanner (2008) to derive a more general

assumption-free inequality, which can be used to derive sharper risk convergence

rates that are nearly of the optimal order O(n−1) in many situations. We will show

how this inequality can be applied to nonadditive empirical risks such as the GMM

criterion function.

2. In addition, we derive an assumption-free oracle inequality for a model selection

framework, so that nearly optimal risk performance will be achieved across a range

3



of models under consideration. We will provide an example on how this can be

applied to the ranking problem, which involves an empirical risk in the form of a U-

statistic that is nonadditive and is analogous to the energy of pairwise interactions

in statistical physics.

3. Through these efforts, we demonstrate that the information theoretic approach based

on our nonasymptotic inequalities can be successfully extended to the more general

nonadditive risks beyond the additive risks studied in most of the current literature.

4. The inequalities that we derive are assumption-free. They reveal some simple yet

fundamental relationship behind the construction of Gibbs posterior that are some-

times obscured among the regularity conditions used in more elaborate approaches.

In our inequalities, the risk performance reflects how the empirical risk and the the-

oretical risk differ, and how restrictive the model is in approximating the optimal

risk. Since we focus on the risk bounds similar to the machine learning literature,

our method involves fewer assumptions compared to the econometric work on pos-

terior asymptotic normality, and has potential application to partially identified

situations.

Before we proceed, we provide some examples of empirical risks where data are as-

sumed to be iid (independent and identically distributed). Example 0 involves an additive

empirical risk and Examples 1 and 2 involve nonadditive empirical risks.

0. Classification. In a classification problem, Y ∈ {0, 1} andX ∈ <p are random variable

/ vectors. Let (Yi, X
>
i )>i=1,...,n = (Di)

n
i=1 = D be iid copies of (Y,X>)> = D. Define

`(D, θ) = |Y − I(X>θ > 0)|, where θ is a parameter in <p, I(·) is the indicator

function, and ` represents the classification loss of a linear rule I(X>θ > 0). Then

the sample classification error

Rn(θ) = n−1

n∑
i=1

`(Di, θ)

is an additive empirical risk since it is proportional to a sum over the contributions

from n independent individuals. The theoretical risk R(θ) = E `(D, θ) is the large

sample limit of the empirical risk Rn(θ).

Most existing work in the machine learning literature has focused on this example

of classification problem (e.g., Zhang 1999, 2006). In econometrics, recently Jun,
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Pinske and Wan (2013) has proposed n1/3-consistent Laplace estimators for various

regression problems, including an analog to the maximum score estimator for the

iid classification problem, and obtained very fine distributional results. (See also a

related paper Jun, Pinske and Wan 2011.) In our paper, however, we will instead

focus on the nonadditive empirical risks as given in the following examples.

1. GMM (generalized method of moments). GMM is related to the generalized estimat-

ing equation method or Z-estimation in statistics literature and we will consider

the case when the weight matrix is the identity for simplicity. The empirical risk

function is defined as

Rn(θ) =
∥∥∥ 1

n

n∑
i=1

g(Di, θ)
∥∥∥2

(2)

where g(D, θ) is the p-dimensional moment vector satisfying the moment condition

E g(D, θ∗) = 0 for some θ∗, and ‖ · ‖ denotes the L2 norm. Here, Rn(θ) is the

L2 norm square of empirical moments and does not have the additive form of a

sample average. The asymptotic normality of the Gibbs posterior with the GMM

risk has been studied in Chernozhukov and Hong (2003) with a finite dimension

of θ, and in Belloni and Chernozhukov (2009) with an increasing dimension of θ.

By applying our general results in Section 2, we will show that the nonasymptotic

inequalities can be used to derive a nearly optimal convergence rate for the theo-

retical risk R(θ̃) = ‖E g(D, θ̃)‖2, where θ̃ ∼ Q is generated according to the Gibbs

posterior. Such a risk convergence result does not require parametric identifiability

conditions and may have potential application to the partially identified situation.

In addition, we allow dim(θ) to increase with n with order o(n1/2/ log n), which

can be much faster than the approximate o(n1/4) growth rate in Belloni and Cher-

nozhukov (2009). On the other hand, the stronger assumption dim(θ) = o(n1/4) in

Belloni and Chernozukov (2009) leads to the stronger asymptotic normality result,

compared to our convergence rate result for the GMM risk.

2. Ranking estimation. In ranking estimation, where the empirical risk function is

defined as

Rn(θ) =
1

n(n− 1)

∑
i 6=j

I[(Yi − Yj)r(Xi, Xj; θ) < 0], (3)

where Y is a scalar random variable, X ∈ X is a random vector in <p and the

ranking rule r : X × X → < follows r(x, x′; θ) > 0 if x ranks higher than x′
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and r(x, x′; θ) ≤ 0 otherwise. Since Rn(θ) involves averaging over paired data, it

is no longer an additive empirical risk. One special case of (3) is the maximum

rank correlation estimator (MRC) in Han (1987) and Sherman (1993), where the

ranking rule is the linear difference r(x, x′; θ) = (x− x′)>θ for θ ∈ <p. Han (1987)

showed the strong consistency of MRC estimator and Sherman (1993) proved the
√
n convergence rate and asymptotic normality. In this paper, our goal is not to

estimate the parameter θ but instead to minimize the theoretical risk of mismatch

R(θ) = P [(Y − Y ′)r(X,X ′; θ) < 0]. The consistency and fast convergence rate of

general ranking estimator that minimizes (3) and its convex upper bounds have

been studied in recent frequentist papers such as Clémencon, Lugosi and Vayatis

(2008) and Rejchel (2012). In this paper, we will introduce a method of random

model selection using the Gibbs posterior, where we choose among linear ranking

rules with a varying number of selected X-variables. By applying our general results

in Section 4 to this method, we will show that an oracle performance of the ranking

risk can be achieved to optimally balance between the model complexity and the

approximation error.

The structure of the paper will be the following. In Section 2, we derive some general

bounds on the risk performance of the Gibbs posterior. In Section 3, we apply the

bounds to the GMM example and derive the nearly optimal risk convergence result. In

Section 4, we consider the framework of model selection with Gibbs posterior and derive

some general oracle inequalities for the risk performance. In Section 5, we demonstrate an

application of the oracle inequality to the ranking risk. Section 6 includes some discussion.

Technical proofs are included in the appendix.

2 General inequalities for risk convergence

We will first attempt to make no assumptions and derive an inequality for some

theoretical risk of interest R(θ), which will be related to the empirical risk Rn(θ) and the

prior π(θ) used to construct the Gibbs posterior (1). Due to the assumption-free nature

of this approach, the relations here can (at least in principle) apply to a wide variety of

cases, with either additive or nonadditive empirical risk, with iid data, time series, panel

data, or spatial data.
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We study, for a ∈ <, the expected posterior probability that a theoretic risk R exceeds a,

i.e., PDPθ̃∼Q(R(θ̃) > a), which will be abbreviated as PQ(R(θ̃) > a). Here P corresponds

to the underlying true distribution of data PD, Q corresponds to the Gibbs posterior

distribution of θ̃ conditional on the data D, and PQ is defined to be the joint measure

PDPθ̃∼Q. Different from the prior π used in the Gibbs posterior, PQ can be understood

as a mixture distribution that measures the random outcome of the following sampling

process: (i) sampling a data set D from the underlying true distribution P , (ii) sampling

a parameter θ̃ from the resulting Gibbs posterior Q conditional on the data D sampled

from step (i).

To bound the probability PQ(R(θ̃) > a), we construct a simultaneous coverage in-

terval for the empirical risk Rn(θ) appearing in the Gibbs posterior, using the theoretic

risk R(θ). Let 0 < s1 ≤ 1 ≤ s2 and ∆ ≡ ∆(θ) ≥ 0 be some nonstochastic quantities,

possibly dependent on sample size n. Define an event A = [∀θ, s1R(θ)−∆(θ) ≤ Rn(θ) ≤

s2R(θ) + ∆(θ)] and its complement Ac. Then P (A) is the uniform coverage probability

of [s1R(θ)−∆(θ), s2R(θ) + ∆(θ)] for Rn(θ). 1 Note that ∆ is related to the radius of the

coverage interval and is analogous to the standard deviation of Rn(θ) which characterizes

its stochastic error. In applications, the quantity ∆ usually decreases with n at a certain

rate. Although it is ideal to have s1 = s2 = 1 (which was the choice of Jiang and Tanner

2008, Proposition 6), we will later see that sometimes it is better to take s1 = 1− δ and

s2 = 1 + δ for some small positive δ, to allow a smaller radius ∆ for a given coverage

probability.

We then have the following proposition for the excess probability PQ(R(θ̃) > a),

where θ̃ is randomly drawn from the Gibbs posterior Q.

Proposition 1. (i) When ∆ is possibly dependent on θ, we have the following: for any

u ∈ <:

PQ
(
R(θ̃) > R̄+

u

s1λ

)
≤ e−u+P

(
∃θ : Rn(θ) 6∈ [s1R(θ)−∆(θ), s2R(θ)+∆(θ)]

)
, (4)

where

R̄ ≡ − 1

s1λ
log

[∫
e−λ(s2R(θ)+∆)π(dθ)∫

eλ∆π(dθ)

]
.

(ii) When ∆ is chosen to be common for all θ, we have the following: let Θ be the

support of the prior π. For any u ∈ < and any v > 0:

PQ
(
R(θ̃) > R̃(v) +

u

s1λ

)
≤ e−u +P

(
∃θ : Rn(θ) 6∈ [s1R(θ)−∆, s2R(θ) + ∆]

)
, (5)
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where

R̃(v) ≡ s2

s1

(
inf
θ∈Θ

R(θ) + v
)

+
1

s1λ
log π(θ : R(θ) < inf

θ′∈Θ
R(θ′) + v)−1 +

2∆

s1

. (6)

Remark 1. If we use Proposition 1 to bound the probability of a large excess risk R(θ̃)−

infθ R(θ), then a fundamental relation is revealed by these inequalities: the performance

of the excess risk R(θ̃) − infθ R(θ) is mainly influenced by two factors: the excess of a

nonstochastic bound R̄ − infθ R(θ) or R̃(v)− infθ R(θ), as well as a stochastic difference

between Rn(θ) and R(θ), as reflected in P
(
∃θ : Rn(θ) 6∈ [s1R(θ)−∆(θ), s2R(θ) + ∆(θ)]

)
.

Now we will discuss our choices of the tuning parameters s1, s2, λ, u, v, ∆ in the

proposition.

• We can choose s1 = 1− δ and s2 = 1 + δ for some small positive δ. This can lead

to a better risk convergence rate compared to the choice s1 = s2 = 1 made in Jiang

and Tanner (2008), Proposition 6.

• The scalar λ is usually set to be λ = nψ, where ψ > 0 is a constant sometimes

called “inverse temperature” in statistical mechanics.

• We will let u = 2 log n so that e−u = n−2.

• We will choose v = ∆ (or about the same order).

• We will choose ∆ such that P
(
∃θ : Rn(θ) 6∈ [s1R(θ) − ∆, s2R(θ) + ∆]

)
can be

controlled by e−u = n−2.

Therefore given these choices, the right-hand side of the inequalities can be bounded

by 2n−2, implying that

R(θ̃) ≤ R̃(∆) +
2 log n

ns1ψ
(7)

holds for all large n, almost surely in the measure PQ, by Borel-Cantelli lemma, where

θ̃ on the left-hand side is drawn from the Gibbs posterior Q given the data D. Here

“almost surely in the measure PQ” can be understood in the following way. First, we

can rewrite P as Pn and Q as Qn because both the true probability P and the Gibbs

posterior Q depend on the sample size n. Now we want to study the probability about

the joint event “An = {R(θ̃) ≤ R̃(∆) + 2 log n/(ns1ψ)} happens for all large enough

n”. Consider a setup where the data D are drawn independently across different n and
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define the product measure P̃Q = P1Q1 × P2Q2 × .... Then the event An happens for all

large enough n, almost surely with respect to this P̃Q measure by Borel-Cantelli lemma.

Without confusion, we will still write “An happens for all large n almost surely with

respect to the measure PQ”.

Remark 2. Now we discuss the nonstochastic bounds R̄ and R̃(v). The bound R̄ in

result (i) can be applied to the case of model selection in Section 4, where ∆ is specified

to depend on the model complexity. The bound R̃(v) in result (ii) is useful when one

chooses ∆ to be common for all θ. For example, we will choose ∆ = p log n/n in the

GMM example with p = dim(θ). Together with the choices of other tuning parameters

in Remark 1, we can show that R̃(∆) = (s2/s1) infθ∈ΘR(θ) +O(∆). Therefore according

to (7), we have obtained that

R(θ̃) ≤ s2

s1

inf
θ∈Θ

R(θ) +O(∆),

for all large n, almost surely in PQ, where θ̃ on the left-hand side is drawn from the

Gibbs posterior Q. When the term infθ∈ΘR(θ) is either zero or standardized to be zero

by a translation (by redefining the risk to be relative to the best achievable over θ ∈ Θ),

the risk convergence rate is simply O(∆).

Proof of Proposition 1:

For (i): Hereafter the notation PQf denotes the expectation of a random function f

under the measure PQ. For any a ∈ <, PQ[R(θ̃) > a] ≤ PQI[R(θ̃) > a]I[A] + P [Ac],

where A = [∀θ, s1R(θ)−∆(θ) ≤ Rn(θ) ≤ s2R(θ) + ∆(θ)].

The first term can be bounded by

PQI[R(θ̃) > a]I[A] = P

{
I[A] ·

∫
I[R(θ) > a]e−λRn(θ)π(dθ)∫

e−λRn(θ)π(dθ)

}

≤ P

{∫
I[R(θ) > a]e−λ(s1R(θ)−∆)π(dθ)∫

e−λ(s2R(θ)+∆)π(dθ)

}
≤ P

{ ∫
e−λ(s1a−∆)π(dθ)∫
e−λ(s2R(θ)+∆)π(dθ)

}

≤ e−λs1a

{∫
e−λ(s2R(θ)+∆)π(dθ)∫

eλ∆π(dθ)

}−1

.

Then take a = R̄ + u/(s1λ) and (4) follows.

For (ii): We show that R̄ ≤ R̃(v) for all v > 0 and then apply (i). When ∆ is a constant

in θ, it is obvious that R̄ = −(s1λ)−1 log
∫
e−s2λR(θ)π(dθ) + 2∆/s1. Now we lower bound
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the integral in the first term, by restricting it to the region where R(θ) < infθ′∈ΘR(θ′)+v

as ∫
Θ

e−s2λR(θ)π(dθ) ≥
∫
R(θ)<infθ′∈Θ R(θ′)+v

e−s2λ(infθ∈Θ R(θ)+v)π(dθ)

= e−s2λ(infθ′∈Θ R(θ′)+v)π(θ : R(θ) < inf
θ′∈Θ

R(θ′) + v),

which concludes the proof. �

3 Example: Convergence of GMM risk

We now apply Proposition 1 to the GMM risk defined by (2). Our theoretical risk of

interest is R(θ) = ‖E g(D, θ)‖2, the limit of Rn(θ) in probability for each fixed θ ∈ <p.

Let | · |q be the Lq norm for q ∈ [1,∞]. Then we have the following theorem for R(θ̃)

with θ̃ sampled from the Gibbs posterior Q. The proofs are given in the appendix.

Theorem 1. Suppose the following regularity conditions G1-G5 on the moments and the

prior hold.

(G1) π(θ) is a continuous distribution restricted on Θn =
{
θ : ‖θ‖ ≤ √p log n

}
.

For any θ0 ∈ Θn, any small enough δ > 0, there exists a constant ζ > 0 such that

π({θ : ‖θ − θ0‖ < δ}) ≥ (δn−ζ)p for all sufficiently large n.

(G2) Let Sp = {η ∈ <p : ‖η‖ = 1}. Assume both supη∈Sp E[(η>g(D, θ∗))2] and

supη∈Sp(E[(η>(g(D, θ) − g(D, θ∗)))2]) are uniformly bounded on Θn for some θ∗ ∈ Θn

that satisfies E g(D, θ∗) = 0.

(G3) |g(D, θ)|∞ ≤ cg
√

log n for some constant cg > 0, for all D almost surely and all

θ ∈ Θn when n is sufficiently large.

(G4) E g(D, θ) is continuously differentiable in θ, and |∂ E gj(D, θ)/∂θk| ≤ nξ with

some constant ξ > 0 uniformly for all θ ∈ Θn, for all j = 1, 2, ..., p, k = 1, 2, ..., p and

large n.

(G5) Let H[](ε,F) be the L1 bracketing entropy of the class of functions F = {η ∈

Sp, θ ∈ Θn : η>[g(D, θ) − E g(D, θ)]} for any ε > 0. 2 Then H[](ε,F) ≤ c1p log(c2n/ε)

for some positive constants c1, c2.

Then for p = o(n1/2/ log n),

(i) there exists a constant C1 > 0, such that PQ
(
R(θ̃) > C1p log n/n

)
≤ 2n−2 for

each sufficiently large n;
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(ii) there exists a constant C2 > 0, such that PQR(θ̃) ≤ C2p log n/n for each suffi-

ciently large n;

(iii) R(θ̃) converges to zero almost surely with respect to the measure PQ at the rate

no slower than p log n/n for all sufficiently large n, where θ̃ is randomly drawn from the

Gibbs posterior (1).

Remark 3. Part (i) can be derived from the inequality (5) and setting s1, s2, λ, u, v as

in Remark 1 and ∆ = O(p log n/n). Part (iii) immediately follows by applying Borel-

Cantelli lemma as in Remark 1. Part (ii) says the convergence rate of the posterior mean

of R(θ̃) is of order O(p log n/n), close to the optimal rate of O(p/n) in the parametric

settings. See for example, Ghosal (2000) for generalized linear models, Wang (2011) for

generalized estimating equations. Belloni and Chernozhukov (2009) considered general

Z-estimation and proved the asymptotic normality of Gibbs posterior with a uniform

prior, which immediately implies the O(p/n) convergence rate for the risk R(θ̃). The

Bayesian central limit theorems (or Bernstein-von Mises theorems) in Ghosal (2000) and

Belloni and Chernozhukov (2009) are stronger distributional results than our result on

risk bounds. On the other hand, since only the risk is of interest in this paper, our

assumptions are also weaker than theirs. We do not assume point identification, and the

dimension of parameters p in Theorem 1 can grow as fast as n1/2 up to some logarithm

factors, which is less restrictive than the growth rate about o(n1/4) in the condition ZE3

of Belloni and Chernozhukov (2009). It is not clear to us if the extra logarithm factor in

the rate p log n/n can be removed under our weaker assumptions.

Remark 4. Our regularity conditions are mild and general enough to cover the commonly

used moment conditions for linear regression and quantile regression. The assumption

G1 says that the prior does not vanish too fast in n on any small neighborhood in Θn,

which is satisfied by many commonly used priors, such as a uniform prior or a normal

prior truncated on Θn. Note that since the radius of Θn is growing with n, such a

prior is not restrictive. Assumptions G2-G5 require that the variance, the L∞ norm, the

derivative and the entropy of the moments are bounded in certain order. They are high

level conditions comparable with the condition ZE1 in Belloni and Chernozhukov (2009).

We can see immediately that they work well, for example, for the quantile regression in

the next proposition. The proof is given in the appendix.
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Proposition 2. Suppose Di = (Yi, X
>
i )>, i = 1, 2, ..., n are an iid sample where Y is

a scalar random variable and X is a p-dimensional random vector including a constant

component. The conditional distribution satisfies F−1
Y |X(τ) = X>θ∗ for some θ∗, with

τ ∈ (0, 1) being a fixed quantile. Define g(D, θ) = X[I(Y ≤ X>θ)− τ ]. Assume that

1. |Xj| ≤ M almost surely for all 1 ≤ j ≤ p for some constant M > 0, where Xj is

the jth component of X.

2. The conditional distribution FY |X is continuous with a density fY |X that is bounded

above by f̄ <∞.

3. Eigenvalues of E[XX>] are bounded above by a constant.

Then it follows that the assumptions G2-G5 are satisfied.

4 General oracle inequalities for model selection

In this section we present a general oracle inequality for random model selection with

the Gibbs posterior. In the definition of the Gibbs posterior (1), we let the parameter

θ = (b,m), where m is a model index (m = 1, 2, ...) with corresponding model space Bm

and b is a parameter in Bm. Sometimes without confusion, we also use m to denote the

dimension of Bm. In the model selection framework, the prior distribution can be usually

decomposed into π(db,m) = π(db|m)πm where πm is a discrete prior distribution over all

models considered, and π(db|m) is the prior of b on model space Bm. Then (1) can be

equivalently written as

Q(db,m|D) =
e−λRn(b,m)π(db|m)πm∑

m′

∫
Bm′

e−λRn(b′,m′)π(db′|m′)πm′
(8)

In general, we are still interested in a theoretical risk R(θ), for which Rn(θ) is

the corresponding empirical risk. For example, for additive empirical risk Rn(θ) =

n−1
∑n

i=1 `(Di, θ), we have R(θ) = ED `(D, θ). For a non-adidtive empirical risk such as

the ranking risk (3), R(θ) = PX,X′,Y,Y ′ [(Y −Y ′)r(X,X ′; θ) < 0]. Hereafter without confu-

sion, we sometimes omit the dependence on the model index m and write Rn(b) ≡ Rn(θ)

and R(b) ≡ R(θ) when a model m is given and b ∈ Bm.

The goal here is to let the Gibbs posterior propose good parameters θ̃ = (b̃, m̃) with

small theoretical risk R(θ̃). The current framework of model selection can therefore be

regarded as special case of the general setup of Section 2. The main difference, however,

12



is that the dimension of the parameter b can change with the model index m. A constant

choice of the margin parameter ∆ in Proposition 1 (ii) (common to all models) would not

be able to lead to sharp results for all models. Instead, we use the more general setup

of Proposition 1(i), and assume from now on that ∆(θ) = ∆m which depends on model

index m (but not b).

Define for any model m and any v > 0,

R̃m(v) ≡ inf
b∈Bm

R(b) + v +
1

s2λ
log π(b : R(b) < inf

b′∈Bm
R(b′) + v|m)−1

and also

R̃(v) ≡ inf
m

(s2R̃m(v) + ∆m + λ−1 log π−1
m )/s1 + ∆̃/s1, (9)

where

∆̃ ≡ λ−1 log(
∑
m

πme
λ∆m).

The following oracle inequality can be derived from Proposition 1.

Proposition 3. (Oracle Inequality) For any u ∈ < and v > 0,

PQ
(
R(θ̃) > R̃(v) +

u

s1λ

)
≤ e−u + P

(
∃(b,m) : Rn(b) 6∈ [s1R(b)−∆m, s2R(b) + ∆m]

)
(10)

where R̃(v) is defined in (9).

Remark 5. Similar to Remark 2 after Proposition 1, the inequality here typically implies

the following oracle relation:

R(θ̃) ≤ s2

s1

inf
m

{
inf
b∈Bm

R(b) +O(∆m)
}

for all large n, almost surely in PQ, where on the left-hand side θ̃ = (b̃, m̃) is drawn from

the Gibbs posterior (8). The term infb∈Bm R(b) measures the accuracy of model m, which

typically improves (decreases) when the dimension or complexity m increases, and the

radius of the coverage interval ∆m measures the size of the stochastic error of model m,

which typically increases with the model dimension m and decreases with the sample size

n. In our ranking risk example, we will choose ∆m = m(log n)3/n. The constant ratio

s2/s1 can be arbitrarily close to 1.

Remark 6. The prior on models πm is usually chosen to decrease with the model di-

mension m to reflect our preference for more parsimonious models. To make the term ∆̃

13



in (9) controllable, we will set, for example, πm ∝ e−2λ∆m to offset the effect from the

weighted average of eλ∆m . This introduces a BIC-type penalization on the model size

when ∆m is linear in m, as in our ranking risk example later.

Proof of Proposition 3:

The result is proved by first showing that (*) R̄ ≤ R̃(v) for all v > 0 and R̄ defined by

Proposition 1, and then applying Proposition 1(i). In the expression of R̄ in Proposition

1(i), the denominator is exactly eλ∆̃, and the numerator is lower-bounded as∫
e−λ(s2R(θ)+∆)π(dθ) =

∑
m

∫
Bm

e−λ(s2R(b)+∆m)πmπ(db|m)

≥ sup
m

∫
Bm

e−λ(s2R(b)+∆m+λ−1 log π−1
m )π(db|m) = sup

m
e−λ(s2R̂m+∆m+λ−1 log π−1

m ),

where R̂m ≡ −(s2λ)−1 log
∫
e−s2λR(b)π(db|m). These lead to (**) R̄ ≤ infm(s2R̂m + ∆m +

λ−1 log π−1
m )/s1 + ∆̃/s1. Now we bound the integral in R̂m using the same technique as

in the proof of Proposition 1(ii) and obtain: R̂m ≤ infb′∈Bm R(b′) + v + (s2λ)−1 log π(b :

R(b) < infb′∈Bm R(b′) + v|m)−1 ≡ R̃m(v) for all v > 0. Therefore (**) implies (*). �

5 Example: Oracle performance of ranking risk with

model selection

We now apply Proposition 3 to the model selection problem of the ranking risk Rn

defined by (3), to select the best linear rule in which only part of the components in

X are active. The targeted theoretical risk is the probability of mismatch R = P [(Y −

Y ′)r(X,X ′) < 0]. Proposition 1 in Clémencon et al. (2008) indicates that the best rule

possible in theory, namely the Bayes rule, is r∗(X,X ′) = P (Y − Y ′ > 0|X,X ′)− P (Y −

Y ′ < 0|X,X ′), (or any sign-preserving equivalent). Define the corresponding theoretical

risk R∗ = P [(Y −Y ′)r∗(X,X ′) < 0] as the optimal Bayes risk. In general, r∗ may depend

on X,X ′ nonparametrically. In the following, we focus on the case where Y is a binary

variable taking values in {−1, 1}, X is a p-dimensional random vector with p growing

with n, and consider the set of linear rules R = {b ∈ <p : r(x, x′; b) = (x − x′)>b}. We

assume that the constant component X1 = 1 is always present in the model, and restrict

b1 = ±1 as a normalization for identification purpose. The parameter is then θ = (b,m)

with m = 1, 2, ..., p, where b ∈ Bm and Bm is the union of all m-dimensional coordinate
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subspaces Bmj for j = 1, 2, ...,
(
p
m

)
. We then have the following theorem for R(θ̃) with

θ̃ = (b̃, m̃) sampled from the Gibbs posterior. The proofs are given in the appendix.

Theorem 2. Suppose the following regularity conditions R1-R4 hold:

(R1) For any m = 0, 1, 2, ..., p, πm ∝ e−2ψm(logn)3
. The priors of all submodels Bmj

with size m are the same
(
p
m

)−1
πm.

(R2) π(b|m, j) is a continuous distribution restricted on Θn =
{
b : ‖b‖ ≤ √p log n

}
,

for 1 ≤ m ≤ p and 1 ≤ j ≤
(
p
m

)
. For any b0 ∈ Θn, any small enough δ > 0, there exists

a constant ζ > 0 such that π({b : ‖b − b0‖ ≤ δ}|m, j) ≥ (δn−ζ)m uniformly for all m, j

and all sufficiently large n.

(R3) EX′,Y ′ I[(y − Y ′)(x − X ′)>b < 0] is continuously differentiable in b for all x, y,

and the partial derivatives are bounded as |∂ EX′,Y ′ I[(y − Y ′)(x −X ′)>b < 0]/∂bk| ≤ nξ

for some constant ξ > 0 uniformly for k = 1, 2, ..., p, all x, y, and all sufficiently large n.

(R4) The conditional expectation η(X) = E[Y |X] = P (Y = 1|X) has an absolute

continuous distribution on [0, 1] with density bounded above by constant f̄η.

Then for p = o(n/(log n)3), for all m = 1, 2, ..., p and j = 1, 2, ...,
(
p
m

)
,

(i) for any δ > 0, for each sufficiently large n,

PQ
{
R(θ̃)−R∗ > (1 + δ) inf

m,j

[
inf

b∈Bmj
(R(b)−R∗) +

6m(log n)3

n

]}
≤ 2n−2;

(ii) for any δ > 0, for each sufficiently large n,

PQR(θ̃) ≤ R∗ + (1 + δ) inf
m,j

[
inf

b∈Bmj
(R(b)−R∗) +

7m(log n)3

n

]
;

(iii) for any δ > 0, almost surely in the measure PQ for all sufficiently large n,

R(θ̃)−R∗ ≤ (1 + δ) inf
m,j

[
inf

b∈Bmj
(R(b)−R∗) +

6m(log n)3

n

]
where θ̃ = (b̃, m̃) is randomly drawn from the Gibbs posterior (8).

Remark 7. Consider the special case of dimensional reduction, where the optimal Bayes

risk R∗ is achievable in a lower dimensional model with unknown dimension m ≤ p, so

that infb∈Bmj(R(b) − R∗) = 0. Then the current theorem implies a near optimal rate

O(m(log n)3/n) which is oracle in the sense that it depends on the unknown dimension m

of the best linear rule. As a result, the excess risk R(θ̃)−R∗ converges at this oracle rate,

both in the posterior mean and in the sense of almost sure convergence. In this special
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case of dimensional reduction, our work has extended the bipartite ranking example

(Example 5.1) in Clémencon et al. (2008) in two ways:

1. We allow a framework of adaptive model selection;

2. We achieve a fast oracle rate of about O(m/n), which does not depend on the

smoothness parameter α in their Assumption 4.

In fact, our condition R4 guarantees that the α parameter in their paper can take

a value arbitrarily close to 1, which allows us to make it depend on n and derive an

improved convergence rate, as compared to Corollary 8 of Clémencon et al. (2008).

Remark 8. The condition R1 assigns a prior on models that decreases exponentially

fast with the model size, which favors parsimonious models, while all models of the same

size has equal prior mass. R2 is a condition about the prior on parameter b similar to

G1 in the GMM example. We require a uniform lower bound of the prior probability in

any small neighborhood over all submodels. This condition is satisfied, for example, by

a uniform prior on each Bmj. R3 and R4 impose mild bounds on the partial derivative

of the conditional expectation and the density of η(X).

Remark 9. In general, we do not require that the Bayes rule r∗(x, x′) belongs to the

linear family R, nor do we make any model assumptions on the relation between Y

and X. Han (1987) proposed a generalized regression model Y = F2 ◦ F1(X>b∗, ε),

with b∗ being the unknown true parameter, ε independent of X, F1 strictly increasing

in both arguments, and F2 monotonely increasing. By taking F1(x1, x2) = x1 + x2 and

F2(x) = I(x ≥ 0), this becomes a binary choice model of Y = I(X>b∗+ ε ≥ 0) and b∗ can

be estimated by minimizing (3). This MRC estimator is shown to be
√
n consistent for b∗

and asymptotically normal in Sherman (1993). In our general setup, the true parameter

b∗ may not exist since we do not assume the existence of such a single index model.

Instead, the Bayes rule always exists and we are interested in the performance of the

excess risk R(θ̃)−R∗ with θ̃ sampled from the Gibbs posterior.

6 Discussion

In this paper, we have introduced some assumption-free inequalities that are useful for

studying the performance of Gibbs posterior as a random method of risk minimization.

We now discuss several directions of extensions and possible future work:
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1. In our examples, we have only considered prior distributions with compact support

Θn. However, our general inequalities can be directly extended to accommodate prior

distributions with thin tails on a noncompact support (such as a normal prior), similar

to Jiang and Tanner (2008).

2. Although we have assumed iid data for both GMM and ranking examples, in

principle our general inequalities can be applied to dependent data or panel data and

improve the convergence results of, e.g., Jiang and Tanner (2010) and Yao et al. (2011).

3. In this paper we have mainly focused on nonadditive empirical risks that have not

been commonly studied in the information theoretic literature. It is worth noting that

our method certainly encompasses the common additive risk such as the classification

risk and the mean square risk for linear regression, and can provide nearly optimal and

oracle convergence rates.

4. In the formula of the Gibbs posterior (1), the scaling parameter λ has been taken

to be nψ in this paper, where ψ can be any positive constant, without affecting the risk

performance results derived in this paper. We note that ψ corresponds to the inverse

temperature in statistical mechanics, and in the classification literature, researchers have

considered choosing ψ using data-driven methods such as cross validation (see, e.g., Zhang

1999, Audibert 2004, Catoni 2007). It is an interesting future problem to explore how to

choose ψ based on data in our more general setup with possibly nonadditive empirical

risk.

Notes

1This involves a joint probability over an uncountable space of θ. One can use the

outer probability P ∗ if the measurability problem is concerned. See for example, Section

1.2 of van der Vaart and Wellner (1996).

2The L1 bracketing entropy H[](ε,F) is the logarithm of the number of paired func-

tions [f(D; η1, θ1), f(D; η2, θ2)], such that for any f(D; η, θ) ∈ F , there exists a pair

satisfying f(D; η1, θ1) ≤ f(D; η, θ) ≤ f(D; η2, θ2) for all values of D and |f(D; η1, θ1) −

f(D; η2, θ2)|1 ≤ ε.
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Appendix

In the appendix, we include the proofs of Theorem 1, Proposition 2 and Theorem 2.

To prove Theorem 1, we first prove the following lemma about the coverage probability

on the right-hand side of the inequality (5).
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Lemma 1. Suppose the assumptions G2-G5 in Theorem 1 hold. For any u > 0, uniformly

for all θ ∈ Θn, for some constant K > 1, for all sufficiently large n, there exists a constant

C > 0 such that with probability at least 1− e−u,

Rn(θ) ∈
[
(1−K−1)R(θ)− CK

(p log n

n
+
u

n

)
, (1 +K−1)R(θ) + CK

(p log n

n
+
u

n

)]
.

In the following, we use c to denote a generic positive constant whose value may

change in different places. We also denote the maximum of two numbers x1, x2 as x1∨x2.

Proof of Lemma 1:

The main tool we use here is Talagrand’s inequality. See for example, (5.50) in

Massart (2003). Define Sp = {η ∈ <p : ‖η‖ = 1}, Wn(D, θ) = ḡ(D, θ) − ḡ(D, θ∗) −

(E g(D, θ)− E g(D, θ∗)) where ḡ(D, θ) = n−1
∑n

i=1 g(Di, θ) and θ∗ is the parameter that

satisfies E g(D, θ∗) = 0 in G2. Also define the class of functions G =
{
η ∈ Sp, θ ∈ Θn :

f(D; η, θ) = η>[(g(D, θ) − g(D, θ∗)) − (E g(D, θ) − E g(D, θ∗))]
}

. We note that under

our assumptions G3 on the L∞ norm and G5 on the L1 bracketing entropy, the class G

satisfies the assumption (M) before Theorem 8.3 of Massart (2003), i.e. the pointwise

measurability condition (see for example, Section 2.3 of van der Vaart and Wellner 1996).

This guarantees that we can generalize the original Talagrand’s inequality in Massart

(2003) (and also Lemma 4.23 and Lemma 6.5 we will use later) from a countable col-

lection of functions to the uncountable class G, because the supremum over G can be

approximated by the supremum over its dense subset at an arbitrarily fast rate. As a

result, we apply Talagrand’s inequality to G and obtain that for any u′ ∈ <,

P
[

sup
θ∈Θn

∥∥Wn(D, θ)
∥∥ ≥ 2 E sup

θ∈Θn

∥∥Wn(D, θ)
∥∥+

√
2Vfu′ +

4

3
Bfu

′
]
≤ e−u

′
, (A.1)

where Vf is defined and bounded by

Vf ≡ sup
η∈Sp,θ∈Θn

1

n
Var

[
f(D; η, θ)

]
= sup

η∈Sp,b∈Bmj

1

n
E
[
η>
[
g(Di, θ)− E g(D, θ)− (g(Di, θ

∗)− E g(D, θ∗))
]]2

≤ 2

n
sup

η∈Sp,θ∈Θn

E[(η>(g(D, θ)− g(D, θ∗)))2] ≤ 2c

n

given G2, and Bf is defined and bounded by

Bf ≡ sup
η∈Sp,θ∈Θn

1

n

∣∣∣f(D; η, θ)
∣∣∣
∞
≤ 4cg

√
p log n

n
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given G3.

Next we bound E supθ∈Θn

∥∥Wn(D, θ)
∥∥ by using Lemma 6.5 in Massart (2003). Note

that for f ∈ G, we will normalize it by dividing F = 2 supD,η,θ |f(D; η, θ)|∞. Using the

assumption G5, the right-hand side of the inequality in Lemma 6.5 is

12ϕ(σ) ≡ 12

∫ σ

0

√
H[](u2,G)du ≤ 12

∫ σ

0

√
c1p log(c2n/u2)du

≤ c
(√

p log nσ +
√
p log(σ−1)σ

)
≤ c
√
p log nσ

for some c > 0 and 1 ≥ σ ≥ σ∗ ≡ c
√
p log n/n > 0. We choose σ∗ such that ϕ(σ) ≤

√
nσ2/4 in Lemma 6.5 is satisfied. Note that σ∗ → 0 as n→∞ since p = o(n1/2/ log n).

Thus Lemma 6.5 implies that

√
nE

[
sup

η∈Sp,θ∈Θn,E
[
f(D;η,θ)2

]
≤F 2σ2

‖F−1Wn(D, θ)‖
]
≤ c
√
p log nσ. (A.2)

Then based on (A.2), we can apply the pealing lemma (Lemma 4.23) of Massart

(2003) and obtain that for any 1 ≥ σ ≥ σ∗ > 0,

E
[

sup
η∈Sp,θ∈Θn

‖F−1Wn(D, θ)‖
E
[
F−2f(D; η, θ)2

]
+ σ2

]
≤ c

√
p log n

n
σ−1,

which further implies that

E sup
θ∈Θn

∥∥Wn(D, θ)
∥∥

≤ F · E
[

sup
η∈Sp,θ∈Θn

‖F−1Wn(D, θ)‖
E
[
F−2f(D; η, θ)2

]
+ σ2

]
·
[

sup
η∈Sp,θ∈Θn

E
[
F−2f(D; η, θ)2

]
+ σ2

]
≤ c

√
p log n

n
·
[
(Fσ)−1 sup

η∈Sp,θ∈Θn

E
[
f(D; η, θ)2

]
+ Fσ

]
≡ c

√
p log n

n
· h(σ)

We can minimize h(σ) by taking σ = F−1
√

supη∈Sp,θ∈Θn E
[
f(D; η, θ)2

]
∨ σ∗. When

σ∗ is smaller, we have h(σ) ≤ 2
√

supη∈Sp,θ∈Θn E
[
f(D; η, θ)2

]
≤ 2c for some c since

supη∈Sp,θ∈Θn E[f(D; η, θ)2] is bounded according to the assumption G2. When σ∗ is larger,

we have h(σ) ≤ 2Fσ∗ ≤ 16cgp
1/2 · c

√
p log n/n ≤ c because F ≤ 8

√
p|g|∞ ≤ 8cg

√
p log n

according to G3 and p = o(n1/2/ log n). In either case, h(σ) is bounded above by a

constant. Therefore

E sup
θ∈Θn

∥∥Wn(D, θ)
∥∥ ≤ c

√
p log n

n

for some constant c.
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We now get back to the inequality (A.1) and plug in the bounds of E sup ‖Wn(D, θ)‖,

Vf and Bf . We have that for some constant c > 0, for any u′ ∈ < and each sufficiently

large n,

P
[

sup
θ∈Θn

∥∥Wn(D, θ)
∥∥ ≥ c

√
p log n

n
+

√
c

n
u′ +

c
√
p log n

n
u′
]
≤ e−u

′
. (A.3)

Applying similar technique to the class {η ∈ Sp : f(D; η) = η>[g(D, θ∗)−E g(D, θ∗)]}

yields

P
[∥∥ḡ(D, θ∗)− E g(D, θ∗)

∥∥ ≥ c

√
p log n

n
+

√
c

n
u′ +

c
√
p log n

n
u′
]
≤ e−u

′
(A.4)

for some constant c > 0,

We add (A.3) and (A.4) and obtain that there exists c > 0, such that for any u′ ∈ <

and each sufficiently large n, with probability at least 1− 2e−u
′
,

sup
θ∈Θn

∥∥ḡ(D, θ)− E g(D, θ)
∥∥ ≤ c

(√p log n

n
+

√
u′

n

)
,

where the simplified order on the right-hand side is due to p = o(n1/2/ log n) and the

inequality
√
x1 + x2 ≤

√
x1 +

√
x2 for x1, x2 > 0. This can be further rewritten in the

interval form (u = u′ − log 2)

‖ḡ(D, θ)‖2 ∈[(
0 ∨ ‖E g(D, θ)‖ − c

(√p log n

n
+

√
u

n

))2

,
(
‖E g(D, θ)‖+ c

(√p log n

n
+

√
u

n

))2]
,

with probability at least 1− e−u.

Enlarging the interval will not change our conclusion since it makes the probability

even larger. Eventually, we have that for some constant C > 0 (which is only related to

the “c”s in our previous inequalities), for large constant K > 1, for any u ∈ <, for all

sufficiently large n, with probability at least 1− e−u,

Rn(θ) ∈
[
(1−K−1)R(θ)− CK

(p log n

n
+
u

n

)
, (1 +K−1)R(θ) + CK

(p log n

n
+
u

n

)]
,

where we use the fact 2x1x2 ≤ K−1x2
1 +Kx2

2. �

Proof of Theorem 1:
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For (i), we set s1 = 1−K−1, s2 = 1 +K−1, λ = nψ, u = 2 log n, v = p log n/n. Since

infθ∈ΘR(θ) = 0, we can fix K = 2 and ∆ = 4Cp log n/n on the right-hand side of (5),

where C is from Lemma 1. In (6),

π(θ : R(θ) < inf
θ′∈Θ

R(θ′) + v) = π(θ : R(θ) < v) = π(θ : ‖E g(D, θ)− E g(D, θ∗)‖ ≤
√
v)

≥ π
(
θ : nξp‖θ − θ∗‖ ≤

√
v
)
≥ (p−1/2n−ξ−ζ

√
log n)p ≥ n−p(ξ+ζ+1),

where we use G1, G4 and p = o(n1/2/ log n). Hence

R̃ = 3v +
2(ξ + ζ + 1)p log n

nψ
+ 4∆ ≤ cp log n

n
,

where c = 16C + 3 + 2(ξ+ ζ + 1)/ψ. This together with Lemma 1 implies that in (5), we

have

PQ
[
R(θ̃) >

cp log n

n
+

4 log n

nψ

]
≤ 2n−2.

Take C1 = 16C+3+2(ξ+ζ+3)/ψ and we have proved (i). Part (iii) immediately follows

by Borel-Cantelli lemma.

For (ii), if we set ∆ = 2C(p log n + u)/n and keep the same values of s1, s2, λ, u, v as

before, then from Lemma 1 and Proposition 1 we have

PQ
[
R(θ̃) >

cp log n

n
+
cu

n

]
≤ 2e−u,

with c = (8C + 3 + 2(ξ + ζ + 1)/ψ) ∨ (8C + 2/ψ) ∨ 1. We integrate with respect to

u ∈ [0,+∞) and obtain

PQR(θ̃) =
cp log n

n
+

∫ ∞
0

PQ
[
R(θ̃) >

cp log n

n
+ t
]
dt =

c(p log n+ 2)

n
≤ 2cp log n

n

when n is large. Set C2 = 2c and (ii) follows. �

Proof of Proposition 2:

Since F−1
Y |X(τ) = X>θ∗, it immediately follows that E g(D, θ∗) = 0. Let λmax(A) be

the largest eigenvalues of matrix A. Then

sup
η∈Sp

E[(η>g(D, θ∗))2] = sup
η∈Sp

E[(η>X)2(I(Y ≤ X>θ∗)− τ)2]

≤ sup
η∈Sp

η> E[XX>]η = λmax(E[XX>])

and also

sup
η∈Sp,θ∈Θn

E[(η>(g(D, θ)− g(D, θ∗)))2]
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= sup
η∈Sp,θ∈Θn

E[(η>X)2 · |1(Y ≤ X>θ)− 1(Y ≤ X>θ∗)|]

≤ sup
η∈Sp

η> E(XX>)η = λmax(E[XX>]).

Since λmax(E[XX>]) is bounded above by constant, G2 is satisfied. |g(D, θ)|∞ = |X[I(Y ≤

X>θ)− τ ]|∞ ≤M given that |Xj| ≤M for all j = 1, 2, ..., p, so G3 holds.

The expected moment is E g(D, θ) = EX

{
X[FY |X(X>θ)− τ ]

}
. The partial derivative

is bounded as ∣∣∣∣∣E gj(D, θ)∂θk

∣∣∣∣∣ ≤ ∣∣E[XkXjfY |X(X>θ)]
∣∣ ≤M2f̄

for any j and k. Thus G4 follows.

For G5, functions in F are the product of functions in F1 = {η ∈ Sp : η>X} and

F2 = {θ ∈ Θn : I[Y ≤ X>θ] − τ}. For any η, η′ ∈ Sp, |η>X − η′>X| ≤ M |η − η′|1 ≤

Mp|η − η′|∞. Therefore the L1 bracketing number of F1 is bounded by the L∞ covering

number as N[](ε,F1) ≤ N∞(ε/2,F1) = (8Mp/ε)p given that ‖η‖ = 1. For F2, we

construct the L1 bracket as follows. Suppose the first component X1 = 1 is the constant

term and rewrite I[Y ≤ X>θ] − τ = I[Y ≤ X>−1θ−1 + θ1] − τ , where the subscript

−1 denotes the remaining vector without the first component. We first pick a ε/(8f̄)

covering net in L1 norm, say N1, for {‖θ−1‖ ≤
√
p log n : X>−1θ−1}. For any θ−1, θ

′
−1 in

this set, it suffices to require |X>−1θ−1−X>−1θ
′
−1| ≤M(p−1)|θ−1− θ′−1|∞ ≤ ε/(8f̄), which

implies that the cardinality of N1 is bounded by [2
√
p log n/(ε/(8Mf̄(p− 1))) + 1]p−1 ≤

(32Mf̄p3/2 log n/ε)p−1. Then we pick a ε/(8f̄) net on the interval |θ1| ≤
√
p log n, say

N2, which has at most 2
√
p log n/(ε/(8f̄)) + 1 ≤ 32f̄p1/2 log n/ε points. Now consider

the net of θ generated by the Cartesian product N1 × N2. For any θ = (θ1, θ−1) ∈ Θn,

we can pick some θ′−1 from N1 such that |X>−1(θ−1 − θ′−1)| ≤ ε/(8f̄), and some θ′1 from

N2 such that θ′1 − θ1 ∈ [ε/(4f̄), 3ε/(8f̄)]. Therefore,

I[Y ≤ X>θ′]− I[Y ≤ X>θ]

= I[Y −X>−1θ−1 ≤ θ1 +X>−1(θ′−1 − θ−1) + (θ′1 − θ1)]− I[Y −X>−1θ−1 ≤ θ1]

≥ I
[
Y −X>−1θ−1 ≤ θ1 −

ε

8f̄
+

1ε

4f̄

]
− I[Y −X>−1θ−1 ≤ θ1]

= I
[
θ1 < Y −X>−1θ−1 ≤ θ1 +

ε

8f̄

]
≥ 0,

which implies that I[Y ≤ X>θ′]− τ is an upper bound for I[Y ≤ X>θ]− τ . Similarly we

can find a lower bound indexed by θ′′ in N1 ×N2 by choosing |X>−1(θ−1 − θ′′−1)| ≤ ε/(8f̄)
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and θ1 − θ′′1 ∈ [ε/(4f̄), 3ε/(8f̄)]. Moreover, since

|X>θ′ −X>θ′′| ≤ |X>−1(θ′−1 − θ′′−1)|+ |θ′1 − θ′′1 | ≤ 2
( ε

8f̄
+

3ε

8f̄

)
=
ε

f̄
,

the L1 distance between the upper and lower bounds is controlled by

E
∣∣I[Y ≤ X>θ′]− I[Y ≤ X>θ′′]

∣∣ ≤ E I[Y between X>θ′ and X>θ′′] ≤ f̄ · ε
f̄

= ε.

Hence N1 × N2 is a L1 bracket of F2 and the L1 bracketing number of F2 is bounded

above by the number of pairs (θ′, θ′′) with θ′, θ′′ ∈ N1×N2, which is at most N[](ε,F2) ≤[
(32Mf̄p3/2 log n/ε)p−1 · 32f̄p1/2 log n/ε

]2 ≤ (32Mf̄p3/2 log n/ε)2p. Therefore, the L1

bracketing number of F is bounded above by N[](ε,F) ≤ N[](ε/2,F1) · N[](ε/2,F2) ≤

(1024M2f̄p5/2 log n/ε)2p, and its L1 bracketing entropy is bounded above by H[](ε,F) ≤

logN[](ε,F) ≤ 2p log(1024M2f̄n5/4/ε) ≤ c1p log(c2n/ε) for some constants c1, c2 given

that p = o(n1/2/ log n). �

Before we prove Theorem 2 for the ranking risk, we first introduce the Gibbs posterior

with translated risk and the Hoeffding’s decomposition.

We set λ = nψ and the Gibbs posterior (8) can be written equivalently as

Q(db,m|D) =
exp{−nψR′n(b)}π(db|m)πm∑

m′

∫
Bm′

exp{−nψR′n(b)}π(db|m′)πm′
,

where R′n(b) = 1
n(n−1)

∑
i 6=j
{
I[(Yi − Yj)r(Xi, Xj; b) < 0] − I[(Yi − Yj)r

∗(Xi, Xj) < 0]
}

,

the translated version of Rn(b) by subtracting the risk of Bayes rule. Accordingly, let

R′(b) = R(b)−R∗ where R∗ = P [(Y − Y ′)r∗(X,X ′) < 0].

The following Hoeffding’s decomposition of U-statistics will be the key tool for the

ranking risk. See for example, Appendix A of Clémencon et al. (2008).

q(x, y, x′, y′; b) = I[(y − y)r(x, x′; b) < 0)]− I[(y − y′)r∗(x, x′) < 0]

R′n(b) =
1

n(n− 1)

∑
i 6=j

q(Xi, Yi, Xj, Yj; b)

R′(b) = E q(X, Y,X ′, Y ′; b)

h(x, y; b) = EX′,Y ′q(x, y,X
′, Y ′; b)−R(b)

ĥ(x, y, x′, y′; b) = q(x, y, x′, y′; b)−R(b)− h(x, y; b)− h(x′, y′; b)

Tn(b) =
1

n

n∑
i=1

h(Xi, Yi; b)
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Wn(b) =
1

n(n− 1)

∑
i 6=j

ĥ(Xi, Yi, Xj, Yj; b).

According to these definitions, it is obvious that Eh(X, Y ; b) = 0, EX′,Y ′ ĥ(x, y,X ′, Y ′; b) =

0 for all x and y, and most importantly

R′n(b)−R′(b) = 2Tn(b) +Wn(b), (A.5)

which means that the deviation of risks R′n(b) − R′(b) can be decomposed into an iid

sample average part of Tn(b) and a second-order degenerate U-statistic Wn(b).

We first state two lemmas that will be useful for the proof of Theorem 2.

Lemma 2. Suppose assumption R4 holds. Then for n > 1 and any b ∈ Θn,

Var[h(X, Y ; b)] ≤ 2f̄η log n ·R′(b)1−(logn)−1

Proof of Lemma 2:

In Corollary 7 and Corollary 8 of Clémencon et al. (2008), take ε = (log n)−1. �

Lemma 3. Suppose R3-R4 in Theorem 2 hold. For any u > 0, uniformly for all b ∈ Bmj,

all m = 1, 2, ..., p and all j = 1, 2, ...,
(
p
m

)
, for some constant K > 1, for all sufficiently

large n, there exists a constant C > 0 such that with probability at least 1− e−u,

R′n(b) ∈
[
(1−K−1)R′(b)−CK

(m(log n)2

n
+
u

n

)
, (1+K−1)R′(b)+CK

(m(log n)2

n
+
u

n

)]
.

Proof of Lemma 3:

Theorem 5 and Corollary 6 of Clémencon et al. (2008) have proved that for some

constant c > 0 and any u′ ∈ <,

P
[

sup
b∈Bmj

|Wn(b)| > c
m+ u′

n

]
≤ e−u

′
, (A.6)

since the VC-dimension of the class of functions Fmj = {b ∈ Bmj : r(x, x′) = (x− x′)>b}

is at most m+ 1.

Next we bound the term Tn(b) using similar technique to the proof of Theorem 8.3

in Massart (2003). The assumption (M) in Massart (2003) is satisfied by {b ∈ Bmj :

h(X, Y ; b)} since |h(X, Y ; b)| ≤ 2 and is continuous in b given the assumption R3. Let

bmj = arg minb∈Bmj R
′(b), and define the pseudo distance d to be

d2(b, b′)
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≡ E[h(X, Y ; b)− h(X, Y ; b′)]2

= EX,Y

{
EX′,Y ′|X,Y (I[(Y − Y ′)(X −X ′)>b < 0]− I[(Y − Y ′)(X −X ′)>b′ < 0])

}2
.

Then according to Lemma 2, the condition (8.17) of Massart (2003) in our case becomes

d2(b, bmj) ≤ 2(Var[h(X, Y ; b)] + Var[h(X, Y ; bmj)])

≤ 4f̄η log n · [R′(b)1−(logn)−1

+R′(bmj)
1−(logn)−1

]

≤ 8f̄η log n ·R′(b)1−(logn)−1 ≡ w2(
√
R′(b)), (A.7)

where we define the function w(x) =
√

8f̄η log n · x1−(logn)−1
.

On the other hand, within the class Fmj, we apply Lemma 6.5 of Massart (2003)

(|h(x, y; b)| ≤ 2), and obtain

√
nE sup

b∈Bmj ,d2(b,bmj)≤σ2

∣∣∣Tn(b)− Tn(bmj)
∣∣∣ ≤ 48ϕ(σ), (A.8)

where 0 < σ ≤ 1 and ϕ(σ) is defined as

ϕ(σ) ≡
∫ σ

0

√
H[](u2,Fmj)du ≤

∫ σ

0

√
H∞(u2/2,Fmj)du.

Here we used the relation between the L1 bracketing entropy and the L∞ entropy. To

further bound H∞(u2/2,Fmj), we only need that for any x, y and b, b′ ∈ Fmj, |h(x, y; b)−

h(x, y; b′)| ≤ nξm|b−b′|∞ ≤ u2/2, where the derivative is bounded by nξ according to the

assumption R3. Note that |b − b′|∞ ≤ 2p1/2 log n due to the restriction ‖b‖ ≤ p1/2 log n.

The L∞ covering number of Fmj is at most N∞(u2/2,Fmj) ≤ [4mp1/2nξ/u2 + 1]m <

[5nξ+2/u2]m, and ϕ(σ) is bounded by

ϕ(σ) ≤
∫ σ

0

√
m log

(5nξ+2

u2

)
du

≤ 2
√

(ξ + 3)m log nσ +
√

2m log(σ−1)σ

≤ 3
√

(ξ + 3)m log nσ

if σ > n−1 and n is large. Since m ≤ p = o(n/(log n)3), as long as 1 ≥ σ ≥

c
√
m/n log n → 0, the condition ϕ(σ) ≤

√
nσ2/4 is satisfied by all sufficiently large

n.

Now based on (A.7) and (A.8), we can apply the inequality (8.26) in the proof of

Theorem 8.3 in Massart (2003) (derived from a two-sided Talagrand’s inequality and the

pealing lemma), which gives

P

[
sup
b∈Bmj

∣∣Tn(b)− Tn(bmj)
∣∣

R′(b) + a2
≥ 1

4K

]
< e−u

′
, (A.9)

27



where u′ ∈ <, K > 1 is a large positive constant that does not depend on n, and

a = cK
√
ε∗2 + cu′/n (A.10)

with some constant c > 1. ε∗ here is the solution to equation
√
nε∗2 = 48ϕ(w(ε∗)). This

together with m = o(n/(log n)2) implies that for some constant c > 0,

ε∗2 =

[
cm(log n)2

n

]1−(logn+1)−1

≈ e · cm(log n)2

n
(A.11)

as n becomes large, where e = 2.71828....

Now we combine (A.9), (A.10) and (A.11), replace u′ with u′ +m log p+m log 2 and

obtain that for some c > 0, some constant K > 1, uniformly over all Bmj with 1 ≤ m ≤ p

and 1 ≤ j ≤
(
p
m

)
,

P

[
∀b ∈ Bmj,

∣∣Tn(b)− Tn(bmj)
∣∣ > (4K)−1R′(b) + cK

m(log n)2 +m log p+m log 2 + u′

n

]

≤
p∑

m=1

( pm)∑
j=1

e−m log p−m log 2−u′ ≤ e−u
′

where we use the fact
(
p
m

)
≤ pm. This is equivalent to

P

[
∀b ∈ Bmj,

∣∣Tn(b)− Tn(bmj)
∣∣ > (4K)−1R′(b) + cK

m(log n)2 + u′

n

]
≤ e−u

′
. (A.12)

We can then apply a similar technique to the class of functions {1 ≤ m ≤ p, 1 ≤ j ≤(
p
m

)
: r(x, x′; bmj) = (x − x′)>bmj} ∪ {r∗(x, x′)}, and obtain that for any u′ ∈ <, some

c > 0, some large constant K > 0, uniformly over all m, j,

P

[∣∣Tn(bmj)
∣∣ > (4K)−1R′(bmj) + cK

m log 2 + u′

n

]
≤ e−u

′
.

Since for any b ∈ Bmj, R
′(b) ≥ R′(bmj), it follows that

P

[
∀b ∈ Bmj,

∣∣Tn(bmj)
∣∣ > (4K)−1R′(b) + cK

m log 2 + u′

n

]
≤ e−u

′
. (A.13)

We finally add inequalities (A.6), (A.12), (A.13) according to the decomposition (A.5)

and have that uniformly for all Bmj, for any u′ ∈ <, and for sufficiently large n, there

exists some constant c > 0 and some large constant K > 0,

P

[
∀b ∈ Bmj,

∣∣R′n(b)−R′(b)
∣∣ > K−1R′(b) + cK

m(log n)2 + u′

n

]
≤ 3e−u

′
,
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which implies the conclusion of Lemma 3 after we set u = u′ − log 3 and C = 2c. �

Proof of Theorem 2:

We will apply the oracle inequality (10) in Proposition 3. For (i), we set s1 = 1−K−1,

s2 = 1+K−1, λ = nψ, u = 2 log n, v = m/n, ∆m = m(log n)3/n. Note that for sufficiently

large n, ∆m > 2CKm(log n)2/n with C,K defined in Lemma 3. We define R̃′(v), R̃′mj(v)

to be the translated version of R̃(v), R̃mj(v) and rewrite R̃′m(v) in Proposition 3 as R̃′mj(v),

since we consider the subspace Bmj. In the definition of R̃′mj(v), using the assumptions

R2 and R3 and the choice of v, we have

π(b : R′(b)− inf
b′∈Bmj

R′(b′) < v|m, j) = π
(
b : R′(b)−R′(bmj) <

m

n

∣∣∣m, j)
≥ π

(
b : nξm‖b− bmj‖ <

m

n

∣∣∣m, j) ≥ n−m(ξ+ζ+1),

which implies

R̃′mj(v) ≤ inf
b∈Bmj

R′(b) +
m

n
+

(ξ + ζ + 1)m log n

ns2ψ
≤ inf

b∈Bmj
R′(b) +

cm log n

n

with c = 1 + (ξ + ζ + 1)/ψ.

Now we bound the right-hand side of (9). ∆m is the same for all j = 1, 2, ...,
(
p
m

)
.

According to R1, the prior mass on Bm is πm = e−2ψm(logn)3
/
∑p

m′=1 e
−2ψm′(logn)3

=

e−2ψ(m−1)(logn)3
(1− e−2ψ(logn)3

)/(1− e−2ψp(logn)3
). Hence λ−1 log π−1

mj = (nψ)−1
[

log
(
p
m

)
+

2ψ(m−1)(log n)3+log(1−e−2ψp(logn)3
)−log(1−e−2ψ(logn)3

)
]
≤ 3m(log n)3/n for sufficiently

large n. The term ∆̃ can be bounded by

∆̃ = (nψ)−1 log
( p∑
m=1

πme
ψm(logn)3

)
= (nψ)−1 log

[ ∑p
m=1 e

−ψm(logn)3∑p
m=1 e

−2ψm(logn)3

]

= (nψ)−1 log

[
e−ψ(logn)3

(1− e−ψp(logn)3
)(1− e−2ψ(logn)3

)

e−2ψ(logn)3(1− e−2ψp(logn)3)(1− e−ψ(logn)3)

]
≤ 2(log n)3

n
.

when n is sufficiently large. Therefore, (9) becomes

R̃′(v) ≤ inf
m,j

{1 +K−1

1−K−1
inf

b∈Bmj
R′(b) +

4m(log n)3

(1−K−1)n

}
+

2(log n)3

(1−K−1)n

≤ inf
m,j

{1 +K−1

1−K−1
inf

b∈Bmj
R′(b) +

5m(log n)3

n

}
,

when n is sufficiently large and K > 9. If we replace u = 2 log n in the oracle inequality

(5), we get for fixed large K and each sufficiently large n,

PQ
[
R′(θ̃) >

1 +K−1

1−K−1
inf
m,j

(
inf

b∈Bmj
R′(b) +

6m(log n)3

n

)]
≤ 2n−2.
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Set δ = 2/(K − 1) and (i) is proved since R′(θ̃) = R(θ̃) − R∗. (iii) follows by Borel-

Cantelli Lemma.

For (ii), we notice that |R′(b)| ≤ 2 for all b. Let the event A = {R′(θ̃) ≤ (1 +

δ) infm,j[infb∈Bmj R
′(b) + 6m(log n)3/n]}. Therefore when n is sufficiently large, using the

result of (i) we have

PQR′(θ̃) = PQ[R′(θ̃)I(A)] + PQ[R′(θ̃)I(Ac)]

≤ (1 + δ) inf
m,j

(
inf

b∈Bmj
R′(b) +

6m(log n)3

n

)
+ 4n−2

≤ (1 + δ) inf
m,j

(
inf

b∈Bmj
R′(b) +

7m(log n)3

n

)
,

which concludes the proof. �
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