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Abstract

The central space of a joint distribution (X, Y ) is the minimal subspace S such that Y ⊥⊥
X | PSX where PS is the projection onto S. Sliced inverse regression (SIR), one of the most
popular methods for estimating the central space, often performs poorly when the structural
dimension d = dim (S) is large (e.g., ⩾ 5). In this paper, we demonstrate that the generalized
signal-noise-ratio (gSNR) tends to be extremely small for a general multiple-index model when d
is large. Then we determine the minimax rate for estimating the central space over a large class
of high dimensional distributions with a large structural dimension d (i.e., there is no constant
upper bound on d) in the low gSNR regime. This result not only extends the existing minimax
rate results for estimating the central space of distributions with fixed d to that with a large
d, but also clarifies that the degradation in SIR performance is caused by the decay of signal
strength. The technical tools developed here might be of independent interest for studying other
central space estimation methods.

Keywords: Central space, sufficient dimension reduction, sliced inverse regression, structural dimen-
sion, minimax rates, multiple-index model

1 Introduction

A subspace S ⊂ Rp is a dimension reduction subspace of a joint distribution of (X, Y ) ∈ Rp × R if Y ⊥⊥
X|PSX, where PS denotes the projection operator from Rp to the subspace S. The central space, denoted
by SY |X , is the intersection of all dimension reduction subspaces. The objective of sufficient dimension
reduction (SDR) is to estimate the central space SY |X . In the case where (X, Y ) follows a multiple-index
model

Y = f(β⊤
1 X, . . . ,β⊤

d X, ϵ), d≪ p (1)

(f : Rd+1 → R is an unknown non-parametric link function, βi ∈ Rp are the index vectors and ϵ is a random
noise independent of X), sliced inverse regression(SIR), the first SDR method proposed by Li [1991], aims
to estimate the central space span{β1, . . . ,βd}. Besides SIR, various SDR algorithms have been proposed
in the literature: sliced average variance estimation (SAVE, Cook and Weisberg [1991]), principal hessian
directions (PHD, Li [1992]), directional regression (DR, Li and Wang [2007]), minimum average variance
estimation (MAVE, Xia et al. [2009]) and many others. All these methods are widely applied and served
as an intermediate step in modelling the relation between Y and X in various fields. Though these SDR
methods gained successes widely, the increasing dimension of modern data raises the new challenges to them:
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we have to develop the high dimensional SDR methods. Understanding the theoretical limitation of these
SDR algorithms might be the first step to propose new high dimensional SDR methods.

The asymptotic properties of SIR are of particular interest in recent decades, as SIR is considered one
of the most popular SDR methods due to its simplicity and computational efficiency. When the dimension p
is either fixed or growing at a slower rate than the sample size n, researchers have extensively studied SIR’s
asymptotic properties in various settings. For example, Hsing and Carroll [1992] established the root-n
consistency and asymptotic normality of SIR when the sample size in each slice (denoted by c) equals 2;
Zhu and Ng [1995] provided asymptotic results of SIR for an arbitrary fixed constant c or a growing c with
an increasing sample size n; Zhu et al. [2006] discussed the condition for SIR to give a consistent estimator
when p = o(

√
n); Wu and Li [2011] determined the convergence rate of SIR for sparse multiple-index models

with p = o(n/ log(n)).
It becomes more challenging to study the properties of SIR in the high-dimensional regime, where the

dimension p could be comparable to or even larger than n. Lin et al. [2018a] studied the situation where
δ := lim p/n is a constant and proved that the SIR estimator for the central space is consistent if and only
if δ = 0. They proposed a modification, DT-SIR, which is consistent in the high-dimensional setting under
the sparsity assumption that the central space only depends on a small proportion of the predictors. We
hereafter call by sparse SIR any method that modifies the original SIR so as to estimate the central space
under the sparsity assumption. Lin et al. [2021] established the minimax rate optimality of sparse SIR over
a large class of high dimensional multiple-index models. Lin et al. [2019] proposed the Lasso-SIR algorithm,
which is computationally efficient and achieves the minimax rate. In a different setting, Tan et al. [2020]
studied the minimax rates under various loss functions and proposed a computationally tractable adaptive
estimation scheme for sparse SIR.

There are still some limitations in the theory of high-dimensional SIR despite the mentioned progress.
First of all, existing minimax theories are restricted because they assume that the structural dimension d
(i.e., the dimension of the central space S) is either bounded or fixed [Lin et al., 2021, Tan et al., 2020]. It
is of interest to relax this assumption and establish the minimax rate for estimating the central space when
d is large (i.e., there is no constant upper bound on d). Determining this minimax rate can help explain
the observed poor performance of SIR for large d (e.g., d ⩾ 5). While this problem has been observed in
previous literature (e.g., Ferré [1998], Lin et al. [2021]), no theoretical explanation has been provided so far.

Secondly, a crucial technical condition used in previous studies remains unclear. Lin et al. [2018a] intro-
duced the sliced stable condition (SSC, see Definition 1) to obtain the “key lemma”, which is a concentration
inequality for the SIR estimator of the conditional covariance matrix Λ := Cov(E[X|Y ]). This lemma serves
as the main technical tool for developing the asymptotics of SIR in Lin et al. [2018a, 2019, 2021]. However,
the main drawback of SSC is its lack of clarity. This issue is partially addressed in Lin et al. [2018a, 2021],
which showed that SSC can be derived from a slight modification of the smoothness and tail conditions
proposed by Hsing and Carroll [1992]. Although SSC and the modified smoothness and tail conditions are
considered as relatively mild, they are defined in terms of the central curve m(y) = E[X|Y = y] and thus it
remains unclear how to verify whether a specific index model satisfies these conditions. This lack of clarity
in the conditions poses challenges for further theoretical development of high-dimensional SDR.

1.1 Major contributions

In this article, we address the aforementioned limitations in the theory of the high dimensional SIR, specif-
ically the vagueness of SSC and the boundedness condition on the structural dimension d in the minimax
theory. We relax the requirement in SSC and study the fundamental limits of estimating the central space
when d is large, using a decision-theoretic approach.

Our first major contribution is the introduction of a relatively mild condition called weak SSC (see
Definition 2) to overcome the vagueness of SSC. Our key finding is that all the results established under
SSC in previous studies (such as Lin et al. [2018a, 2019, 2021]), including the “key lemma,” still hold
if SSC is replaced by weak SSC. We prove that weak SSC holds under some mild conditions that are
readily interpretable: sup∥β∥=1 E[|⟨X,β⟩|ℓ] < ∞ for some ℓ > 2, Y is a continuous random variable, and
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E[X | Y = y] is a continuous function. This relaxation allows us to investigate the asymptotics of high-
dimensional SIR, such as consistency and minimax rate optimality, under the least restrictive conditions
found in the SIR literature. We anticipate that these conditions will simplify the theoretical investigation of
other slicing-based SDR algorithms in high-dimensional settings.

Our second major contribution is to establish the minimax optimal rate for SIR estimation when the
structural dimension d is large. We first demonstrate a phenomenon that the generalized signal-to-noise
ratio (gSNR), defined as the d-th largest eigenvalue of Cov(E[X|Y ]), decays as the structural dimension d
increases: we prove a tight upper bound on the decay rate of the gSNR and perform extensive simulations
that showcase a faster decay for various link functions, including random functions drawn from a Gaussian
process (GP). This phenomenon suggests that we should focus on scenarios with small gSNRs. We then
prove a lower bound on the minimax risk in low gSNR scenarios. In our theory, λ is a parameter that governs
the range of gSNR such that λ ⩽ gSNR. Our lower bound depends on the quadruple (n, p, d, λ) and matches
with an upper bound on the risk of SIR. Consequently, we conclude that the minimax rate is dp

nλ and SIR is
minimax rate optimal (see Theorem 6). We also extend the minimax results to high dimensional settings: the

optimal rate is ds+s log(p/s)
nλ , where s is a sparsity parameter (see Theorem 9). Our proof of the lower bound

involves an application of Fano’s method and a novel construction of nonlinear dependent distributions.
This novel construction is based on the observation that SSC can be weakened. The minimax rates, together
with the gSNR decay phenomenon, provides a preliminary explanation for the poor performance of SIR in
practice when the structural dimension d is large (e.g., d ⩾ 5): the gSNR generally diminishes to a level
that is insufficient for SIR to provide a good estimate of the central space. To the best of our knowledge,
our work is the first effort to establish the optimal rate for estimating the central space for high-dimensional
multiple-index models with large structural dimensions. It is also the first attempt to provide a theoretical
explanation of the poor performance of SIR when the structural dimension is large. We believe that our
findings contribute significantly to a deeper understanding of SIR.

1.2 Organization of the paper

The paper is organized as follows. In Section 2.1, we briefly review the SIR procedure for estimating the
central space. Sections 2.2 and 2.3 introduce the new mild condition WSSC for analyzing SIR estimators.
In Section 3, we illustrate the phenomenon that the gSNR decays as the structural dimension increases.
Section 4 establishes the minimax rates of convergence for estimating the central space with a large structural
dimension by matching an upper bound on the risk of SIR with a minimax lower bound. Related problems
and future directions are discussed in Section 5.

1.3 Notation

For a matrix V ∈ Rl×m, we denote its column space by col(V ), its i-th row, j-th column and k-th singular
value by Vi,∗, V∗,j and σk(V ) respectively. We use PV to denote the orthogonal projection w.r.t. the
standard inner product ⟨·, ·⟩ in Euclidean space onto col(V ). For a square matrix A ∈ Rm×m, we denote by
λi(A) and Tr(A) :=

∑m
i=1 Ai,i the i-th largest eigenvalue and the trace of A respectively. The Frobenius

norm and the operator norm (2-norm) of the matrix V ∈ Rl×m are defined as ∥V ∥F :=
√
Tr(V ⊤V ) and

∥V ∥ :=
√
λ1(V ⊤V ) respectively. For a vector X, denote by Xk the k-th entry of X and X⊗ = XX⊤. For

two numbers a and b, we use a ∨ b and a ∧ b to denote max{a, b} and min{a, b} respectively. For a positive
integer c, denote by [c] the index set {1, 2, ..., c}. For any positive integers p and d such that p ⩾ d, denote
by O(p, d) the set of all p × d orthogonal matrices (i.e., those B with B⊤B = Id). We use Sp−1 to denote
the (p− 1)-sphere, i.e., Sp−1 := {x ∈ Rp : ∥x∥ = 1}.

We use C, C ′, C1, and C2 to denote generic absolute constants, though their actual values may vary
from case to case. For two sequences an and bn, we write an ≳ bn (resp. an ≲ bn) when there exists a
positive constant C such that an ⩾ Cbn (resp. an ⩽ C ′bn). If both an ≳ bn and an ≲ bn hold, we write
an ≍ bn. We write an = o(bn) if limn→∞ an/bn = 0.
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2 Asymptotics of SIR under Weak Sliced Stable Condition

Recently, there has been a series of work [Lin et al., 2018a, 2021, 2019] investigating the behavior of SIR on
high dimensional data. These studies showed that SIR can produce a consistent estimate of the central space
if and only if lim p

n = 0 and SIR attains the minimax rate of estimating the central space in various settings.
One of the key technical tools developed in these studies is the ‘key lemma’: a ‘deviation property’ of the
quantity β⊤Λ̂Hβ (see the definition in Equation (4)) for any unit vector β ∈ Rp. The ‘key lemma’ heavily
relies on the sliced stability condition (SSC), a scarcely seen condition. In this section, we propose the weak
sliced stable condition (WSSC), a mild condition that is easy to verify, and we investigate the asymptotic
behavior of SIR under WSSC.

2.1 A brief review of SIR

Suppose that we observed n i.i.d. samples {(Xi, Yi)}i∈[n] drawn from the joint distribution of (X, Y ) given
by the following multiple-index model:

Y = f(B⊤X, ϵ), B⊤ΣB = Id, (2)

where f is an unknown link function, B = [β1, . . . ,βd] ∈ Rp×d is the indices matrix, ϵ ∼ N(0, 1) is
independent of X, and Σ is the covariance matrix of X. Throughout the paper, we assume that E[X] = 0
without loss of generality. Though B is not identifiable because of the unknown link function f , the central
space SY |X := col(B) can be estimated.

The SIR procedure for estimating col(B) can be briefly described as follows. First of all, the samples
{(Xi, Yi)}i∈[n] are divided into H equal-sized slices according to the order statistics Y(i); for simplicity, we
assume that n = cH, where c is a positive integer. Next, the data can be re-expressed as Xh,j and Yh,j ,
with (h, j) as the double subscript, where h denotes the order of the slice and j the order of the sample in
the h-th slice, i.e.,

Xh,j = X(c(h−1)+j), Yh,j = Y(c(h−1)+j). (3)

Here X(k) is the concomitant of Y(k) [Yang, 1977]. Let Sh be the h-th interval (Y(h−1,c), Y(h,c)] for h =
2, . . . ,H − 1, S1 = {y | y ⩽ Y(1,c)}, and SH = {y | y > Y(H−1,c)}. Consequently, SH(n) := {Sh, h = 1, ..,H}
is a partition of R and is referred to as the sliced partition. Denote the sample mean of X in the h-th slice
by Xh,·. The SIR algorithm estimates the candidate matrix Λ := Cov(E[X|Y ]) by

Λ̂H =
1

H

H∑
h=1

Xh,·X
⊤
h,·. (4)

In Lin et al. [2018a], it is shown that when the ratio p/n → 0, a consistent estimator of the central space

col(B) is given by Σ̂−1col(η̂H), where Σ̂ is the sample covariance matrix of X and η̂H is the matrix formed

by the top d eigenvectors of Λ̂H . Alternatively, the central space col(B) could be estimated by col(B̂H),

where B̂H is defined by

B̂H := argmax
B

Tr(B⊤Λ̂HB) s.t. B⊤Σ̂B = Id, (5)

since col(η̂H) = Σ̂col(B̂H) (see, e.g., Proposition 4 in Li [2007]).
To ensure that SIR provides a consistent estimator of the central space, the following conditions have

been suggested to show the relation col(Λ) = ΣSY |X [Li, 1991, Hsing and Carroll, 1992, Zhu et al., 2006,
Lin et al., 2018a, 2021, 2019].

Assumption 1. The joint distribution of (X, Y ) ∈ Rp × R satisfies the following conditions:

i) Linearity condition: For any a ∈ Rp, the conditional expectation E
[
⟨a,X⟩ | B⊤X

]
is linear in B⊤X.
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ii) Coverage condition: λ ⩽ λd(Cov(E[X | Y ])) ⩽ λ1(Cov(E[X | Y ])) ⩽ κλ ⩽ λmax(Σ) where κ > 1 is a
positive constant.

The condition (ii) is a refinement of the coverage condition in the SIR literature, as explained in Condition
A2 of Lin et al. [2019]. Inspired by a similar assumption in Cai et al. [2013], we introduce the regularity
parameter κ to control the condition number of Cov(E[X | Y ]). We want to emphasize that the coverage
condition is critical. As demonstrated by the minimax lower bounds (see Theorems 4 and 7), if the eigenvalues
of Cov(E[X | Y ]) are too small, then any estimation method will fail to accurately estimate the central space.

We consider the following loss function for our minimax theory. Let B̂ be an estimate of B, whose
columns form a basis of the central space SY |X . Note that the parameter B itself is not identifiable while

BB⊤ is identifiable. To evaluate the estimated central space col(B̂), we consider the loss function ∥B̂B̂⊤−
BB⊤∥2F, which we will refer to as the general loss. This loss function is commonly used in the sufficient
dimension reduction literature; for more details, see Section 1.1 of Tan et al. [2020].

Throughout the paper, we assume that the structural dimension d is known but we allow d to be
arbitrarily large (i.e., there is no constant upper bound on d).

2.2 Key lemma under weak sliced stable condition

We begin by revisiting the sliced stable condition (SSC) used in the works of Lin et al. [2018a, 2021, 2019]
and then introduce an alternative condition. Throughout the paper, γ is a fixed small positive constant.

Definition 1 (Sliced Stable Condition). Let Y ∈ R be a random variable, K a positive integer and ϑ > 0 a
constant. A continuous curve κ(y) : R → Rp is said to be (K,ϑ)-sliced stable w.r.t. Y , if for any H ⩾ K
and any partition BH := {−∞ = a0 < a1 < · · · < aH−1 < aH = ∞} of R such that

1− γ

H
⩽ P(ah ⩽ Y ⩽ ah+1) ⩽

1 + γ

H
, ∀h = 0, 1, . . . ,H − 1, (6)

it holds that

1

H

H−1∑
h=0

var
(
β⊤κ(Y )

∣∣ah ⩽ Y ⩽ ah+1

)
⩽

1

Hϑ
var
(
β⊤κ(Y )

)
(∀β ∈ Sp−1).

Lin et al. [2018a] utilized this condition to establish the deviation properties of the eigenvalues, eigenvec-

tors, and entries of Λ̂H . Although they showed that the SSC is a mild condition, it is hard to verify whether
the central curve m(y) := E[X | Y = y] of a given joint distribution (X, Y ) satisfies SSC.

To motivate a more manageable condition than SSC, we revisit an intuitive explanation of SSC: for any
well-behaved continuous curve κ(y), if it is divided into K pieces with roughly equal probability mass of the
distribution of Y , then the average of the variances of κ(Y ) in each piece tends to 0 as the slice number H
tends to ∞. The (K,ϑ)-sliced stable condition requires the average of the variances to tend to 0 at certain
rate (e.g., H−ϑ). This geometric explanation leads us to introduce the following definition of weak sliced
stable condition (WSSC), which only requires the average of the variances to be sufficiently small.

Definition 2 (Weak Sliced Stable Condition). Let Y ∈ R be a random variable, K a positive integer and
τ > 1 a constant. A continuous curve κ(y) : R → Rp is said to be weak (K, τ)-sliced stable w.r.t. Y , if for
any H ⩾ K and any partition BH of R such that 1−γ

H ⩽ P(ah ⩽ Y ⩽ ah+1) ⩽
1+γ
H ,∀h = 0, 1, . . . ,H − 1, it

holds that

1

H

H−1∑
h=0

var
(
β⊤κ(Y )

∣∣ah ⩽ Y ⩽ ah+1

)
⩽

1

τ
var
(
β⊤κ(Y )

)
(∀β ∈ Sp−1).

In the following, we show that Lemma 1 in Lin et al. [2018a], referred to as the ‘key lemma’ therein, still

holds if we replace SSC with WSSC. Specifically, we can establish the deviation properties of β⊤Λ̂Hβ under
WSSC if H is sufficiently large. Before proceeding, we first recall the following normality assumption.
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Assumption 2 (Normality). The random vector X satisfies X ∼ N(0,Σ) and ∥Σ∥ ∨ ∥Σ−1∥ ⩽ M , where
M is a positive constant.

This assumption is frequently used in SIR literature, such as Lin et al. [2018a, 2019, 2021]. In fact, it
implies the linearity condition in Assumption 1 since E[X | B⊤X] = ΣBB⊤X. The next important result
is the ‘key lemma’ under WSSC.

Lemma 1. Suppose that the central curve m(y) := E[X | Y ] satisfies weak (K, τ)-SSC w.r.t. Y with τ > 16
and Assumptions 1 (ii) and 2 hold. Then there exist positive absolute constants C,C1, C2, and C3 such that if
H ⩾ K ∨Cd, then for any ν ∈ (1, τ/16], any unit vector β ∈ col(Λ) and any sufficiently large n > 1+1H/γ,
it holds that

P
(∣∣∣β⊤

(
Λ̂H −Λ

)
β
∣∣∣ ⩾ 1

2ν
β⊤Λβ

)
⩽ C1 exp

(
−C2

nβ⊤Λβ

H2ν2
+ C3 log(nH)

)
.

Compared with the ‘key lemma’ in Lin et al. [2018a], the range of ν in the current lemma is narrower, i.e.,
ν can not go to infinity. The reason behind this difference is that, in the current lemma, we have relaxed the
condition from SSC to WSSC. However, it is worth noting that the narrower range of ν makes no essential
difference of theory developed for sparse SIR in high dimensional settings. Specifically, the minimax optimal
rate for sparse SIR still holds under WSSC, as will be shown in Section 4.

2.3 Weak sliced stable condition is very mild

Though it is hard to verify whether the central curve m(y) satisfies SSC, we can show that m(y) satisfies
WSSC under plausible assumptions.

Theorem 1. Suppose that the joint distribution of (X, Y ) ∈ Rp × R satisfies the following conditions:

i) for any β ∈ Sp−1, E
[
|⟨β,X⟩|ℓ

]
⩽ c1 holds for absolute constants ℓ > 2 and c1 > 0;

ii) Y is a continuous random variable;

iii) the central curve m(y) := E[X|Y = y] is continuous.

Then for any τ > 1, there exists an integer K = K(τ, d) ⩾ d such that m(y) is weak (K, τ)-sliced stable
w.r.t. Y .

A result in Lin et al. [2018a] guarantees that with high probability, the probability mass of the distribution
of Y in each slice Sh is roughly the same, i.e., (6) holds for the sliced partition SH(n) := {Sh, h = 1, ..,H}.
This leads to the following corollary.

Corollary 1. Suppose that the conditions in Theorem 1 hold. For any sufficiently large H ⩾ K, if n >
1 + 4H/γ is sufficiently large, then for the sliced partition SH(n) = {Sh, h = 1, ..,H}, the inequality

1

H

H∑
h=1

var
(
β⊤m(Y )

∣∣Y ∈ Sh

)
⩽

1

τ
var
(
β⊤m(Y )

)
(∀β ∈ Sp−1)

holds with probability at least 1− CH2
√
n+ 1 exp

(
−γ2(n+ 1)/32H2

)
for some absolute constant C > 0.

Remark 1. If we further assume that ∥m(y) −m(y′)∥ ⩽ Cd|y − y′| for any y, y′ defined on a compact set
of R and C > 0 a constant, then the WSSC coefficient K equals to K0d for some integer K0 ⩾ 1. This
assumption is mild since one can always turn the last p − d entries of m(y) into zero through orthogonal
transformation by noting that dim{span{m(y) : y ∈ R}} = rank(Cov(m(Y ))) = d.
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3 Small gSNR with a large structural dimension

Lin et al. [2021] has made a conjecture that the minimax optimal rate for estimating the central space under
multiple-index models should be inverse proportional to the gSNR. This indicates that a small gSNR would
result in a large estimation error, so it is important to carefully examine how the gSNR depends on the
structural dimension d.

In this section, we demonstrate that for a general multiple-index model, the gSNR always decreases as
the structural dimension d grows and often becomes extremely small.

3.1 An upper bound on the gSNR

We show here that as the structural dimension d increases, the gSNR must decrease at least at the rate of
log(d)

d .

Theorem 2. Assume X ∼ N(0, Ip) and Y is a random variable. If m(y) satisfies the weak (K, τ)-SSC
w.r.t. Y with τ > 1 + γ and K = O(d), then the smallest positive eigenvalue of Cov [E (X | Y )] (i.e., the

gSNR) is no greater than C1
log(d)

d , where C1 only depends on τ and γ.

It is worth mentioning that the rate of such an upper bound is tight, as there exists a joint distribution

of (X, Y ) for which the gSNR is asymptotically O( log(d)d ). To illustrate this, consider a function ψ0(z =
(z1, . . . , zd)) from Rd to {−d, . . . , 0, 1, . . . , d} such that if |zi| is uniquely the largest among |zi|’s, then
ψ0(z) = sgn(zi)i; otherwise, ψ

0(z) = 0. Let B = [e1, . . . , ed] whose columns are the first d standard basis
vectors in Rp. We construct the following joint distribution of (X, Y ):

X ∼ N(0, Ip), (7)

Y = ψ0(B⊤X) + η, η ∼ Unif(−1/2, 1/2),

where X and η are independent. This distribution satisfies the WSSC and its gSNR decays to 0 at the rate
of log d

d as d tends to ∞.
Theorem 2 relies on the following Theorem 3, which may be of independent interest. It provides an

upper bound on the smallest eigenvalue of the covariance matrix of the conditional expectation of a normal
random vector given any discrete random variable.

Theorem 3. Suppose Z ∼ N(0, Id) and W is a discrete random variable whose probability mass function
is smaller than 1/2. The entropy of W is defined as

∑
w P(W = w) log 1

P(W=w) and is denote by Ent(W ). It

holds that
λmin {Cov [E (Z |W )]} ⩽ 37 d−1Ent(W ).

In particular, if the support of W has K elements, we have λmin {Cov [E (Z |W )]} ⩽ 37 d−1 logK.

Theorem 2 states that the gSNR must decay at least at the rate of log(d)
d as the structural dimension d

grows. However, in practice, the gSNR is often observed to decay much more rapidly. We will elaborate on
this phenomenon in the next subsection.

3.2 Small gSNR, a realistic scenario

In this subsection, we examine synthetic and random GP models to demonstrate that for a general multiple-
index model, the gSNR tends to be extremely small when d is large. This observation suggests that we
should focus on scenarios with small gSNRs.

We first present two exemplary five-index models to illustrate the notorious performance of SIR when
d = 5 [Ferré, 1998, Lin et al., 2021] and point out that the gSNR is very small. Then we investigate a broader
scenario using a random link function sampled from a GP and find that the estimated gSNR decays rapidly
as d increases and becomes very small at d = 5.
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Synthetic experiments

Our following numerical results on synthetic data demonstrate that when d = 5, SIR behaves poorly and
the gSNR is very close to 0.

Let us consider the following two models:

X = (X1, ..., X15)
⊤ ∼ N(0, I15), ϵ ∼ N(0, 1);

M1 : Y = X1 + exp(X2) + log(|X3 + 1|+ 1) + sin(X4) + arctan(X5) + 0.01 ∗ ϵ;

M2 : Y = X3
1 +

X2

(1 +X3)2
+ sgn(X4) log(|X5 + 0.02|+ 5) + 0.01 ∗ ϵ.

In both M1 and M2, the columns of B are e1, . . . , e5, the first five standard basis vectors in R15.
Table 1 shows the general loss ∥B̂B̂⊤ −BB⊤∥2F of SIR under models M1 and M2 over 100 replications.
The value of n ranges in {103, 104, 105, 106, 107, 8 · 107} and H in {2, 5, 10, 20, 50, 100, 200, 500}. Each entry
is the average of the general loss of SIR estimates for a given pair of n and H. The results in Table 1 show
that whatever H is chosen, the estimation error decays very slowly with increasing n and remains large even
when n = 8 · 107.

n H = 2 H = 5 H = 10 H = 20 H = 50 H = 100 H = 200 H = 500

M1

103 6.350 4.303 4.821 4.850 4.668 4.644 4.641 4.602
(0.2122) (0.0699) (0.0604) (0.0507) (0.0492) (0.0482) (0.0534) (0.0511)

104 5.762 3.505 4.468 4.479 4.438 4.511 4.434 4.564
(0.2012) (0.0510) (0.0510) (0.0520) (0.0505) (0.0571) (0.0530) (0.0468)

105 5.578 3.247 3.726 3.548 3.620 3.681 3.644 3.958
(0.2242) (0.0703) (0.0497) (0.0459) (0.0437) (0.0375) (0.0432) (0.0566)

106 5.735 2.492 2.806 2.712 2.907 2.914 3.112 3.216
(0.2314) (0.0665) (0.0422) (0.0445) (0.0435) (0.0468) (0.0452) (0.0451)

107 5.924 1.646 1.929 1.877 1.915 1.912 1.956 2.068
(0.2509) (0.0683) (0.0293) (0.0260) (0.0263) (0.0271) (0.0207) (0.0240)

8 · 107 6.004 1.062 1.832 1.851 1.829 1.835 1.802 1.819
(0.2301) (0.0818) (0.0220) (0.0202) (0.0243) (0.0235) (0.0233) (0.0251)

M2

103 8.027 3.749 3.709 3.601 3.549 3.514 3.628 3.972
(0.2795) (0.0681) (0.0426) (0.0468) (0.0456) (0.0376) (0.0404) (0.0493)

104 7.274 2.795 2.780 2.866 3.024 3.123 3.192 3.243
(0.2617) (0.0683) (0.0411) (0.0458) (0.0483) (0.0453) (0.0399) (0.0414)

105 7.214 2.324 1.984 1.963 1.962 1.984 2.096 2.375
(0.2909) (0.0604) ( 0.0218) (0.0248) (0.0240) (0.0274) (0.0213) (0.0374)

106 6.553 1.859 1.844 1.840 1.865 1.857 1.863 1.828
(0.3084) (0.0312) (0.0221) (0.0194) (0.0171) (0.0182) (0.0216) (0.0249)

107 5.445 1.659 1.747 1.722 1.759 1.837 1.792 1.824
(0.2813) (0.0413) (0.0258) (0.0299) (0.0246) (0.0177) (0.0226) (0.0220)

8 · 107 5.152 1.239 0.688 0.821 1.025 1.298 1.397 1.652
(0.2724) (0.0627) (0.0355) (0.0444) (0.0506) (0.0492) (0.0480) (0.0407)

Table 1: The general loss of SIR under models M1 and M2 with each (n,H) combination. The
two best combinations are highlighted in bold. The average and the standard error (in parenthesis)
are based on 100 replications.
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To show the poor performance more clearly, we check for model M1 whether β̂i (i = 1, . . . , 5) the
estimated directions of SIR lie in the central space, i.e., the space spanned by e1, . . . , e5. Specifically, for
model M1, we compute the mean squared value of the last 10 entries of β̂i (i = 1, . . . , 5), based on 100
replications, with n = 8 · 107 and H ∈ {5, 200} (the first two winners with the smallest general loss among
all choices of n and H).
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Figure 1: Mean squared value of the last 10 entries of estimated directions of SIR for model M1

with n = 8 · 107, H = 5 (left) and H = 200 (right).

Figure 1 shows that the last two directions (β̂4 and β̂5) of the SIR estimate often lie outside the central
space of M1. This implies that SIR can not provide a good estimate of the central space when d = 5 even if
the sample size is as large as 8 · 107 and H enumerates all reasonable choices. This observation is consistent
with the high loss presented in Table 1.

We proceed to examine the gSNR in these models by calculating the average of the logarithm of λi(Λ̂H),
the eigenvalues of the SIR estimate of Cov(E(X | Y )) with n = 8 · 107 (the largest sample size in this

experiment). As seen in Table 2, both models M1 and M2 exhibit rapid decay of λi(Λ̂H) as the index

increases and their estimated gSNRs λ5(Λ̂H) are very close to 0.

n = 8 · 107 index H = 2 H = 5 H = 10 H = 20 H = 50 H = 100 H = 200 H = 500

M1

1 -0.54 -0.22 -0.16 -0.15 -0.14 -0.14 -0.14 -0.14
2 -39.19 -2.83 -2.33 -2.16 -2.09 -2.08 -2.07 -2.07
3 -45.88 -9.45 -8.21 -7.60 -7.24 -7.12 -7.05 -7.00
4 -51.60 -13.61 -11.37 -10.88 -10.53 -10.70 -10.62 -10.48

gSNR -54.56 -41.31 -15.07 -14.45 -13.71 -13.15 -12.56 -11.75

M2

1 -0.78 -0.58 -0.54 -0.53 -0.53 -0.53 -0.53 -0.53
2 -40.11 -1.72 -1.43 -1.39 -1.38 -1.37 -1.37 -1.37
3 -47.09 -3.32 -2.30 -2.25 -2.22 -2.22 -2.22 -2.21
4 -51.97 -9.50 -6.78 -6.68 -6.62 -6.61 -6.61 -6.60

gSNR -53.97 -47.14 -14.52 -14.10 -13.57 -13.09 -12.54 -11.75

Table 2: Logarithm of the eigenvalues of Λ̂H the SIR estimate of Cov(E(X | Y )) (averaged based
on 100 replications) under models M1 and M2. For each model, the i-th row corresponds to the
i-th eigenvalue.
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Gaussian process To further explore the decay of gSNR as d increases, we study a general setting where
the link function is a random continuous function sampled from a GP. Our findings reveal that the gSNR
decays rapidly with increasing d and is close to 0 when d = 5.

For each d ∈ [5] := {1, 2, 3, 4, 5}, let B = [e1, . . . , ed], where ei is the i-th standard basis vector of R15

and consider the following joint distribution of (X, Y ):

X = (X1, ..., X15)
⊤ ∼ N(0, I15);

M3 : Y = f(B⊤X) + 0.01 ∗ ϵ, ϵ ∼ N(0, 1),
(8)

where f is a random function generated from the GP with mean function µ(x) = 0 and covariance function

Σ(x,x′) = e−
∥x−x′∥2

2 (see Seeger [2004] for an introduction to GPs).
In the following, we explore the decay of the gSNR for model M3 in (8) with increasing d. Specifically,

for each d ∈ [5], we sample f for 1, 000 times. For each sampled f , we draw a sample of (X, Y ) of size n from

model M3 and compute the estimated gSNR of M3 by λd(Λ̂H), the d-th eigenvalue of the SIR estimate of
Cov(E(X | Y )). Due to computational limitations, we set the maximum sample size at 50, 000. Here we
present the result for H = 15 (the results are not sensitive to the choice of H). Detailed sampling procedures
and results for other values of H can be found in Appendix I.3.

Figure 2 plots the average logarithm of the estimated gSNR over 1, 000 replications. We show the average
as a function of n for various values of d in the left subfigure and show it as a function of d for various values
of n in right subfigure. All of the associated standard error are less than 0.005. Histograms of the estimated
gSNR can be found in Appendix I.3. Based on the left subfigure, the estimated gSNR keeps decreasing as n
grows, indicating that it overestimates the true gSNR. The right subfigure shows that for a sufficiently large
n, the estimated gSNR appears to decay exponentially with respect to d and becomes extremely small when
d = 5.
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Figure 2: Average logarithm of gSNR with increasing n (left) and increasing d (right).

These experiments suggest that in realistic situations, the gSNR tends to decay rapidly as the structural
dimension d increases. Consequently, when assessing the SIR method when d is allowed to grow, our focus
should be on the low gSNR regime where the gSNR can be arbitrarily small and no greater than some
constant ϖd that depends only on d. We will establish the minimax rate in this regime in the next section.

4 Minimax rate optimality of SIR

In this section, we first establish the minimax rate optimality of SIR for a broad range of distributions in
the low gSNR regime. Our minimax results precisely capture the impact of gSNR on the estimation risk of
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the central space and clarify that it is the weakened signal strength that causes the decline in performance
of SIR when d is large. We then extend the results to sparse SIR for high-dimensional problems.

4.1 A large class of distributions

To determine the minimax rate for estimating the central space, we first introduce a large class of functions.

Definition 3. Suppose that Z ∼ N(0, Id) and ϵ ∼ N(0, 1). A function f : Rd+1 → R is said to be in the class
Fd(λ, κ,K) if the joint distribution for (Z, Y = f(Z, ϵ)) satisfies the following two properties:

(i) the eigenvalues of the conditional covariance matrix Λz := Cov(E[Z|Y ]) satisfy that

0 < λ ⩽ λd(Λz) ⩽ · · · ⩽ λ1(Λz) ⩽ κλ ⩽ 1;

(ii) the central curve mz(y) = E[Z|y] is weak (K, 32κ)-sliced stable w.r.t. Y .

It is clear from Theorem 1 that if f and mz(y) are continuous functions, then the joint distribution for
(Z, Y = f(Z, ϵ)) satisfies property (ii) for some K immediately. Thus Fd(λ, κ,K) is a fairly large class of
functions.

We proceed to defineM (p, d, λ) the class of distributions for (X, Y ) where the minimax rate of estimation
risk is determined. This class is given by:

M (p, d, λ) :=


distribution of(
X, Y = f(B⊤X, ϵ)

)
X ∼ N(0,Σ), ϵ ∼ N(0, 1) is independent of X,

Σ is a p× p matrix, ∥Σ∥ ∨ ∥Σ−1∥ ⩽M,

B is a p× d matrix,B⊤ΣB = Id,

f ∈ Fd(λ, κ,K),K = K0d, λ ⩽ ϖd.

 , (9)

where K0, κ, and M are constants throughout this section. We have also imposed the constraint that
λ ⩽ ϖd, where {ϖd}∞d=1 is a sequence of constants. Whenever the constants in (9) are determined, the class
M(p, d, λ) is well-defined. In the following, we will use the phrase a specification of M(p, d, λ) to refer to a
set of values for these constants.

It is easy to see from Remark 1 that K = K0d is a natural condition. As evidenced by the examples in
Section 3.2, our primary focus should be on the low gSNR regime. Consequently, we allow ϖd to decay as
d increases, provided that λ ⩽ ϖd covers the majority of relevant situations. Besides, the other conditions
in the definition of M(p, d, λ) are mild regularity conditions. Thus, M(p, d, λ) is a fairly large class of
distributions.

We now briefly discuss the consequences of the conditions imposed in M (p, d, λ). If the distribution
of (X, Y ) lies in M (p, d, λ), the candidate matrix Λ = Cov(E[X | Y ]) satisfies coverage condition and the
central curve E[X | Y = y] satisfies WSSC. More precisely, let Z = B⊤X. Then Z ∼ N(0, Id). By the law of
total expectation, E[X|Y ] = E[E[X|B⊤X]|Y ] = E[ΣBB⊤X|Y ] = ΣBE[Z|Y ], thus Λ = ΣBΛzB

⊤Σ. On
the one hand, λi(Λ) = λi(ΣBΛzB

⊤Σ) ⩽ λi(Σ
1/2BΛzB

⊤Σ1/2)λmax(Σ) ⩽ Mλi(Λz). Similarly, λi(Λ) ⩾
M−1λi(Λz). Since the coverage condition holds for Λz, it holds for Λ as well. On the other hand, it is
obviously that WSSC for E[Z|Y = y] implies WSSC for E[X|Y = y].

4.2 Minimax rate optimality of SIR

We establish the minimax rate optimality of SIR over the model class M (p, d, λ) under the general loss.
Our analysis in this section does not require the population parameters (p, d, λ) of the model class

M(p, d, λ) to be fixed. Instead, they are allowed to depend on the sample size n, i.e., p and d may grow and
λ may decay as n increases. Throughout this section, the infimum infB̂ is taken over all estimators that
depend on the sample {(Xi, Yi)}ni=1, which consists of n i.i.d. draws from M ∈ M(p, d, λ). In addition, the
expectation EM is taken with respect to the randomness of the sample.
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4.2.1 Minimax lower bound

In this subsection, we prove a minimax lower bound for estimating the central space over the model class
M (p, d, λ), stated in terms of the triplet (n, p, d) as well as λ.

Theorem 4 (Lower bound). There exists a specification of M (p, d, λ) and a universal constant C1 such that
if 2d < p and dp < C1nλ, then

inf
B̂

sup
M∈M(p,d,λ)

EM

∥∥∥B̂B̂⊤ −BB⊤
∥∥∥2
F
≳
d(p− d)

nλ
.

Theorem 4 states a sharp lower bound for the minimax rate, which matches with the upper bound in
Section 4.2.2. It is very challenging to obtain a lower bound that depends optimally on all parameters, in
particular λ and d.

The proof of our minimax lower bound follows the standard Fano method framework (see e.g., [Yu, 1997]).
This framework requires a family of distributions that are separated from each other in the parameter
space but close to each other in terms of the Kullback–Leibler divergence (KL-divergence). One of the
main technical contributions of this paper is the explicit construction of such a family of distributions in
M (p, d, λ). The construction is novel in the literature. Furthermore, it is highly nontrivial to obtain a sharp
upper bound on the pairwise KL-divergence. The difficulty arises from the nonlinear relationship between
Y and X encoded by the multiple-index model and the semiparametric nature of the SDR problem.

We will first describe how to construct the family of distributions of (X, Y ) and then sketch the proof of
the minimax lower bound based on this construction. As a building block for the construction, we introduce
a piecewise constant function as follows.

Definition 4. Letm be the median of χ2
d distribution. ψ(s1, . . . , sd) is a function from Rd to {−d, . . . , 0, 1, . . . , d}.

1. If
∑

i s
2
i ⩽ m, suppose |si| is uniquely the largest among |s1|, . . . , |sd|, then ψ(s1, . . . , sd) = sgn(si)i;

2. if
∑

i s
2
i > m or if the largest number is not unique, then ψ(s1, . . . , sd) = 0.

For each B ∈ O(p, d), we construct the following joint distribution PB of (X, Y ):

X ∼ N(0, Ip), (10)

Z = ρB⊤X +
√
1− ρ2ξ, ξ ∼ N(0, Id),

W = ψ(Z),

Y =W + η, η ∼ Unif(−σ, σ),

where X, ξ, η are independent of each other, and σ ∈ (0, 1/2] and ρ ∈ (0, 1) are fixed constants.
We are now ready to present the sketch of the proof for the minimax lower bound. For any λ ⩽ ϖd, we

can choose ρ such that PB constructed in (10) satisfies the following two properties:

(i) for any B ∈ O(p, d), Y can be represented as f(B⊤X, ϵ) where ϵ ∼ N(0, 1) and PB belongs to
M (p, d, λ);

(ii) for any B1,B2 ∈ O(p, d), KL(PB1
,PB2

) ⩽ Cλ∥B1 −B2∥2F for some absolute constant C.

Recall that for any sufficiently small ε > 0 and any α ∈ (0, 1), there is a subset Θ ⊂ O(p, d) such that

|Θ| ⩾
(
C0

α

)d(p−d)

and

∥B − B̃∥F ⩽ 2ε, ∥BB⊤ − B̃B̃⊤∥F ⩾ αε

for any B, B̃ ∈ Θ and some absolute constant C0. Therefore, the class of distributions {PB : B ∈ Θ} are
separated from each other in terms of BB⊤ and are close to each other in terms of KL-divergence. We
can apply Fano’s inequality to obtain the lower bound on the minimax risk. The details of the proof can
be found in Appendix E. The main technical difficulty lies in bounding the KL-divergence between any two
joint distributions, PB1

and PB2
, sharply by λ∥B1 −B2∥2F .
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Remark 2. The gSNR of the distribution constructed by (10) can be explicitly computed as

2d−1ρ2
(
E[max

i∈[d]
(|Zi|) 1∥Z∥2⩽m]

)2

,

where Z is a d-variate standard normal vector. This will allow researchers to conduct numerical experiments
to examine dependence of the estimation error on the gSNR and the structural dimension via simulations.

The following result provides a characterization of the specification of M (p, d, λ) in Theorem 4.

Proposition 1. There exist two universal constants C2 and c2, such that a specification of M (p, d, λ) will
satisfy Theorem 4 whenever K0 ⩾ C2, ϖd ⩽ c2d

−8.1, M ⩾ 1, and κ ⩾ 1.

As demonstrated in Section 3.2, the gSNR often decay rapidly or even appears to decay exponentially
as the structural dimension d increases. The choice of ϖd in Proposition 1 allows the model class M (p, d, λ)
to encompass the most interesting central space estimation problems in the low gSNR regime.

4.2.2 Minimax rate

In this subsection, we provide an upper bound on the minimax risk of estimating the central space over
M (p, d, λ), which is achieved by the SIR method.

Theorem 5 (Upper bound). Consider the specification of M (p, d, λ) in Theorem 4. There is a universal
constant C1 such that

inf
B̂

sup
M∈M(p,d,λ)

EM

∥∥∥B̂B̂⊤ −BB⊤
∥∥∥2
F
≲
dp

nλ
(11)

holds whenever dp+ d2 (log (nd) + d) < C1nλ < C1e
p.

We prove this upper bound through a careful analysis of the SIR method (see Appendices C.2 and D.1).
Since this upper bound matches the lower bound in Theorem 4, we conclude the following minimax optimal
rate for estimating the central space over M (p, d, λ) when the structural dimension d is allowed to grow.

Theorem 6 (Minimax optimal rate). Consider the specification of M (p, d, λ) in Theorem 4. There exist a
universal constant C1 such that the following holds

inf
B̂

sup
M∈M(p,d,λ)

EM

∥∥∥B̂B̂⊤ −BB⊤
∥∥∥2
F
≍ dp

nλ
(12)

whenever dp+ d2 (log(nd) + d) < C1nλ < C1e
p.

Theorem 6 captures the dependence of the minimax rate for estimating the central space on the param-
eters p, n, λ, and the structural dimension d. In particular, the minimax rate is linear w.r.t. the structural
dimension d and is inverse proportional to λ. This provides a precise characterization of the challenges in
estimating the central space across a wide range of models.

We conclude that the estimation problem becomes difficult not only when the structural dimension d
is large but also when the gSNR is small. For instance, consider a case where d = 10, p = 103, and
n = 106. The ratio of the number of parameters in B to the sample size, dp

n , is as small as 0.001. However,

if the gSNR is on the scale of n−1/3, Theorem 6 suggests that the estimation error remains significant.
Nonetheless, under the conditions of Theorem 6, the regular SIR method is minimax rate optimal for the
model M (p, d, λ). Therefore, in the cases where the structural dimension d is large and the gSNR is small,
the poor performance of SIR should be attributed to the intrinsic difficulty of the estimation problem rather
than flaws in the method itself.
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Dependence of error w.r.t. d and λ In the following examples, we illustrate the dependence of
the optimal rate on the structural dimension d and the lower bound of the gSNR (i.e., λ). We observe that
for various values of d and λ, the average loss of SIR exhibits a linear relationship with d and an inverse
proportion relationship with λ, consistent with the theoretical result in Theorem 6.

In this experiment, we construct (X, Y ) as per Equation (10), with B chosen as
[
Id,0d×(p−d)

]⊤
, σ = 0.5.

We set ρ = θ ·
√
d
(
E[max |Zi|1∥Z∥2⩽m]

)−1
, where θ is a scaling factor ensuring that ρ lies in (0, 1), Z is

a d-variate standard normal random vector, and the expectation is computed numerically. Under such a
specification of ρ, two properties are implied by Remark 2: 1) the gSNR remains constant if we fix the value
of θ, and 2) gSNR ∝ θ2 if we fixed the value of d. Therefore, we can illustrate the linear dependence of the
estimation loss on d by fixing (n, p, θ) and varying the value of d. In addition, we can demonstrate that the
estimation loss is inverse proportional to λ by examining the relationship between the loss and θ2. We vary
the value of d within {2, 4, 6, 8, 10} and θ within {0.01, 0.02, . . . , 0.07}, while fixing n = 106, p = 200, and
H = 1000.

Figure 3 shows the relationship between the general loss and the varying factors d and θ based on
100 replications. In the left subplot, the solid line represents the average general loss as d increases (with
a fixed θ = 0.05), which aligns perfectly with the dotted straight line fitted by least squares regression
(1−R2 < 0.001). The shaded areas represent the standard error associated with these estimates and all of
them are less than 0.003. This plot indicates a linear dependence of the estimation loss on d. In the right
subplot, the solid line plots the average of the logarithm of general loss against the logarithm of θ (with
a fixed d = 10). The dotted line is the straight line fitted by least squares regression, featuring a slope of
−2.021 and 1 − R2 < 0.03. This plot indicates that the estimation loss is inverse proportional to θ2, and
thus to λ. The observations in this experiment are consistent with the theoretical result in Theorem 6.
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Figure 3: Left: error with increasing d; Right: logarithm of error with increasing log(θ)

4.3 Optimal rate for high-dimensional sparse SIR

In cases where p the dimension of the predictor is comparable to or larger than the sample size n, the SIR
estimator for the central space is inconsistent [Lin et al., 2018a]. Therefore, we need to impose certain
structural assumptions to ensure consistent estimation in high dimensional settings. In this subsection, we
determine the minimax rate for estimating the central space under a sparsity assumption.

We impose the sparsity assumption on the indices matrix B as follows. Denote by supp(B) the support
of B:

supp(B) = {j ∈ [p] : ∥Bj,∗∥ > 0},

and by ∥B∥0 the number of non-zero rows of B, i.e., ∥B∥0 = |supp(B)|. We assume that B is ℓ0-sparse,
i.e., ∥B∥0 ⩽ s for some integer s.
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We consider the estimation of the central space for the class of sparse models:

Ms (p, d, λ) = M (p, d, λ) ∩
{
distribution of (X, Y = f(B⊤X, ϵ)) ∥B∥0 ⩽ s

}
. (13)

As in the definition of the model class M (p, d, λ) in (9), we are interested in the low gSNR regime and
require that λ ⩽ ϖd for some constant ϖd depending only on the structural dimension d. We allow the
parameters (p, s, d) to grow and λ to decay as n increases. Particularly, in a high-dimensional setting, p
might be much larger than n while d and s might grow at a slow rate in n. Similar to the definition of
M (p, d, λ), a specification of Ms (p, d, λ) refers to a set of values of the constants in (13).

We begin with an extension of the lower bound for the minimax risk in Theorem 6 to the high dimensional
sparse model (13). The proof can be found in Appendix F.

Theorem 7 (Lower bound for sparse models). There exists a specification of Ms (p, d, λ) and a universal
constant C1 such that

inf
B̂

sup
M∈Ms(p,d,λ)

EM

∥∥∥B̂B̂⊤ −BB⊤
∥∥∥2
F
≳
ds+ s log(ep/s)

nλ
. (14)

holds whenever 2d < s and ds+ s log(p/s) < C1nλ.

An upper bound on the minimax risk of estimating the central space over Ms (p, d, λ) is given in the
following theorem.

Theorem 8 (Upper bound for sparse models). Consider the specification of Ms (p, d, λ) in Theorem 7.
There is a universal constant C1 such that

inf
B̂

sup
M∈Ms(p,d,λ)

EM

∥∥∥B̂B̂⊤ −BB⊤
∥∥∥2
F
≲
ds+ s log(ep/s)

nλ
(15)

holds wherever d2 (log(nd) + d) + s log(p/s) + ds < C1nλ < C1e
s.

In order to obtain the upper bound in Theorem 8, we introduce an aggregation estimator following
the idea in Cai et al. [2013] and Lin et al. [2021]. This estimator is constructed by sample splitting and
aggregation. For simplicity, assume that there are n = 2Hc samples for some positive integer c and these

samples are divided into two equal-sized sets. We denote by Λ
(i)
H (i = 1, 2) the SIR estimates of Λ =

Cov(E[X|Y ]) using the i-th set of samples. Similarly, denote by Σ̂(1) the sample covariance matrix based

on the first set of samples. Let L(s) be the set of all subsets of [p] with size s. The aggregation estimator B̂
is constructed as follows:

(i) For each L ∈ L(s), let
B̂L := argmax

B
Tr(B⊤Λ

(1)
H B)

s.t. B⊤Σ̂(1)B = Id and supp(B) ⊂ L.
(16)

(ii) Our aggregation estimator B̂ is defined to be B̂L∗ where

L∗ := arg max
L∈L(s)

Tr(B̂⊤
LΛ

(2)
H B̂L).

We show that B̂L∗ attains the rate in the right hand side of (15) (see Appendix C.3 and D.2 ). Furthermore,
this rate is optimal because it matches the lower bound in Theorem 7, as summarized in Theorem 9.

Theorem 9 (Optimal rate of sparse models). Consider the specification of Ms (p, d, λ) in Theorem 7. There
exists a universal constant C1 such that the following holds

inf
B̂

sup
M∈Ms(p,d,λ)

EM

∥∥∥B̂B̂⊤ −BB⊤
∥∥∥2
F
≍ ds+ s log(ep/s)

nλ
(17)

whenever 2d < s and d2 (log(nd) + d) + s log(p/s) + ds < C1nλ < C1e
s.
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5 Discussions

We have provided a complete characterization of the minimax rate for sufficient dimension reduction (SDR)
under multiple-index models. Our theory encompasses a broad scenario: the generalized signal-to-noise
ratio (gSNR) may approach 0, the covariance matrix Σ is unknown, and, most importantly, the structural
dimension d can be large. We established the matching upper bounds and lower bounds on the minimax
risk for estimating the central space, addressing both the ordinary scaling and the high-dimensional scaling
separately. To the best of our knowledge, this paper is the first attempt to investigate the minimax rate in
SDR where the structural dimension d can grow along with the sample size n.

The results in the current paper are different from the ones in Lin et al. [2021]. First, the upper bound
result in the earlier paper imposed more restrictive conditions on the covariance matrix Σ: either it had
to be the identity matrix or it had to satisfy a technical condition involving the index matrix B, which is
hard to verify (see Equation (28) therein). In our study, we only assume that the largest and the smallest
eigenvalues of Σ are bounded. Second, the minimax rate results for multiple-index models in the earlier
paper had certain limitations: the structural dimension d had a fixed upper bound, and the gSNR was
required to be bounded away from 0 by a fixed constant. The authors speculated a more general result that
relaxed the constraint on the gSNR, but it relied on a conjecture that had not yet been proven. In contrast,
the minimax rate results in our study not only allow d to grow but also allow the gSNR to approach 0.
Besides, our results are also different from the ones in Tan et al. [2020], who considered Gaussian mixture
models and required d to be fixed. Our minimax rates have a clear advantage as they are applicable to a
wider range of situations and they highlight the crucial roles of the structural dimension and the gSNR in
SDR problems. In conjunction with the empirical observation that gSNR tends to decay rapidly as d grows,
we provide a theoretical explanation for the underperformance of the SIR method when d is large.

Our introduction of the weak sliced stable condition (WSSC) also contributes to the theoretical devel-
opment of SDR. This condition simplifies our proofs for both the upper bounds and the lower bounds of the
minimax rates presented in this paper. Furthermore, we expect that deriving the WSSC from the moment
condition in Theorem 1 would inspire future research on the high-dimensional behavior of other SDR meth-
ods, such as SAVE, without assuming higher-order sliced stability conditions. For instance, if one intends
to study the phase transition phenomenon of SAVE in high dimensions, as was done for SIR in Lin et al.
[2018a], it might initially seem that a higher-order SSC is indispensable. This speculation stems from the
observation that in low-dimensional settings, the asymptotic theory of SAVE developed in Li and Zhu [2007]
required several conditions similar to those proposed for SIR in Hsing and Carroll [1992], Zhu and Ng [1995],
but with a higher order. However, our results shed light on another possibility: the higher-order SSC could
be replaced by the existence of ℓ > 2 moments of predictors.

Our findings raise several open questions. First, our current theory focuses on the SIR method and our
notion of gSNR is related to Cov (E[X | Y ]). When studying other SDR methods, it might be possible to
consider alternative definitions of gSNR in the corresponding contexts and establish the minimax rate for
estimating the central space. Second, although Theorem 2 proved a tight upper bound on the decay rate
of gSNR, this upper bound is rarely attained by a joint distribution that is likely to be encountered in real
practice. Indeed, in our simulation studies in Section 3.2, the gSNR appears to decay at an exponential rate as
d grows. It is interesting to develop a theory that explains the rapid decay of gSNR, as observed empirically.
Third, we construct the aggregation estimator for the theoretical purpose of proving the upper bound on the
minimax risk for high-dimensional sparse models. From a practical perspective, it is beneficial to develop
computationally efficient algorithms that attain or nearly attain the optimal rate. Lastly, our theory presumes
that the structural dimension d has been known. However, in real practice, the determination of d has to be
inferred from the data. This issue, known as order determination, has been widely studied in the literature
(see Li [2017, Chapter 9] and references therein). It is still unclear whether a minimax theory can be
established when d is unknown a priori.
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A Proof of Lemma 1

Proof. It is a direct corollary of Lemma 1 (‘key lemma’) in Lin et al. [2018a] by noticing that factor γ3

Hν in
the proof of Lemma 2(i) therein corresponds to factor 1

τ in Definition 2.

B Proof of Theorem 1 and Corollary 1

We first introduce the following lemma, which shows that the WSSC is easy to satisfy for general curves.

Lemma 2. Let Y ∈ R be a random variable and κ : R → Rp be a nonzero continuous function satisfying

(i) sup∥β∥=1 E[|⟨κ(Y ),β⟩|ℓ] ⩽ c1 holds for some ℓ > 2 and c1 > 0;

(ii) Y is a continuous random variable.

Then for any τ > 1, there exists a constant K = K(τ, d′) ⩾ d′ such that κ(y) is weak (K, τ)-sliced stable
w.r.t. Y where d′ := dim{span{κ(y) : y ∈ R}}.

If we further assume that ∥κ(y)−κ(y′)∥2 ⩽ Cd′(y− y′)2 for any y, y′ defined on a compact set of R and
C > 0 a constant, then the WSSC coefficient K = K0d

′ for some integer K0 ⩾ 1.

By density transformation formula of continuous random variable, it is easy to check that there exists a
monotonic function f such that the (probability density function) p.d.f. of f(Y ) is continuous and positive
everywhere. Since any monotonic transformation f(Y ) keeps SIR procedures unchanged, (ii) in Lemma 2
can be replaced by

(ii’) The p.d.f. of Y is continuous and positive everywhere on R.

B.1 Proof of Lemma 2

To prove Lemma 2, we need some properties of any partition BH := {−∞ = a0 < a1 < · · · < aH−1 < aH =
∞} of R. Before this, we introduce some important definitions. For simplicity, we let Uh := (ah−1, ah].

Definition 5. Let Y be a real random variable and γ ∈ (0, 1). A partition BH := {Uh}Hh=1 of R is called a
γ-partition w.r.t. Y if

1− γ

H
⩽ P(Y ∈ Uh) ⩽

1 + γ

H

for h = 1, . . . ,H.

Definition 6. Suppose δ > 0, D ⊂ R is compact and Y is a real random variable. A γ-partition BH w.r.t. Y
is (δ,D)-admissible if there exists a compact set D′ ⊃ D with the following properties:

(1) For any Uh ∈ BH such that Uh

⋂
D ̸= ∅, then Uh ⊂ D′.

(2) For any Uh ∈ BH such that Uh ⊂ D′, then diam(Uh) < δ, where diam(Uh) is the diameter of Uh.

Intuitively, when R is partitioned into sufficiently many intervals of the same probability mass of the
distribution of Y , then the Euclidean lengths of these intervals within a specified compact set are all suffi-
ciently small. Thus the partition BH is (δ,D)-admissible. We shall illustrate this intuition by the following
Lemma, which is an essential property of the partition.
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Lemma 3. Suppose that Y ∈ R is a real random variable and p(y) is continuous and positive everywhere.
Let {BH} be a sequence of γ-partition. For any δ > 0 and compact set D, there exists an H0 = H0(γ, δ,D)
such that for any H > H0, BH is a (δ,D)-admissible γ-partition.

Proof. Let D′ be a compact interval containing the set {x | dist(x,D) ⩽ 1/2}. Since p(y) is positive
and continuous over D′, there exists a positive number µ, such that for any interval [a, b] ⊂ D′ satisfying
|b − a| ⩾ 1/2, one has P(Y ∈ [a, b]) ⩾ µ. Choose a real number H1 >

1+γ
µ . For any H > H1, one has

P(Y ∈ Uh) < µ. Hence, if Uh ∩ D ̸= ∅, we must have diameter(Uh) ⩽ 1/2. This implies that Uh ⊂ D′.
Let µ′ := minY ∈D′ p(Y ). As D′ is compact, our assumption about p(Y ) implies that µ′ is well-defined and
µ′ > 0. Let H2 ∈ Z⩾1 satisfying 1+γ

H2µ′ < δ. For any H > H2, let ah < bh be two endpoints of Uh ⊂ D′,

one has µ′(bh − ah) ⩽ P(Y ∈ Uh) ⩽ 1+γ
H . Then we obtain diam(Uh) = bh − ah ⩽ 1+γ

Hµ′ < δ. Choose

H0 = max{H1, H2}, then for any H > H0, one has BH is (δ,D)-admissible.

Proof of Lemma 2: Now we are ready to prove Lemma 2 under condition (i) and (ii’). We first prove
that for any β ∈ Sp−1,

1

H

∑
h:Uh∈BH

var(κ(β) | Y ∈ Uh) ⩽
1

τ
λ+min(Cov(κ(Y ))) (18)

where κ(β) := β⊤κ(Y ).

For any τ > 0, let us choose a compact setD such that P(Y ∈ Dc) < ϵ
ℓ

ℓ−2

1 , where ϵ1 =
(1−γ)λ+

min(Cov(κ(Y )))

τ sup∥β∥=1 E[|⟨κ(Y ),β⟩|ℓ]2/ℓ
.

Let δ be some small positive constant, say, 0.2. By Lemma 3, we know that there exists an H0, such that
for any H > H0, the partition BH is a (δ,D) admissible γ-partition. This means there exists a compact set
D′, such that if Uh ∩D ̸= ∅, then Uh ⊂ D′ and diam(Uh) < δ. Since κ is uniformly continuous on D′, for

ϵ2 =

√
λ+
min(Cov(κ(Y )))

τ , there exists an ϵ′ such that ∥κ(y1) − κ(y2)∥ ⩽ ϵ2 for any y1, y2 ∈ D′ satisfying that
|y1 − y2| < ϵ′. Let δ′ = min{δ, ϵ′}. By Lemma 3, there exists an H ′

0, such that if BH is a γ partition, then it
is (δ′, D) admissible for any H > H ′

0 (If we further assume that ∥κ(y) − κ(y′)∥ ⩽ Cd′|y − y′|, then ϵ′ ≍ 1
d′

and H ′
0 ≍ d′).

For such (δ′, D) admissible partition BH , one has

1 For any Uh ∩D ̸= ∅ and any β ∈ Sp−1, by intermediate value theorem, we know that there exists a
ξ ∈ Uh, such that ∫

Uh

κ(β)p(y | Y ∈ Uh)dy = β⊤κ(ξ).

Thus, one has

var(κ(β) | Y ∈ Uh) =

∫
Uh

(κ(β)− β⊤κ(ξ))2p(y | Y ∈ Uh)dy ⩽ ϵ22 =
λ+min(Cov(κ(Y )))

τ
.

2 For any Uh ⊂ Dc and any β ∈ Sp−1, one has

var(κ(β) | Y ∈ Uh) ⩽
∫
Uh

(κ(β))2p(y | Y ∈ Uh)dy ⩽
H

1− γ

∫
Uh

(κ(β))2p(y)dy

because γ ⩽ 1
τ . Thus,

1

H

∑
h:Uh⊂Dc

var(κ(β) | Y ∈ Uh) ⩽
1

1− γ

∫
Dc

(κ(β))2p(y)dy.

Let f(y) = κ(β)2 and q(y) = p(y)/P(Y ∈ Dc). By Jensen’s inequality, we have
∫
Dc f(y)q(y)dy ⩽(∫

Dc f
ℓ/2(y)q(y)dy

)2/ℓ
. This can be written as∫

Dc

(κ(β))2p(y)dy ⩽

(∫
Dc

(κ(β))ℓp(y)dy

)2/ℓ

P(Y ∈ Dc)1−2/ℓ,
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which is bounded by

sup
∥β∥=1

E[|⟨κ(Y ),β⟩|ℓ]2/ℓϵ1 =
1

τ
λ+min(Cov(κ(Y ))).

Then

1

H

∑
h:Uh∈BH

var(κ(β) | Y ∈ Uh) =
1

H

∑
h:Uh∩D ̸=∅

var(κ(β) | Y ∈ Uh) +
1

H

∑
h:Uh⊂Dc

var(κ(β) | Y ∈ Uh)

⩽
1

Hτ
N1λ

+
min(Cov(κ(Y ))) +

1

τ
λ+min(Cov(κ(Y ))) ⩽

2

τ
λ+min(Cov(κ(Y )))

where N1 is the number of Uh such that Uh ∩D ̸= ∅. This completes the proof of (18).
Note that for any β ∈ col(Cov(κ(Y ))), λ+min(Cov(κ(Y ))) ⩽ β⊤Cov(κ(Y ))β. In the case when var(β⊤κ(Y )) =

0, it holds that var(β⊤κ(Y )|Y ∈ Uh) = 0(∀Uh). Thus the proof is completed.

B.2 Proof of Theorem 1

Proof. Note that ⟨m(y),β⟩ = E[⟨X,β⟩|Y ]. By Jensen’s inequality for conditional expectation, one has

E[|E[⟨X,β⟩|Y ]|ℓ] ⩽ E[E[|⟨X,β⟩|ℓ|Y ]] = E[|⟨X,β⟩|ℓ] ⩽ c1.

Then the proof is completed by Lemma 2.

B.3 Proof of Corollary 1

It is a direct corollary of Theorem 1 by noticing that the following result.

Lemma 4 (Lemma 11 in Lin et al. [2018b]). For any sufficiently large H, c and n > 4H
γ + 1, SH(n) is a

γ-partition with probability at least

1− CH2
√
n+ 1 exp

(
−γ

2(n+ 1)

32H2

)
for some absolute constant C.

C Proofs of upper bounds with a known covariance matrix

Here we present the proofs of the upper bounds in Sections 4.2.2 and 4.3 with Σ known. These proofs are
adapted from Lin et al. [2021]. Without loss of generality, we can assume Σ = Ip. The proof for general
cases with unknown Σ is presented in Appendix D, which makes use of the results here.

C.1 Preliminary

Before we start proving the theorems, we need some preparations.
Notations: Suppose that we have n = Hc samples (Xi, Yi) from a distribution M ∈ M(p, d, λ).

Throughout this section, H is taken to be an integer such that H satisfies the inequality H > K ∨ Cd in
Lemma 1 and H ⩽ H0d for some constant H0 > K0 ∨ C. In this way, we can apply the result of Lemma 1
and we will implicitly use H = O(d).

Since Σ = Ip, the SIR estimator in (5) is defined directly as B̂ =
[
B̂1, ..., B̂d

]
, where B̂i is the i-th

leading eigenvector of Λ̂H .
Let B⊥ be a p× (p− d) orthogonal matrix such that B⊤B⊥ = 0.
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For any pair of (X, Y ) sampled from M, let Z = B⊤X and E = B⊤
⊥X. Since B⊤B = Id, B

⊤
⊥B⊥ =

Ip−d, one has Z ∼ N(0, Id) and E ∼ N(0, Ip−d). Furthermore, Z ⊥⊥ E since Cov(Z,E) = B⊤B⊥ = 0.
Besides, we have

X = PSX + PS⊥X = BZ +B⊥E (∵ BB⊤ +B⊥B
⊤
⊥ = Ip)

where S = col(B) is the central space.
Let V = BZ and W = B⊥E. Then V ⊤W = 0. We introduce the notation V h,·, Zh,·, W h,·, and Eh,·

similar to the definition of the sample mean in the h-th slice Xh,· near Equation (4).
Let V = 1√

H

[
V 1,· , V 2,·, ..., V H,·

]
, Z = 1√

H

[
Z1,· , Z2,·, ..., ZH,·

]
, W = 1√

H

[
W 1,· , W 2,·, ..., WH,·

]
,

and E = 1√
H

[
E1,· , E2,·, ..., EH,·

]
be four matrices formed by the p-dimensional vectors 1√

H
V h,·,

1√
H
Zh,·,

1√
H
W h,·, and

1√
H
Eh,·. We have V = BZ, W = B⊥E , and V⊤W = 0.

Define Λ̂z = ZZ⊤ and Λ̂V = VV⊤ = BΛ̂zB
⊤. Then we have the following decomposition

Λ̂H = VV⊤ + VW⊤ +WV⊤ +WW⊤

= Λ̂V +BZE⊤B⊤
⊥ +B⊥EZ⊤B⊤ +B⊥EE⊤B⊤

⊥ .
(19)

Since E ∼ N(0, Ip−d) and is independent of Y , we know that the entries Ei,j of E are i.i.d. samples of
N(0, 1

n ).

C.2 Proof of Theorem 5

First, we have the following lemma.

Lemma 5. Assume that f ∈ Fd(λ, κ,K) in Definition 3 and H ⩾ max{K,Cd} for a sufficiently large
constant C. We have the following statements.

(a)

P
(
∥WW⊤∥ > 6

p ∨H + t

n

)
⩽ 2 exp (−t) .

(b) For ν ∈ (κ, 2κ],

P
(
∃β ∈ Sp−1, s.t.

∣∣∣β⊤
(
Λ̂V −Λ

)
β
∣∣∣ > 2

3ν
β⊤Λβ

)
⩽ C1 exp

(
−C2

nλ

H2ν2
+ C3 log(nH) + C4d

)
.

Proof. (a): We apply Lemma 27 to
√
n · E and note that(√

p− d+
√
H +

√
2t
)2

⩽ 3 (p− d+H + 2t) ⩽ 6(p ∨H + t).

(b): Since col(Λ̂V ) = col(Λ) = col(B), we only need to consider the vector β that lies in col(Λ). Let
Λ = V DV ⊤ be the eigen-decomposition of Λ where V is a p × d orthogonal matrix and D is a d × d
invertible diagonal matrix. Let Ω := D− 1

2V ⊤(Λ̂H − Λ)V D− 1
2 . For any unit vector β ∈ col(Λ), consider

the transformed vector U = D1/2V ⊤β. Since col(B) = col(Λ), one has B⊤
⊥β = 0. Then from (19) we turn

to prove that

P
(
∃β ∈ Sp−1, s.t.

∣∣∣β⊤
(
Λ̂H −Λ

)
β
∣∣∣ > 2

3ν
β⊤Λβ

)
=P
(
∃U ∈ Rp, s.t.

∣∣∣U⊤ΩU
∣∣∣ > 2

3ν
U

⊤
U

)
⩽C1 exp

(
−C2

nλ

H2ν2
+ C3 log(nH) + C4d

)
.
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Lemma 1 yields

P
(∣∣∣U⊤ΩU

∣∣∣ > 1

2ν
U⊤U

)
⩽ C1 exp

(
−C2

nλ

H2ν2
+ C3 log(nH)

)
, (20)

where we have used U⊤U = β⊤Λβ ⩾ λ. We then use the standard ϵ-net argument (see, e.g., [Tao, 2012,
Chapter 2.3.1]) to bound

P
(
∃U ∈ Rp, s.t.

∣∣∣U⊤ΩU
∣∣∣ > 2

3ν
U⊤U

)
= P

(
∥Ω∥ > 2

3ν

)
.

Let N be a 1
8 -net in Sd−1: a minimal set of points in Sd−1 such that for any u ∈ Sd−1, one can find find ũ ∈ N

such that ∥u− ũ∥ ⩽ 1/8. This implies that u⊤Ωu = ũ⊤Ωũ+(u− ũ)⊤Ωũ+u⊤Ω(u− ũ) ⩽ ũ⊤Ωũ+∥Ω∥/4.
Taking the maximum of u ∈ Sd−1, one has ∥Ω∥ ⩽ 4/3 ·maxũ∈N ũ⊤Ωũ. Therefore

P
(
∥Ω∥ > 2

3ν

)
⩽ P

(
max
ũ∈N

ũ⊤Ωũ >
1

2ν

)
⩽
∑
ũ∈N

P
(∣∣∣ũ⊤Ωũ

∣∣∣ > 1

2ν

)
⩽ C1 exp

(
−C2

nλ

H2ν2
+ C3 log(nH) + C4d

)
,

where in the last inequality we use the the fact that |N | ⩽ 17d (See e.g., Lemma 5.2 in Vershynin [2010])
and insert β = V D−1/2ũ/∥V D−1/2ũ∥ and U = D1/2V ⊤β into Equation (20).

To proceed, we define some events: E1 =
{
∥WW⊤∥ ⩽ 6p∨H+log(nλ)

n

}
, E2 =

{
∥Λ̂V −Λ∥ ⩽ 2

3νκλ
}
and

E = E1 ∩ E2.

Corollary 2. For any ν ∈ (κ, 2κ], we can find constants C and C̃, such that P (Ec) ⩽ C̃
nλ holds if

κ2H2 (log(nHκ) + d) < Cnλ. (21)

If further κ (p ∨H + log(nλ)) < 1800−1nλ, then on the event E, the followings hold

a) 1
3λ ⩽ λd(Λ̂V ) ⩽ λ1(Λ̂V ) ⩽ 2κλ.

b) ∥Λ̂H − Λ̂V ∥ ⩽ λ
√
18κp∨H+log(nλ)

nλ < 1
4λ.

c) λd+1(Λ̂H) < 1
4λ.

Proof. From Lemma 5, one has

P(Ec1) = P
(
∥WW⊤∥ > 6

p ∨H + log(nλ)

n

)
⩽ 2 exp (− log(nλ)) =

2

nλ

P(Ec2) = P
(
∃β ∈ Sp−1, s.t.

∣∣∣β⊤
(
Λ̂V −Λ

)
β
∣∣∣ > 2

3ν
κλ

)
⩽ P

(
∃β, s.t.

∣∣∣β⊤
(
Λ̂V −Λ

)
β
∣∣∣ > 2

3ν
β⊤Λβ

)
⩽ C1 exp

(
−C2

nλ

H2ν2
+ C3 log(nH) + C4d

)
.

Thus to show

P(Ec) = P(Ec1 ∪ Ec2) ⩽ P(Ec1) + P(Ec2) ⩽
C̃

nλ

for some C̃, one only need exp
(
−C2

nλ
H2ν2 + C3 log(nH) + C4d

)
≲ 1

nλ . This will be true if the followings are
bounded from below by some positive constant

nλ

H2ν2
/ log(nH),

nλ

H2ν2
/d,

nλ

H2ν2
/ log(nλ).
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Since ν ⩽ 2κ, the first two are bounded by choosing a small C in Equation (21). Since x/ log(x) is increasing
for x > e, one has

nλ/ log(nλ) > C−1H2κ2(log(nHκ) + d)/ log
[
C−1H2κ2(log(nHκ) + d)

]
≳ H2ν2

and the last one is also bounded.
On the event E2, Weyl’s inequality implies that λd(Λ̂V ) ⩾ λd(Λ) − 2

3νκλ >
1
3λ and λ1(Λ̂V ) ⩽ λ1(Λ) +

2κλ/(3ν) ⩽ 2κλ.
From Equation (19),

∥Λ̂H − Λ̂V ∥ ⩽ ∥VW⊤∥+ ∥WV⊤∥+ ∥WW⊤∥

⩽ 2

√
∥Λ̂V ∥∥WW⊤∥+ ∥WW⊤∥.

(22)

On the event E, if 6p∨H+log(nλ)
nλ ⩽ 2κ, the last display is further bounded by

√
6 · 32 · 2κλp∨H+log(nλ)

n . If

κp∨H+log(nλ)
nλ < 2−63−3, the bound is smaller than 1

4λ. By Lemma 26 (Weyl’s inequality) and λd+1(Λ̂V ) = 0,

one has λd+1(Λ̂H) < 1
4λ.

Now we start the proof of Theorem 5. Throughout the proof C is a constant independent of(p, d,H, n, λ)
whose value may very from line to line. Note that

E∥B̂B̂⊤ −BB⊤∥2F
= E∥B̂B̂⊤ −BB⊤∥2F1Ec︸ ︷︷ ︸

I

+E∥B̂B̂⊤ −BB⊤∥2F1E︸ ︷︷ ︸
II

.

For I: By the triangle inequality and the fact that the Frobenius norm of a projection matrix equals to its
rank, we have

I ⩽ 2dP(Ec) ⩽ C
d

nλ
. (23)

For II: Let Λ̂V = B̃DHB̃⊤ be the eigen-decomposition of Λ̂V , where B̃ is a p×d orthogonal matrix and
DH is a d×d diagonal matrix. Note that B̃ and B are sharing the same column space (i.e., B̃B̃⊤ = BB⊤)

since col(Λ) = col(Λ̂V ).

Corollary 2 states that on E, one has λd(Λ̂V ) = λd(DH) ⩾ λ
3 , ∥Λ̂V ∥ ⩽ 2κλ, and λd+1(Λ̂H) ⩽ 1

4λ.

Let Q = Λ̂H − Λ̂V and let B̂⊥ be a p × (p − d) orthogonal matrix whose columns are the last (p − d)

eigenvectors of Λ̂H . Applying the Sin-Theta theorem (e.g., Lemma 28) to the pair of symmetric matrices

(Λ̂V , Λ̂H), one has

II =E∥BB⊤ − B̂B̂⊤∥2F1E = E∥B̃B̃⊤ − B̂B̂⊤∥2F1E

⩽
288

λ2
min

(
E∥B̃⊤

⊥QB̂∥2F1E,E∥B̃⊤QB̂⊥∥2F1E
)

⩽
288

λ2
min

(
E∥B̃⊤

⊥Q∥2F1E,E∥B̃⊤Q∥2F1E
)

(Lemma 25 and ∥B̃∥ ⩽ 1, ∥B̂⊥∥ ⩽ 1)

⩽
288

λ2
E∥B̃⊤Q∥2F1E

Since B̃ and B share the same column space, one has B̃⊤W = 0. Thus, one has

B̃⊤Q = B̃⊤VW⊤.

By Lemma 25 and note that ∥B̃⊤V∥21E ⩽ ∥Λ̂V ∥1E ⩽ 2κλ, one has

E∥B̃⊤VW⊤∥2F1E ⩽ 2κλE∥W⊤∥2F ⩽
2κλ

n
H(p− d) (24)
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where in the last inequality we apply Lemma 24 to
√
n · E . Since κ is assumed to be fixed, one has

II ⩽
576κ

nλ
H(p− d)

⩽C
′′H(p− d)

nλ
. (25)

Combining (23) and (25), we conclude that

sup
M∈M(p,d,κ,λ)

E∥B̂B̂⊤ −BB⊤∥2F ≲
d+H(p− d)

nλ
≲
dp

nλ
.

C.3 Proof of Theorem 8

Preliminaries

Since we have assumed that Σ = Ip in this section, the two-fold estimator B̂ defined near Theorem 8 can be
simplified. Specifically, we first divide the samples into two equal sets of samples and have the corresponding
decomposition (19)

Λ̂H = VV⊤ + VW⊤ +WV⊤ +WW⊤

= Λ̂V +BZE⊤B⊤
⊥ +B⊥EZ⊤B⊤ +B⊥EE⊤B⊤

⊥ .

for these two sets of samples. That is, for i = 1, 2, we define Λ
(i)
H , Λ

(i)
V , Z(i),W(i) V(i), Λ̂

(i)
z and E(i) for

the first and second set of samples respectively according to the decomposition (19). Then the two-fold

aggregation estimator B̂ can be defined as:
Two-fold Aggregation Estimator with identity covariance:

(i) For each L ∈ L(s) (the set of all subsets of [p] with size s), let

B̂L := argmax
B

Tr(B⊤Λ
(1)
H B)

s.t. B⊤B = Id and supp(B) ⊂ L
(26)

(ii) Our aggregation estimator B̂ is defined to be B̂L∗ where

L∗ := arg max
L∈L(s)

Tr(B̂⊤
LΛ

(2)
H B̂L).

In addition, we introduce an ‘Oracle estimator’ B̂O (as if we know the support of B).
Oracle Estimator:

B̂O := argmax
B

⟨Λ(1)
H ,BB⊤⟩ = argmax

B
Tr(B⊤Λ

(1)
H B)

s.t. B⊤B = Id and supp(B) = S.
(27)

Let us first introduce some notations. For i = 1, 2, let Λ
(i)
V = B(i)D(i)B(i),⊤ where B(i) is p × d

orthogonal matrix and D(i) := {λ(i)1 , . . . , λ
(i)
d } is a diagonal matrix. For any subset S of [p], let JS be the

diagonal matrix such that JS(i, i) = 1 if i ∈ [S] and JS(i, i) = 0 otherwise.

For i = 1, 2, let E
(i)
2 be the event defined similarly as E2 (which is introduced near Corollary 2). Let

Ē2 = E
(1)
2 ∩ E

(2)
2 and QS = JS

(
Λ

(1)
H −Λ

(1)
V

)
JS .

Let F consist of the events such that ∥JSW(1)W(1),⊤JS∥ ⩽ 6 s∨H+log(nλ)
n and define E := Ē2∩F. Following

the reasoning of Corollary 2, if ν ∈ (κ, 2κ], κ2H2 (log(nH) + log κ+ d) /(nλ) and κ (s ∨H + log(nλ)) /(nλ)
are sufficiently small, one has P (Ec) ⩽ C

nλ and the followings hold on E:
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1.

λ

3
⩽ λ

(i)
d ⩽ ... ⩽ λ

(i)
1 ⩽ 2κλ (28)

2. By Weyl’s inequality, one has

∥QS∥ <
1

4
λ, λd+1

(
JSΛ

(1)
H JS

)
⩽
λ

4
. (29)

Let B̂⊤
OB = U1∆U⊤

2 be the singular value decomposition of B̂⊤
OB such that the entries of ∆ are

non-negative and M := U⊤
2 Λ̂

(2)
z U2.

Main part of the proof

Now, we start our proof of Theorem 8. It is easy to verify that

∥B̂B̂⊤ −BB⊤∥2F ⩽ C
(
∥B̂B̂⊤ − B̂OB̂

⊤
O∥2F + ∥B̂OB̂

⊤
O −BB⊤∥2F

)
.

For the first term ∥B̂B̂⊤ − B̂OB̂
⊤
O∥2F , conditioning on E, we know

∥B̂B̂⊤ − B̂OB̂
⊤
O∥2F ⩽

2

λd(Λ̂
(2)
z )

⟨B̂OU1MU⊤
1 B̂⊤

O , B̂OB̂
⊤
O − B̂B̂⊤⟩ (30)

⩽
C

λ
⟨B̂OU1MU⊤

1 B̂⊤
O −Λ

(2)
H , B̂OB̂

⊤
O − B̂B̂⊤⟩ (31)

:=I + II.

where

I =
C

λ
⟨B̂OU1MU⊤

1 B̂⊤
O −Λ

(2)
V , B̂OB̂

⊤
O − B̂B̂⊤⟩

II =
C

λ
⟨Λ(2)

V −Λ
(2)
H , B̂OB̂

⊤
O − B̂B̂⊤⟩.

Inequality (30) follows from applying Lemma 32 with the positive definite matrix U1MU⊤
1 . The inequality

(31) follows from the definition of B̂ and the fact that the eigenvalues of Λ̂
(2)
z are in (λ/3, 2κλ) (See fact 1).

To simplify the notation, we let

δ = ∥B̂OB̂
⊤
O −BB⊤∥F .

For I: First, B̂OU1 and BU2 satisfy the condition that U⊤
1 B̂⊤

OBU2 = ∆ is a diagonal matrix with non-

negative entries. Second, the eigenvalues of Λ̂
(2)
z ∈ ( 13λ, 2κλ) thus M := U⊤

2 Λ̂
(2)
z U2 has eigenvalues in

(λ/3, 2κλ). By Lemma 31, there exists a constant C such that

∥B̂OU1MU⊤
1 B̂⊤

O −Λ
(2)
V ∥F ⩽ Cλ∥B̂OB̂

⊤
O −BB⊤∥F .

Thus, conditioning on E, one has∣∣I∣∣ ⩽C∥B̂OB̂
⊤
O −BB⊤∥F ∥B̂OB̂

⊤
O − B̂B̂⊤∥F

=Cδ∥B̂OB̂
⊤
O − B̂B̂⊤∥F .

(32)

For II: Define KL = ∥B̂OB̂
⊤
O − B̂LB̂

⊤
L ∥−1

F

(
B̂OB̂

⊤
O − B̂LB̂

⊤
L

)
. ( For any L ∈ L(s), B̂L is introduced in

(26) ). Then

|II| =C
λ
⟨Λ(2)

V −Λ
(2)
H , (B̂OB̂

⊤
O − B̂B̂⊤)∥B̂OB̂

⊤
O − B̂B̂⊤∥−1

F ⟩∥B̂OB̂
⊤
O − B̂B̂⊤∥F
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⩽
C

λ
max

L∈L(s)

∣∣∣⟨Λ(2)
V −Λ

(2)
H ,KL⟩

∣∣∣ ∥B̂OB̂
⊤
O − B̂B̂⊤∥F

From the equation (19), one has∣∣II∣∣ ⩽C
λ
∥B̂OB̂

⊤
O − B̂B̂⊤∥F (2T2 + T1) (33)

where T1 = maxL∈L(s)

∣∣∣〈W(2)W(2),⊤,KL

〉∣∣∣, T2 = maxL∈L(s)

∣∣∣〈V(2)W(2),⊤,KL

〉∣∣∣. To summarize, condi-

tioning on E, one has

∥B̂B̂⊤ − B̂OB̂
⊤
O∥F ⩽ C

(
δ +

1

λ
(2T2 + T1)

)
. (34)

Thus, one has

∥B̂B̂⊤ −BB⊤∥2F1E ⩽ C
(
δ2 + ∥B̂OB̂

⊤
O − B̂B⊤∥2F

)
1E

⩽ C

(
δ2 + C

(
δ +

1

λ
(2T1 + T2)

)2
)
1E

⩽ C

(
δ2 +

(
1

λ
(2T1 + T2)

)2
)
1E.

Note that P(Ec) ⩽ C
nλ . If we can prove

Eδ21E ⩽ Cϵ2n and E(2T1 + T2)
21E ⩽ λ2ϵ2n, (35)

then one has E∥B̂B̂⊤ −BB⊤∥2F1E ⩽ Cϵ2n and then

E
[
∥B̂B̂⊤ −BB⊤∥2F 1Ec

]
⩽ 2d

C

nλ
≲ ϵ2n.

Therefore, we conclude that E
[
∥B̂B̂⊤ −BB⊤∥2F

]
≲ ϵ2n. Thus, it is suffice to prove the following two

lemmas.

Lemma 6. If nλ ⩽ es∨H , then

Eδ21E ⩽ Cϵ2n. (36)

Proof. By (28) and (29), we know that the eigenvalues of JSΛ
(1)
V JS = Λ

(1)
V is in ( 13λ, 2κλ) and the (d+1)-th

largest eigenvalues of JSΛ
(1)
H JS is less than λ

4 . Let B̂⊥
O be a p × (p − d) orthogonal matrix whose columns

are the last (p − d) eigenvectors of JSΛ
(1)
H JS . After applying the Sin-Theta Theorem (Lemma 28) to the

pair of symmetric matrices (Λ
(1)
V = JSΛ

(1)
V JS ,JSΛ

(1)
H JS) , one has

δ2 = ∥B̂OB̂
⊤
O −B(1)B(1),⊤∥F ⩽

C

λ2
∥B̂⊥,⊤

O QSB
(1)∥2F ⩽

C

λ2
∥QSB

(1)∥2F .

Note that B(1),⊤JSW = B(1),⊤B⊥E = 0 because JSB
(1) = B(1) and B(1),⊤B⊥ = 0. Hence

∥QSB
(1)∥2F = ∥B⊤V(1)W(1),⊤JS∥2F ⩽ ∥V(1)∥2∥W(1),⊤JS∥2F .

On the event E,∥V(1)∥2 ⩽ ∥Λ(1)
V ∥ ⩽ 2κλ and

{
∥JSW(1)W(1),⊤JS∥ ⩽ 6 s∨H+log(nλ)

n

}
. Therefore,

E[δ21E] ⩽
C

λ
E[∥JSW(1)∥2F1E] ⩽

C(s ∧H)

λ
E[∥JSW(1)W(1),⊤JS∥1E] ⩽ C(s ∧H)

s ∨H
nλ

⩽ Cϵ2n
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where the second inequality follows from the inequality Tr(A) ⩽ rank(A)∥A∥ and

rank(JSW(1)W(1),⊤JS) ⩽ s ∧H

and the third inequality follows from nλ < es∨H .

Lemma 7. There exists positive constant C such that

E(2T1 + T2)
21E ⩽ Cλ2ϵ2n

Proof. Since (2T1 + T2)
2 ⩽ C(T 2

1 + T 2
2 ), we only need to bound ET 2

1 and ET 2
2 separately.

For T1. Recall that W(2) = B⊥E(2) (See notation near (19).) and for each fixed L ∈ Ls, KL ⊥⊥ W(2),
hence

⟨W(2)W(2),⊤,KL⟩ = ⟨E(2)E(2),⊤,B⊤
⊥KLB⊥⟩ (37)

and B⊤
⊥KLB⊥ ⊥⊥ W(2).

By Lemma 25, ∥B⊤
⊥KLB⊥∥F ⩽ 1. For any m×m symmetric matrix A, ∥A− Tr(A)

m Im∥2F = Tr(A⊤A)−
1
mTr(A)2 ⩽ ∥A∥2F . Therefore,

∥B⊤
⊥KLB⊥ − Tr(B⊤

⊥KLB⊥)

p− d
Ip−d∥F ⩽ ∥B⊤

⊥KLB⊥∥F ⩽ 1.

Note that E(2) is a (p − d) × H matrix and
√
nE(2)

i,j ∼ N(0, 1), we can apply Lemma 29 with Z =
√
nE(2)

and K = B⊤
⊥KLB⊥ − Tr(B⊤

⊥KLB⊥)
p−d Ip−d to derive that

P

(∣∣∣〈E(2)E(2),⊤,B⊤
⊥KLB⊥ − Tr(B⊤

⊥KLB⊥)

p− d
Ip−d

〉∣∣∣ ⩾ 2
√
H

n
t+

2

n
t2

)
⩽ 2 exp

(
−t2

)
. (38)

After applying Lemma 30 withN = |L(s)| ⩽
(
ep
s

)s
, a = 2

√
H

n , b = 2
n , c = 2 andXi =

〈
E(2)E(2),⊤,B⊤

⊥KLB⊥−
Tr(B⊤

⊥KLB⊥)
p−d Ip−d

〉
, one has

E max
L∈L(s)

∣∣∣〈E(2)E(2),⊤,B⊤
⊥KLB⊥ − Tr(B⊤

⊥KLB⊥)

p− d
Ip−d

〉∣∣∣2
⩽
2H + 32

n2
log(2eN) +

8

n2
log2(2N).

Note that

E max
L∈L(s)

∣∣∣〈E(2)E(2),⊤,B⊤
⊥KLB⊥

〉∣∣∣2 ⩽ 2E max
L∈L(s)

∣∣∣〈E(2)E(2),⊤,
Tr(B⊤

⊥KLB⊥)

p− d
Ip−d

〉∣∣∣2
+2E max

L∈L(s)

∣∣∣〈E(2)E(2),⊤,B⊤
⊥KLB⊥ − Tr(B⊤

⊥KLB⊥)

p− d
Ip−d

〉∣∣∣2
and

E max
L∈L(s)

∣∣∣〈E(2)E(2),⊤,
Tr(B⊤

⊥KLB⊥)

p− d
Ip−d

〉∣∣∣2 = E max
L∈L(s)

(
Tr(B⊤

⊥KLB⊥)

p− d
)2∥E(2)∥4F

(a)

⩽
2s

(p− d)2
E∥E(2)∥4F

(b)
=

2s

(p− d)2
(p− d)2H2 + 2H(p− d)

n2
≍ H2s

n2
.

Here in (a) we used the inequality that
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|Tr(A)| ⩽
√

rank(A)∥A∥F and the facts that rank(B⊤
⊥KLB⊥) ⩽ 2s and ∥B⊤

⊥KLB⊥∥F ⩽ 1, and in (b)
we used Lemma 24. Then we have

E max
L∈L(s)

∣∣∣〈E(2)E(2),⊤,B⊤
⊥KLB⊥

〉∣∣∣2
≲
4H + 64

n2
log(2eN) +

16

n2
log2(2N) +

H2s

n2

≲
H

n2
log(2eN) +

log2(2N)

n2
+
H2s

n2
≲ λ2ϵ4n ≲ λ2ϵ2n.

For T2. Fix L ∈ L(s). Since V(2) ⊥⊥ W(2), KL ⊥⊥ W(2) and KL ⊥⊥ V(2), conditioned on the V(2) and
KL, we know that √

n⟨V(2)W(2),⊤,KL⟩ = ⟨B⊤
⊥KLV(2),

√
nE(2)⟩

is distributed according to N(0, ∥B⊤
⊥KLV(2)∥2F ). Therefore

√
n⟨V(2)W(2),⊤,KL⟩

d
= ∥B⊤

⊥KLV(2)∥FW

for someW ∼ N(0, 1) independent of V(2) andKL. For simplicity of notation, we denote
√
n⟨V(2)W(2),⊤,KL⟩

by FL. Define the event Ẽ = {∥V(2)V(2),⊤∥ ⩽ 2κλ}. Then E ⊂ Ẽ and Ẽ only depends on V(2). Note that

∥B⊤
⊥KLV(2)∥F ⩽ ∥B⊤

⊥KL∥F ∥V(2)∥ ⩽
√
∥V(2)V(2),⊤∥. Consequently,

P
(
|FL| > t | Ẽ

)
⩽ P

(√
2κλ|W | > t

)
⩽ 2 exp

(
− t2

2κλ

)
. (39)

In other words, conditioning on Ẽ, each of FL (L ∈ L(s)) satisfies the premise in Lemma 30 with (a, b, c) =
(
√
2κλ, 0, 2). Therefore,

E
(
T 2
2 1E

)
⩽

1

n
E max

L∈L(s)

(
F 2
L1Ẽ

)
⩽

4κλ

n
log (2eN) ⩽ Cλ2ϵ2n.

D Proofs of upper bounds with a unknown covariance matrix

In this section, we prove the upper bounds in Sections 4.2.2 and 4.3 for the general cases where Σ is unknown.
As in Appendix C, we take H to be an integer such that H ⩽ H0d for some constant H0 > K0 ∨ C and

the inequality in Lemma 1 holds.

D.1 Proof of Theorem 5

Let Σ1/2 be a square root of Σ, B̃ = Σ1/2B and X̃i = Σ−1/2Xi. Then X̃i ∼ N(0, Ip) and B⊤Xi = B̃⊤X̃i.

We will use the results in Section C for the pairs (X̃i, Yi)’s by defining B̃⊥, Ẽ, Ṽ , W̃ accordingly.

Let B̃⊥ be a p× (p− d) orthogonal matrix such that B̃⊤B̃⊥ = 0.

For any pair of (X, Y ) sampled from M, let Z = B⊤X = B̃⊤X̃ and Ẽ = B̃⊤
⊥X̃. We have the

decomposition that

X̃ = B̃B̃⊤X̃ + B̃⊥B̃
⊤
⊥X̃ = B̃Z + B̃⊥Ẽ.

Let Ṽ = B̃Z and W̃ = B̃⊥Ẽ. Then Ṽ ⊤W̃ = 0. Let Λ̃ = Cov
(
E[X̃ | Y ]

)
. We introduce the notation

X̃h,· similar to the definition of Xh,· in Equation 3 and let X̃ = 1√
H

[
X̃1,· , X̃2,·, ..., X̃H,·

]
. Similarly we

define Ṽ h,·, Zh,·, W̃ h,·, Ẽh,· and Ṽ, Z, W̃, Ẽ . We have Ṽ = B̃Z and W̃ = B̃⊥Ẽ . Since Ẽ ∼ N(0, Ip−d) and

is independent of Y , we know that the entries Ẽi,j of Ẽ are i.i.d. samples of N(0, 1
n ).
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Define
̂̃
ΛH = X̃ X̃⊤, Λ̂z = ZZ⊤ and

̂̃
ΛV = ṼṼ⊤. Then

̂̃
ΛV = B̃Λ̂zB̃

⊤, and Λ̂H = Σ1/2 ̂̃ΛHΣ1/2.
We have the following decomposition̂̃

ΛH = ṼṼ⊤ + ṼW̃⊤ + W̃Ṽ⊤ + W̃W̃⊤. (40)

We define some events: Ẽ1 =
{
∥W̃W̃⊤∥ ⩽ 6p∨H+log(nλ)

n

}
, Ẽ2 =

{
∥ ̂̃ΛV − Λ̃∥ ⩽ 2

3νκλ
}
and Ẽ = Ẽ1∩ Ẽ2.

In view of Corollary 2, we have the following result.

Corollary 3. For ν ∈ (κ, 2κ], we can find constants C and C̃ , such that if

κ2H2 (log(nκH) + d) < Cnλ

and κ (p ∨H + log(nλ)) < Cnλ, then P
(
Ẽc
)
⩽ C̃

nλ and on the event Ẽ, the followings hold

a) 1
3λ ⩽ λd(

̂̃
ΛV ) ⩽ λ1(

̂̃
ΛV ) ⩽ 2κλ.

b) ∥ ̂̃ΛH − ̂̃
ΛV ∥ ⩽ λ

√
18κp∨H+log(nλ)

nλ < 1
4λ.

c) λd+1(
̂̃
ΛH) < 1

4λ.

Recall the SIR estimator B̂ in (5). Our goal is to bound the expectation of ∥B̂⊗ −B⊗∥2F . Under the
assumption that ∥Σ−1∥ < M , one has

∥B̂⊗ −B⊗∥F < M∥Σ1/2
(
B̂⊗ −B⊗

)
Σ1/2∥F

⩽M
(
∥Σ1/2B̂⊗Σ1/2 − (Σ̂1/2B̂)⊗∥F + ∥(Σ̂1/2B̂)⊗ −Σ1/2B⊗Σ1/2∥F

)
. (41)

Step 1: Bounding the first term in (41).
For any matrices A ∈ Rp×p and L ∈ Rp×p, one has the identity that A⊤LA − L = (A − Ip)

⊤LA +
L(A− Ip) and the inequality

∥A⊤LA−L∥F ⩽ ∥A− Ip∥∥L∥F ∥A∥+ ∥L∥F ∥A− Ip∥
= (∥A∥+ 1)∥A− Ip∥∥L∥F .

Substitute A = Î = Σ̂−1/2Σ1/2 and L = (Σ̂1/2B̂)⊗. Then

∥Σ1/2B̂⊗Σ1/2 − (Σ̂1/2B̂)⊗∥F ⩽ (∥Î∥+ 1)∥Î− Ip∥∥(Σ̂1/2B̂)⊗∥F ⩽ d(∥Î∥+ 1)∥Î− Ip∥

since Σ̂1/2B̂ is a p× d orthogonal matrix. In order to obtain an upper bound for the right hand side in the
last inequality, we present the following lemma, whose proof will be provided at the end of this subsection.

Lemma 8. There exist constants C and C̃, such that if p+log(nλ) < Cn, then ∥Î∥2 < 2M2, ∥Σ̂−1/2∥2 < 2M

and ∥Î− Ip∥2 < C̃ p+log(nλ)
n hold with probability at least 1− C̃/nλ.

Let E be the intersection of the events in Corollary 3 and Lemma 8.
By Lemma 8, one has

1E∥Σ1/2B̂⊗Σ1/2 − Σ̂1/2B̂⊗Σ̂1/2∥2F ≲
d[p+ log(nλ)]

n
. (42)

Step 2: Bounding the second term in (41).

We know that Σ̂1/2B̂ is formed by the first d leading eigenvector of
̂̃
ΛH = Σ̂−1/2Λ̂HΣ̂−1/2. Since B̃ is

formed by the first d leading eigenvectors of
̂̃
ΛV , by Lemma 28 and Corollary 3, on the event E, it holds that

∥(Σ̂1/2B̂)⊗ − B̃⊗∥2F ≲
1

λ2
∥Σ̂−1/2Λ̂HΣ̂−1/2 − ̂̃

ΛV ∥2F . (43)
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Let ∆ = Σ̂−1/2Λ̂HΣ̂−1/2 − ̂̃
ΛV and Î = Σ̂−1/2Σ1/2. Then ∆ = Î

(̂̃
ΛH − ̂̃

ΛV

)
Î⊤ + (̂I − Ip)

̂̃
ΛV Î

⊤ +

̂̃
ΛV

(
Î− Ip

)⊤
.

We then have

1E∥∆∥2F ≲ 1E

(
∥ ̂̃ΛH − ̂̃

ΛV ∥2F + ∥ ̂̃ΛV ∥2F
p+ log(nλ)

n

)
. (44)

Note that ∥ ̂̃ΛH − ̂̃
ΛV ∥F ⩽ 2∥ṼW̃⊤∥F + ∥W̃W̃⊤∥F . By Lemma 24 and W̃ = B̃⊥Ẽ , we have

E∥W̃W̃⊤∥2F ⩽ E∥ẼẼ⊤∥2F

=
1

n2
(p− d)H(p− d+H + 1)

≲
pH (p+H)

n2
, (45)

and

ETr
(
W̃⊤W̃

)
⩽

1

n
(p− d)H

≲
pH

n
.

Since on the event E, ∥Ṽ⊤Ṽ∥ < 2κλ,

1E∥ṼW̃⊤∥2F = 1ETr
(
ṼW̃⊤W̃Ṽ⊤

)
⩽ 1E∥Ṽ⊤Ṽ∥Tr

(
W̃⊤W̃

)
⩽ 2κλTr

(
W̃⊤W̃

)
,

where the second inequality is due to the fact that Tr(AL) ⩽ ∥A∥Tr(L) holds for any positive semi-definite

matrices L and A. It then follows that E1E∥ṼW̃⊤∥2F ≲ λpH
n . Combining this with Equation (45), we have

E1E∥
̂̃
ΛH − ̂̃

ΛV ∥2F ≲
λpH

n
+
pH (p+H)

n2

≲
λpH

n
, (46)

because p ∨H/ (nλ) is small.

Note that Ṽ = B̃Z and Z = B̃⊤Ṽ, we have Tr
(
ṼṼ⊤

)
= Tr

(
ZZ⊤) ⩽ d∥ṼṼ⊤∥ because B̃⊤B̃ = Id.

Therefore,

∥ ̂̃ΛV ∥2F = Tr
(
ṼṼ⊤ṼṼ⊤

)
⩽ ∥ṼṼ⊤∥Tr

(
ṼṼ⊤

)
⩽ d∥ṼṼ⊤∥2,

which implies that 1E∥
̂̃
ΛV ∥2F ⩽ 4κ2λ2d.

In view of inequalities (44),(46), and (43), we have

E
(
1E∥(Σ̂1/2B̂)⊗ − B̃⊗∥2F

)
≲

1

λ2
E
(
1E∥∆∥2F

)
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≲
1

λ2

(
λpH

n
+ λ2d

p+ log(nλ)

n

)
≲
H[p+ log(nλ)]

nλ
. (47)

Combining Equations (41), (47) and (42), one has

E
(
1E∥B̂⊗ −B⊗∥2F

)
≲
H[p+ log(nλ)]

nλ
. (48)

Step 3: Synthesis.

In addition, one has ∥B̂⊗ − B⊗∥2F ⩽ 2d and P(Ec) ≲ 1
nλ , one has E

(
1Ec∥B̂⊗ −B⊗∥2F

)
≲ d

nλ . We

conclude that

E∥B̂⊗ −B⊗∥2F ≲
H[p+ log(nλ)]

nλ
.

Proof of Lemma 8. Note that
̂̃
Σ := Σ−1/2Σ̂Σ−1/2 is the empirical covariance matrix of X̃i. By Lemma 27,

with probability at least 1−2 exp(−nt2/2), the eigenvalues of ̂̃Σ lie between (1−
√
p/n−t)2 and (1+

√
p/n+

t)2.
Fix t ≍

√
2 log(nλ)/n and assume the event happens.

If p+log(nλ)
n is sufficiently small (< 1), the eigenvalues of

̂̃
Σ lie between (1/2, 2). In this case, ∥Σ̂−1∥ ⩽

∥Σ1/2Σ̂−1Σ1/2∥M < 2M because ∥Σ−1∥ < M by assumption. We can also easily see that ∥Î∥ ⩽ ∥Σ̂−1∥1/2∥Σ∥1/2 <√
2M .

Furthermore, Î−Ip = Σ̂−1/2
(
Σ1/2 − Σ̂1/2

)
. By Schmitt [1992, Lemma 2.2] and the fact that Σ ≳M−1I

and Σ̂ ≳ (2M)−1I, we have

∥Σ1/2 − Σ̂1/2∥ < 3
√
M∥Σ− Σ̂∥

= 3
√
M∥Σ1/2(I− ̂̃

Σ)Σ1/2∥

⩽ 3
√
MM∥I− ̂̃

Σ∥,

where the last inequality is because ∥Σ∥ < M by assumption. Since ∥I − ̂̃
Σ∥ = max1⩽i⩽p |1 − σi(

̂̃
Σ)| ≲√

p+log(nλ)
n , we have ∥Î− Ip∥ < 5M2∥I− ̂̃

Σ∥ ≲
√

p+log(nλ)
n .

D.2 Proof of Theorem 8

Preliminaries

Let L = {T ⊂ [p] : S ⊂ T, |T | ⩽ 2s}. For any T ∈ L, we define some notations.
Let JT be the matrix formed by the rows of Ip in T . Let ΣTT be the sub-matrix of Σ with row indices

and column indices both equal to T , i.e., JTΣJ⊤
T . Let Σ

1/2
TT be a square root of ΣTT . Note that it is different

from the sub-matrix of a square root of Σ. Let B̃(T ) = Σ
1/2
TT JTB. Then B̃⊤

(T )B̃(T ) = B⊤J⊤
T ΣTTJTB =

B⊤J⊤
T JTΣJ⊤

T JTB = B⊤ΣB = Id because S ⊂ T . Let B̃(T ),⊥ is a |T | × (|T | − d) orthogonal matrix such

that B̃⊤
(T )B̃(T ),⊥ = 0.

For a pair of (X, Y ) that is sampled from the distribution M ∈ Ms (p, d, λ), we introduce the following
notations.

Let X̃(T ) = Σ
−1/2
TT JTX. Then X̃(T ) ∼ N(0, I|T |) because Σ

−1/2
TT JTΣJ⊤

T Σ
−1/2
TT = I|T |.
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Let Z = B⊤X.Note that Z = B⊤J⊤
T JTX = B̃⊤

(T )X̃(T ) because S ⊂ T . Let Ẽ(T ) = B̃⊤
(T ),⊥X̃(T ). Since

X̃(T ) ∼ N(0, I|T |), one has Z ∼ N(0, Id) and Ẽ(T ) ∼ N(0, I|T |−d). Furthermore, Z ⊥⊥ Ẽ(T ) and

X̃(T ) = B̃(T )B̃
⊤
(T )X̃(T ) + B̃(T ),⊥B̃

⊤
(T ),⊥X̃(T ) = B̃(T )Z + B̃(T ),⊥Ẽ(T ).

Let Ṽ(T ) = B̃(T )Z and W̃(T ) = B̃(T ),⊥Ẽ(T ). Then Ṽ ⊤
(T )W̃(T ) = 0. Let Λz = Cov (E[Z | Y ]) and let

Λ̃(T ) = B̃(T )ΛzB̃
⊤
(T ). Then Λ̃(T ) = Cov

(
E[X̃(T ) | Y ]

)
.

We next introduce the notation for the sliced samples. For example, we define X̃(T ),h,· similarly to the

definition of Xh,· in (3) and X̃(T ) =
1√
H

[
X̃(T ),1,· , X̃(T ),2,·, ..., X̃(T ),H,·

]
.

Similarly, we define Ṽ (T ),h,·, W̃ (T ),h,·, Ẽ(T ),h,· and Ṽ(T ), W̃(T ), Ẽ(T ). Then Ṽ(T ) = B̃(T )Z and W̃(T ) =

B̃(T ),⊥Ẽ(T ). We see that Ṽ⊤
(T )W̃(T ) = 0. Since Ẽ(T ) ∼ N(0, I|T |−d) and is independent of Y , we know that

the entries Ẽ(T ),i,j of Ẽ(T ) are i.i.d. samples of N(0, 1
n ).

Define
̂̃
Λ(T ) = X̃(T )X̃⊤

(T ),
̂̃
ΛV,(T ) = Ṽ(T )Ṽ⊤

(T ) and Λ̂z = ZZ⊤. Recall the definition of the SIR estimate

for Cov(E(X | Y )): Λ̂H = XX⊤. Then JT Λ̂HJ⊤
T = Σ

1/2
TT
̂̃
Λ(T )Σ

1/2
TT and

̂̃
ΛV,(T ) = B̃(T )Λ̂zB̃

⊤
(T ).

We have the following decomposition

̂̃
Λ(T ) = Ṽ(T )Ṽ⊤

(T ) + Ṽ(T )W̃⊤
(T ) + W̃(T )Ṽ⊤

(T ) + W̃(T )W̃⊤
(T )

(49)

Since we have randomly divided the samples into two equal sets of samples, we have the corresponding

statistics Λ
(i)
H , Λ̃

(i)
(T ), Λ̃

(i)
V,(T ), Ṽ

(i)
(T ), Ẽ

(i)
(T ), W̃

(i)
(T ), and Λ̂

(i)
z for the ith set of samples (i = 1, 2) similar to the

definition of Λ̂H ,
̂̃
Λ(T ),

̂̃
ΛV,(T ), Ṽ(T ), Ẽ(T ), W̃(T ), and Λ̂z respectively.

Finally, we introduce an “oracle estimator”, where the word oracle suggests this is an estimator only if
we know S.

B̂O := argmax
B

Tr(B⊤Λ
(1)
H B)

s.t. B⊤Σ̂(1)B = Id, supp(B) = S.
(50)

Main part of the proof

For i = 1, 2, we define two events:

(i) Ẽ
(i)
2 :=

{
maxT∈L

(
∥Λ̃(i)

V,(T ) − Λ̃(T )∥
)
⩽ 2κλ

3ν

}
,

(ii) Ẽ
(1)
1 =

{
maxT∈L

(
∥W̃(1)

(T )W̃
(1),⊤
(T ) ∥

)
⩽ 6 2s∨H+s log(ep/s)+log(nλ)

n

}
.

Furthermore, define Ẽ = Ẽ
(1)
1 ∩ Ẽ

(1)
2 ∩ Ẽ

(2)
2 .

We apply Lemma 27 to
√
n · Ẽ(i)

(T ) to conclude that

P
(
∥W̃(i)

(T )W̃
(i),⊤
(T ) ∥ > 6

max(|T |, H) + t

n

)
⩽ 2 exp (−t) ,

which implies that

P
(
∃T ∈ L, ∥W̃(i)

(T )W̃
(i),⊤
(T ) ∥ > 6

max(|T |, H) + t

n

)
⩽ 2|L| exp (−t) .

In view of Corollary 2, one has the following analogy.

33



Corollary 4. For ν ∈ (κ, 2κ], we can find constants C and C̃ , such that if

κ2H2 (log(nH) + log κ+ d) < Cnλ

and κ (2s ∨H + s log(ep/s) + log(nλ)) < Cnλ, then P
(
Ẽc
)
⩽ C̃

nλ and on the event Ẽ, the followings hold

a) 1
3λ ⩽ λd(Λ̂

(i)
z ) ⩽ λ1(Λ̂

(i)
z ) ⩽ 2κλ.

b) ∥Λ̃(i)
(T ) − Λ̃

(i)
V,(T )∥ ⩽ λ

√
18κ 2s∨H+s log(ep/s)+log(nλ)

nλ < 1
4λ, for any T ∈ L.

c) λd+1(Λ̃
(i)
(T )) <

1
4λ, for any T ∈ L.

d) ∥Λ̃(i)
(T )∥ ⩽ 3κλ.

Proof of d):

Proof. Since Λ̃
(i)
V,(T ) = B̃

(i)
(T )Λ̂

(i)
z B̃⊤

(T ) and B̃⊤
(T )B̃(T ) = Id, one has:

λ1(Λ̃
(i)
V,(T )) = λ1(B̃(T )Λ̂

(i)
z B̃⊤

(T )) = λ1(B̃
⊤
(T )B̃(T )Λ̂

(i)
z ) = λ1(Λ̂

(i)
z ).

Combining a) and b) leads to that

∥Λ̃(i)
(T )∥ ⩽ ∥Λ̃(i)

(T ) − Λ̃
(i)
V,(T )∥+ λ1(Λ̂

(i)
z ) ⩽ 3κλ.

Let Σ̂TT = JT Σ̂
(1)J⊤

T , and ÎT = Σ̂
−1/2
TT Σ

1/2
TT .

Lemma 9. There exist constants C and C̃, such that if s log(ep/s) + log(nλ) < Cn, then it holds with

probability at least 1 − C̃/nλ that for all T ∈ L, ∥ÎT ∥2 < 2M2, ∥Σ̂−1/2
TT ∥2 < 2M and ∥ÎT − I|T |∥2 <

C̃ s log(ep/s)+log(nλ)
n .

Proof. The proof follows the same argument in Lemma 8 by choosing t ≍
√

2[s log(ep/s) + log(nλ)]/n and
is omitted.

Let E be the intersection of Ẽ and the events in Lemma 9. On the event E, the results stated in Corollary 4
and Lemma 9 uniformly hold for T ∈ L, in particular for supp(B̂) ∪ S.

In the following, we set T to be the random element supp(B̂) ∪ S. Furthermore, we abbreviate B̃(T ) by

F , i.e. F := Σ
1/2
TT JTB. Similarly, we define F̂O = Σ̂

1/2
TT JT B̂O and F̂ = Σ̂

1/2
TT JT B̂. Then F , F̂O and F̂ are

all in O(|T |, d).
Let F̂⊤

O F = U1∆U⊤
2 be the singular value decomposition of F̂⊤

O F such that Ui ∈ O(d, d) and ∆ is a

d× d diagonal matrix with non-negative entries. Let M := U⊤
2 Λ̂

(2)
z U2.

By the definition of B̂ and Λ
(2)
H (the SIR estimator of Λ based on the second set of samples), one has

0 ⩾ ⟨Λ(2)
H , B̂OB̂

⊤
O − B̂B̂⊤⟩ = ⟨Λ(2)

H ,J⊤
T JT (B̂OB̂

⊤
O − B̂B̂⊤)J⊤

T JT ⟩ = ⟨JTΛ
(2)
H J⊤

T ,JT (B̂OB̂
⊤
O − B̂B̂⊤)J⊤

T ⟩
where the first equality comes from the fact that supp(B̂) ∪ supp(B̂O) = T .

Applying the Lemma 32 with the positive definite matrix U1MU⊤
1 , one has

λd(Λ̂
(2)
z )

2
∥F̂ F̂⊤ − F̂OF̂

⊤
O ∥2F ⩽⟨F̂OU1MU⊤

1 F̂⊤
O , F̂OF̂

⊤
O − F̂ F̂⊤⟩

=⟨Σ̂1/2
TT F̂OU1MU⊤

1 F̂⊤
O Σ̂

1/2
TT ,JT (B̂OB̂

⊤
O − B̂B̂⊤)J⊤

T ⟩

⩽⟨Σ̂1/2
TT F̂OU1MU⊤

1 F̂⊤
O Σ̂

1/2
TT − JTΛ

(2)
H J⊤

T ,JT (B̂OB̂
⊤
O − B̂B̂⊤)J⊤

T ⟩
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:=I + II (51)

where

I =⟨Σ̂1/2
TT F̂OU1MU⊤

1 F̂⊤
O Σ̂

1/2
TT − Σ̂

1/2
TT Λ̃

(2)
V,(T )Σ̂

1/2
TT ,JT (B̂OB̂

⊤
O − B̂B̂⊤)J⊤

T ⟩

II =⟨Σ̂1/2
TT Λ̃

(2)
V,(T )Σ̂

1/2
TT −Σ

1/2
TT Λ̃

(2)
(T )Σ

1/2
TT ,JT (B̂OB̂

⊤
O − B̂B̂⊤)J⊤

T ⟩.

The last inequality holds because JTΛ
(2)
H J⊤

T = Σ
1/2
TT Λ̃

(2)
(T )Σ

1/2
TT .

For I:
We first rewrite I:

I =⟨Σ̂1/2
TT F̂OU1MU⊤

1 F̂⊤
O Σ̂

1/2
TT − Σ̂

1/2
TT Λ̃

(2)
V,(T )Σ̂

1/2
TT ,JT (B̂OB̂

⊤
O − B̂B̂⊤)J⊤

T ⟩

=⟨F̂OU1MU⊤
1 F̂⊤

O − Λ̃
(2)
V,(T ), F̂OF̂

⊤
O − F̂ F̂⊤⟩.

Note that M = U⊤
2 Λ̂

(2)
z U2, so on the event E, the eigenvalues of M are in ( 13λ, 2κλ). Following the same

proof of (32), one has 1E|I| ⩽ Cλ∥F̂OF̂
⊤
O − FF⊤∥F ∥F̂OF̂

⊤
O − F̂ F̂⊤∥F .

For II: Recall that ÎT = Σ̂
−1/2
TT Σ

1/2
TT .

II = ⟨Σ̂1/2
TT Λ̃

(2)
V,(T )Σ̂

1/2
TT −Σ

1/2
TT Λ̃

(2)
(T )Σ

1/2
TT ,JT (B̂OB̂

⊤
O − B̂B̂⊤)J⊤

T ⟩

= ⟨Λ̃(2)
V,(T ) − Σ̂

−1/2
TT Σ

1/2
TT Λ̃

(2)
(T )Σ

1/2
TT Σ̂

−1/2
TT , Σ̂

1/2
TT JT (B̂OB̂

⊤
O − B̂B̂⊤)J⊤

T Σ̂
1/2
TT ⟩

= ⟨Λ̃(2)
V,(T ) − ÎT Λ̃

(2)
(T )Î

⊤
T , F̂OF̂

⊤
O − F̂ F̂⊤⟩.

We can bound the last expression using the next lemma, whose proof is deferred to the end of this
section.

Lemma 10. If λ ⩽ ϖd ⩽ 1
d and nλ ⩽ es, then on the event E, we have:

⟨Λ̃(2)
V,(T ) − ÎT Λ̃

(2)
(T )Î

⊤
T , F̂OF̂

⊤
O − F̂ F̂⊤⟩ ≲λϵn∥F̂OF̂

⊤
O − F̂ F̂⊤∥F . (52)

On the event E, λd(Λ̂
(2)
z ) ⩾ λ/3. Equation (51) leads to

∥F̂ F̂⊤ − F̂OF̂
⊤
O ∥2F ≲

(
∥F̂OF̂

⊤
O − FF⊤∥F +

√
ϵ2n

)
∥F̂ F̂⊤ − F̂OF̂

⊤
O ∥F ,

which yields
∥F̂ F̂⊤ − F̂OF̂

⊤
O ∥F ≲ ∥F̂OF̂

⊤
O − FF⊤∥F +

√
ϵ2n. (53)

By triangle inequality,

∥F̂ F̂⊤ − FF ∥F ⩽ ∥F̂ F̂⊤ − F̂OF̂
⊤
O ∥F + ∥F̂OF̂

⊤
O − FF⊤∥F ,

and thus on the event E,

∥F̂ F̂⊤ − FF ∥2F ≲ ∥F̂OF̂
⊤
O − FF⊤∥2F + ϵ2n

Following the proof of Equations (48) in Section D.1, there exists a set EO such that P(EcO) ≲ 1
nλ and

E
(
1EO∥F̂OF̂

⊤
O − FF⊤∥2F

)
≲ ϵ2n, (54)

E
(
1EO∥B̂OB̂

⊤
O −BB⊤∥2F

)
≲ ϵ2n. (55)
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Therefore

E
(
1E∩EO∥F̂ F̂⊤ − FF⊤∥2F

)
≲ ϵ2n.

On the event E, by Lemma 9 and ∥Σ̂−1/2
TT ∥2 < 2M , one has

∥B̂B̂⊤ − B̂OB̂
⊤
O∥F

= ∥JT

(
B̂B̂⊤ − B̂OB̂

⊤
O

)
J⊤
T ∥F

⩽ ∥Σ̂−1/2
TT ∥2∥Σ̂1/2

TT JT

(
B̂B̂⊤ − B̂OB̂

⊤
O

)
J⊤
T Σ̂

1/2
TT ∥F

= ∥Σ̂−1/2
TT ∥2∥F̂ F̂⊤ − F̂OF̂

⊤
O ∥F

< 2M
(
∥F̂OF̂

⊤
O − FF⊤∥F +

√
ϵ2n

)
, (56)

where the first equation is due to the definition of T , the first inequality is due to Lemma 25 and the last
inequality is because Equation (53).

By triangle inequality, one has ∥B̂B̂⊤ − BB⊤∥F ⩽ ∥B̂B̂⊤ − B̂OB̂
⊤
O∥F + ∥B̂OB̂

⊤
O − BB⊤∥F . This,

together with Equations (54) to (56), yields

E
(
1E∩EO∥B̂B̂⊤ −BB⊤∥2F

)
≲ ϵ2n.

Since P(Ec ∪ EcO) ≲
1
nλ , one has

E∥B̂B̂⊤ −BB⊤∥2F ≲ ϵ2n.

Proof of Lemma 10. First, we have

Λ̃
(2)
V,(T ) − ÎT Λ̃

(2)
(T )Î

⊤
T =Ṽ(2)

(T )Ṽ
(2),⊤
(T ) − ÎT Ṽ(2)

(T )Ṽ
(2),⊤
(T ) Î⊤T−(

ÎT Ṽ(2)
(T )W̃

(2),⊤
(T ) Î⊤T + ÎT W̃(2)

(T )Ṽ
(2),⊤
(T ) Î⊤T + ÎT W̃(2)

(T )W̃
(2),⊤
(T ) Î⊤T

)
.

Following the same proof of Lemma 7 and notice that 1E∥ÎT ∥2 < 2M2, we have:

⟨̂IT Ṽ(2)
(T )W̃

(2),⊤
(T ) Î⊤T + ÎT W̃(2)

(T )Ṽ
(2),⊤
(T ) Î⊤T + ÎT W̃(2)

(T )W̃
(2),⊤
(T ) Î⊤T , F̂OF̂

⊤
O − F̂ F̂⊤⟩ ≲λϵn∥F̂OF̂

⊤
O − F̂ F̂⊤∥F .

Then we only need to show that

⟨Ṽ(2)
(T )Ṽ

(2),⊤
(T ) − ÎT Ṽ(2)

(T )Ṽ
(2),⊤
(T ) Î⊤T , F̂OF̂

⊤
O − F̂ F̂⊤⟩ ≲λϵn∥F̂OF̂

⊤
O − F̂ F̂⊤∥F .

Using the inequality that |Tr(A)| ⩽
√
rank(A)∥A∥F and Lemma 25, we have

⟨Ṽ(2)
(T )Ṽ

(2),⊤
(T ) − ÎT Ṽ(2)

(T )Ṽ
(2),⊤
(T ) Î⊤T , F̂OF̂

⊤
O − F̂ F̂⊤⟩2

⩽d∥
(
F̂OF̂

⊤
O − F̂ F̂⊤

)(
Ṽ(2)
(T )Ṽ

(2),⊤
(T ) − ÎT Ṽ(2)

(T )Ṽ
(2),⊤
(T ) Î⊤T

)
∥2F

⩽d∥F̂OF̂
⊤
O − F̂ F̂⊤∥2F ∥Ṽ

(2)
(T )Ṽ

(2),⊤
(T ) − ÎT Ṽ(2)

(T )Ṽ
(2),⊤
(T ) Î⊤T ∥2

⩽d∥F̂OF̂
⊤
O − F̂ F̂⊤∥2F (∥ÎT ∥+ 1)2∥Ṽ(2)

(T )Ṽ
(2),⊤
(T ) ∥2∥ÎT − I|T |∥2,

(57)

where the last inequality is due to the following fact: for any two m ×m matrices A and B, we can write
A−BAB⊤ = (I −B)A+BA(I −B)⊤ and conclude the inequality that ∥A−BAB⊤∥ ⩽ ∥I −B∥∥A∥+
∥B∥∥A∥∥I −B∥ = (∥B∥+ 1)∥A∥∥I −B∥.
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By Corollary 4 and Lemma 9, we know that

∥ÎT ∥ ≲ 1; ∥Ṽ(2)
(T )Ṽ

(2),⊤
(T ) ∥ ≲ λ; ∥ÎT − I|T |∥2 ≲

s log(ep/s) + log(nλ)

n
.

Insert these equations into (57) and use the conditions that λ ⩽ 1
d and nλ ⩽ es, we have

⟨Ṽ(2)
(T )Ṽ

(2),⊤
(T ) − ÎT Ṽ(2)

(T )Ṽ
(2),⊤
(T ) Î⊤T , F̂OF̂

⊤
O − F̂ F̂⊤⟩2

≲dλ2
s log(ep/s) + log(nλ)

n
∥F̂OF̂

⊤
O − F̂ F̂⊤∥2F

≲λ2ϵ2n∥F̂OF̂
⊤
O − F̂ F̂⊤∥2F .

E Proof of Theorem 4

We follow the the standard procedure of applying Fano’s inequality to obtain the minimax lower bound.
The following lemma is one version of the generalized Fano method.

Lemma 11 (Yu [1997]). Let N ⩾ 2 be an integer and {θ1, . . . , θN} ⊂ Θ0 index a collection of probability
measures Pθi on a measurable space (X ,A). Let ρ be a pseudometric on Θ0 and suppose that for all i ̸= j

ρ(θi, θj) ⩾ αN , and KL(Pθi ,Pθj ) ⩽ βN .

Then every A-measurable estimator θ̂ satisfies

max
i

Eρ(θ̂, θi) ⩾
αN

2

(
1− βN + log 2

logN

)
.

We first introduce the following packing set.

Lemma 12 (Packing Set). For any ε ∈ (0,
√
2(d ∧ (p− d))] and any α ∈ (0, 1), there exists a subset

Θ ⊂ O(p, d) such that

|Θ| ⩾
(c0
α

)d(p−d)

,

and for any B, B̃ ∈ Θ,
∥B − B̃∥F ⩽ 2ε, ∥BB⊤ − B̃B̃⊤∥F ⩾ αε,

where c0 is an absolute constant.

Recall the Definition 4 that ψ(z1, . . . , zd) equals to the index i of the largest absolute values of the
coordinates multiplied by sgn(zi) if ∥z∥2 is less than md the median of χ2

d the chi-squared distribution with
d degrees of freedom and Ai = ψ−1(i) for all i in {±1, . . . ,±d}, or more explicitly,

Ai = {z ∈ Rd : ∥z∥2 ⩽ md, sgn(z|i|) = sgn(i), and |z|i|| > |zj |,∀j ̸= i}.

Essentially, the ball centered at the original with radius
√
md in Rd is partitioned into 2d disjoint parts Ai’s

that have the same shape. For our later convenience, we define A0 = {z ∈ Rd : ∥z∥2 > md} the complement
of the ball. We have P(Z ∈ A0) = P(ψ(Z) = 0).

Define
λ0,d := (2d)−1E (Z1 | Z ∈ A1)

2
, where Z ∼ N(0, Id).

This number will be used in the following two propositions, which show that the joint distribution (X, Y )
in (10) enjoys the desired properties (i) and (ii) stated in Section 4.2.1.

37



Proposition 2. For any B ∈ O(p, d) and PB constructed by Equation (10), Y can be represented as
f(B⊤X, ϵ) for ϵ ∼ N(0, 1). Furthermore, f(B⊤X, ϵ) belongs to the class Fd(λ, κ, 8d) for any κ ⩾ 1 and
λ = ρ2λ0,d.

Proposition 3. Suppose B and B̃ are in O(p, d). Let PB and PB̃ be defined by Equation (10).

1. For any ρ ∈ (0, 1), it holds that

KL(PB,PB̃) ⩽
ρ2

2(1− ρ2)
∥B − B̃∥2F .

2. There exist a universal constant C and a constant δd = Θ(d−7.1/2) such that for any ρ ∈ (0, δd], it
holds that

KL(PB,PB̃) ⩽
Cρ2

1− ρ2
λ0,d∥B − B̃∥2F .

The proofs of Lemma 12, Propositions 2 and 3 will be given in the subsequent subsections. We can now
prove Theorem 4.

Fix any α ∈ (0, 1) (e.g. α = 1/2) and take Θ to be the subset in Lemma 12. For eachB ∈ Θ, define PB by
Equation (10). Proposition 2 guarantees that PB ∈ M (p, d, λ). Denoted by ϖd := min(δ2d, 1/2)λ0,d. Suppose

λ ⩽ ϖd. Let ρ =
√
λ/λ0,d. Then 1/(1− ρ2) ⩽ 2 and we can apply the second statement of Proposition 3 to

bound the KL-divergence between each pairs of different populations Pn
B and Pn

B̃
for B, B̃ ∈ Θ.

Let ε2 = c1
d(p−d)
Cnλ , where C is the constant in Proposition 3 and c1 is a constant such that c1/(log(c0/α) ⩽

1/16 for c0 in Lemma 12. Then using Lemma 11, we have

inf
B̂

sup
B∈Θ

E∥B̂B̂⊤ −BB⊤∥2F (58)

⩾ min
B,B̃∈Θ,B ̸=B̃

∥BB⊤ − B̃B̃⊤∥2F

(
1−

maxKL(Pn
B,Pn

B̃
) + log(2)

log(|Θ|)

)

⩾α2ε2
(
1− 8Cnρ2λ0,dε

2 + log 2

log(|Θ|)

)
⩾α2c1 · d(p− d)

nλ
·
(
1− 8c1d(p− d)

log(|Θ|)
− log 2

log(|Θ|)

)
.

Since log |Θ| > d(p− d) log(c0/α) ⩾ 16c1d(p− d), we have

inf
B̂

sup
B∈Θ

EB∥B̂B̂⊤ −BB⊤∥2F ≳
d(p− d)

nλ
.

We complete the proof of Theorem 4.

Remark 3. If we apply the first statement of Proposition 3 to bound the KL-divergence between each pairs
of different populations Pn

B and Pn
B̃
, we do not need to require λ ⩽ ϖd, and following the same argument as

above, we obtain the lower bound

inf
B̂

sup
B∈Θ

EB∥B̂B̂⊤ −BB⊤∥2F ≳
d(p− d)λ0,d

nλ
.

A similar yet more straightforward argument could result in a weaker lower bound at the rate of p
nλ , which

does not impose the constraint λ ⩽ ϖd. Although this result does not exhibit the linear dependence of the
minimax rate on the structural dimension d and is not as sharp, it still reflects the significant effect of the
small gSNR on the estimation of the central space.
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E.1 Proof of Lemma 12

We first state two lemmas from the literature.

Lemma 13 ([Cai et al., 2013, Lemma 1]). For any ε ∈ (0,
√

2(d ∧ (p− d))], any α ∈ (0, 1) and any
A ∈ O(p, d), there exists a subset Θ ⊂ O(p, d) such that

|Θ| ⩾
(c0
α

)d(p−d)

,

and for any B, B̃ ∈ Θ,
ρ(AA⊤,BB⊤) ⩽ ε, ρ(BB⊤, B̃B̃⊤) ⩾ αε,

where c0 is an absolute constant.

Lemma 14 ([Ma and Li, 2020, Lemma 6.5]). For any matrices A1,A2 ∈ O(p, d), there exists some Q ∈
O(d, d) such that

∥A1 −A2Q∥F ⩽ ∥A1A
⊤
1 −A2A

⊤
2 ∥F . (59)

Proof of Lemma 12. Pick any A ∈ O(p, d). Let Θ0 be the subset in Lemma 13. For each B0 ∈ Θ0, we can
find QB0

such that ∥A−B0QB0
∥F ⩽ ϵ due to Lemma 14. Define Θ = {B0QB0

: B0 ∈ Θ0}. By the triangle
inequality, it is easy to see that Θ satisfies the requirement of the lemma. Thus we complete the proof of
Lemma 12.

E.2 Proof of Proposition 2

To prove Proposition 2, we need the following lemma.

Lemma 15. Suppose (Z, Y ) is constructed as in Equation (10). Define e0 = 0 and for i = 1, . . . , d, define
e−i = −ei.

1. P (W = i) = (4d)−1, for i = ±1, . . . ,±d and E
[
eWe⊤W

]
= 1

2dI.

2. If y ∈ (i− σ, i+ σ), then l(y) = E[Z | Y = y] = E(Z1|ψ(Z) = 1)ei =
√
2dλ0,dei for i = ±1, . . . ,±d.

If y ∈ (−σ, σ), then l(y) = 0 .

3. Cov (E[Z | Y ]) = λ0,dId.

4. All eigenvalues of Cov(E[Z | Y ]) equal to λ0,d.

5. l(y) satisfies the weak (K, τ)-sliced stable condition for any K ⩾ 4dmax(1+ 2γ, τ), where γ ∈ (0, 1) is
defined as in Definition 2.

6. 1
100d ⩽ λ0,d ⩽ 4 log(2d)

d and 1
8d

√
2
⩽ E (Z1 1Z∈A1

) ⩽
√

2 log(2d)

2d . Furthermore, λ0,d ≍ log(d)
d as d→ ∞.

Proof of Lemma 15.

1: It is a direct corollary of the fact that Z ∼ N(0, Id) and md is the median of ∥Z∥2.

2: Since A0 is the complement of a ball centered at 0, it is rationally invariant. By the symmetry of
standard normal random vectors, E(Z | ψ(Z) = 0)

a.s.
= E(Z | Z ∈ A0) = 0.

Fix any i = 1, . . . , d and any Υ = ±1. Under the condition that y ∈ (Υi− σ,Υi+ σ), one has

E[Z|Y = y] = E[Z|ψ(Z) = Υi] = E[Z|ΥZi = max
j∈[d]

|Zj |],

E[Zk|ΥZi = max
j∈[d]

|Zj |] = 0(∀k ̸= i),

E[Zi|ΥZi = max
j∈[d]

|Zj |] = ΥE[Z1 | Z1 = max
j∈[d]

|Zj |] = ΥE[Z1 | ψ(Z) = 1].
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3 & 4: By the first and the second statements,

Cov (E[Z | Y ]) =E[E[Z|Y ]E[Z⊤|Y ]]

=
1

4d

d∑
i=−d

E2(Z1|ψ(Z) = 1)eie
⊤
i

=λ0,dId.

5: In the following, fixed β ∈ Rd. Since ℓ(y) = 0 for y ∈ (−σ, σ), we can focus on the case where |Y | > σ.
Fix any γ ∈ (0, 1) as defined in Definition 2.

Let Ji = (i−σ, i+σ) for each i = ±1, . . . ,±d. Suppose {Sh = [ah−1, ah) : h = 1, . . . ,H} is a partition
of [−d− σ, d+ σ] such that

1− γ

H
⩽ P(Y ∈ Sh) ⩽

1 + γ

H
, ∀h = 1, . . . ,H.

Since (1 + γ)/H ⩽ (1 + γ)/K < (4d)−1 = P (Y ∈ Ji) for any i = ±1, . . . ,±d, we conclude that Sh can
overlap with at most two Ji’s. If Sh is covered by some Ji, then Cov

(
β⊤l(Y )

∣∣Y ∈ Sh

)
= 0 because of

the second statement. If Sh overlaps with Ji and Jk, then by the AM-GM inequality, it holds that

Cov
(
β⊤l(Y )

∣∣Y ∈ Sh

)
= P(Y ∈ Ji | Y ∈ Sh)P(Y ∈ Jk | Y ∈ Sh)

(
l(i)⊤β − l(k)⊤β

)2
⩽ 2−1

([
l(i)⊤β

]2
+
[
l(k)⊤β

]2)
.

Summing over all h, one has

1

H

H∑
h=1

Cov
(
β⊤l(Y )

∣∣Y ∈ Sh

)
⩽

1

H

H∑
h=1

∑
i̸=k,

i,k∈{±1,...,±d}

1Sh∩Ji ̸=0 1Sh∩Jk ̸=02
−1
([

l(i)⊤β
]2

+
[
l(k)⊤β

]2)

⩽
1

H

∑
i∈{±1,...,±d}

[
l(i)⊤β

]2
=

4d

H
Cov

(
β⊤l(Y )

)
,

where the last inequality is due to the fact that for each i, there are at most two values of h such

that Sh is overlapped with Ji but not covered by Ji and thus
[
l(i)⊤β

]2
appears at most twice in the

summation. Since H/(4d) ⩾ K/(4d) ⩾ τ , we conclude that ℓ(y) is weak (K, τ)-sliced stable w.r.t. Y .

6: Suppose Z ∼ N(0, Id). By symmetry,

E (Z1 1Z∈A1
) =E (Zi 1Z∈Ai

) (for any i ∈ [d])

=(2d)−1
∑

i∈{±1,...,±d}

E
(
|Z|i|| 1Z∈Ai

)
=(2d)−1

∑
i∈{±1,...,±d}

E
(

max
i=1,...,d

|Zi| 1Z∈Ai

)

=(2d)−1E
(

max
i=1,...,d

|Zi| 1∥Z∥2⩽md

)
.
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To obtain an upper bound, we note that

E
(

max
i=1,...,d

|Zi| 1∥Z∥2⩽md

)
⩽E

(
max

i=1,...,d
|Zi|
)

⩽
√

2 log(2d),

where the last inequality is due to the maximal inequality of Gaussian r.v.s. (See Section 2.5 in
Boucheron et al. [2013]).

To get a lower bound, we note that maxi |Zi| ⩾
√

1
d

∑
i Z

2
i . Therefore

E
(

max
i=1,...,d

|Zi| 1∥Z∥2⩽md

)
⩾ d−1/2E

(
∥Z∥ 1∥Z∥2⩽md

)
⩾ d−1/2 1

10
E∥Z∥

⩾
1

10

√
d− 1

2

d
⩾

1

10
√
2
,

where the second inequality is by part 2 of Lemma 19 and the third is due to a lower estimate used in
the proof of that lemma. The two bounds together yield

1

20d
√
2
⩽ E (Z1 1Z∈A1

) ⩽

√
2 log(2d)

2d
.

Recall that λ0,d := (2d)−1E (Z1 | Z ∈ A1)
2
. By part 1, P(Z ∈ A1) = (4d)−1. Therefore, 1

100d ⩽

λ0,d ⩽ 4 log(2d)
d .

For d sufficiently large, we have md >
√
log d. Following the same proof of Equation (3.14) in Ledoux

and Talagrand [1991, Chapter 3.3], there is some positive constant c0 such that

E
(

max
i=1,...,d

|Zi| 1∥Z∥2⩽md

)
⩾ c0

√
log d.

Therefore, λ0,d ≍ log d
d .

Proof of Proposition 2. Note that any k ⩾ 2 independent uniform random variable sequence (r.v.s. for
short) can be constructed from a single U ∼ Unif(0, 1) as follows. Represent U as

∑∞
j=1 k

−jaj for aj ∈
{0, 1, . . . , k − 1}. Let U (i) =

∑∞
j=1 k

−ja(j−1)k+i for each i = 1, . . . , k. Since aj ’s are independent and

identically distributed, one conclude that U (i)’s are independent and identically distributed, each following
Unif(0, 1).

Let U = Φ(ϵ), where Φ is the cumulative density function (C.D.F.) for the standard normal distribution.
Since ϵ ∼ N(0, 1), one has U ∼ Unif(0, 1). Let k = 1 + d. Using the above construction of U (i)’s and let
ξj = Φ−1(U (j)) for 1 ⩽ j ⩽ d and η = σ · U (1+d), we can represent Y as a function of B⊤X and ϵ.

Since (
X
Z

)
=

(
Ip 0

ρB⊤
√
1− ρ2Id

)(
X
ξ

)
,

the joint distribution of (X,Z) is also normal. Thus by elementary results for normal distributions, one has

X | Z ∼N
(
E[X] + Cov(X,Z)var−1(Z)(Z − E[Z]), var(X)− Cov(X,Z)var−1(Z)Cov(Z,X)

)
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=N(ρBZ, Ip − ρ2BB⊤).

Hence

E[X | Y ] = E[E[X | Z, η] | Y ] = E[ρBZ | Y ] = ρBE[Z | Y ],

and

Cov(E[X | Y ]) = ρ2BCov(E[Z | Y ])B⊤.

Lemma 15 shows that all eigenvalues of Cov(E[Z | Y ]) equal to λ0,d.
Furthermore, l(y) = E[Z | Y = y] satisfies the weak (K, τ)-sliced stable condition for any K ⩾

4dmax(2, τ). Therefore, f(B⊤X, ϵ) belongs to the class Fd(λ, κ, 8d) if we choose τ = 2 and γ = 1/2.

E.3 Proof of Proposition 3

The first statement is relatively simple to prove. By the construction in Equation (10), PB(Y | X,Z) =
PB̃(Y | X,Z), a.s. By basic properties of KL-divergence,

KL(PB,PB̃) ⩽ KL(PB,PB̃) + EX,Y∼PB

(
KL(PB(Z | X, Y ),PB̃(Z | X, Y )

)
=KL(PB(X,Z, Y ),PB̃(X,Z, Y ))

=KL(PB(X,Z),PB̃(X,Z)). (60)

Furthermore, let ϕp(x) be the density function for N(0, Ip). Then we have

KL(PB(X,W ),PB̃(X,W ))

=EB

[
log

(
ϕp(X)(1− ρ2)−d/2ϕd(Z − ρB⊤X)

ϕp(X)(1− ρ2)−d/2ϕd(Z − ρB̃⊤X)

)]

=EB

[
1

2(1− ρ2)

(
∥Z − ρB⊤X∥2 − ∥Z − ρB̃⊤X∥2

)]
=

ρ2

2(1− ρ2)
E
[
∥(B − B̃)⊤X∥2

]
=

ρ2

2(1− ρ2)
∥B − B̃∥2F .

The rest of the proof is about the second statement. By the construction in Equation (10), PB(Y |
X,W ) = PB̃(Y | X,W ), a.s. By basic properties of KL-divergence,

KL(PB,PB̃) ⩽ KL(PB,PB̃) + EX,Y∼PB

(
KL(PB(W | X, Y ),PB̃(W | X, Y )

)
=KL(PB(X,W, Y ),PB̃(X,W, Y ))

=KL(PB(X,W ),PB̃(X,W )). (61)

Furthermore, let ϕp(x) be the density function for N(0, Ip). Then we have

KL(PB(X,W ),PB̃(X,W ))

=EB

[
log

(
ϕp(X)PB(Z ∈ AW | X)

ϕp(X)PB̃(Z ∈ AW | X)

)]
=EB

[
log

(
PB(Z ∈ AW | X)

PB̃(Z ∈ AW | X)

)]
.

Since we need to analyze the probability PB̃(Z ∈ AW | X), it is convenient to express it as functions of (B̃−
B)⊤X. In the following, ξ is a generic random vector that is independent with everything else and follows

N(0, Id). Let ∆B = B̃−B. For any fixed µ ∈ Rd, w ∈ {−d, . . . , d}, define gµw(t) = P(ρµ+ρt+
√

1− ρ2ξ ∈
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Aw) for t ∈ Rd. Now, we have PB(Z ∈ AW | X) = gB
⊤X

W (0) and PB̃(Z ∈ AW | X) = gB
⊤X

W (∆B⊤X).
Furthermore,

KL(PB(X,W ),PB̃(X,W )) = −EB

[
log gB

⊤X
W (∆B⊤X)− log gB

⊤X
W (0)

]
. (62)

It is pedagogical to provide an overview of our argument in obtaining an upper bound of the KL-

divergence. We will apply a second-order Taylor expansion to log gB
⊤X

W (t) around 0. Since the first-order
derivative has a zero expectation, we only need a careful examination of the second derivative. At the end,

we can show that the KL-divergence is close enough to ρ2

1−ρ2Tr
(
∆B⊤∆BEB

[
E (ξ | ψ(ξ) =W )

⊗
])

when ρ

is sufficiently small. By our construction in Equation (10),

EB

[
E (ξ | ψ(ξ) =W )

⊗
]
= λ0,dId,

which implies that the KL-divergence is closed to
ρ2λ0,d

1−ρ2 Tr
(
∆B⊤∆B

)
.

I. Taylor expansion. By Taylor expansion with an integral remainder, i.e., f(t) = f(0) +∇f(0)t+∫ 1

0
t⊤∇2f(st)t(1− s) d s, one has

log gB
⊤x

w (∆B⊤x)− log gB
⊤x

w (0)

=⟨∆B⊤x,∇ log gB
⊤x

w (0)⟩ . . .

+

∫ 1

0

x⊤∆B
(
∇2 log gB

⊤x
w (α∆B⊤x)

)
∆B⊤x(1− α) dα. (63)

Lemma 16. The derivative of log gµw(t) is

∇ log gµw(t) =

√
ρ2

1− ρ2
E
(
ξ | ρµ+ ρt+

√
1− ρ2ξ ∈ Aw

)
, (64)

and the second order derivative is

∇2 log gµw(t) =
ρ2

1− ρ2

{
−Id + E

(
ξ⊗ | ρµ+ ρt+

√
1− ρ2ξ ∈ Aw

)
−E

(
ξ | ρµ+ ρt+

√
1− ρ2ξ ∈ Aw

)⊗}
. (65)

By Equation (64),

EB⟨∆B⊤X,∇ log gB
⊤X

W (0)⟩

=

√
ρ2

1− ρ2
EB

〈
∆B⊤X,E

(
ξ | ρB⊤X +

√
1− ρ2ξ ∈ AW ,X,W

)〉
.

We split the expectation into parts given by {W = w} and use properties of conditional expectation to
obtain

EB

〈
∆B⊤X,E

(
ξ | ρB⊤X +

√
1− ρ2ξ ∈ AW ,X,W

)〉
=

d∑
w=−d

EB

(
1W=w

〈
∆B⊤X,E

(
ξ | ρB⊤X +

√
1− ρ2ξ ∈ Aw,X

)〉)
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=

d∑
w=−d

EB

P (W = w | X)

〈
∆B⊤X,

E
(
ξ 1

ρB⊤X+
√

1−ρ2ξ∈Aw
| X
)

P
(
ρB⊤X +

√
1− ρ2ξ ∈ Aw | X

)〉


=

d∑
w=−d

EB

(〈
∆B⊤X,E

(
ξ 1

ρB⊤X+
√

1−ρ2ξ∈Aw
| X
)〉)

=

d∑
w=−d

EB

(〈
∆B⊤X, ξ 1

ρB⊤X+
√

1−ρ2ξ∈Aw

〉)
=EB

(〈
∆B⊤X, ξ

〉)
= 0,

where the second equation is due to fact that the conditional distribution of Z | X d
= ρB⊤X +

√
1− ρ2ξ

and the last equation is because ξ is independent with X. We thus showed that

EB⟨∆B⊤X,∇ log gB
⊤X

W (0)⟩

=

√
ρ2

1− ρ2
EB

(
⟨∆B⊤X, ξ⟩

)
= 0.

Therefore, it suffices to focus on the second order term in Equation (63).
II. Analysis of the second order term. In the following, we fix any α ∈ (0, 1).
As a shorthand, we write J(w, ρ) := (1 − ρ2)−1/2(Aw − ρB⊤X − ρα∆B⊤X), which is a random set

that depends on X with parameters w and ρ.
By Equation (65), one has

− EB

[
X⊤∆B ∇2 log gB

⊤X
W (α∆B⊤X) ∆B⊤X

]
(66)

=
ρ2

1− ρ2
Tr
(
EB

{
∆B⊤XX⊤∆B

[
Id − E

(
ξ⊗ | ξ ∈ J(W,ρ),X,W

)]})
+

ρ2

1− ρ2
Tr
(
EB

{
∆B⊤XX⊤∆B

[
E (ξ | ξ ∈ J(W,ρ),X,W )

⊗
]})

.

The rest of the proof is dedicated to bounding the two terms in (66) by dropping the factor ρ2

1−ρ2 .

Some intuitions.
Before we move on, it is worth checking the limits of these two terms as ρ→ 0. In this case, J(W,ρ) → AW .

(a). The inner conditional expectation in the first term

E
(
ξ⊗ | ξ ∈ J(W,ρ),X,W

)
→ E

(
ξ⊗ | ξ ∈ AW

)
=

E (ξ⊗ 1ξ∈AW
)

P (ξ ∈ AW )
.

Furthermore, when ρ = 0, W and X becomes independent, and the distribution of W is the same as
ψ(ξ). Therefore, the expectation of the last equation w.r.t. W equals to

∑
w E (ξ⊗ 1ξ∈Aw

) = E (ξ⊗) =
Id, from which we conclude that the first term converges to 0 as ρ→ 0.

(b). Similarly, the inner conditional expectation in the second term

E (ξ | ξ ∈ J(W,ρ),X,W ) → E (ξ | ξ ∈ AW ) =
√
2dλ0,deW ,

where {e1, . . . , ed} is the standard basis of Rd, e0 = 0, and e−i = −ei for i = 1, . . . , d. Therefore,

E
[
E (ξ | ξ ∈ J(W,ρ),X,W )

⊗
]
→ λ0,dId.

Thus, the second term converges to
ρ2λ0,d

1−ρ2 Tr
(
EB

{
∆B⊤XX⊤∆B

})
=

ρ2λ0,d

1−ρ2 ∥∆B∥2F .
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These intuitions can be justified rigorously by using the continuous dependence of the probability measure
on ρ. We state the result in the next two lemmas, whose proofs are deferred.

Lemma 17. Let ϵ = 100λ0,d. There exists a constant δ
(1)
d such that for any ρ ∈ (0, δ

(1)
d ) and any α ∈ (0, 1),

any B, B̃ ∈ O(p, d),

Tr
(
EB

{
∆B⊤XX⊤∆B

[
Id − E

(
ξ⊗ | ξ ∈ J(W,ρ),X,W

)]})
⩽ 2ϵ∥∆B∥2F .

Furthermore, δ
(1)
d can be taken as c′d−5/2 where c′ is the constant in Lemma 20.

Lemma 18. Let ϵ = 100λ0,d. There exist a constant δ
(2)
d and a universal constant C such that for any

ρ ∈ (0, δ
(2)
d ) and any α ∈ (0, 1), any B, B̃ ∈ O(p, d),

Tr
(
EB

{
∆B⊤XX⊤∆B

[
E (ξ | ξ ∈ J(W,ρ),X,W )

⊗
]})

< [λ0,d + Cϵ] ∥∆B∥2F .

Furthermore, δ
(2)
d can be taken as c′d−7/2−ς for some universal constant c′ and any positive number ς.

We apply Lemmas 17 and 18, and let δd = min
(
δ
(1)
d , δ

(2)
d

)
. In view of Equation (66), we conclude that

for any ρ ∈ (0, δd), any α ∈ (0, 1), it holds that

−EB

[
X⊤∆B ∇2 log gB

⊤X
W (α∆B⊤X) ∆B⊤X

]
⩽ Cρ2λ0,d∥∆B∥2F .

Combining Equations (61), (62), and (63), we conclude that

KL(PB,PB̃) ⩽ Cρ2λ0,d∥∆B∥2F .

Therefore, we complete the proof of the proposition.

E.4 Lemmas for uniform controls on d-dimensional Gaussian measures

This section collects some results about d-dimensional Gaussian random vectors. These results will be used
in proving Lemmas 17 and 18.

Lemma 19 (Tail probability for Chi-square). Suppose X is a chi-squared random variable with d degrees of
freedom (χ2

d).

1. For any constant k > 0, there exists a constant Ck = O(k), such that P (X ⩾ Ckd) ⩽ d−k and
E (Xa 1X>Ckd) ⩽ Cd−k for a = 1, 2, where C is a universal constant.

2. Let md be the median of χ2
d. It holds that

E
(√

X 1X⩽md

)
⩾

1

10
E
(√

X
)
.

3. There exists a universal constant π0 > 0, such that P(X ⩾ md

1−ρ2 ) ⩾ π0 whenever ρ2 <
(
3de1/3

)−1
.

Proof of Lemma 19.

Statement 1.

If d = 1, it is trivial. Suppose d ⩾ 2. By Equation (4.3) in Laurent and Massart [2000],

P(X − d ⩾ 2
√
dx+ 2x) ⩽ exp(−x). (67)
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Choosing x = k log(d), we have P(X ⩾ d+ 2
√
kd log d+ 2k log(d)) ⩽ d−k.

Let C0 ⩾ k(infd⩾2
d

log d )
−1. Then 2

√
kd log d+2k log(d) ⩽ 2(

√
C0+C0)d. For any C ⩾ 1+2(

√
C0+C0) =

O(k), it holds that P(X ⩾ Cd) ⩽ d−k.
The inequality (67) also implies that for any t > d, we have

P(X > t) ⩽ exp
(
−(t− d)2/(4t)

)
.

If t > 2d, then t− d > t/2 and (t− d)2/(4t) ⩾ t/16. By Fubini’s theorem, for any r > 2d,

E (Xa 1X>r) = raP(X > r) +

∫ ∞

r

ata−1P(X > t) d t

= raP(X > r) +

∫ ∞

r

ata−1e−t/16 d t

⩽ e−r/16 (ra + 16 + 1a=2 (240 + 32r))

⩽ C1r
2e−r/16.

For r = 2d + 16k log(d) = d · O(k), C1r
2e−r/16 ⩽ 1

dkC1(2d + 16k log(d))2e−d/8 ⩽ C2
1
dk because de−d/16 is

bounded.

Statement 2.

Since md is the median of χ2
d, P(X ⩽ md) = 1/2.

Note that E
(√

X 1X⩽md

)
= E

(√
X
)
−E

(√
X 1X>md

)
and by the Cauchy–Schwarz inequality, E

(√
X 1X>md

)
⩽√

EXP (X > md). Since md is the median and EX = d, we have

E
(√

X 1X⩽md

)
E
(√

X
) ⩾ 1−

√
d/2

E
(√

X
) .

For d = 1, E =
√

2
π and thus the RHS is no less than 1−

√
π/2 > 0.1. A direct calculation yields

E
(√

X
)
=

∫ ∞

0

x(d+1)/2−1e−x/2

2d/2Γ(d/2)
dx

= 21/2
Γ((1 + d)/2)

Γ(d/2)

⩾

√
2

(
d

2
− 1

4

)
,

where in the last inequality we have applied a bound on the ratio of gamma functions that
√
x− 1

4 <
Γ(x+1/2)

Γ(x)

proved by Watson [1959]. Since d/(d− 1/2) is decreasing in d and d ⩾ 2, we conclude that
E(

√
X 1X⩽md)
E(

√
X)

⩾

1/10.

Statement 3.

By Corollary 3 in Zhang and Zhou [2020], there exist uniform constants C, c > 0 such that

P(X − d ⩾ x) ⩾ c exp

(
−Cx ∧ x2

k

)
, ∀x > 0.
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By the continuity of measure, we have P(X ⩾ d) ⩾ c. It remains to check that md

1−ρ2 < d for ρ2 small.

Berg and Pedersen [2006] have proved that md ⩽ de−1/(3d). Note that

e−1/(3d)

1− ρ2
⩽ 1 ⇔ e−1/(3d) ⩽ 1− ρ2 ⇔ ρ2 ⩽ 1− e−1/(3d).

By simple calculus, we have an elementary inequality that 1 − e−x > xe−1/3 for any x ∈ (0, 1/3].
Therefore, 1− e−1/(3d) > e−1/3/(3d), which is greater than ρ2. In other words, we have md

1−ρ2 < d.

Lemma 20. Fix any w ∈ {−d, . . . , 0, 1, . . . , d} and any µ ∈ Rd. Denote by N1 the distribution N(ρµ; (1−
ρ2)Id) and by N0 the distribution N(0; Id). Denote by Z the element in the sample space.

1. For ρ2 < 1/2, it holds that |PN1
(Z ∈ Aw)− PN0

(Z ∈ Aw)| ⩽ ρ∥µ∥.

2. Let c0 = log(2)/4. For any k > 0, there is a positive constant ck such that for any ρ < ckd
−k−3/2, it

holds that if ρ∥µ∥2 < c0 then |EN1
(Z 1Z∈Aw

)− EN0
(Z 1Z∈Aw

)| ⩽ C
(
d−k + (ρ1/3∥µ∥)2d−k/3

)
+ρ∥µ∥.

3. In particular, if ∥µ∥ ⩽ C ′d1/2, then there exists a constant c′ > 0 depending only on k, so that

(a) for any ρ ⩽ c′d−k−1/2, it holds that |PN1
(Z ∈ Aw)− PN0

(Z ∈ Aw)| ⩽ 8−1d−k;

(b) for any ρ ⩽ c′d−k−3/2, it holds that ∥EN1
(Z 1Z∈Aw

)− EN0
(Z 1Z∈Aw

)∥ ⩽ O(d−k).

Proof of Lemma 20.
Statement 1.
Using the formula for the KL-divergence between Gaussian measures (see for example, Equation A.23 in
Williams and Rasmussen [2006]), we have

KL (N1||N0) =
1

2
log
∣∣Σ0Σ

−1
1

∣∣+
1

2
trΣ−1

0

(
(µ1 − µ0) (µ1 − µ0)

⊤
+Σ1 − Σ0

)
=
1

2

(
−d log(1− ρ2) + ∥ρµ∥2 + d(1− ρ2)− d

)
⩽
ρ2

2
∥µ∥2,

where the last inequality is because x+ log(1− x) ⩾ 0 for any x ∈ (0, 1/2).
By the definition of total variation, we have∣∣∣P(ρµ+

√
1− ρ2ξ ∈ Aw)− P(ξ ∈ Aw)

∣∣∣
⩽TV (N1,N0) ⩽

√
1

2
KL (N1||N0) ⩽

ρ∥µ∥
2

,

where the second inequality is Pinsker’s inequality (see for example Lemma 2.5 in Tsybakov [2008]).

Statement 2.

By Lemma 19, one can choose any r ⩾
√
Ckd such that

EN0
(∥Z∥ 1∥Z∥>r) ⩽

√
P(∥Z∥ > r)EN0

(∥Z∥2 1∥Z∥>r) ⩽ Cd−k. (68)

Similarly, we can choose any r ⩾ c0 +
√
2Ckd such that

EN1
(∥Z∥ 1∥Z∥>r) (69)
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⩽EN0

(
∥
√

1− ρ2Z + ρµ∥ 1∥
√

1−ρ2Z+ρµ∥>r

)
⩽ρ∥µ∥+

√
1− ρ2EN0

(
∥Z∥ 1∥Z∥>(r−ρ∥µ∥)/

√
1− ρ2

)
⩽ρ∥µ∥+ EN0

(
∥Z∥ 1∥Z∥>

√
Ckd

)
⩽ρ∥µ∥+ Cd−k

Below, we fix r = c0 +
√
2Ckd.

Denote by ϕ1(z) and ϕ0(z) the density functions of N1 and N0, respectively. Note that

ϕ1(z)

ϕ0(z)
= exp

(
−1

2(1− ρ2)

(
ρ∥z∥2 − 2ρµ⊤z + ρ2∥µ∥2

))
By calculus, we have an elementary inequality that t ⩽ et − 1 ⩽ 2t for any |t| < log 2. Note that∣∣ρ∥z∥2 − 2ρµ⊤z + ρ2∥µ∥2

∣∣ ⩽ 2ρ∥z∥2 + (ρ+ ρ2)∥µ∥2 ⩽ 2ρ(∥z∥2 + ∥µ∥2).
Recall that c0 = (log 2)/4. If ρ∥µ∥2 < c0 and ρr2 < c0, then∥∥EN1

(Z 1Z∈Aw,∥Z∥⩽r)− EN0
(Z 1Z∈Aw,∥Z∥⩽r)

∥∥ (70)

⩽
∫

z 1z∈Aw,∥Z∥⩽rϕ0(z)

∣∣∣∣ϕ1(z)ϕ0(z)
− 1

∣∣∣∣ d z
⩽
∫

z 1z∈Aw,∥Z∥⩽rϕ0(z)2
(
2ρ∥z∥2 + (ρ+ ρ2)∥µ∥2

)
d z

⩽2ρr(r2 + ∥µ∥2)
∫
ϕ0(z) dz.

Combining Equations (68), (69), and (70), we have if ρr2 < c0, then

∥EN1(Z 1Z∈Aw)− EN0(Z 1Z∈Aw)∥ ⩽ ρ∥µ∥+ 2Cd−k + 2ρr(r2 + ∥µ∥2).

Recall that r = c0+
√
2Ckd and r

2 = O(Ckd), one can choose ck small enough to guarantee ckd
−k−3/2r2 < c0

and ckd
−k−3/2r3 < Cd−k, from which the desired inequality follows.

Statement 3 is a direct corollary of Statement 2.

Lemma 21. Suppose ξ ∼ N(0, Id) and ρ2 < (3d)−1. For any t ∈ Rd and any w ∈ {±1, . . . ,±d}, there
exists a universal constant C it holds that

∥E
(
ξ |

√
1− ρ2ξ + t ∈ Aw

)
∥ ⩽ C(

√
d+ ∥t∥).

Proof. For any w = ±1, . . . ,±d, by definition of Aw,
√

1− ρ2ξ + t ∈ Aw implies that ∥
√
1− ρ2ξ + t∥ ⩽

√
md <

√
d. Thus ∥E

(
ξ |

√
1− ρ2ξ + t ∈ Aw

)
∥ ⩽ (

√
d+ ∥t∥)/

√
1− ρ2.

For w = 0, by the famous Anderson inequality [Anderson, 1955], we have

P(∥
√
1− ρ2ξ + t∥ ⩽

√
md) ⩽ P(∥

√
1− ρ2ξ∥ ⩽

√
md) ⩽ 1− π0 < 1,

where the second inequality is due to Lemma 19 and ρ2 < (3d)−1. Therefore, P(
√

1− ρ2ξ + t ∈ A0) ⩾ π0.

Note that ∥E
(
ξ 1√

1−ρ2ξ+t∈A0

)
∥ ⩽

√
E∥ξ∥2 =

√
d, we conclude that

∥E
(
ξ |

√
1− ρ2ξ + t ∈ A0

)
∥ ⩽

√
d/π0.
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E.5 Proofs of Lemmas in Section E.3

We first prove Lemma 17 and Lemma 18. The proof of Lemma 16 is straightforward and can be found at
the end of this section.

Following the intuitions in Section E.3, we will make use of the continuous dependence of the probability
measure on ρ. Such continuous dependence is uniform if the set J(W,ρ) is bounded. Therefore, we consider
dividing the sample space into two parts: one where J(W,ρ) is bounded, and the other where the expectations
are negligible.

Let Π be the projection matrix onto a (2d)-dimensional subspace of Rp formed by the columns of B and

B̃; if the rank of [B, B̃] is smaller than 2d, we can always add some extra columns provided that 2d < p. Then

B⊤X = B⊤ΠX, B̃⊤X = B̃⊤ΠX, and ∆B⊤X = ∆B⊤ΠX. We also have ∥B⊤X+α∆B⊤X∥ ⩽ ∥ΠX∥.
In the proofs, we will fix some positive real number R = O(d) and define two events E1 := {∥ΠX∥ ⩽ R}

and E2 := {∥ΠX∥ > R}. We will also make use of the following facts

1. By Lemma 19, for any k > 0, we can choose R =
√
2Ckd so that P(E2) ⩽ (2d)−k.

2. By Lemma 15, ϵ = 100λ0,d ⩾ d−1.

3. On the event E1,
∥B⊤X + ρα(B̃ −B)⊤X∥ ⩽ R. (71)

4. For any symmetric matrix A of dimension d, ∥A∥Id − A is positive definite. For any two positive
definite matrices B and C, Tr(BC) ⩾ 0. Therefore, Tr(AB) ⩽ ∥A∥Tr(B).

Proof of Lemma 17. We write

EB

{
∆B⊤XX⊤∆BId

}
= EB

{
1E1∆B⊤XX⊤∆B

}
+ EB

{
1E2∆B⊤XX⊤∆B

}
and

− Tr
(
EB

{
∆B⊤XX⊤∆BE

(
ξ⊗ | ξ ∈ J(W,ρ),X,W

)})
⩽− Tr

(
EB

{
1E1∆B⊤XX⊤∆BE

(
ξ⊗ | ξ ∈ J(W,ρ),X,W

)})
.

We first control the expectation on E2. Since ∆B⊤X = ∆B⊤ΠX, we have

Tr
[
∆B⊤XX⊤∆B

]
= Tr

[
(ΠX)

⊗
(∆B)

⊗
]

(72)

⩽ ∥ (ΠX)
⊗ ∥ Tr

[
(∆B)

⊗
]
.

Thus
Tr
[
E
(
1E2

∆B⊤XX⊤∆B
)]

⩽ ∥∆B∥2FE
(
∥ΠX∥2 1E2

)
.

We fix R = 2C4d and obtain P(E2) < (2d)−4. Note that the second moment of χ2
2d is 4d(d + 1). By

Cauchy–Schwarz inequality, E
(
∥ΠX∥2 1E2

)
⩽ E

(
∥ΠX∥4

)1/2 P(E2)
1/2 = 2

√
d(d+ 1)P(E2)

1/2 < d−1. By
Lemma 15, ϵ = 100λ0,d ⩾ d−1, and thus

Tr
[
E
(
1E2∆B⊤XX⊤∆B

)]
⩽ ϵ∥∆B∥2F . (73)

We next control the two expectations on E1.
We can split the expectation into parts given by {W = w} and use properties of conditional expectation

to obtain

EB

{
1E1

∆B⊤XX⊤∆B
[
−E

(
ξ⊗ | ξ ∈ J(W,ρ),X,W

)]}
=

d∑
w=−d

EB

{
1E1

∆B⊤XX⊤∆B 1W=w

[
−E

(
ξ⊗ | ξ ∈ J(w, ρ),X

)]}
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=−
d∑

w=−d

E
{
1E1∆B⊤XX⊤∆BPB(W = w | X)

[
E
(
ξ⊗ | ξ ∈ J(w, ρ),X

)]}
.

In addition, we have

Id =E

(
ξ⊗

d∑
w=−d

1ξ∈J(w,ρ) | X

)
=E

(
ξ⊗ 1ξ∈J(w,ρ) | X

)
=

d∑
w=−d

P(ξ ∈ J(w, ρ) | X)E
(
ξ⊗ | ξ ∈ J(w, ρ),X

)
.

From the last two expressions, we can write

Tr
(
EB

{
1E1

∆B⊤XX⊤∆B
[
Id − E

(
ξ⊗ | ξ ∈ J(W,ρ),X,W

)]})
=

d∑
w=−d

Tr
(
E
{
1E1

∆B⊤XX⊤∆BE
(
ξ⊗ | ξ ∈ J(w, ρ),X

)
[P(ξ ∈ J(w, ρ) | X)− PB(W = w | X)]}) .

On the event E1, we apply Lemma 20(3) together with the inequality in (71), and conclude that for any
ρ ⩽ c′d−5/2 and for any w ∈ {−d, . . . , d},

|P(ξ ∈ J(w, ρ) | X)− PB(W = w | X)| < 1

8d2
.

For any w ̸= 0, since PB(W = w | X) = (4d)−1, it then follows that P (ξ ∈ J(w, ρ) | X) ⩾ (8d)−1 and

|P(ξ ∈ J(w, ρ) | X)− PB(W = w | X)| < d−1P (ξ ∈ J(w, ρ) | X)

⩽ ϵP(ξ ∈ J(w, ρ) | X).

The same holds for w = 0.
Using the last inequality, we have

Tr
(
EB

{
1E1

∆B⊤XX⊤∆B
[
Id − E

(
ξ⊗ | ξ ∈ J(W,ρ),X,W

)]})
⩽ϵ

d∑
w=−d

Tr
(
E
{
1E1

∆B⊤XX⊤∆BP(ξ ∈ J(W,ρ) | X)E
(
ξ⊗ | ξ ∈ J(W,ρ),X

)})
=ϵTr

{
E

[
1E1

∆B⊤XX⊤∆BE

(
ξ⊗

d∑
w=−d

1ξ∈J(W,ρ) | X

)]}
=ϵTr

{
E
[
1E1

∆B⊤XX⊤∆BId
]}

⩽ϵTr
{
E
[
∆B⊤XX⊤∆B

]}
=ϵ∥∆B∥2F .

Combining the last inequality with (73), we complete the proof.

Proof of Lemma 18. In the following, we use C to denote any universal constant, whose value may change
from line to line.

We first control the expectation on E2. Without loss of generality, we can assume ρ2 < (3d)−1. By an
elementary trace inequality that Tr

(
uu⊤vv⊤) ⩽ ∥v∥2∥u∥2, one has

Tr
(
∆B⊤XX⊤∆B

[
E (ξ | ξ ∈ J(W,ρ),X,W )

⊗
])

(74)
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⩽∥∆B⊤X∥2
∥∥∥E (ξ | ξ ∈ J(W,ρ),X,W )

⊗
∥∥∥2

⩽∥ ∆B⊤X∥2C(d+ ρ2∥ΠX∥2)
⩽∥∆B∥2F ∥ΠX∥2C(d+ ρ2∥ΠX∥2),

where the second inequality is due to Lemma 21 and the inequality in (71), and the third is due to the
inequality in (72).

Denote by U := ∥ΠX∥. Then U2 ∼ χ2
2d. We can pick R =

√
2C1d so that E

(
1U>RU

2(d+ U2)
)
⩽ Cd−1.

Then (74) implies that

Tr
(
EB

{
1E2

∆B⊤XX⊤∆B
[
E (ξ | ξ ∈ J(W,ρ),X,W )

⊗
]})

⩽C∥∆B∥2FE
{
1U>R

(
U2(d+ ρ2U2

)}
⩽Cd−1∥∆B∥2F .

We next control the expectation on E1.

EB

[
E (ξ | ξ ∈ J(W,ρ),X,W )

⊗ | X
]

=

d∑
w=−d

EB

[
1W=w E (ξ | ξ ∈ J(w, ρ),X)

⊗ | X
]

=

d∑
w=−d

EB

[
PB(W = w | X)E (ξ | ξ ∈ J(w, ρ),X)

⊗ | X
]

=

d∑
w=−d

EB

[
PB(W = w | X)P (ξ ∈ J(W,ρ) | X)

−2 E
(
ξ 1ξ∈J(w,ρ) | X

)⊗ | X
]
.

Note that as ρ→ 0, the limit of P (ξ ∈ J(W,ρ) | X) is P(W = w | X) and the limit of E
(
ξ 1ξ∈J(w,ρ) | X

)
is E (ξ 1ξ∈Aw). Below we shall bound the deviation of these terms from their respective limits.

We write µ = B⊤X + ρα(B̃ − B)⊤X. On the event E1, the inequality in (71) shows that ∥µ∥ ⩽ R.
Denote by N1 the distribution N(ρµ; (1− ρ2)Id) and by N0 the distribution N(0; Id). We have

E
(
ξ 1ξ∈J(w,ρ) | X

)
=
[
E
(
ρµ+

√
1− ρ2ξ 1ξ∈J(w,ρ) | X

)
− ρµ

]
(1− ρ2)−1/2

= [EN1(Z 1Z∈Aw)− ρµ] (1− ρ2)−1/2.

We apply Lemma 20 and conclude that for any ρ ⩽ c′d−4 and for any w ∈ {±1, . . . ,±d},

|P(ξ ∈ J(w, ρ) | X)− PB(W = w | X)| < 1

8d7/2

and

∥E
(
ξ 1ξ∈J(w,ρ) | X

)
− E(ξ 1ξ∈Aw

)∥
⩽(1− ρ2)−1/2 |EN1

(Z 1Z∈Aw
)− EN0

(Z 1Z∈Aw
)| . . .

+ ρ(1− ρ2)−1/2∥µ∥+ (1− (1− ρ2)−1/2)∥E(ξ 1ξ∈Aw
)∥

⩽O(d−5/2) + 2ρ∥µ∥+ ρ2
√

log(2d)/d = O(d−5/2),

where we have used R = O(
√
d) and ∥E(ξ 1ξ∈Aw)∥ = E(ξ1 1ξ∈A1) ⩽

√
2 log(2d)

2d given in Lemma 15. It also
follows that

∥E
(
ξ 1ξ∈J(W,ρ) | X

)
∥ ⩽ C

√
log(2d)/d and (8d)−1 ⩽ P(ξ ∈ J(w, ρ) | X) ⩽ (2d)−1.
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To utilize the bounds that have been established, we present the following elementary facts. For any
positive numbers b, B and any vectors u, U , we have

1. b−2u⊗ −B−2U⊗ = b−2 (u⊗ −U⊗) + (b−2 −B−2)U⊗

2. ∥u⊗ −U⊗∥F ⩽ ∥u(u−U)⊤∥F + ∥(u−U)U⊤∥F ⩽ (∥u∥+ ∥U∥)∥u−U∥

3. |b−2 −B−2| ⩽ b−2B−2(b+B)|b−B|

Now let B = PB(W = w | X), b = P(ξ ∈ J(w, ρ) | X), U = E(ξ 1ξ∈Aw
), and u = E

(
ξ 1ξ∈J(W,ρ) | X

)
.

We conclude that on E1,∥∥∥P (ξ ∈ J(w, ρ) | X)
−2
[
E
(
ξ 1ξ∈J(w,ρ) | X

)⊗]− PB(W = w | X)−2
[
E(ξ 1ξ∈Aw

)⊗
]∥∥∥

F

⩽O(d
√

log(2d)d−5/2 + d log(2d)d−7/2) = O(d−1).

A similar result can be obtained for w = 0.
Since ϵ ⩾ d−1, there is some universal constant C such that

Tr
(
EB

{
1E1

∆B⊤XX⊤∆B
[
E (ξ | ξ ∈ J(W,ρ),X,W )

⊗
]})

⩽
d∑

w=−d

Tr
(
EB

{
1E1

∆B⊤XX⊤∆BPB(W = w | X)
[
E(ξ 1ξ∈Aw

)⊗
]})

. . .

+ CϵEB

{
1E1

∥∆B⊤X∥2
}

⩽Cϵ∥∆B∥2F +Tr
(
EB

{
1E1

∆B⊤XX⊤∆BΣ0,d

})
⩽(Cϵ+ ∥Σ0,d∥)∥∆B∥2F ,

where Σ0,d =
∑d

w=−d PB(W = w | X) [E(ξ 1ξ∈Aw
)]
⊗
= Cov [E (ξ | ψ(ξ))]. By Lemma 15, ∥Σ0,d∥ = λ0,d.

Remark 4. In the proof, we choose ρ ⩽ c′d−4 to simplify the result. In fact, it is sufficient to choose
ρ ⩽ c′d−7/2−ξ′ for any small ξ′ > 0.

Proof of Lemma 16. It is straightforward to compute the derivative and Hessian of log gµw(t) as follows:

• Let ϕd(z;a;M) be the p.d.f. of N(a,M) for a ∈ Rd and M be a d × d positive definite matrix.
Then d

daϕd(z;a;M) = M−1(z − a)ϕd(z;a;M).

• gµw(t) =
∫

1z∈Aw
ϕd
(
z; ρµ+ ρt; (1− ρ2)Id

)
d z. This is obtained by transforming Z = ρµ + ρt +√

1− ρ2ξ.

• Then ∇gµw(t) =
∫

1z∈Aw

ρ
1−ρ2 (z − ρµ− ρt)ϕd

(
z; ρµ+ ρt; (1− ρ2)Id

)
d z. This can also be written

as ∇gµw(t) =
√

ρ2

1−ρ2E
(
ξ 1

ρµ+ρt+
√

1−ρ2ξ∈Aw

)
.

•

∇2gµw(t) =

∫
1z∈Aw

(
− ρ2

1− ρ2
Id +

ρ2

(1− ρ2)2
(z − ρµ− ρt)⊗

)
. . .

× ϕd
(
z; ρµ+ ρt; (1− ρ2)Id

)
d z

= − ρ2

1− ρ2
Idg

µ
w(t) . . .

+
ρ2

(1− ρ2)2

∫
Aw

(z − ρµ− ρt)⊗ϕd
(
z; ρµ+ ρt; (1− ρ2)Id

)
d z.
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• ∇ log gµw(t) =
1

gµ
w(t)

∇gµw(t).

• ∇2 log gµw(t) =
1

gµ
w(t)

∇2gµw(t)−
(

1
gµ
w(t)

∇gµw(t)
)⊗

.

• By transforming ξ = (Z − ρµ− ρt)/
√

1− ρ2, one has

∇ log gµw(t) =

√
ρ2

1− ρ2
E
(
ξ | ρµ+ ρt+

√
1− ρ2ξ ∈ Aw

)
and

1

gµw(t)
∇2gµw(t) = − ρ2

1− ρ2
Id +

ρ2

1− ρ2
E
(
ξ⊗ | ρµ+ ρt+

√
1− ρ2ξ ∈ Aw

)
.

Therefore

∇2 log gµw(t) =
ρ2

1− ρ2

{
−Id + E

(
ξ⊗ | ρµ+ ρt+

√
1− ρ2ξ ∈ Aw

)
−E

(
ξ | ρµ+ ρt+

√
1− ρ2ξ ∈ Aw

)⊗}
. (75)

F Proof of Theorem 7

Proof. We only need to prove the lower bounds

inf
B̂

sup
M∈Ms(p,d,λ)

EM

∥∥∥B̂B̂⊤ −BB⊤
∥∥∥2
F
≳
d(s− d)

nλ
. (76)

and

inf
B̂

sup
M∈Ms(p,d,λ)

EM

∥∥∥B̂B̂⊤ −BB⊤
∥∥∥2
F
≳

(s− d) log e(p−d)
s−d

nλ
. (77)

To prove the inequality (76), consider the following sub-model which assumes the support of the indices
matrix is {1, 2, . . . , s}.

M̃s (p, d, λ) :=

 distribution of(
X, Y = f(B⊤X, ϵ)

) X ∼ N(0, Ip), ϵ ∼ N(0, 1) is independent of X,

B is a p× d matrix,B⊤B = Id, supp(B) = [s],

f ∈ Fd(λ, κ,K),K = C0d.

 , (78)

A sufficient statistic for estimating B in this submodel is the data of Y and X1:s. Because M̃s (p, d, λ) ⊂
Ms (p, d, λ) and M̃s (p, d, λ) is essentially the same as a submodel ofM (s, d, λ) for (X1:s, Y ) with Cov(X1:s) =
Is assumed known. Following the exact same proof of Theorem 6, we obtain the inequality (76).

To prove the inequality (77), we apply the Fano method (Lemma 11) and the construction of PB in
Equation (10). The main challenge is to construct a rich packing set Θ ⊂ Os(p, d). The rest of the proof is
nearly identical to the proof of Theorem 4 in Lin et al. [2021], which in turn follows from the argument in [Vu
and Lei, 2012, Theorem 2.1] and [Cai et al., 2013, Theorem 3]. We present it here for the sake of completeness.
For any ε ∈ (0, 1], [Vu and Lei, 2012, Lemma 3.1.2] have constructed a set Θ0 ⊂ Os−d+1(p− d+ 1, 1), such
that
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1. ε/
√
2 < ∥θ1 − θ2∥ ⩽

√
2ε for all distinct pairs θ1, θ2 ∈ Θ0,

2. log |Θ0| ⩾ c(s− d)[log(p− d)− log(s− d)], where c is a positive constant.

For each θ ∈ Θ0, define

Bθ =

(
θ 0(p−d+1)×(d−1)

0(d−1)×1 Id−1

)
.

Then Bθ ∈ Os(p, d). Let Θ = {Bθ : θ ∈ Θ0}. We then use the construction in Equation (10) to obtain a
family of distributions with the indices matrix Bθ for each θ ∈ Θ0. Applying the argument in Equation (58)

with ε2 = c′1
(s−d)[log(p−d)−log(s−d)]

nλ , we obtain Equation (77).

Since 2d < s, the right hand sides on the inequalities (76) and (77) can be reduced to ds
nλ and s log(ep/s)

nλ ,
respectively.

G Proofs of results in Section 3.1

The gSNR of the distribution in (7) equals to d−1 (E[max |Zi|])2, which is at the same order as log(d)
d . A

proof of this statement is similar to the proof of Proposition 2 in Appendix E.2 and is omitted here.
To prove Theorem 2, we need the following proposition in addition to Theorem 3.

Proposition 4. Suppose Z is a d-random vector, Y is a random element. Suppose {Sh : h = 1, . . . ,H} is
a partition of the range of Y such that for some γ > 0 and τ > 1 + γ, P(Y ∈ Sh) ⩽ (1 + γ)H−1 , and for
any β ∈ Sd−1,

1

H

H∑
h=1

var
(
β⊤E (Z | Y )

∣∣Y ∈ Sh

)
⩽

1

τ
var
(
β⊤E (Z | Y )

)
. (79)

Let W =
∑H

h=1 h 1Y ∈Sh
. It holds that for any β ∈ Sd−1,(

1− 1 + γ

τ

)
var
(
β⊤E (Z | Y )

)
⩽ var

(
β⊤E (Z |W )

)
. (80)

Proof of Theorem 2. Since m(y) is weak (K, τ)-sliced stable, Proposition 4 indicates that the smallest eigen-
value of Cov [E (Z | Y )] can be bounded by that of Cov [E (Z |W )] for a discrete random variable W with
K outcomes. Then by Theorem 2, the smallest eigenvalue of Cov [E (Z |W )] is bounded by O(d−1 logK).

Since K = O(d), this bound becomes O( log(d)d ).

Proof of Proposition 4. Fix β ∈ Rd and let U = β⊤Z. By the law of total variance, we have

var (E (U | Y )) = E {var [E (U | Y ) |W ]}+ var {E [E (U | Y ) |W ]}

=

H∑
h=1

P(W = h)var [E (U | Y ) |W = h] + var [E (U |W )]

⩽
1 + γ

H

H∑
h=1

var [E (U | Y ) | Y ∈ Sh] + var [E (U |W )]

⩽
1 + γ

τ
var (E (U | Y )) + var [E (U |W )] ,

where the two inequalities are due to the premises. It then follows that(
1− 1 + γ

τ

)
var (E (U | Y )) ⩽ var (E (U |W ))

and the proposition is proved.
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Proof of Theorem 3. Suppose β ∼ N(0, Id) that is independent with (Z,W ). For any symmetric matrix
M , by the definition of the smallest eigenvalue, it holds that

λmin(M) ⩽ E
(

β⊤

∥β∥
M

β

∥β∥

)
.

By the normality of β, we have 1 = d−1E∥β∥2 and ∥β∥ is independent of β/∥β∥, and thus

λmin(M) ⩽ d−1E
(
β⊤Mβ

)
.

Therefore, it is sufficient to show

E
(
β⊤Cov [E (Z |W )]β

)
⩽ 37 Ent(W ).

For any u ∈ Rd, we have E
[
E
(
u⊤Z |W

)]
= 0 and

u⊤Cov [E (Z |W )]u

=Cov
[
E
(
u⊤Z |W

)]
=E

([
E
(
u⊤Z |W

)]2)
=E

 d∑
i=1

d∑
j=1

E (uiZi |W )E (ujZj |W )


=

d∑
i=1

d∑
j=1

uiujE [E (Zi |W )E (Zj |W ]) .

Therefore, using the equation that E(βiβj) = 1i=j and the independence between β and (Z,W ), we have

E
(
β⊤Cov [E (Z |W )]β

)
=

d∑
i=1

E
(
E (Zi |W )

2
)
.

Fixed any w in the support of W . Lemma 22 shows that

d∑
i=1

E (Zi |W = w)
2 ⩽ P(W = w)−2 min

θ
[θP(W = w) + E(Z1 − θ)+]

2
.

We now choose θ such that P(W = w) = P(Z1 > θ). Here θ > 0 because P(W = w) < 1/2. Since
E(Z1 − θ)+ = E(Z1 − θ)1Z1>θ = E (Z11Z1>θ)− θP(Z1 > θ), we have

d∑
i=1

E (Zi |W = w)
2 ⩽ [E (Z1 | Z1 > θ)]

2
.

By Lemma 23, the right hand side of the last inequality is bounded by 37 log 1
P(W=w) . Hence, we have

E
(
β⊤Cov [E (Z |W )]β

)
⩽
∑
w

P(W = w) · 37 log
1

P(W = w)
= 37 Ent(W ),

and thus complete the proof of Equation G.
In particular, when the support of W has K elements, the maximum entropy of W is maximized by a

uniform distribution on these K elements and maxW {Ent(W )} = logK.
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Lemma 22. Suppose the distribution of Z is invariant to orthogonal transformations and W is a discrete
random variable. For any w in the support of W and any number θ, it holds that

∥E(Z1W=w)∥2 ⩽ [θP(W = w) + E(Z1 − θ)+]
2
.

Proof of Lemma 22. Let f(z) = P(W = w | Z = z) be the conditional probability of W = w given Z = z
and P(W = w) ∈ (0, 1). Then f(z) ∈ [0, 1] and Ef(Z) = P(W = w).

Let α = E (Z1W=w), which equals to E (ZE[1W=w | Z]) = E (Zf(Z)) by the law of total expectation.
If α = 0, the lemma holds trivially.

Assume α ̸= 0. Let V = [V1, . . . ,Vd] be a d-dimensional orthogonal matrix such that V1 = α/∥α∥.
Let U = V ⊤Z. U has the same distribution as Z because its distribution is invariant to orthogonal
transformations. So Ef(U) = Ef(Z) = P(W = w).

Note that α⊤Z = ∥α∥U1. We have ∥α∥2 = E
[
α⊤Zf(Z)

]
= ∥α∥E [U1f(V U)].

For any number θ, we have

∥α∥ − θP(W = w)

=E [U1f(V U)]− θEf(U)

=E [Z1f(V Z)]− E [θf(V Z)]

=E [(Z1 − θ)f(V Z)]

⩽E [(Z1 − θ)+] ,

where the last inequality is because f(V Z) ∈ [0, 1] and ab ⩽ max(0, a) for any b ∈ [0, 1]. Therefore,
∥α∥ ⩽ θP(W = w) + E [(Z1 − θ)+].

Lemma 23. If Z ∼ N(0, 1) and θ > 0, then

E(Z | Z > θ)2 ⩽ 37 log
1

P(Z > θ)
.

Proof of Lemma 23. It is well known that for any t > 0,

(2π)−1/2 t

t2 + 1
e−t2/2 ⩽ P(Z > t) ⩽ e−t2/2. (81)

By direct calculation,

E (Z1Z>θ) = (2π)−1/2e−θ2/2. (82)

We consider the value of θ separately in two cases:

1. θ ⩾ 1: Using the first inequality in Equation (81) and Equation (82), we have E(Z | Z > θ)2 ⩽
(θ + 1/θ)2 ⩽ 4θ2. Using the second inequality in Equation (81), we have log 1

P(Z>θ) ⩾ θ2/2.

2. θ ∈ (0, 1): Then E (Z1Z>θ) ⩽ E (Z1Z>0) and P(Z > θ) > P(Z > 1). We have E(Z | Z > θ)2 ⩽ 4e.
Also note that P(Z > θ) < P(Z > 0) = 1/2, we have log 1

P(Z>θ) ⩾ log 2.

Since 4 < 37/2 and 4e < 37 log 2, we conclude the desired inequality for both cases.

H Assisting Lemmas

Lemma 24. Let K be an a× b matrix with each entry being i.i.d. standard normal random variables. Then
E[∥KK⊤∥2F ] = ab(a+ b+ 1), E[∥K∥2F ] = ab and E[∥K∥4F ] = a2b2 + 2ab.

Lemma 25. Let A, B be l × m and m × n matrices, respectively. Then one has ∥AB∥F ⩽ ∥A∥∥B∥F ,
where ∥A∥ denotes the largest singular value of A.
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Lemma 26 (Weyl’s Inequality). Let A, B be m×n matrices for some 1 ⩽ m ⩽ n. Then for all 1 ⩽ i ⩽ m,

|σi(A+B)− σi(A)| ⩽ ∥B∥op.

If A, B are m×m symmetric matrices, then for all 1 ⩽ i ⩽ m,

|λi(A+B)− λi(A)| ⩽ ∥B∥op.

Proof. See, e.g., [Tao, 2012, Chapter 1.3].

Lemma 27 (Vershynin [2010]). Let A be a p×H matrix (p ⩾ H), whose entries are independent standard
normal random variables. Then for every t ⩾ 0, with probability at least 1− 2 exp(−t2/2), one has that

√
p−

√
H − t ⩽ σH(A) ⩽ σ1(A) ⩽

√
p+

√
H + t.

Lemma 28 (Sin-Theta Theorem, Cai et al. [2013]). Let A and A+E be symmetric matrices satisfying

A = [F0,F1]

[
A0 0
0 A1

] [
F⊤
0

F⊤
1

]
A+E = [G0,G1]

[
Λ0 0
0 Λ1

] [
G⊤

0

G⊤
1

]
where [F0,F1] and [G0,G1] are orthogonal matrices. If the eigenvalues of A0 lie in an interval (a, b) and
the eigenvalues of Λ1 are excluded from the interval (a− δ, b+ δ) for some δ > 0, then

∥F0F
⊤
0 −G0G

⊤
0 ∥ ⩽

min(∥F⊤
1 EG0∥, ∥F⊤

0 EG1∥)
δ

,

and
1√
2
∥F0F

⊤
0 −G0G

⊤
0 ∥F ⩽

min(∥F⊤
1 EG0∥F , ∥F⊤

0 EG1∥F )
δ

.

Lemma 29 (Cai et al. [2013]). Let K ∈ Rp×p be symmetric such that Tr(K) = 0 and ∥K∥F ⩽ 1. Let Z be
an H × p matrix consisting of independent standard normal entries. Then for any t > 0, one has

P
(∣∣∣〈Z⊤Z,K

〉∣∣∣ ⩾ 2
√
Ht+ 2t2

)
⩽ 2 exp

(
−t2

)
. (83)

We remind that this lemma is a trivial modification of Lemma 4 in Cai et al. [2013], where they assumed
∥K∥F = 1.

Lemma 30 (Cai et al. [2013]). Let X1, ..., XN be random variables such that each satisfies

P(|Xi| ⩾ at+ bt2) ⩽ c exp
(
−t2

)
(84)

where a, b, c > 0. Then

Emax |Xi|2 ⩽ (2a2 + 8b2) log(ecN) + 2b2 log2(cN). (85)

Lemma 31. Let A, B be m × l orthogonal matrices, i.e., A⊤A = Il = B⊤B and M be an l × l positive
definite matrix with eigenvalues dj such as 0 < λ ⩽ dl ⩽ dl−1 ⩽ ... ⩽ d1 ⩽ κλ. If A⊤B is a diagonal matrix
with non-negative entries, then there exists a constant C which only depends on κ such that ∥AMA⊤ −
BMB⊤∥F ⩽ Cλ∥AA⊤ −BB⊤∥F .

Proof. We first show that for any symmetric matrix C and positive semi-definite matrix D, one has

λmin(C)λi(D) ⩽ λi(CD) ⩽ λmax(C)λi(D).
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This is because the Courant–Fischer min-max theorem [Tao, 2012, Theorem 1.3.2]:

λi(CD) = λi(
√
DC

√
D) = inf

F⊂Rn,
dim(F )=n−i+1

sup
x∈F\{0}

(C
√
Dx,

√
Dx)

(
√
Dx,

√
Dx)

(Dx, x)

(x, x)
. (86)

Let ∆ = Il − B⊤A, then 0 ⩽ ∆ii ⩽ 1 for 1 ⩽ i ⩽ l, so Tr(∆2) ⩽ Tr(∆). 4Tr(∆) − 2Tr(∆2) =
∥AA⊤ −BB⊤∥2F .

If C2 > 2κ2 − 1, then (C2 − 1)Tr(∆2) ⩽ (C2 − 1)Tr(∆) ⩽ 2(C2 − κ2)Tr(∆), that is,

2κ2Tr(∆)− Tr(∆2) ⩽ 2C2Tr(∆)− 2C2Tr(∆2). (87)

We have

∥AMA⊤ −BMB⊤∥2F = 4Tr(M2∆)− 2Tr(M∆M∆)
(a)

⩽ 4κ2λ2Tr(∆)− 2λ2Tr(∆2)

(b)

⩽ 2C2λ2(2Tr(∆)− Tr(∆2)) = C2λ2∥AA⊤ −BB⊤∥2F ,

where (a) is obtained by applying (86) for three times with (C,D) = (M2,∆), (C,D) = (M ,∆M∆), and
(C,D) = (M ,∆2), respectively, while (b) comes from (87).

Lemma 32. For a positive definite matrix M with eigenvalue λ1 ⩾ ... ⩾ λd > 0 and orthogonal matrices
A,B,E,F , i.e., A⊤A = B⊤B = E⊤E = F⊤F = Id, one has

λd
2
∥AB⊤ −EF⊤∥2F ⩽ ⟨AMB⊤,AB⊤ −EF⊤⟩ ⩽

λ1
2
∥AB⊤ −EF⊤∥2F .

Proof. It is a direct corollary of the Lemma 8 in Gao et al. [2015].

I Additional simulation results

The section contains (i) the detailed procedures of sampling from a GP and the additional simulation results
in the ‘Gaussian process’ part of Section 3.2; (ii) the additional simulation results in the ‘dependence of error
w.r.t. d and λ’ part of Section 4.2.2.

I.1 Detailed procedures of sampling from a GP

(i) generate Xi
iid∼ N(0, Ip) and take xi = B⊤Xi, i ∈ [n];

(ii) generate (f(x1), . . . , f(xn)) from the n-dimensional normal distribution

N
(
{µ(xi)}i∈[n], {Σ(xi,xj)}i,j∈[n]

)
;

(iii) generate ϵi
iid∼ N(0, 1), i ∈ [n] and take Yi = f(xi) + ϵi.

I.2 Average logarithm of gSNR for H = 10, 20, 30, 50

This subsection contains average logarithm of estimated gSNR as a function of n for various values of d and
as a function of d for various values of n. The H is chosen to be 10, 20, 30, 50 respectively.
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Figure 4: Average logarithm of gSNR with increasing n (left) and increasing d (right) for H = 10.
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Figure 5: Average logarithm of gSNR with increasing n (left) and increasing d (right) for H = 20.
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Figure 6: Average logarithm of gSNR with increasing n (left) and increasing d (right) for H = 30.
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Figure 7: Average logarithm of gSNR with increasing n (left) and increasing d (right) for H = 50.

I.3 Histogram of gSNR of GP and pure noise

This subsection contains the histogram of gSNR over 1, 000 random functions with different d and n in
Figure 8.
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Figure 8: Histogram of gSNR of GP
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I.4 Additional simulation results in Section 4.2.2
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Figure 9: Error with increasing d for δ ∈ {0.01, 0.02, 0.03, 0.04, 0.06, 0.07}
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Figure 10: Error with increasing δ for d ∈ {2, 4, 6, 8}. The slopes are −2.049,−2.04,−2.032,−2.026
respectively.
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