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Robust Adaptive Neural Control for a Class of
Perturbed Strict Feedback Nonlinear Systems

Shuzhi Sam Ge, Senior Member, IEEE,and Jing Wang, Member, IEEE

Abstract—This paper presents a robust adaptive neural control
design for a class of perturbed strict feedback nonlinear system
with both completely unknown virtual control coefficients and
unknown nonlinearities. The unknown nonlinearities comprise
two types of nonlinear functions: one naturally satisfies the
“triangularity condition” and can be approximated by linearly
parameterized neural networks, while the other is assumed to
be partially known and consists of parametric uncertainties and
known “bounding functions.” With the utilization of iterative
Lyapunov design and neural networks, the proposed design
procedure expands the class of nonlinear systems for which
robust adaptive control approaches have been studied. The design
method does not requirea priori knowledge of the signs of the
unknown virtual control coefficients. Leakage terms are incorpo-
rated into the adaptive laws to prevent parameter drifts due to
the inherent neural-network approximation errors. It is proved
that the proposed robust adaptive scheme can guarantee the
uniform ultimate boundedness of the closed-loop system signals.
The control performance can be guaranteed by an appropriate
choice of the design parameters. Simulation studies are included
to illustrate the effectiveness of the proposed approach.

Index Terms—Backstepping, neural networks, robust adaptive
control, uncertain nonlinear systems.

I. INTRODUCTION

A DAPTIVE control of nonlinear systems with parametric
uncertainty has received a great deal of attention in the

nonlinear control community [5], [11], [13]. Under the restric-
tions in the growth rate of nonlinearities and matching condi-
tions [9], [21], adaptive control algorithms were first developed
for linearizable nonlinear systems with unknown parameters.
These restrictions were subsequently relaxed by the introduc-
tion of integrator backstepping design in [10], [13], and [22].

With the advances in adaptive nonlinear control, the more ap-
plication-motivated problem of robust adaptive control for non-
linear systems in the presence of time-varying disturbances and
unmodeled dynamics has gradually gained much attention. In
an effort to enlarge the class of nonlinear uncertain systems for
which adaptive backstepping control can be designed, recently
a series of works have been focused on robust adaptive control
of a class of nonlinear systems whose uncertainties include non-
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linearly appearing parametric uncertainty, uncertain nonlinear-
ities as well as unmeasured input-to-state stable dynamics [6],
[7], [17], [25]. A robust adaptive nonlinear control design proce-
dure was presented in [17] for a class of nonlinear systems with
both parametric uncertainty and unknown nonlinearities under
the assumption that unknown functions satisfy a so-calledtri-
angular boundscondition. The results extend the class of un-
certain systems for which global adaptive stabilization methods
can be applied. In [6] and [7], the authors proposed a robust
adaptive control scheme for perturbed strict feedback nonlinear
systems subject to nonlinear parametric uncertainty, uncertain
nonlinearity, and unmodeled dynamics. The proposed robust
adaptive controls in [6], [7], and [17] can guarantee the uni-
form ultimate boundedness of the closed-loop system signals.
For a similar class of nonlinear system, [25] also presented an
adaptive robust control method by combining the backstepping
adaptive control with conventional deterministic robust control.
The common features of the nonlinear systems discussed in [6],
[7], [17], and [25] are that the system uncertainties are in the
linearly parameterized forms and the system virtual control co-
efficients are assumed to be one.

In order to cope with highly uncertain nonlinear systems, as
an alternative, approximator-based adaptive control approaches
have also been extensively studied in the past decade using
Lyapunov stability theory [2], [3], [18], [19], [23], [24], [27].
In [3] and [27], stable adaptive NN controllers were proposed
for nonlinear systems in a Brunovsky form. The same system
was studied in [23] and [24] by using fuzzy systems as function
approximator and different adaptive fuzzy controllers have
been derived. Using the idea of adaptive backstepping, the
developed approximator-based adaptive control approaches
were recently extended to nonlinear systems without satisfying
matching condition [2], [18], [19]. In [2], by using a novel
integral Lyapunov function, an adaptive backstepping con-
troller was presented for nonlinear strict-feedback systems. The
possible controller singularity problem is avoided without using
projection. In [19], a stable adaptive neural control method
was presented for a second-order nonlinear system, where
the unknown system function was parameterized by radial
basis function (RBF) neural networks, and unknown neural
reconstruction error bound was also adaptively tuned online.
By using backstepping and online approximators, the result
in [19] was extended to a class of strict feedback nonlinear
systems with unknown control coefficients in [18], where the
signs of control coefficients are assumed to be known.

In this paper, we present a robust adaptive neural control
design procedure for a class of single-input–single-output
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(SISO) nonlinear uncertain systems in the perturbed strict
feedback form

(1)

where is the state vector,
, is the control, are unknown

smooth nonlinear functions, is a known smooth
function and , , are un-
known constants, and they are referred to as virtual control co-
efficients, in particular, is referred to as the high-frequency
gain, and s are unknown Lipschitz continuous functions.

It is noticed that robust adaptive control algorithms for system
(1) have been developed in [6], [7], [17], and [19], when virtual
control coefficients . The problem of adaptive control
of systems with unknown virtual control coefficients has also
received much attention in recent years. In [13], under the as-
sumption of unknown s but with known signs of s, an adap-
tive control solution was presented for strict feedback nonlinear
systems without disturbance terms. When there is noa priori
knowledge about the signs of virtual control coefficients, the
problem becomes much more difficult. The first solution was
given in [16] for a class of first-order linear systems, where the
Nussbaum-type gain was originally proposed. This method was
then generalized to higher order linear systems in [15]. For non-
linear systems, some results have also been reported in the lit-
erature. Using Nussbaum gain, an adaptive control algorithm
was first given in [14] for first-order nonlinear systems. In [8], a
nonlinear robust control scheme was proposed, which can iden-
tify the unknown control directions and guarantee global sta-
bility of closed-loop system. The design procedure proposed in
[8] can only be applied to second-order systems, and bounds on
the uncertainties and their partial derivatives need to be known.
Recently, for a class of high-order nonlinear systems in the pa-
rameter strict feedback form, adaptive control designs with un-
known signs of virtual control coefficients have been developed
in [1] and [26] by using Nussbaum gain. The discussed systems
are focused on the so-called strict feedback nonlinear systems
under the assumptions that the system uncertainties have been
linearly parameterized and there are no disturbance terms within
the systems. To the best of the authors’ knowledge, few results
are available for the robust adaptive control of perturbed strict
feedback nonlinear systems with unknown virtual control coef-
ficients in the literature. The standard adaptive NN control ap-
proaches cannot be extended to the control of the perturbed strict
feedback system (1) to cope with the disturbance termss due
to the key assumption of known signs of virtual control coeffi-
cients is employed in these works.

In this paper, by using neural networks to approximate the un-
known nonlinear functions in (1), a robust adaptive neural
controller is proposed based on iterative Lyapunov design. The
design method do not require thea priori knowledge of the signs
of the unknown virtual control coefficients due to the incorpo-
ration of Nussbaum gain in the controller design. The unknown
bounds of both neural-network approximation errors and distur-
bance terms are estimated online. Leakage terms are incorpo-

rated into the adaptive laws to prevent the parameters drift due
to the inherent neural-network approximation errors. The pro-
posed design method expands the class of nonlinear systems for
which robust adaptive control approaches have been studied. It
has been proven that the proposed robust adaptive scheme can
guarantee the uniform ultimate boundedness of the closed-loop
system signals. The control performance can be guaranteed by
appropriately choosing the design parameters.

This paper is organized as follows. Section II presents some
assumptions and the structure of the linearly parameterized
neural networks used in controller design. Section III proposes
the robust adaptive control design procedure for perturbed
strict feedback nonlinear system with completely unknown
virtual control coefficients and gives the main result of the
paper. Section IV contains a simulation example to show the
effectiveness of the proposed controller.

II. PRELIMINARIES

A. Problem Statements

Consider the control problem of a single-input–single-output
(SISO) nonlinear uncertain system transformable into (1). The
control objective is to construct a robust adaptive nonlinear con-
trol law so that the output of the above system is driven to a
small neighborhood of the origin, while keeping internal La-
grange stability.

The system described by (1) is in the so-called semistrict
feedback form [25], which has two types of unknown nonlinear
functions: one naturally satisfies the “triangularity condition”
and can be directly approximated by linearly parameterized
approximators; while the other, arises owing to , is
assumed to be partially known and consists of parametric
uncertainties and known “bounding functions.” The unknown
nonlinear functions could be due to many factors
[17], such as measurement noise, modeling errors, external
disturbances, modeling simplifications or changes due to time
variations.

Remark 2.1:Under the assumptions that the virtual control
coefficients and the unknown function s are
linearly parameterized as with being the unknown
constant parameters vector, several adaptive robust control
algorithms for semistrict feedback nonlinear systems (1) have
been developed in [6], [7], [17], and [25]. However, for more
general class of nonlinear uncertain systems like (1), few results
are available in the literature. In this paper, we relax these
two assumptions and propose a robust adaptive backstepping
design method for system (1) by combining neural-network
approximators and backstepping together. The desired adaptive
nonlinear controller is explicitly designed via a recursive robust
adaptive backstepping algorithm.

Throughout the paper, the following assumption will be
imposed on system (1).

Assumption 2.1:For , there exists unknown posi-
tive constant such that

(2)

where is a known nonnegative smooth function.
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Remark 2.2:Assumption 2.1 implies that the allowed class
of uncertainties satisfies a triangularity condition in terms of

. This will be exploited for the ease of our controller design.
Similar assumptions to Assumption 2.1 have been used in [6],
[7], [17], and [25]. In this paper, we do not need the exact ex-
pression of as investigated in [13], where
it showed that the existence of disturbance terms might
drive the system states escape to infinity in finite time, even if

is an exponentially decaying disturbance.
In order to cope with the unknown signs of virtual control

coefficients , the Nussbaum gain technique is employed in this
paper. A function is called a Nussbaum-type function [16]
if it has the following properties:

(3)

(4)

Commonly used Nussbaum functions include:
and [4]. In this paper, an

even Nussbaum function is exploited.
Physically, they can be visualized as functions of infinite gains
and infinite switching frequency.

The following lemma regarding to the property of Nussbaum
gain is used in the controller design and theorem proof of next
section.

Lemma 1: Let and be smooth functions defined
on with , , and be an even
smooth Nussbaum-type function. If the following inequality
holds:

(5)

where constant , is a nonzero constant and
represents some suitable constant, then and

must be bounded on .
Proof: See the Appendix.

Remark 2.3:Note that (5) can be converted into the fol-
lowing inequality:

constant

that does not explicitly depend on time as given in (91) in the
Appendix. As the discussed system does not explicitly depend
on time, and the bounded and are not depending on
time explicitly, uniform conclusion and can be made in
the controller design later.

B. Linearly Parameterized Neural Networks

A linearly parameterized approximator shall be used to ap-
proximate the unknown nonlinearities . Several function
approximators can be applied for this purpose, e.g., RBF neural
networks [2], [20], high-order neural networks [12], and fuzzy

systems [24], which can be described as with input
vector , weight vector , node number, and
basis function vector . Universal approximation re-
sults indicate that, if is chosen sufficiently large, then
can approximate any continuous function to any desired accu-
racy over a compact set [12], [20]. In this paper, we use the fol-
lowing RBF NN to approximate a smooth function

(6)

where the input vector , weight vector
, the NN node number , and

, with being chosen as the
commonly used Gaussian functions, which have the form

(7)
where is the center of the receptive
field and is the width of the Gaussian function.

For the unknown nonlinear functions
in (1), we have the following approximation over the compact
sets :

(8)

where is the basis function vector, is the approxi-
mation error, and is an unknown constant parameter vector.

Remark 2.4:The optimal weight vector in (8) is an “arti-
ficial” quantity required only for analytical purposes. Typically,

is chosen as the value of that minimizes for all
, where is a compact set, i.e.,

(9)

We make the following assumption on the approximation error.
Assumption 2.2:Over a compact region

(10)

where is an unknown bound.
From the above analysis, we see that the system uncertainties

are converted to the estimation of unknown parametersand
unknown augmented parameters consisting of, , and , as
will be detailed later.

Remark 2.5: In practice, the occurrence of control coeffi-
cients are quite common. The examples range from electric
motors and robotic manipulators to flight dynamics. While it is
common that systems have unknownbut with known sign,
it is also quite possible that the uncertain system contains com-
pletely unknown control coefficients. In this paper, we present
a robust adaptive control solution for a class of perturbed strict
feedback nonlinear system with completely unknown control
coefficients.

Remark 2.6:For other linear-in-the-parameters function
approximators such as fuzzy systems, polynomials, splines, and
wavelet networks, the controllers presented in this paper using
RBF NN can be replaced by these function approximators
without any difficulty.
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III. ROBUST ADAPTIVE CONTROL DESIGN

In this section, the robust adaptive control design procedure
for nonlinear system (1) is presented.

Using (8), (1) can be expressed as

(11)

Remark 3.1:The results obtained in this paper are
semiglobal, in the sense that they are valid as long as
remains in , where the set and bounding parameter can
be arbitrarily large. In the special case that (10) holds for all

, then the stability results become global.
The system described by (11) has three types of uncertainty:

parametric uncertainty, which arises due to the unknown,
the bounding uncertainty that arises due to the unknown bounds
on and , and unknown virtual control coefficient.

Our design consists of steps. The design of both the control
law and the adaptive laws is based on a change of coordinates

...

...

(12)

where the functions are referred to as inter-
mediate control functions which will be designed later,is the
parameter estimate for which is the grouped unknown bound
for and , and represents the estimate of unknown pa-
rameter vector which is an augmented parameter vector
consisting of and ,
as clarified later. At each intermediate step, we design the in-
termediate control function using an appropriate Lyapunov

function , and give the parameters update lawsand .
At the th step, the actual control appears and the design is
completed.

Step 1: To start, let us study the following subsystem of (11)

(13)

where is taken as a virtual control input.
To design a stabilizing adaptive control law for system (13),

consider a Lyapunov function candidate

(14)

In light of Assumptions 2.1 and 2.2, the time derivative of
along the solution of (13) satisfies

(15)

where

(16)

(17)

For notational convenience, let , . Con-
sider the Lyapunov function candidate

(18)

where , , and and are the parame-
ters estimates to be determined later.

Then, the time derivative of along (15) is

(19)

Let the intermediate control function be

(20)

with

(21)

(22)

where is a small positive constant and is an even
smooth Nussbaum-type function.

Remark 3.2:Note that for system (11), if there are
no uncertain terms and , then by regrouping pa-
rameters as and
letting , , where

, is the node number of neural
network , the system (11) becomes

(23)

which is in the strict feedback form as discussed in [1] and
[26], where the uncertainty in the system is assumed to be
due to unknown parameters only and unknown parameters are
appearing linearly with respect to known nonlinear functions.
However, when involving the neural-network approximation
errors and uncertainty terms , the problem becomes much
more difficult. Different from the work in [26], in this paper,
with the aid of neural networks, we present a robust adaptive
neural control scheme to deal with both unknown parameters
and unknown uncertainty functions due to modeling errors,
external disturbances or a combination of these.

As in [17], in order to prevent parameter drifts, we present the
following adaptive law incorporating a leakage term based on a
variation of -modification. Let the parameter adaptation laws
be

(24)

(25)
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where and are design
constants.

Using (20), a direct substitution of into (19)
gives

(26)

Adding and subtracting

on the right hand of (26), and noting (22), (24), and (25), we
have

(27)

By completing the squares

(28)

(29)

and using the following nice property with regard to function
[17]:

for
(30)

Equation (27) can be further written as

(31)

This yields

(32)

where the constants and are defined as

(33)

(34)

Let , upon multiplication of (32) by , it
becomes

(35)

Integrating (35) over , we have

(36)

Remark 3.3:Noting (36), if there is no extra term
within the inequality, we can conclude from

Lemma 1 that and are all bounded
on . Thus, no finite-time escape phenomenon may
happen and , and we claim that are
uniformly ultimately bounded. Due to the undesired term

in (36), Lemma 1 cannot be directly
used. However, because

(37)

thus, if can be regulated as bounded, from (37), the bounded-
ness of is obvious. Then, according to
Lemma 1, the boundedness of can be guaranteed. There-
fore, the effect of will be dealt with in
the following steps.

Step : A similar procedure is employed
recursively for each step . The derivative of

is

(38)
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In view of Assumptions 2.1 and 2.2, we have

(39)

where , and

is a smooth positive function.
It is easy to find a smooth positive function

(40)

A simple example is

(41)

Thus, (38) can be rewritten as

(42)

where

Let

(43)

(44)

then, (42) can be further written as

(45)

Consider the Lyapunov function candidate

(46)

where , , and and are the parameters
estimates to be determined later. Differentiatingwith respect
to time gives

(47)

By selecting and parameters adaptation laws as

(48)

(49)

(50)

(51)

(52)

where is a small positive constant and and
are design constants.

Using the same techniques as done previously, we obtain

(53)

Similarly, this yields

(54)

where , the constants and are
defined as

(55)

(56)

Remark 3.4:Similar to the discussion in Remark 3.3, if
can be regulated as bounded such that
is bounded at the following steps, then, according to Lemma 1,
the boundedness of and can be guaranteed.
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Step : In this final step, the actual controlappears. Simi-
larly, we have

(57)

where

(58)

(59)

(60)

Let

(61)

(62)

then, (57) can be rewritten as

(63)

Let the control input be designed as

(64)

(65)

(66)

where is a small positive constant. For parameter adaptation,
we introduce the following adaptation laws:

(67)

(68)

where , , and
are design constants.

Consider the Lyapunov function candidate

(69)

Similarly, the time derivative of satisfies

(70)

This yields

(71)
where , the constants and
are defined as

(72)

(73)

Using Lemma 1, we can conclude that and , hence
, and are uniformly ultimately bounded.

From the boundedness of , the boundedness of the extra
term at Step is readily
obtained. Applying Lemma 1 ( ) times backward, it can
be seen from the above design procedures that ,

, and, hence, are uniformly ultimately
bounded.

The following theorem shows the stability and control per-
formance of the closed-loop adaptive system.

Theorem 3.1:For perturbed strict feedback nonlinear system
(1) with completely unknown virtual control coefficients

, under Assumptions 2.1 and 2.2, if we apply the con-
trol design procedure in the above statement, the solutions of the
resulting closed-loop adaptive system are uniformly ultimately
bounded.

Furthermore, given any , there exists
such that, for all , we have . The compact set

can be made as small as desired
by an appropriate choice of the design constants. Correspond-
ingly, the output satisfies the following property:

(74)

where , , is the upper bound
of , and constants

and are defined by (55) and (56), respectively.
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Proof: The proof can be easily completed by following the
above design procedures from Step 1 to Step. Since

, from the definition of and (36), the property
(74) can be easily obtained. Thus, by appropriately choosing the
design constants, we can achieve the regulation of the output

to any prescribed accuracy while keeping the boundedness
of all the signals and states of the closed-loop system.

Remark 3.5:Decreasing and will help to reduce
the size of . However, if and are too small, it may
not be enough to prevent the parameter estimates from drifting
to very large values in the presence of the neural-network ap-
proximation errors, where the large might result in a varia-
tion of a high-gain control. Therefore, in practical applications,
the design parameters should be adjusted carefully for achieving
suitable transient performance and control action.

Remark 3.6:Compared with the works in [6], [7], [17], and
[19], the proposed robust adaptive controller in this paper can
cope with the parametric uncertainty and bounding uncertainty,
as well as the unknownvirtual control coefficients. The unknown
system functions are approximated by neural networks.
The unknown bounds of neural approximation errors are also
adaptively tuned. The proposed design method expands the
class of nonlinear systems to which robust adaptive control
approaches can be applied due to the employment of online
linearly parameterized approximator.

IV. SIMULATION

To illustrate the proposed robust adaptive control algorithms,
we consider the regulation of the second-order system

(75)

where , are unknown virtual control
coefficients, are unknown system functions, and

are unknown bounded disturbances. For
simulation purpose, we assume that and let

(76)

(77)

(78)

(79)

and and . The bounds on and are

(80)

(81)

where , , , and .
We use RBF neural networks to approximate ,
i.e., ,

, where , . ,
. For the design of robust adaptive

controller, let , be the estimates of unknown

parameters , , ,
and , we have

(82)

(83)

(84)

(85)

where are the Nuss-
baum functions,

and are computed using (22) and (66), respectively.
Parameters update laws

(86)

(87)

(88)

(89)

The selection of the centers and widths of RBF has a great
influence on the performance of the adaptive neural controller.
It has been indicated [20] that Gaussian RBF NNs arranged on
a regular lattice on can uniformly approximate sufficiently
smooth functions on closed bounded subsets. Accordingly,
in the following simulation studies, we select the centers and
widths as: Neural network contains nine nodes,
with centers ( ) evenly spaced in , and
widths ( ). Neural network con-
tains 63 nodes, with centers( ) evenly spaced in

, and widths ( ). The
following initial conditions and controller design parameters are
adopted in the simulation: ,

, and ,
, ,

, , and .
Simulation results in Figs. 1–6 show the effectiveness of the

proposed robust adaptive control design for system (75) with
uncertainties and completely unknown . Fig. 1
shows that the system output converges to a small neighborhood
around zero. The boundedness of control input is shown in
Fig. 2. The boundedness of weights , as well as the
parameter estimates and are illustrated in Figs. 3 and 4,
respectively. Figs. 5 and 6 show the variations of Nussbaum
gains and parameters respectively, which
are also bounded.
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Fig. 1. Outputy.

Fig. 2. Control inputu.

Fig. 3. Boundedness of weightskŴ k: “solid line.” kŴ k: “dashdot
line”.

Fig. 4. Boundedness of parametersb̂ : “solid line.” b̂ : “dashdot line.”

Fig. 5. Adapting parameters� : “solid line” and “gain”N(� ): “dash line.”

Fig. 6. Adapting parameters� : “solid line” and “gain.”N(� ): “dash line.”

V. CONCLUSION

In this paper, a robust adaptive control design for a class
of perturbed uncertain strict feedback nonlinear systems with
unknown virtual control coefficients has been presented. With
the utilization of iterative Lyapunov and neural approximators,
the proposed design method expands the class of nonlinear sys-
tems for which robust adaptive control approaches have been
studied. The design method do not require thea priori knowl-
edge of the signs of the unknown virtual control coefficients
due to the incorporation of Nussbaum gain in the controller
design. It has been proven that the proposed robust adaptive
scheme can guarantee the uniform ultimate boundedness of
the closed-loop system signals. The control performance can
be guaranteed by an appropriate choice of the design param-
eters. Simulation results have shown the effectiveness of the
proposed method.

APPENDIX

PROOF OFLEMMA 1

Rewrite (5) as

(90)
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Depending on the signs of and , (90) can be further
written as

(91)

where constant .
We first show that is bounded on by seeking a

contradiction. Two cases are considered.
Case 1: Suppose that has no upper bounds on .

The properties of Nussbaum-type function ensure the existence
of two monotonely increasing sequences with

and , , such that

(92)

(93)

Since has no upper bounds on , thus, there exist two
monotonely increasing sequences , , such that

, . Clearly, , .
Dividing (91) by , we obtain

(94)

(95)

where . Noting that , ,
when . Thus, if , (95) contradicts (93),

and when , (94) contradicts (92). Therefore, is
upper bounded on .

Case 2: Suppose that has no lower bounds on .
Thus, there exist two monotonely increasing sequences ,

, such that , . Clearly,
. Since the function is even, (91) can

be further written as

(96)

Dividing (96) by , we obtain

(97)

(98)

where . Noting that , ,
when . Similarly, there is a contradiction no matter

what the sign of is. Therefore, is lower bounded on
.

Thus, we conclude that the boundedness ofon . As
an immediate result, and are also bounded
on .
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