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Abstract—A class of robust stable controllers to control the tip position of a
multi-link flexible robot is presented. In contrast to traditional model-based
methods, the controllers are derived by using a basic relationship of system
energy and are independent of the system dynamics. The approach allows
controller design in the absence of a system model (which is very complicated in
the case of the multi-link flexible robot) and provides great freedom in feedback
control design. Further, the controllers are easy to implement in practice
because, depending on actual instrumentation, all the signals can be chosen to
be measurable. Simulation results of a two-link flexible robot are provided to
show the effectiveness of the presented approach. Copyright © 1996 Elsevier
Science Ltd.

1. INTRODUCTION

Controller design for flexible robots is one of the most challenging problems in
control system design. Modelling of flexible link manipulators is very complicated
because the system is actually infinite-dimensional. The inherent nonminimum phase
behavior of the flexible manipulator system makes it very difficult to achieve high
level performance and robustness simultaneously [1].

Collocating the sensors and actuators at the joint of a flexible manipulator, for
example the joint PD controller, can guarantee a certain degree of robustness of the
system. Actually, as mentioned in [1, 2], the robustness of collocated controllers
comes directly from the energy dissipating configuration of the resulting system.
However, the performance of the flexible system with only a collocated controller, for
example the joint PD controller, is often not very satisfactory because the elastic
modes of the flexible beam are seriously excited and not effectively suppressed. For
this, various kinds of control techniques have been investigated to improve the
performance of flexible systems.

A large number of controllers for flexible robots have been designed based on
truncated models from Modal Analysis (MA) or Finite Element Method (FEM).
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Generally speaking, the desired performance of a flexible manipulator in position
control can be described as: (i) the joint motion converges to the final position fast,
and simultaneously (ii) the elastic vibrations are effectively suppressed. Obviously
there is a tradeoff between the two requirements. The above description directly leads
to the application of the singular perturbation method to the control of flexible robots
[3-6]. In this method, the dynamics of the system is divided into two parts, i.e. a slow
sub-system (corresponding to the joint motion) and a fast sub-system (related to the
flexible vibrations), and two sub-controllers are designed accordingly. Since what we
care about most in tip position control is the tip motion of the flexible beam, inverse
dynamics (computed torque) method, which has been shown to be effective in
controlling rigid-link manipulators, is also investigated for the flexible-link case [7, 8].
This method seems to result in better tip motions over other techniques. However,
the successful application of this method heavily depends on highly accurate models
and efficient computational algorithms/powerful computing facilities. Other ap-
proaches to improve position control performance include linear control [9], robust
control [10], sliding mode method [11], bounded input LQG control [12], feedback
control [13, 14] and input pre-shaping approach [15, 16], among others. The control
approaches mentioned above are all based on the truncated models. It is the
truncation of the original infinite dimensional system to a finite dimensional model
that makes the above mentioned control techniques applicable. However, the
following problems inevitably arise: (i) a relatively high order controller (correspond-
ing to a model with a relatively large number of flexible modes in MA or elements in
FEM) is often necessary to achieve high accuracy of performance; (ii) control and
observation spillovers may occur due to the ignored high frequency dynamics [2]; and
(iii) the controllers may be difficult to implement from the engineering point of view
since full state measurements/observers are often required.

An alternative model-based approach is to derive controllers directly from the
Partial Differential Equations (PDEs) of flexible robot systems and thus avoid the
undesired model truncation [2, 17, 18]. All these three papers deal with a single-link
flexible robot only (in [18], the robot is two-link but only the upper link is flexible).
In [2], linear direct strain feedback (DSFB) at the base of the bending beam was
considered to enhance the performance of the joint PID controller. Tracking control
of an Euler-Bernoulli beam is discussed in [17], in which an assumption is made that
there is no tip payload and no motor hub inertia. A collocated joint PD controller
was designed for a two-link unloaded rigid-flexible manipulator in [18]. In the above
three papers, the stability of the closed-loop systems is proven directly based on the
PDEs which govern the motion of the flexible systems considered. As a result, their
controllers can avoid the above mentioned problems associated with model trunca-
tion. However, because the dynamics of flexible link robots, described by PDEs, are
very complicated, especially for the multi-link case, closed-form solutions are not
currently available. Thus, this controller design approach, though possessing many
advantages over the traditional truncated-model-based methods, is generally very
complicated as well.

In this paper, a non-model-based controller design method is presented for
multi-link flexible robots. The method only makes use of a very basic energy
relationship of the system and does not need any information on the system dynamics
(subsequently the drawbacks/problems of model-based methods are avoided). Furth-
ermore, the corresponding derivation is very easy. With this method, a class of tip
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position controllers is developed for multi-link flexible robots without gravitational
influence. This is the case for space applications, and for robots moving in a
horizontal plane on the ground. The controllers are very robust in terms of system
parameter variations and can guarantee the stability of the closed-loop system.
Further, the controllers allow great freedom in feedback design according to actual
instrumentation, and are readily usable for practical applications.

The paper is organized as follows: in section 2, the multi-link flexible robot is
briefly introduced; the energy-based controller design approach is presented in section
3; computer simulations are carried out on a two-link flexible robot to verify the
effectiveness of the controllers in section 4, followed by the conclusion in section 5.

2. MULTI-LINK FLEXIBLE ROBOT

We shall consider flexible robots (i) deployed in space, or (ii) moving in the
horizontal plane. In both cases, the effect of gravity is ignored. Figure 1 shows an
N-link flexible robot which moves on a horizontal operation platform.

The N links are connected using N motors. Motor 1 is fixed in position, which is at
the origin of the fixed base frame X,0,Y;. The remaining motors, each being
supported by a roller, are movable on the platform. The free tip of the last link has a
payload attached.

For clarity, the geometry of the robot is shown in Fig. 2. There are a total of 2N
frames being used to describe the system, i.e. X;0;Y; and x,0y;, i=1,2, ..., N.
Frame X,0,Y;, as stated above, is the fixed base frame. Other frames are all local
reference frames attached to the corresponding motors; specifically axis O;X; (i = 2,
3, ..., N) is defined as the tangent to the end tip of link i — 1, and axis O,x; (i =1,
2, ..., N) is tangent to link i at its base. The angular position of the ith link is
denoted by 6; measured in frame X;O0,;Y;. 6, is actually the angular difference between
frames x;0;y; and X;0;Y,.

Payload
Link N

Motor 1

0:] 4
I

Support

X,

Operation Platform

Fig. 1. Multi-link flexible robot in the horizontal plane.
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Yi

Payload

Motor 1

Fig. 2. Geometry of the multi-link flexible robot.

3. ENERGY-BASED ROBUST CONTROLLER DESIGN

In this section, we present an energy-based controller design approach for the
multi-link flexible robot described in section 2. The control objective is to simultan-
eously drive the N motors such that the tip payload is moved to a pre-defined
position quickly, smoothly and accurately. Although the joint PD control can stabilize
the flexible robot system, generally the system performance is not satisfactory because
the elastic vibrations cannot be effectively suppressed. In this paper, in addition to
the joint PD control, some feedbacks related to the bending of the flexible links will
be introduced into the controller, and thus provide direct control effort on the elastic
vibrations.

We begin with the following positive definite energy (Lyapunov) function:

N t 2
V= Ek + Ep + %zkpi[ei(t) Gﬁ]z + Ezku[f ei(s)ﬁ'j(s)ds] > (1)
i=1 2; 1j
where E, and E, are the total kinetic energy and total potential energy of the system;
constants k; > 0 k;=0; 6 is the constant final position of the ith link; 6; is the
time derivative of 6,, and, depending on actual instrumentation, fi(t) (j =1, 2,
M; with M; being the number of feedbacks used to control the ith link) are Variables
related to the bending of the ith link, or any combination of bending variables of the
ith link. The condition on choosing f;(¢) is that they must be zero when the ith link
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undergoes no deformation. Some examples of bending variables of link i described in
frame x,0,y; are y,(x;, 1) (deflection at x,), y i(x;, t) (rotation at x;), y’/(x;, t) (strain at
x;), and y';’(x;, t) (shearing force at x;). Obviously x; should not exceed the length of
the ith link.

Before further derivation, we shall make the following assumption: the support
rollers in Fig. 1 are frictionless, and any other damping and frictions are neglected.
Thus, by recalling that the robot is operated without gravitational influence, we can
conclude that the total change in system energy must be equal to the work done by
the N motor torques, i.e.

N .
Ek - EkO + EP it Ep(] = EJ;rlel(t)dt’ (2)
i=1

where Ey, and E |, are kinetic energy and potential energy of the system at the initial
moment; 7; is the torque generated by motor i. Differentiating with respect to time
on both sides of Eqn (2) yields

B+ E, = ﬁr,o,.(t). 3)

Now, we are ready to present the following theorem on the stability of the multi-link
flexible robot system.

Theorem 1. The closed-loop multi-link flexible robot system is stable if the N
control torques are given by

M, .
T, = —k[0,(t) — 6] — k0, — Ekijfij(t)J;)Bi(s)ﬁj(s) ds 4)
=1
i=1,2,..., N,
where k,; > 0.

Proof. Recalling Eqn (3), the time derivative of energy function V in Eqn (1) is
given by

V= Sn60 + Skabil6:(1) — 6] + 33 k605, [ afds.  6)
i=1 i=1

i=1j=1

Substituting Eqn (4) into Eqn (5) yields
N
V = _Ekviézz'! (6)
i=1
which is negative semi-definite. [QED]

Remarks

(1) The joint PD controller for the ith link is a special case of 7; in Eqn (4) by setting
k;s to be zeros. Although the joint PD controller will not destabilize the system,
the system performance, as we will show in the next section, is not satisfactory



784 S.S. GE et ul.

because the flexible modes of the beam are seriously excited and not effectively
suppressed. The introduction of the k; items into V allows us to explicitly
consider the bending of the flexible beam, and subsequently have a direct control
effect on elastic vibrations.

(2) The integral type items in Eqn (1) avoid measurements of high order signals. This
is very desirable for easy engineering implementation.

(3) The controller, Eqn (4), is independent of system parameters and thus possesses
stability robustness to system parameter uncertainties. As a matter of fact, the
closed-loop system is stable as long as k,;, k,; >0 and k; = 0.

(4) The controllers in Eqn (4) are very easy to implement in practice. The joint
position 6; and the joint velocity 8; can be obtained by a rotary encoder and
tachometer attached to the rotor of motor i, and f;(¢) can be determined from
the available sensor facilities. Unlike the controllers suggested in the literature
[3-6, 9-14], measurements/observers for state feedback are not necessary.

(5) The stability proof is independent of the system dynamics and thus the draw-
backs/problems associated with model-based controllers mentioned in section 1
are avoided.

(6) When the bending functions f(¢) are chosen in the local reference frame x;0,y;,
for example those mentioned previously, the controllers presented in Eqn (4) are
of decentralized type, which has the advantage of requiring few computer
resources, and allows ease of implementation and tolerance to failure, since the
N controllers in Eqn (4) can be implemented in parallel.

(7) In Theorem 1, we only claim closed-loop stability of the system. To prove
asymptotic stability of the system is not easy due to the infinite dimensionality of
the system. Asymptotic tracking control of an Euler~Bernoulli beam has been
achieved in [17]; however, it was assumed that there was no hub inertia, i.e.
I, = 0, which is not realizable. In the following, instead of giving rigorous proof,
we shall show that practically the flexible robot can only possibly stop at 8; = &
(i=1, 2, ..., N) without vibrating. Assuming that the N links stop at the
position 8; = a; (hence 8,=0for i=1, 2, ..., N) with a; # 6, thus there is no
energy input to the system since 8; = 0. Due to the existence of internal structural
damping in a flexible link in practice (structural damping is neglected in the proof
of Theorem 1), the links must tend to stop vibrating and finally be static at the
undeformed position. Consequently, the first term in 7; is a nonzero constant, the
middle term is zero, and the last term approaches zero [note that fi(f) are zero
when the link i is not deformed]. Therefore, t; approaches a nonzero constant
and thus 6, = &; cannot hold. The only possibility is that the flexible link is at the
final position 6; = f;; without vibrating, which implies that tip regulation can be
practically achieved.

4. SIMULATION TESTS ON A TWO-LINK FLEXIBLE ROBOT

In this section, some numerical simulations are carried out on a two-link flexible
robot. The plant is simulated by a FEM model in which each link is divided into four
elements with the same length. A fourth-order Runge—Kutta program with adaptive
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step-size is used to numerically solve the differential equations. The sampling interval
is set to be 0.01 s.

The system parameters are given in Table 1, in which M|, actually denotes the 2nd
motor, and M, is the payload attached to the end tip of Link 2.

The initial position and the final position of the robot are described in Fig. 3, i.e.
the initial joint positions of both links are all zeros, and the set point values of the
two links are 6; = 20° and 6, = 10°.

4.1. Joint PD control
Firstly, we shall give the simulation results of the following joint PD controller:
Tppi = —kpi(gi - 0y) — kviéi’ i=1,2.

From Theorem 1, any k,, k,; >0 will not destabilize the closed-loop system.
However, different selection of k, and k,; will lead to very different performance.
Here, they are determined to make the equivalent rigid motion critically damped as
follows. If the flexible links are assumed to be rigid, using joint PD control leads to
the following rigid motion error equations:

Ieiéi(t) + kviéi(t) + kp[‘el‘ = 0, I = ]., 2,

where I,; represents the equivalent inertia of the ith joint, ¢; = 6; — 6, and &, = 6,
and ¢; = 6, since 6 is constant. It should be noted that because of the rotational

Table 1. System parameters

Link 1 Link 2
Length Li=10m L, =08m
Flexural rigidity El; = 5.0 Nm? EI, = 3.0 Nm?
Linear density p1 = 0.1kg/m p2 = 0.1 kg/m
Hub initial Ini = 3.0 kgm? Inz = 1.5 kgm?
Payload Mg = 0.1ke Mg = 0.05 kg

Y,

Final Position
Y,

Y 0r,=20"

. X1
il
Initial Position
Fig. 3. Two-link flexible robot.
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movement of the 2nd link in its own local reference frame X;0,Y;, I., is not constant
even when the two links are both assumed to be rigid. For simplicity, in our
simulations, I.; is determined by further assuming that motor 2 is locked at 8, = 0,
i.e. the two links are aligned. Subsequently, we have I, =3.46 kgm? and I, =
1.55 kgm®. For the 2nd-order systems above, if critical damping is assumed (&= 1),
the PD feedback gains can be determined by

2
kpi = Ieiwni

ke = 21,0

where w,; (i =1, 2) are the corresponding natural frequencies. We let w,; = 2.5 and
Wy, = 3.0, and the two joint PD controllers are given by

Tpp; = —21.6(8; — ;) — 17.36, (7)
Tppy = —14.0(8, — 6,) — 9.36,. (8)

In what follows we shall construct the energy-based robust controllers based on the
above joint PD controllers, whose performance will be plotted by dashed lines in
figures for comparison.

4.2. Energy-Based Robust Control (EBRC)

From Eqn (4), one can see that in addition to joint PD control effort, a summation
has been introduced to explicitly control the elastic vibrations of the flexible links. As
stated in section 3, the introduction of the summation into the controller allows great
freedom in feedback design according to actual instrumentation.

Case 1. Tip deflection feedback. We firstly consider the case of using the tip
deflection of each link as the bending variable fi(7) in Eqn (4). In practice, the tip
deflections can be detected by a vision system, which has been used to control a
single-link flexible robot in [9].

With tip deflection feedbacks, the controllers used in our simulations are given by

t.
T, = Tppy — 32000y,(L;, ) jo 6,(s)y:(Ly, s)ds )

t-
Ty = Tppy — 32000y,(L,, 1) fo 0y(s)y2(L,, 5)ds, (10)

where pp; and 7Tpp, are given in Eqns (7) and (8). Since only tip deflection of each
link is used, from Eqn (4), we have M, = M, =1, k, = ky = 32,000, f,,(2) =y,
(L1, 1) and f5(t) = yo(L,, t), which are the tip deflections of link 1 and link 2,
respectively. It should be noted that the values of k,; and k,; given above may not be
optimal. The simulations here are only used to show the effectiveness of the EBRC
approach. According to Theorem 1, 7, and 7, will guarantee stability of the
closed-loop system.

The tip deflections and joint motions of 7, [Eqn (9)] and 7, [Eqn (10)] are given in
Figs 4 and 5. Compared with the results of joint PD control (dashed lines), one can
see that the EBRC can suppress the elastic deflections more effectively without
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Fig. 4. Tip deflection in Case 1. (a) yi(L1, t); (b) y2(L2, ?).

slowing down the joint motions. Furthermore, the joint motions of EBRC exhibit less
vibrations and overshoots and are smoother than that of the joint PD control.

What we care about most in tip position control are the tip trajectories, which are
required to converge fast with as small vibrations/overshoots as possible to improve
positioning accuracy. Under the assumption of small deflection, the tip position of the
two links can be approximated by

pi= L6 + yi(Ly, t)

p2= L,6, + y,(L,, 1),

in which the angular displacements 6, and 6, should be represented in radians instead
of degrees. The tip positions p; and p, are plotted in Fig. 6. It is seen that the results
of joint PD control exhibit serious vibrations and large overshoots, which are very
undesirable for accurate tip position control of flexible robots, while the tip
trajectories of EBRC are quite good since they are smooth, fast converging and there
are very little vibration and overshoot.

For completeness, Fig. 7 shows the control efforts of Case 1. The joint velocities 6,
and 6,, which are used in both PD and EBRC controllers, are plotted in Fig. 8.

Case 2. Base strain feedback. Considering that strain gauges have been very widely
used in control of flexible robots, we assume that they are available and the base
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Fig. 5. Joint angle in Case 1.

strain of each link is used for feedback in the following simulations. From Eqn (4),
we have the following controllers:

t‘ rr
T, = Tpp; — 1800y /(0, 1) j 0,(s)y 1(0, s) ds (11)
0

t‘ r
T, = Tppy — 1800y (0, ©) j@ 6,(s)y 3(0, 5) ds, (12)

where Tpp; and 7pp, are also given in Eqns (7) and (8). Deducing from Eqn (4), we
arrive at My = M, =1, ki = ky =1800, fy()=y{(0, 1) and f(¢)=y5(0, 1),
which are the base strains of link 1 and link 2, respectively. Similar to Case 1, the
values of k;; and k,; may not be optimal and are only used to show the effectiveness
of the EBRC approach. The stability of the closed-loop system is guaranteed by
Theorem 1.

The tip deflections, joint motions and tip trajectories in this case are shown in
Figs 9-11. The results of EBRC, compared with that of joint PD control, exhibit
similar improvements to those in Case 1, i.e. the tip deflections are suppressed
effectively, the joint motions are very smooth, and the tip trajectories converge fast
with only very little vibration and overshoot. The base strain feedback signals
y'1(0, t) and y’5(0, ¢) are shown in Fig. 12, in which the base strains of joint PD
control are also plotted with dashed lines for comparison. The simulation results in



Controller design for multi-link flexible robots 789

0.4 T T T T T T T | L
N p1 of LINK 1
035%...‘.. ’\\ / D\ ./ N TN e £
’ ! / \ / N~/ -7 - -
I\ | Ay ’
! / ~
03t VAR 1
] \/
]
Eo2st | -
i
g |
g o2r ! .
2 \
= I
a y p2 of LINK 2
.—0'15-.. ’ ......... ’\ = Y —~ §
)] V4 - - -
Y
o1t | :
0.05F dashed: PD .
solid: EBRC
0 i —t N 1 S 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Fig. 6. Tip trajectory in Case 1.

the two cases are quite alike. This can also be seen from the two kinds of feedback
signals, i.e. the tip deflections in Case 1 (Fig. 4) and the base strains in Case 2 (Fig.
12), which are very similar to each other in shape except for different magnitudes. In
practice, the selection of feedbacks can be determined by available sensor facilities.
Finally, the corresponding control efforts and joint velocities are given in Figs 13 and
14 for completeness.

In the above, through simulations, we have shown the effectiveness of the
controller in Eqn (4). It should be pointed out that the approaches presented in this
paper are not complete, and other kinds of feedbacks and/or other kinds of
combinations of feedbacks can also be considered depending on the available sensor
facilities, since the controller in Eqn (4) actually allows great freedom of feedback

design.

5. CONCLUSION

In this paper, we have presented a non-model-based controller design approach for
a multi-link flexible robot. In this method, no information of the system dynamics is
needed; instead, it only makes use of the very basic energy relationship of the system.
Using this method, a general form of robust stable controller is constructed for a
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Fig. 7. Control effort in Case 1.

multi-link flexible robot. The controller is independent of system parameters and
subsequently possesses stability robustness to parameter variations. Furthermore, the
controller is very simple and very flexible in its form and can be easily implemented
according to actual instrumentation. Because the controller design is independent of
system dynamics, the drawbacks/problems associated with truncated-/un-truncated-
model-based controller design methods are essentially avoided.

Numerical simulations showed that two very simple special cases of the controller,
in which only tip deflection or base strain feedback is used to represent the bending
of each flexible link, can give reasonably good performance of a two-link flexible
robot in the sense that the elastic vibrations are effectively suppressed, and the tip
positions converge fast along smooth trajectories with negligible overshoots.

Finally, it should be noted that we do not currently have theoretical guidelines on
choosing f(f) to obtain the most effect control effort and optimize the system’s
performance. The effect of the terms of bending functions f;(r) on the system
dynamics will be investigated in detail in future research.

Acknowledgement —The authors wish to thank P. L. Tan for kindly providing the C source
code of the FEM model for simulation.
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