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Robust Adaptive Neural Control for a Class of
Perturbed Strict Feedback Nonlinear Systems

Shuzhi Sam GegSenior Member, IEEEand Jing WangMember, IEEE

Abstract—This paper presents a robust adaptive neural control linearly appearing parametric uncertainty, uncertain nonlinear-
design for a class of perturbed strict feedback nonlinear system jties as well as unmeasured input-to-state stable dynamics [6],
with both completely unknown virtual control coefficients and 71 117, [25]. A robust adaptive nonlinear control design proce-
unknown no?“nealr-'t'es' ?‘e unknown non“nefﬁm'es P(f)-mp”?]e dure was presented in [17] for a class of nonlinear systems with
two types of nonlinear functions: one naturally satisfies the _ _ i >
“triangu|arity condition” and can be approximated by |inear|y bOth pal’ametrlc Uncerta|nty and UnknOWn non“nea““es Under
parameterized neural networks, while the other is assumed to the assumption that unknown functions satisfy a so-cdtied
be partially known and consists of parametric uncertainties and - angular boundgondition. The results extend the class of un-
known “bounding functions.” With the utilization of iterative artain systems for which global adaptive stabilization methods
Lyapu(;uov de3|gnd an?] ne:;ral n?tworIT§, the propose;j deﬂgr;] can be applied. In [6] and [7], the authors proposed a robust
procedure expands the class of nonlinear systems for whic ; : ' ; s
robust adaptive control approaches have been studied. The design adapt|Ve Control SCheme fOI‘ perturbed strict feedback non“near
method does not requirea priori knowledge of the signs of the systems subject to nonlinear parametric uncertainty, uncertain
unknown virtual control coefficients. Leakage terms are incorpo- nonlinearity, and unmodeled dynamics. The proposed robust
rated into the adaptive laws to prevent parameter drifts due to adaptive controls in [6], [7], and [17] can guarantee the uni-

the inherent neural-network approximation errors. It is proved f ltimate b ded f the cl d-| ; . |
that the proposed robust adaptive scheme can guarantee the 'OfM ultimate boundedness of the closed-loop system signals.

uniform ultimate boundedness of the closed-loop system signals. FOr @ similar class of nonlinear system, [25] also presented an
The control performance can be guaranteed by an appropriate adaptive robust control method by combining the backstepping

choice of the design parameters. Simulation studies are included adaptive control with conventional deterministic robust control.

to illustrate the effectiveness of the proposed approach. The common features of the nonlinear systems discussed in [6],
Index Terms—Backstepping, neural networks, robust adaptive [7], [17], and [25] are that the system uncertainties are in the
control, uncertain nonlinear systems. linearly parameterized forms and the system virtual control co-
efficients are assumed to be one.
|. INTRODUCTION In order to cope with highly uncertain nonlinear systems, as

i ) _an alternative, approximator-based adaptive control approaches
DAPTIV.E control of r_wonllnear systems with param?t”(have also been extensively studied in the past decade using
'uncertamty has rece!ved a great deal of attention in ”Il?apunov stability theory [2], [3], [18], [19], [23], [24], [27].
nonlinear control community [5], [11], [13]. Under the restricy - [3] and [27], stable adaptive NN controllers were proposed
tions in the growth rate of nonlinearities and matching condis " onjinear systems in a Brunovsky form. The same system
tions [9], [21], adaptive control algorithms were first developegc;as studied in [23] and [24] by using fuzzy systems as function
for linearizable nonlinear systems with unknown parametetg, . imator and different adaptive fuzzy controllers have
These restrictions were supsequeptly_relaxed by the introdyee, gerived. Using the idea of adaptive backstepping, the
tion pf integrator baclfsteppln.g deS|gr1 in [10], [13], and [22]. developed approximator-based adaptive control approaches
_W't_h the ad_vances in adaptive nonlinear C_ontrol, the more ARere recently extended to nonlinear systems without satisfying
plication-motivated problem of robust adaptive control for NOMatching condition [2], [18], [19]. In [2], by using a novel
linear systemsinth.e presence oftime—vgrying disturbanges gral Lyapunov function, an adaptive backstepping con-
unmodeled dynamics has gradually gained much attention. /e, \ag presented for nonlinear strict-feedback systems. The

an effort to enlarge the class of nonlinear uncertain systems ifsqip e controller singularity problem is avoided without using
which adaptive backstepping control can be designed, rece ¥Jjection. In [19], a stable adaptive neural control method
a series of works have been focused on robust adaptive con presented for a second-order nonlinear system, where

of a class of nonlinear systems whose uncertainties include N unknown system function was parameterized by radial

basis function (RBF) neural networks, and unknown neural
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(SISO) nonlinear uncertain systems in the perturbed strigted into the adaptive laws to prevent the parameters drift due

feedback form to the inherent neural-network approximation errors. The pro-
posed design method expands the class of nonlinear systems for
T =gizip1 + fi(@) + Ai(t, z),  di=1,...,n—1 which robust adaptive control approaches have been studied. It
T = guB(@)u+ fo(z) + An(t, 1) has been proven that the proposed robust adaptive scheme can
y =2 1) guarantee the uniform ultimate boundedness of the closed-loop
system signals. The control performance can be guaranteed by
wherez = [z, ..., z,]T € R" is the state vectorf; = appropriately choosing the design parameters.
[#1, ..., 2;]T, u € Ris the controlfi, ..., f, are unknown  This paper is organized as follows. Section Il presents some
smooth nonlinear functiong(x): R" — R is a known smooth assumptions and the structure of the linearly parameterized
function andg(z) # 0,Vz € R*, g;,i = 1, ..., n are un- neural networks used in controller design. Section Il proposes

known constants, and they are referred to as virtual control db€ robust adaptive control design procedure for perturbed
efficients, in particularg, is referred to as the high-frequencystrict feedback nonlinear system with completely unknown
gain, andA;s are unknown Lipschitz continuous functions. Virtual control coefficients and gives the main result of the
Itis noticed that robust adaptive control algorithms for systeRper. Section IV contains a simulation example to show the
(1) have been developed in [6], [7], [17], and [19], when virtugffectiveness of the proposed controller.
control coefficientsy; = 1. The problem of adaptive control
of systems with unknown virtual control coefficients has also Il. PRELIMINARIES
received much attention in recent years. In [13], under the % Problem Stat N
sumption of unknowy;s but with known signs of;s, an adap- "~ roblem sStatements
tive control solution was presented for strict feedback nonlinearConsider the control problem of a single-input-single-output
systems without disturbance terls. When there is napriori  (SISO) nonlinear uncertain system transformable into (1). The
knowledge about the signs of virtual control coefficients, theontrol objective is to construct a robust adaptive nonlinear con-
problem becomes much more difficult. The first solution wakol law so that the outpuy of the above system is driven to a
given in [16] for a class of first-order linear systems, where thgmall neighborhood of the origin, while keeping internal La-
Nussbaum-type gain was originally proposed. This method wagiange stability.
then generalized to higher order linear systems in [15]. For non-The system described by (1) is in the so-called semistrict
linear systems, some results have also been reported in thef@igdback form [25], which has two types of unknown nonlinear
erature. Using Nussbaum gain, an adaptive control algoritﬁhﬂCtiOﬂS: one naturally satisfies the “triangularity condition”
was first given in [14] for first-order nonlinear systems. In [8], &nd can be directly approximated by linearly parameterized
nonlinear robust control scheme was proposed, which can idépproximators; while the other, arises owing 49(¢, ), is
tify the unknown control directions and guarantee global stassumed to be partially known and consists of parametric
bility of closed-loop system. The design procedure proposeduncertainties and known “bounding functions.” The unknown
[8] can only be applied to second-order systems, and boundsgilinear functionsA, (¢, =) could be due to many factors
the uncertainties and their partial derivatives need to be knowh?], such as measurement noise, modeling errors, external
Recently, for a class of high-order nonlinear systems in the pisturbances, modeling simplifications or changes due to time
rameter strict feedback form, adaptive control designs with uvariations.
known signs of virtual control coefficients have been developedRemark 2.1:Under the assumptions that the virtual control
in [1] and [26] by using Nussbaum gain. The discussed systefggfficients g; = 1 and the unknown functiory;(z;)s are
are focused on the so-called strict feedback nonlinear systeifigarly parameterized @ +;(;) with 6; being the unknown
under the assumptions that the system uncertainties have be@tstant parameters vector, several adaptive robust control
linearly parameterized and there are no disturbance terms witBlgorithms for semistrict feedback nonlinear systems (1) have
the systems. To the best of the authors’ knowledge, few resutgen developed in [6], [7], [17], and [25]. However, for more
are available for the robust adaptive control of perturbed strigéneral class of nonlinear uncertain systems like (1), few results
feedback nonlinear systems with unknown virtual control coere available in the literature. In this paper, we relax these
ficients in the literature. The standard adaptive NN control ap#0 assumptions and propose a robust adaptive backstepping
proaches cannot be extended to the control of the perturbed s@liesign method for system (1) by combining neural-network
feedback system (1) to cope with the disturbance tekgssdue approximators and backstepping together. The desired adaptive
to the key assumption of known signs of virtual control coeffinonlinear controller is explicitly designed via a recursive robust
cients is employed in these works. adaptive backstepping algorithm.
In this paper, by using neural networks to approximate the un-Throughout the paper, the following assumption will be
known nonlinear functiong; () in (1), a robust adaptive neuralimposed on system (1).
controller is proposed based on iterative Lyapunov design. TheAssumption 2.1:For1 < i < n, there exists unknown posi-
design method do not require ta@riori knowledge of the signs tive constanp; such that (¢, =) € Ry x R"
of the unknown virtual control coefficients due to the incorpo-
ration of Nussbaum gain in the controller design. The unknown |A;(t, )| < ploi(T;) 2
bounds of both neural-network approximation errors and distur-
bance terms are estimated online. Leakage terms are incongbereg; is a known nonnegative smooth function.



GE AND WANG: ROBUST ADAPTIVE NEURAL CONTROL 1411

Remark 2.2: Assumption 2.1 implies that the allowed classystems [24], which can be described&d S(z) with input
of uncertainties\; satisfies a triangularity condition in terms ofvectorz € R", weight vector’W € R!, node numbet, and
x. This will be exploited for the ease of our controller desigrbasis function vectof(z) € R!. Universal approximation re-
Similar assumptions to Assumption 2.1 have been used in [6llts indicate that, ifis chosen sufficiently large, théi ' S(z)
[7], [17], and [25]. In this paper, we do not need the exact exkan approximate any continuous function to any desired accu-
pression ofA;(¢, ) = ¢;(Z;)p; as investigated in [13], where racy over a compact set [12], [20]. In this paper, we use the fol-
it showed that the existence of disturbance tegis;)p; might lowing RBF NN to approximate a smooth function
drive the system states escape to infinity in finite time, even if
p; is an exponentially decaying disturbance. hun(z) = WTS(2) (6)

In order to cope with the unknown signs of virtual control

coefficientsy;, the Nussbaum gain technique is employed in thi¥ere the input vector € & C R", weight vectorV =

l
paper. A functionV (¢) is called a Nussbaum-type function [16][4/1: @2s -+ w]’ € R, tThe NN node numbet > 1, and
if it has the following properties: 5(z) = [s1(2), ..., si(2)]", with s;(z) being chosen as the
commonly used Gaussian functions, which have the form
1 S
li - N(¢)d¢ = 3 (= 1N (5 — s
Jim sup S/O (€)d¢ =00 @) 51(2) = exp (2 /1'1)2 F=pm)] o
s m;
Jim inf / N(¢)d¢ =—oc. (4) (1)
s—0 s Jo wherep; = [pi1, pi2. - - -, 1in]? is the center of the receptive
. . field andy; is the width of the Gaussian function.
Commonly used Nussbaum functions include? cos(k), For the unknown nonlinear functions(z,), i = 1, ..., n

k%sin(k), and exp(k?)cos((w/2)k) [4]. In this paper, an

even Nussbaum functionxp(k?) cos((7/2)k) is exploited.

Physically, they can be visualized as functions of infinite gains

and infinite switching frequency. fi(@) = WrToi(7) + wi(T), VZ, € Q; C R (8)
The following lemma regarding to the property of Nussbaum

gain is used in the controller design and theorem proof of nexhere«(z;) is the basis function vectag; (z;) is the approxi-

section. mation error, and¥;* is an unknown constant parameter vector.
Lemma 1:Let V() and((-) be smooth functions defined Remark 2.4: The optimal weight vectd’* in (8) is an “arti-

on |0, ty) with V(t) > 0,Vt € [0, tf), andN(-) be an even ficial” quantity required only for analytical purposes. Typically,

smooth Nussbaum-type function. If the following inequalitwi* is chosen as the value &F; that minimizesy;(z;) for all

holds: z; € Q;, whereQ; C R’ is a compact set, i.e.,

in (1), we have the following approximation over the compact

'

ot
V(f) <Cy+ e Cit /0 (qlN(C)C + C) eC1T dr Wi* = arg “I'nei}%n { sup |fz(fz) — WLTl/}(fz)|} . (9)
Vi T, EQ;

Vie(0,ty) (5) _ _ o
We make the following assumption on the approximation error.
where constantC; > 0, ¢; is a nonzero constant and Assumption 2.2:0ver a compact regioft; € R
Cy represents some suitable constant, théfi), ((¢) and _ . _ ,
3 91N (¢)¢ dr must be bounded ofo, ¢). |wi (T;)| < 6; VT, €Q,i=1,...,n (10)

Proof: Se.e the Appendix. . wheres} > 0 is an unknown bound.
R_em_ark 2.3:N9te that (5) can be converted into the fol- From the above analysis, we see that the system uncertainties
lowing inequality: are converted to the estimation of unknown paramététsand
0 unknown augmented parameters consisting;ob;, andg;, as
0<V(t)<C g / N(C) d¢ + ¢(#) will be detailed later.
J0 Remark 2.5:1n practice, the occurrence of control coeffi-
cientsg; are quite common. The examples range from electric

- . . , .. motors and robotic manipulators to flight dynamics. While it is
that does not explicitly depend on time as given in (91) in the, . 11on that systems have unknownbut with known sign,

Appendix. As the discussed system does not explicitly depepek 5150 quite possible that the uncertain system contains com-
on time, and the bounded(#) and¢(#) are not depending on ,\ate1y ynknown control coefficients. In this paper, we present
time explicitly, umform conclusion ant} = oo canbe made in 5 yop st adaptive control solution for a class of perturbed strict
the controller design later. feedback nonlinear system with completely unknown control
coefficients.

Remark 2.6:For other linear-in-the-parameters function

A linearly parameterized approximator shall be used to appproximators such as fuzzy systems, polynomials, splines, and
proximate the unknown nonlinearitig(-). Several function wavelet networks, the controllers presented in this paper using
approximators can be applied for this purpose, e.g., RBF neurRBF NN can be replaced by these function approximators
networks [2], [20], high-order neural networks [12], and fuzzwithout any difficulty.

constantC' = Cp F((0), Vit e |0, ty)

B. Linearly Parameterized Neural Networks
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[ll. RoBUSTADAPTIVE CONTROL DESIGN where
In this section, the robust adaptive control design procedure b} = max{67, p} (16)
for nonlinear system (1) is presented. 1 (z1) =1+ ¢1(z1). (17)

Using (8), (1) can be expressed as _ .
For notational convenience, [&8; ; = WY, 4, 1 = ¢1. Con-

@i = gimip1 + W Ti(T) + wi(@i) + Ai(t, @), sider the Lyapunov function candidalte
i:l./...,n—l ‘/1:‘/0_}_%([;[/‘1,1_ * )TF (Wal_W;,l)
i = gnB(w)u+ Wi, (2) + wn () + Ay(t, ©)

1 7 *\ 2

Yy=xi. (11) +K (bl - bl) (18)

Remark 3.1:The results obtained in this paper aravherel’; = T >0, >0, .a-ndWa,l andb, are the parame-
semiglobal, in the sense that they are valid as long;4s ters estimates to be determined later.
remains irf);, where the se®; and bounding parametéf can ~ Then, the time derivative df; along (15) is
be arbitrarily large. In the special case that (10) holds for gt < ;, (102 + W htha, 1 (1)) + b |21 [y (z1)
7; € R*, then the stability results become global. . 1 . .

The system described by (11) has three types of uncertainty:  +(Wa,1 — W, ) TTT W 1 + o (by —b71)b1. (19)
parametric uncertainty, which arises due to the unkn®ign !

the bounding uncertainty that arises due to the unknown bour]rc% the intermediate control functios, be

T oo ot o171 ot ) = N(@) (21 W s (02) o)
law and the adaptive laws is based on a change of coordinates . [36151 ($1)D o0
21 =21 o
zo =9 — ay(x1, VAth lA)l) with
N(G) = exp(¢f) cos (5 ¢1) (21)
s = o= (T -, S, Wa b él :Z% + Z1Wa,1’l/1a,1 + 215151 tanh [Zlqbl} (22)
Wi i1, by, ..., biiy) o

wheree; is a small positive constant ami(¢;) is an even
: smooth Nussbaum-type function.
Zn =Tn — p 1 (L1, -y Tpo1, Wat, - Remark 3.2:Note that for system (11), if there are
~ no uncertain termsw; and A;, then by regroupin a-
Wain-t, brs oy baa) (12) rametersW;, ..., W* as #* = [WI*T,)(. ., %V;TF]JT ganF:j
where the functions;, i = 1, ..., n—1arereferredtoasinter- letting ¢; = [07,..., 0 ,, 4T, 05, ..., 0I]", where
mediate control functions WhICh will be designed latets the 0; :== [0,...,0T € RY,; is the node number of neural
parameter estimate féf which is the grouped unknown boundnetworkW*Tz/;], the system (11) becomes
for p¥ andé?, andW, i represents the estimate of unknown pa- «T
rameter vectoiV" , which is an augmented parameter vector i = giip1 +T9 Pis lsizn—1
consisting ofg;, j = 1,...,4— landW},j = 1,....4, En =gnt+ 0" ¢n (23)
as clarified later. At each intermediate StEIWe deS|gn the IN- which is in the strict feedback form as discussed in [1] and
termediate control function; using an appropriate Lyapunov[26], where the uncertainty in the system is assumed to be
functionV;;, and give the parameters update IéwandWm. due to unknown parameters only and unknown parameters are
At the nth step, the actual contral appears and the design isappearing linearly with respect to known nonlinear functions.
completed. However, when involving the neural-network approximation
Step 1: To start, let us study the following subsystem of (1Brrors and uncertainty terms;, the problem becomes much
. «T more difficult. Different from the work in [26], in this paper,
1= g1z + Wit (1) +wien) + Aalt, 2) - (A3) i the aid of neural networks, we present a robust adaptive

wherez, is taken as a virtual control input. neural control scheme to deal with both unknown parameters
To design a stabilizing adaptive control law for system (133nd unknown uncertainty functios; due to modeling errors,
consider a Lyapunov function candidate external disturbances or a combination of these.
Asin[17], in order to prevent parameter drifts, we present the
V() = § 2. (14) 7] preventp "

following adaptive law incorporating a leakage term based on a
In light of Assumptions 2.1 and 2.2, the time derivativel@gf variation ofg-modification. Let the parameter adaptation laws
along the solution of (13) satisfies be

Vo =1 (g122 + WiTapi(z1) + wi + Aq(t, ) W1 =Tia19a, 1 (1) — Trow, (Wa,1 — Wf,l) (24)

<ay (grae + WiTi(a1)) + 6F|a| + pilat |1 (21) : _ 210 (1) .
Swl (91372 + Wl*del(xl)) + bi|xl|$1('xl) (15) bl 2)\1z1¢1(l’1)tanh |:—611 :| —)\10'b1 (bl—b(l)) (25)
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whereow, > 0,05 > 0andWp b > 0 are design This yields

constants.
Using (20), a direct substitution af, = z, + a7 into (19)
gives

Vi <giz172 + 1 N(G1) < + o Wr 1%a,1(1)

+21b16; (1) tanh [m] )

€1

+ 2 W, 1I/Ja 1(z1) + b1|371|</>1(371)

+ (Wa,1 — W) I W, 1+A (b1 — b%)b1.  (26)
Adding and subtracting
i+ ZlW 1%, 1(z1) + zlb1¢1(x1) tanh [1(1561—1(331)}

on the right hand of (26), and noting (22), (24), and (25), we

have
Vi < —22 + giz120 + glN(CI)él +G

+mm@ﬂh%4ﬁﬁﬂmﬂmhﬁﬁﬂﬂq

€1

—ow, (Wa,1 = Wi )T (W1 — W)
— oy, (b = b7)(br — BY). (27)
By completing the squares
ow, (Wa,l - ;,1)T(Wa,1 - W(?,l)
. 2 . 2
= %UWH Wa,l - W(:l ‘ + %JVVl Wa,l - Wao,lH
% 2
- %le ||Wa,1 Wc?,l“ (28)

oy, (by — b})(by — b))

= 305, (br = b7)% + 3 03, (b = 19)° = S o, (b — 1Y)

(29)

and using the following nice property with regard to functios™“"* f 93z

tanh(-) [17]:

0 < |2| —  tanh (5> < 0.2785¢,  fore>0,z € R.
‘ (30)
Equation (27) can be further written as

Vi <22+ g1z + NG+ G

R 2 ~
— 20w, |[Wa1— W;JH = 5 ou, (b = b7)?
* * 2
+70.2785¢; + L ow, |[Wir, — W2 |

+ 5 on, (b — B9)?

2 . .
<-4 - (i —g122)" + I N(C)G + G
~ o | i
Loy, (b — b7)% + b*;o.278561

bY)* + 9125
~ 2 N
Wart = Wi = Sou (b — 112
+ 1 N(C)er + &+ b50.2785¢
* 2 %
+ %U"Vl “Wa,l - W(?JH + %Ubl(bl —

+ Lo |[We L = w2 |1P + Loy, (6 -

IN

3.2 1
T1%1 732

ow,

b)* + 9173
(31)

Vi < —CnVi+Cra+ glN(Cl)él + C.1 + Q%Z%
where the constants;; > 0 andC4, > 0 are defined as

(32)

3 ow,
C11 = T =1 A 33
11 rmn{2 )\max(rl ) Ob,y 1} (33)
C1o :=b70.2785¢1 + %le ||VV;k 1 Wf, 1“2
+ ou, (b7 - B9)” (34)

Let p; := C12/C1y, upon multiplication of (32) by“1t, it
becomes

d )
7 (Vi(t)eCt) < Craet + g1 N((r)Cre?

+<lecllt+g2 2 Cllt

Integrating (35) ovefo, t], we have

(39)

0 <VA(t)
<p1+[V1(0) = pile

t
vt [@N@) + ) e dr
0

t
+ e_cllt/ g Z3 26T 47
0

—Chit

¢
<p1+V1(0) 4 et / G N(G) G dr
Jo

4 e—Cnt
0
Remark 3.3:Noting (36), if there is no extra terrma—C11t
fotg 22e“1T dr within the mequallty, we can conclude from
Lemma 1 thatVi(t), ¢; and z, Wa 1, b, are all bounded
on [0, t¢). Thus, no finite-time escape phenomenon may
happen and; = oo, and we claim that;, Wa 1, by are
umformly ultlmately bounded. Due to the undesired term
e“1'7 dr in (36), Lemma 1 cannot be directly
used. However because

t t
efcllt/ G223 dr < e “1tg? sup z%/ 1T dr
0 ref0,t] 0

t t
Clec“TdT—}—e_C”t/ g 25 2eCNT dr. (36)
Jo

g% sup 23
TE[O,t]

- Cu
thus, ifzo can be regulated as bounded, from (37), the bounded-
ness ofe~¢1? f g322e“1™ dr is obvious. Then, according to
Lemma 1, the boundednessa(t) can be guaranteed. There-
fore, the effect ob~C11* [ g223¢“117 dr will be dealt with in
the following steps.

Stepi (2 < i < n — 1): A similar procedure is employed
recursively for each step= 2, ..., n — 1. The derivative of
(1/2)z%is

(37)

aaz 1
ailij

Zzzz =2 |9iTi+1 + W* d}z + w; + A Z

: (gjl’jﬂ + W T+ w; + Aj)
8aL 1

S S
ob; 7

7=1 J

(38)
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In view of Assumptions 2.1 and 2.2, we have

— i— 5} 7
Z oo A it o)+ wi — —
— I
= j=1
i—1 1
% * 8ai, % 8ai
<zl |pigi +Y S| + 6 5 :
j=1
< b} |zl i (i)
whereb} = max{p;, ..., p}, 67, ..., 6;}, and
- 8ai_ 8ai_
¢i(Ti) 2 ¢ ——|¢; -

is a smooth positive function.
It is easy to find a smooth positive function

_ O 0o
$; > bi R Y -

A simple example is

; —¢L+1+Z( <a§;11>2+1) (¢, +1).

Thus, (38) can be rewritten as

1
Zzzz <z giTit1 — Z 8Z giTj+1 + W d}z
7j=1

0511

Z W*T%Z’J + Bi +b*|22|¢
where
i—1 i—1
Oaj_1 Oaj_1 }
Bi==Y = Wa = ——b
j=1 ow, a,j j=1 ab]
Let
W:J [17 gi, -5 9i—1, Wi*T7 W1*T7 L) Wiﬂ]T
Oa;_q Oai_q T
wa,z - |:ﬁ1,7 - 8.271 T2y «nny _8371;_1 Ti, 1/)1' )
aaz Lyt iy p 1"
e, — bz
1> ? 8:17,;_1 i—1

then, (42) can be further written as
zi%i < zi [gimips + Wi hba,i] + bF| il
Consider the Lyapunov function candidate

Vi= %ZLZ + % (Waz - W;,i)TF;l(Wa i W; z)

1

b; — b*)?
2Ai( i)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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wherel’; =TT > 0,); > 0, andIfVm andBi are the parameters
estimates to be determined later. Differentiatigvith respect
to time gives

Vi<z [giziz1 + W;TL%L] + bf|zil¢;

X 1 .
Wr )T "W i+ — (b —
; Ao

N

(Wi — b)bi. (47)

By selectinge; and parameters adaptation laws as

=N(G) (ZH-W i + bid; tanh[ 2i; D (48)

N(G) = exp(¢?) cos (56 (49)
é—z + z aﬂ/}az—I—zzbqﬁtanh[zqﬁ] (50)
Wa,i =T2%q,: — Liow, (WaL - Wf,i) (51)
b = \izi¢; tanh [ ziti ] - )\1;0;,7(131- - b)) (52)

whereez is a small positive constant aagy, > 0, o, > 0 and
Wa i, b9 > 0 are design constants.
Usmg the same techniques as done previously, we obtain

Vi < =22+ gizizig1 + 9i (C )G+ 6

Low, |Wa,i =W | — 30w, (bi — b})? + b}0.2785¢;
+ 30w, |Wa,i— W(?,i| + 303, (b] —B9)°
. . N 2
< =227+ gN(G)Gi+ G — 5 ow, [Wai — W,

o, (bi—b7)? + b70.2785¢; + L ow,
au, (07 = 09)* + 972711

N’I»—‘ N[

(53)
Similarly, this yields
0 <Vi(t)

t
< pi + Vi(0) 4 e=Cint / giN(()Gie“ ™ dr
0

t t
+ e~ Curt / CieC“T dr + e~ Cirt / gfziz_i_leci” dr
0 0
(54)

wherep; := C;2/C;1, the constantg€’;; > 0 andC;» > 0 are
defined as

3 ow.
C; — i 55
1 := min { 2 DI Ty s Ob; } (55)
Cio :=070.2785¢; + %UVV? W:’T —
+ 5 ob, (b — b2)°. (56)

Remark 3.4: Similar to the discussion in Remark 3.3zif.;
can be regulated as bounded such@hét:* [ g?22,,e“17 dr
is bounded at the following steps, then, according to Lemma 1,
the boundedness of(t) andz;(t) € L, can be guaranteed.
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Stepn: In this final step, the actual controlappears. Simi-

larly, we have

8an 1

8:Ej

Znin <z | guB(@)u+ Wil — Z
7=1

anlA

ZWJ

= )

(gjzipr + WiTep;) —

Oop_q * . _
Sl b |+ Lzl

n—1
=1

oa
— *T n—1
=Zn gnﬂ( )u+W q/jn Z 8a:j
(gjwjer + WiTP) + B | + bl zald,  (B7)
where
1 da : 1 da
n—1 % n—1 7
n = — —— Wa j — —b 58
ST R T T
j= ) j=
b;:max{pi‘,.. o ,....6*} (59)
- o 8057, 1 80én 1
Let
W;,n = [1 g1, -+ gn—-1, W;T7 W1*T7 LR W:TI]T (61)
_ dan_1 day, 1 T
l/’a,n - |:/Bn7 01’1 T2, ..., 5$n—1 L, l/}n7
8an 0oy, — T
- iy _8$n71 ’2—1] (62)
then, (57) can be rewritten as
Znin < Zn [gnB(z)u + W*T Wa,n] + 6|20, (63)
Let the control input be designed as
N ) o _
= (Cn) Zn—|-WaTn’l/1a n+bno,, tanh %
B(x) e €n
(64)
s
N(G) = exp(¢2) cos (56 (65)
- 2 T 7T Z’ﬂan
Cn =Zn + ZnWa,ndja,n + ann¢n tanh |: :| (66)
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Consider the Lyapunov function candidate

T .
Va=b224d (W= wi) 00t (War - W2,
1 .
— (b, — b*)%. (69
o (b =81 (69)
Similarly, the time derivative oV, satisfies
. . . R 2
Vi < _ZEL + gnN(Cn)Cn + Cn - %O'VV72 Wa,n - W;n

— Lo, (b — %) + b%0.2785¢,,

+Low,, (Wi, =W+ Lo, (b — b5)?
N(C)n + o — Low,

— b5)2 4 b%0.2785¢,

W:,n_WaOn| + O-bn(b _bo)

2
2 T *

S_%Zn'i'gn Wa,n_Wa7n

10}, (b

+ 5 oW,

(70)

This yields

t
0<Valt) < Pn+Vn(0)+e‘C"‘t/ (9n N (G)+1)Cne ™ dr
Jo -
wherep,, := C,2/C,1, the constant§’,; > 0 andC,s > 0

are defined as

3
C,1 := min { 5 7/\111::}([/1:” ), O, )\n} (72)
Cn2 :=050.2785¢,, + & ow, w21
+ 503, (b) — bg) : (73)

Using Lemma 1, we can conclude thi@t(¢) andV,,(¢), hence
zn(t), Wa,n( ), andba »(t) are uniformly ultimately bounded.
From the boundedness of (t), the boundedness of the extra
term [) g2_,22 e~Cn=1.1(t=7) dr at Stepn — 1 is readily
obtained. Applying Lemma 1n(— 1) times backward, it can
be seen from the above design procedures W&, 7;(¢),
W,.i(t), ba,i(t), and, henceg;(t) are uniformly ultimately
bounded.

The following theorem shows the stability and control per-
formance of the closed-loop adaptive system.

Theorem 3.1:For perturbed strict feedback nonlinear system
(1) with completely unknown virtual control coefficients i =
1, ..., n, under Assumptions 2.1 and 2.2, if we apply the con-
trol design procedure in the above statement, the solutions of the
resulting closed-loop adaptive system are uniformly ultimately
bounded.

Furthermore, given any* > /Y., 2p;, there existsl’
such that, for alt > T', we havelz(t)| < p*. The compact set

whereg,, is a small positive constant. For parameter adaptathq, = {z € R": |2(t)] < p*} can be made as small as desired

we introduce the following adaptation laws:

Woarn =Cotbazn = Luon (Wa,n = W2, (67)

by =\ nZn b, tanh [ int } — Ano, (b — b)) (68)

whereT',, > 0 and

0
Wan

= Fz > 0, A\, > 0, ow,
, b > 0 are design constants.

> 0, o3,

by an appropriate choice of the design constants. Correspond-
ingly, the outputy(¢) satisfies the following property:

y()] < /2001 + C1) + 2R (0)e=Cut (74)
wherep; := 2/Ci1, 1 = 1, ..., n, Cy is the upper bound
of fot((’l + 9222 + g1N(¢1)¢1) e €17 dr, and constants
C;1 > 0andC;, > 0 are defined by (55) and (56), respectively.
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Proof: The proof can be easily completed by following thearametersV; | = Wy, Wr , = [1, g1, W5™', W], b}, b3,
above design procedures from Step 1 to Stefincey(t) = andz; = 1, 20 = x2 — a1, We have
x1(t) = 21(¢t), from the definition ofl; and (36), the property — 1+ (82)
(74) can be easily obtained. Thus, by appropriately choosing thé251 - !
design constants, we can achieve the regulation of the output LT P
y(t) to any prescribed accuracy while keeping the boundednes$§'* ~ N(C) {21+ W 19, 1(21) + by (21)

of all the signals and states of the closed-loop system. ¢ 216, (z1)
Remark 3.5: Decreasing;, oy, andoy, will help to reduce t h[ 61 D (83)
the size of2,. However, ife;, ow, andoy, are too small, it may 1
not be enough to prevent the parameter estimates from drifting; day
to very large values in the presence of the neural-network ap-"2 — p2+1+ Ern (¢1+1) (84)

proximation errors, where the lard®; might result in a varia-

tion of a high-gain control. Therefore, in practical applications, =N(G) (ZZ + ngiba,z n 5252 tanh [@%D (85)

the design parameters should be adjusted carefully for achieving ’ €2

suitable transient performance and control action. whereN (¢;) = exp(¢?) cos((m/2)¢;), © = 1, 2 are the Nuss-
Remark 3.6: Compared with the works in [6], [7], [17], and baum functionsy, 1 = 91

[19], the proposed robust adaptive controller in this paper can

cope with the parametric uncertainty and bounding uncertainViﬂ,v 2

. . . T
aswell as the unknown virtual control coefficients. The unknown day 2 Ay # do r Oar p
system functions/;(z;) are approximated by neural networks. = |~ 55— ) W“’l_—aél b, T 0w, ¥z . L

The unknown bounds of neural approximation errors are also . _
adaptively tuned. The proposed design method expands @mlCi. ¢2 are computed using (22) and (66), respectively.
class of nonlinear systems to which robust adaptive controlParameters update laws

approaches can be applied due to the employment of online ; . _ W O
linearly parameterized approximator. Wa1 =Tzt 1 = Trow,(Wa 1 = We 1) (86)
Wa,Z = F2Z21/)a, 2 — 1—‘20W2 (Wa 2~ W(?_ 2) (87)
IV. SIMULATION _ '
To illustrate the proposed robust adaptive control algorithms, by = A1 216, tanh {21 1} — 10, (131 - b)) (88)
we consider the regulation of the second-order system €1

S — Z9 ~
T =g1x2 + fi(w1) + Ag(t, ) ba = A22z2¢)5 tanh { 622} — X2on, (ba — b3).  (89)
@2 = gau + f2(z) + Aa(t, 7) The selection of the centers and widths of RBF has a great
Y= (75) influence on the performance of the adaptive neural controller.
. It has been indicated [20] that Gaussian RBF NNs arranged on
wherez = [x1, 22]", g1, g2 are unknown virtual control a regular lattice oi?™ can uniformly approximate sufficiently

coefficients, f1 (), f>(=) are unknown system functions, andsmooth functions on closed bounded subsets. Accordingly,
Aq(t, ), Aa(t, v) are unknown bounded disturbances. Fap the following simulation studies, we select the centers and

simulation purpose, we assume that> 0, g> > 0 and let widths as: Neural networkV; 7+, (z,) contains nine nodes,
) with centersy; (I = 1, ..., 9) evenly spaced if—5, 5], and
fi(z1) =0.127 (76) widthsy, =1 (I =1, ..., 9). Neural network¥; 24, (z) con-
s . tains 63 nodes, with centers (I = 1, ..., 63) evenly spaced in
=0.2e7"2 77 8 ’ ’
fa(@) =0.2¢7 + y sin(z,) (1) (25 5] x [-7.5, 7.5, and widthsyy — 1 (1 = 1, ... 63). The
Aq(t, x) =0.6sin(z2) (78) following initial conditions and controller design parameters are
O R 1 22) i adopted in the simulation:(0) = [-0.5, 0], W, 1(0) = 0,
As(t, ) =0.5(z1 + 23) sin” ¢ (79) W, 2(0) = 0, b1(0) = 0, by(0) = 0, andl’; = [y = 0.5,
)\1 = )\2 = 0.1, ow, = Oow, = Op, = 0Op, = 0.1,

andg; = 1 andg, = 1. The bounds or\; andA, are (== 0.1, W0, = W0, =0,ands? = 5 = 0.1.

A (e, 1)) < pin (1) (80) Simulation results in Figs. 1-6 show the effectiveness of the
1 V1= Prortin proposed robust adaptive control design for system (75) with
|Ax(z, t)] < p5pa(x) (81) uncertainties and completely unknown, i = 1, 2. Fig. 1
shows that the system output converges to a small neighborhood
wherep? := 0.6, p3 := 0.5, ¢1(x1) = 1, and¢pa(x) = 27 +23. around zero. The boundedness of control input is shown in
We use RBF neural networks to approximdig€z1), f2(z), Fig. 2. The boundedness of weighis, 1, W, 2 as well as the
ie., fi(z1) = WiTey(z1) + wi(x), folz) = WiTys(z) + parameter estimatds andb, are illustrated in Figs. 3 and 4,
wo(x), where|wi| < 67, |wa| < 65. b7 = max{67], pi}, respectively. Figs. 5 and 6 show the variations of Nussbaum
5 = max{é7, 67, pi, p3}. For the design of robust adaptivegainsN({1), N(¢{;) and parameterg,, (, respectively, which
controller, letW, 1, W, 2, by, by be the estimates of unknownare also bounded.
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V. CONCLUSION

In this paper, a robust adaptive control design for a class
of perturbed uncertain strict feedback nonlinear systems with
unknown virtual control coefficients has been presented. With
the utilization of iterative Lyapunov and neural approximators,
the proposed design method expands the class of nonlinear sys-
tems for which robust adaptive control approaches have been
studied. The design method do not require @ahariori knowl-
edge of the signs of the unknown virtual control coefficients
due to the incorporation of Nussbaum gain in the controller
design. It has been proven that the proposed robust adaptive
scheme can guarantee the uniform ultimate boundedness of
the closed-loop system signals. The control performance can
be guaranteed by an appropriate choice of the design param-
eters. Simulation results have shown the effectiveness of the
proposed method.

APPENDIX
PROOF OFLEMMA 1

Rewrite (5) as
0<V(t)

t t
<Cotg / N(¢)¢e @ =) dr4 / {(t)e=C10=") gr
0 0

<Oy + |g1|/t ‘N(()é’ d7+/t ‘é(t)‘ dr, Ytelo, ty).
0 0 (90)
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Depending on the signs d¥ (¢) and{(t), (90) can be further what the sign ofV(¢) is. Therefore( () is lower bounded on

[0, tf).
Thus, we conclude that the boundedneis(o)fon[o, ty).As

written as

¢(t)
<V <Cxln| [ NQACEC, VD 1)
(91)

where constant = Cy F ((0).

We first show that((¢) is bounded or{0, ¢;) by seeking a

contradiction. Two cases are considered.
Case 1: Suppose thaf(¢) has no upper bounds 40, t;).

an immediate resuli/ (¢

andf0 91N (¢)¢ dr are also bounded

onJfo, ty). &

(1

The properties of Nussbaum-type function ensure the existence]

of two monotonely mcreasmg sequenc@éj } with CJ)
[€(0)| andlimy,— Cn = o0, j = 1, 2, such that

1 ((1)

nlggo C(l) / N(s)ds =0 (92)
1 ¢

nlgl;o F / N(s)ds =—o0. (93)

Since((t) has no upper bounds ¢\ ¢;), thus, there exist two
},J = 1,2, such that

monotonely increasing sequencﬁ&)

C( ) Cn 1J T 1 2. Clearlyahmn—n)o tgl) = tfaj = 1, 2.
Dividing (91) byC(t,({)) = ¢ > 0, we obtain
|4 (t 1)) c | ¢
n 91| n
0<<(t1)) Sﬁiﬁ N(Q)d¢+1  (94)
14 (tnz)) |91| CS, )
O<WSC( / N(O)d¢+1  (95)

wheren = 1, 2, ... . Noting thatt{) — t, Y S0, =

1, 2 whenn — oo. Thus, ifN(¢() > 0, (95) contradicts (93),

and whenN (¢) < 0, (94) contradicts (92). Thereforé(t) is
upper bounded ofv, ¢s).

Case 2: Suppose thaf(t) has no lower bounds df, ¢).
Thus, there exist two monotonely increasing sequemtfég}
J =1,2,such that(tﬁf')) —c ,7 =1, 2. Clearly,lim,, _,

) = ty, j = 1, 2. Since the funcUorN(-) is even, (91) can

be further written as

¢(®)

0<VO CFInl [ NOKE). Vel t),

(96)

Dividing (96) by —¢(t$)) = ¢{’ > 0, we obtain

+D)
fi?
)

wheren = 1, 2, ... . Noting thatt{) — ty, Q(Lj) — 00,] =

(3]

(4]
(5]
(6]

(71

(8]

[9]

(20]

[11]
(12]

(13]
[14]

(15]

[16]
(17]

(18]

[19]
[20]
[21]
[22]

(23]

(24]

(25]

(26]

(27]

1, 2 whenn — oo. Similarly, there is a contradiction no matter
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