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Abstract—The control problems of robots having both dynamical parameter
uncertainties and unknown input scalings are addressed. By appropriately
defining the parameters of interest and the corresponding regressor, an adaptive
control law is presented by exploiting the structural properties of the resulting
dynamical models. It is shown that the tracking errors converge to zero and all
the signals in the closed-loop system are bounded. Even though the input
scalings are unknown, there is no need to adapt them because of the particular
controller structure introduced here. Due to the introduction of the input
scalings, uncertainties in the transformation mechanisms of robots are allowed.
Copyright © 1996 Elsevier Science Ltd.

1. INTRODUCTION

Intensive studies have been carried out in the literature on rigid body robots
described by a set of second order differential equations, characterising the dynamic
behaviour of robots. However, most of the research work has been carried out under
the assumption that the system is subject to external force/torque of the form Art,
A = I (unit matrix.) This is hardly the case in reality owing to uncertainties in power
transmission mechanisms, such as gear boxes. It is true that input scalings can be
determined by off-line estimation. However, no matter how accurate they are, they
are still not the true values theoretically. Most importantly, because of aging,
electronics drifting, wearing out and deterioration, A will inevitably differ from the
initial assembly values as time goes by. It becomes very inconvenient to estimate A
from time to time. An adaptive control method is proposed here to solve this
problem. As a result, accurate off-line estimation for A is not necessary, and periodic
off-line estimations are eliminated by the proposed adaptive controller. The most
important advantage of the current problem formulation is that there is no need to
estimate the input scalings off-line in practice any more. Because of the introduction
of the input scalings, uncertainties in the transformation mechanisms of robots are
allowed.

When A is unknown, the control problem is not trivial. The presence of unknown
A makes the control problem very much different from that in which A = I. The well
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known computed torque method is not acceptable, at least theoretically, when A is
unknown. It is true that the unknown input scaling A can be removed from the input
side and transformed into the unknown parameters of linear-in-the-parameters
dynamics by pre-multiplying both sides of the equations by A~'. However,
A"'D(q) # D(q)A™! in general, even though D(q) = D(gq)” and A™' = [A™!]T. Here,
D(q) is the inertia matrix of a robot. Thus, the adaptive control laws relying on the
property of D(q) cannot be applied directly [1-6].

By appropriately defining the parameters of interest and the corresponding regres-
sor, an adaptive control law is shown to be very effective in solving both parameter
uncertainties and unknown input scalings. The control law can be taken as the
generalisation of the control law for robots with unit input scaling matrices [1]. In
other words, with very few amendments, the adaptive control law for robots with unit
input scaling matrices [1] can be applied to the case when A is unknown.

Suppose h(t) and r(¢) are matrix and vector functions of time, respectively, and
h X r denotes the convolution product of 4 and r. Let H(s) be the Laplace
transform of matrix h(t), if it exists.

Lemma 1.1. Let e(t) = h X r, where h = L™'(H(s)) and H(s) is an n X n strictly
proper, exponentially stable transfer function. Then r € L} = e € LinL: éel’ e
is continuous and e — 0 as ¢ — . If, in addition, r — 0 as t — «, then ¢ > 0 [7]. O

In the context of this paper, let q () € C?, a twice differentiable vector, and let g,
g, and g, denote the desired position, velocity and acceleration vectors of the desired
trajectories. Define the tracking error as

e(t)=qs—q (1)

and introduce the following notation:
r(t) = h7! x e(t) (2)
g, = r() + 4, 3)

where h™' = L™Y(H(s)™!) and H(s) is an n X n strictly proper, exponentially stable
transfer function of the form H(s) = diag[(s™ + n,(s))/(s™*' + d(s))], where n(s)
and d,(s) are the remaining polynomial terms of s for the ith entry. This in turn
guarantees ¢, is a vector without ¢ explicitly in it. For more detailed discussion on
the definition for H(s), see [8].

2. DYNAMIC MODELLING OF ROBOTS

In this paper, the dynamics of rigid body robots are described by the following
general second-order differential equation:

D(q)4 + C(q, 4)q + G(q) = Art, 4)

where
q is a vector of the link positions
D(q) is the symmetric positive definite inertia matrix of robots
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C(q, q)q represents the Coriolis and centrifugal forces

G(q) is a vector which represents the gravitational forces

At is a vector of the torques (or forces) acting on the joints, with A being the
constant diagonal input scaling matrix, and 7 the control input.

For A=1, Eqn (4) becomes the conventional equation of robot dynamics.
However, owing to the uncertainties in the power transmission mechanisms, such as
gear boxes, A may be unknown. The presence of A is to highlight this situation.
Without loss of generality, A is assumed to be positive definite here.

To facilitate controller design, the following properties are presented.

Property 1. D(q) is symmetric and positive definite
In the proof of the closed-loop stability, the symmetric, and positive definite nature
of the inertia matrix D(q) is thoroughly exploited.

Property 2. D(q) — 2C(q, q) is skew-symmetric
That is, the identity s"[D(q) — 2C(q, ¢)]s = 0 holds, Vs € R" if the matrix C(q, §)
is defined by the so-called Christoffel symbols [4].

Property 3. Linear-in-the-parameters dynamics of Eqn (4) enables us to write [4]
D(q)‘.jr + C(qa Q)qr + G(q) = ¥(q, g, q: ijr)P’ (5)

where P e R' is the vector of dynamical parameters of interest and W(q, ¢, ¢,, d,)
€ R™ is the corresponding known function regressor.

In order to solve the problem of unknown input scalings, ¥ and P have to take the
following form:

Vi p
lPszz
lp(‘b q,9,, Qr)P = s (6)
Y Pn
where ;
Pi (A OT - 0
P — pz , q’ — 0 wZ P 0 (7)
Dn 0 0 ooyl

with p; € R™ being the ith vector of parameters of interest for the ith degree-of-free-
dom and y; € R™ being the so-called corresponding regressor vector.

The definitions for ¥ and P are not unique in general. However, they should be
defined as in Eqn (7) to facilitate the adaptive controller design later in the paper.
For A = diag[A], A € R, we have

¥i P
T
A(q, 4.4, d)P=A| VP | =W(g, 4. 4., 4Py ®)

Y Pn
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where
Apy
P :=| %P2 | = pmayP ©9)
A D
M(A) := diag [U(4)], U(k) = diag[4;] € RV (10)
Remarks
(1) Equation (4) can be rewritten as
AT[D(9)d + C(g, 9)g + G(g)] = T, (11)
which leads to
AT(q. ¢, 9, §)P =T 12)
From Eqn (8), we have
¥(q, q, 4, §)P =1, P = M(A_I)P’ (13)

)

where M( ) is defined by Eqn (10). It is clear that the unknown scaling matrix A
in system (4) has been successfully transformed into parameters of linear-in-the-
parameters dynamics as shown in Eqn (13). However, A"'D(q) is not symmetric
in general even though both A™! and D(q) are symmetric. Thus, the adaptive
control laws developed using the symmetry of D(gq) cannot be applied directly to
Eqn (13) in this case.

Closed-loop stability analysis is difficult for Computed Torque Method even if

D(q), C(q, q) and G(gq) are known exactly. Consider the control law
T=AT[D(g)§a + K.é + Kpe) + Clg, ) + G(9)],

(14)

where K, >0, K,>0 and A is the estimate of A. Suppose that AA™' =] + a,

we have an error equation of the form

D(q)(é + K,é + K,e) = a[D(q)(4. + K.,é + K,e) + C(q, §)g + G(q)].

When o =0, i.e. A=A, it is easy to see that the system is stable. However,

when @ # 0, i.e. A # A, closed-loop stability cannot be established easily.

3. ADAPTIVE CONTROLLER DESIGN

In this section, an adaptive controller is introduced and overall closed-loop stability
is guaranteed. Let (%) be the estimate of (-), and define () = (-) — (7). Further,
let D(q), C(q, ¢) and G(q) correspond to the estimates of D(q), C(q, ¢) and G(q),
respectively, obtained by substituting the true parameter vector P by the estimated

parameter vector P. Then, we have

D(9)g, + C(q, 9)q, + G(q) = WP, (15)
Since ¢ = ¢, — r(t) and § = ¢, — 7(¢) by Eqn (3), the left hand side of Eqn (4) can

be written as
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D(q)4 + C(q, 4)q + G(q) = D(q)4, + C(q, 4)q, + G(q) — D(q)t — C(q, §)r
= WP - [D(q)f + C(q, ¢)r}]. (16)

Let the control law take the following form:
t
r=AD@i, + Cla. 4, + 6@ + KOr + K[r@d]  (7)
0

= A WP + K(t)r + Kif'r(r) dt], (18)
0

where A = diag[4;] > 0 is an estimate of the input scaling matrix A, which is not to be
updated on-line. For A = I, the above controller coincides with the controller given
in [1] for the usual robotic dynamics, when A = I in Eqn (4). This gives a PID type
controller because of the special definition of r, with K; introduced to eliminate static
tracking errors. It is interesting that K; does not appear in the derivative of the
Lyapunov function used in the stability proof; see Appendix A. From Eqns (4), (16)
and (18), we have an error equation of the form

D(q)# + C(q, §)r + AA'K(t)r + AK"K,fr(r)dt = WYy 19)
where 0
n=P-P, P,=MAANP, (20)
where M(-) is a diagonal matrix defined by Eqn (10). Since P, A and A are constant
= —-P, = ~M(AK™Y)P, @1)
i.e.
M = ‘“ii\’i, @ = AfA, for n;, pie R™. (22)

The closed-loop stability of Eqn (19) is given by the following theorem.
Theorem 3.1. Consider the mapping (19) under the following assumptions:
(i) AK'K = KTAA™' >0, AA'K, = KTAA 1 =0
(ii) the gradient parameter adaptation for P, i.e.
P=rw, 23)

with T satisfying M(AA™)I = TTM(AA™Y),
then

(1) ee LN L2, is continuous and — 0 as t — », and é € L;
(2) P is bounded;

(3) r—>0as t— », consequently, ¢ >0 as 1 — 0.

Proof. See Appendix A.

Remarks

(1) The estimate of input scaling A is a fixed constant. In actual implementation, A
may be chosen as identity matrix 7.
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In the theorem, K and K; should be chosen such that AA™'K and AA™!K; are
symmetric positive definite. Usually, K and K; are chosen diagonal matrices,
therefore the condition is satisfied automatically.

It is clear that the parameter adaptation algorithm (23) is the same as that for unit
input scaling robots [1] apart from the restriction on I''. When I is chosen to be a
diagonal matrix (a common choice), the symmetry condition of M(AA™NT is
automatically satisfied.

From the above remarks, it can be seen that the adaptive control laws for unit
input scaling robots may be directly applicable to unknown input scaling robots
when K, K; and I' are diagonal positive definite matrices (common choices). This
explains why adaptive control laws for unit input scaling robot work in reality
even though the scaling may not be known exactly.

Since P= P — M(AA™1)P, P will never converge to its true value P. Suppose
P(t — ) = 0 under persistent excitation condition

P = MY AA)P = M(A'A)P. (24

However, whether P converges to P or M(AA™")P is not a big issue here, as
long as P is bounded, e(¢) and é(t) —0 as t — ®, which is true from Theorem
3.1.

In the presence of unmodelled dynamics, or in the presence of external disturb-
ance, the parameters can drift along an equilibrium manifold until an instability
results [9]. To solve this problem, o-modification to the parameter update law is
one available method to get boundedness of all signals but nonzero tracking
errors; for detail see [10].

4. SIMULATION TESTS

Let us consider a planar two-link manipulator, whose dynamics are described by

where

D(q)4 + C(q, 9)q + G(q) = AT, (25)
D(q) = P, + 2P;cosq, P, + Pjcosq,
| Ps+ Pycosq, P
.\ _[ —Psdzsing;  —Py(q; + ¢3)sing,
C(q’ q) - L P7‘71 Sin q, OO

Pgcos(g, + q2)

a4 0
A=|h h]

Glq) = P,cosq, + Pscos(q; + qz)]

where P, = P, and P; = P, since D(q) = D(q)”. Therefore, for

D(q)g, + C(q. 9)4, + G(q) = ¥(q, 4, 4,, §,)P (26)

we have
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P=[Pla PZv P3s P45 P57 P6& P77 PS]T

Y= [51'71 G B cosq; cos(q: + q2) 0 0 0 :]
0 0 0 0 0 G+ 4. v cos(qg;+ q)

with
B=024n + §n)cosqy — (q241 + (41 + §2)4,2)8inq;
Y = §,c08q; + §14,181nq;
and the parameters are as shown in Table 1.

4.1. Trajectory planning

The desired trajectory for each axis is expressed as a Hermite polynomial of the
third degree in ¢ with continuous bounded position, velocity and bounded accel-
eration. The general expression for the desired position trajectory is

£ t?
qalt, ty) =qo + ("27 + 3{7)(‘1/ - 40), (27)
d d

where q, and g are the arm initial and final positions, and ¢, represents the time at
which the desired arm trajectory reaches the desired final position.
In the simulation tests, the following values were chosen:

t; = 1.0 sec, go = [0, 0, 0, 0]" rad, go = [0, 0, 0, 0]7 rad
q4(0) = [0, 0, 0, 0]7 rad, q.(ty) =[1.0,2.0]" rad
P(0) = [2.0, 1.0, 0.5, 3.0, 1.6, 1.0, 0.5, 1.6] kgm® (28)
A = diag[1.0].
It is clear that P(0) # P and A # A.

4.2. Non-adaptive control

When the parameter adaptation algorithm (23) is not activated, the position and
velocity tracking of the robot are as shown in Figs 1 and 2, respectively, under the
controls which are shown in Fig. 3. It can be seen that this control scheme has static
errors as well as big tracking errors.

4.3. Adaptive control

When the parameter adaptation algorithm (23) is activated with I' = diag[0.5], the
position and velocity tracking of the robot are as shown in Figs 4 and 5, respectively.

Table 1. Parameters used for simulation

Parameter Value

[Py, P2, P3, Ps, Ps, Ps, P7, Pg] [1.66, 0.42, 0.63, 3.75, 1.25, 0.42, 0.63, 1.25] kgm?
[A1, A2) [0.6, 0.6]
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Angle rad Desired: Dash Line, Actual: Solid Line
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Fig. 1. Position tracking without adaptation.
Rad/sec Desired: Dash Line, Actual: Solid Line
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Fig. 2. Velocity tracking without adaptation.
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Control 1: Solid Line; Control 2: Dash Line B
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Fig. 3. Control signal variations without adaptation.
Angle rad Desired: Dash Line, Actual: Solid Line
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Fig. 4. Position tracking with adaptation.
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Rad/sec Desired: Dash Line. Actual: Solid Line
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Fig. 5. Velocity tracking with adaptation.

The adaptive controls and the parameters are shown in Figs 6 and 7, respectively. It
can be seen that both tracking and steady state errors are much smaller than for the
non-adaptive case because of the ‘“learning” mechanism. It can be seen that the
estimated parameters are also bounded.
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40

Control 1: Solid Line; Control 2: Dash Line
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Fig. 6. Control signal variations with adaptation.
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Fig. 7. Parameter variations with adaptation.

5. CONCLUSIONS

567

In this paper, an adaptive control law for robots having unknown input scalings has
been presented. It has been shown that the adaptive control law is very effective in
solving both parameter uncertainties of linear-in-the-parameters dynamics and the
unknown input scalings. It has been shown that all the signals in the closed-loop are
bounded, and tracking errors converge to zero. By applying the same procedure as
shown in this paper, some of the adaptive control laws in the literature for unit
scaling robots may be extended to unknown input scaling cases as well. Because of
the introduction of the input scalings, uncertainties in the transformation mechanisms
of robots are allowed.
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APPENDIX A: PROOF OF THEOREM 3.1

Consider the non-negative function V defined by

V) = YTD(g)r + %(j'r(r)dr))TAﬂ—lx,(j'r(r)dr) 0 (AD)
1] 0

where @ = Q7 > 0.

Differentiating V along the system'’s trajectory (19), and recalling the skew-symmet-
ric property of D(q) —2C(q, ¢), the symmetric property of D(g) and the assump-
tions, we have

V=1r"D(q)i + 5t D(q)r + rTAK-IK,(jr(r)dr) +n'Q 7'
0

I

r"D(q)F + r'C(q, ¢)r + rTAK”K,-(f r(r)dr) + 177 Q7 'h
0

I

r"| D(g)F + C(q., ¢)r + AK‘IK,'(f’r(r) dr)] +n7fQ'p
0

= —rTAAT'K, + Wy + nTQ 7 'n. (A2)
By letting
f’ = —Qll»‘Tr~ (A3)
we have
V = —rTAA'Kr.
Then
t
frTAK’IKr dr = =V(r) + V(0), (A4)
0
i.e.

2 i
)Lmin(AK_IK)J rlrdr = erAK*IKr dr < V(0).
(} &
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(1) Since V(0) and Amn(AA'K) are positive constants, it follows that r e Lj.
Consequently, from Lemma 1.1, e € L5 N L7 is continuous and — 0 as 1t — «,
ée Ly

(2) Since

V=—r"ARA'Kr <0
it follows that 0sV(:)<V(0), Vt=0. Hence V(r)e L=, = n and

f or(t)dr € L». From Eqn (20), we obtain that P is bounded. By letting
Q = M(AA™ DT, from Eqn (A3), we obtain

P=rw, (A5)

which is one of the assumptions of Theorem 3.1. Note that I' should be chosen
such that M(AAHT = TTM(AA™Y).

(3) For re L], Jf)r(r) dr and Wne L%, we have 7 e L., from Eqn (19). Since
# € L%, r is uniformly continuous. The proof is completed using ihe implication

r uniformly continuous, and r € L7, =
ro>0ast— », =
é—0.

QED.



