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Dynamic Modeling of a Smart Materials Robot
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Three dynamic models of a smart materials robot are pr ted. First, H ’s approach is adopted to
derive an accurate model expressed in partial differential equations, which is too complicated to be applicable
in engineering practice. Based on the partial differential equations model, the d des method and the
finite el t method are employed to derive two finite dimensional models in the forms of ordinary differential
equations, which are readily usable for controller design. All of the models show that the model of a smart materials
robot cannot be simply taken to be the same as that of a pure flexible robot, and the parameters of the smart materials
robot should be properly chosen to avoid the divergent open-loop responses. For completeness, both mechanical
dynamics and electrical dynamics are explicitly included in all of these models, although it is shown analytically and
numerically that the latter dynamics can be omitted in engineering applications. Comparative studies between the

ed modes method model and the finite element method model are carried out by numerical simulations in both
time and frequency domains to verify the correctness of the models and to analyze the performance of the system.

Nomenclature

thicknesses of the beam

magnetic flux density vector, € R?

width of the beam and that of the smart materials

centripetal/Coriolis matrix in the assumed modes

method (AMM) model

= stiffness per unit length of the smart materials
robot, $b{(cf{a®/4) + ¢}, [(a/2 + 1)?
+ (a/2 + c2)® —a’/4])

= thicknesses of upper surface of smart
materials plate

= thicknesses of the lower surface of smart
materials plate

= symmetric matrix of elastic stiffness coefficients
of the pure beam, € R6*6

= symmetric matrix of elastic stiffness coefficients
of the smart materials, e R¢*¢

= stiffness of the pure beam

ct, = stiffness of the piezoelectric materials

DeR? = electrical displacement vector

AT

nn

<)

<2

D(x,t) = electrical displacement at point P

dia, dip = electrical displacements at nodes a and b of
element §

E, = system kinetic energy

E, = system potential energy

EeR? = electrical field intensity vector

F,eRM*'  =external force vector in the AMM model

FMeRS = simplified stress vector of the pure beam

F3eRS = simplified stress vector of the smart materials

H = magnetic field intensity vector, € R?

Hix, 1) = magnetic field intensity at point P

h = coupling coefficients matrix, e RS *?

hy = coupling parameter per unit length of the smart
materials robot, %h;;b(c. —a)ey +c2+a)

Iy = inertia of the hub

i = number of the order of element

K, = stiffness matrix in the AMM model

M, = inertia matrix in the AMM model

ms = lip payload
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N = number of the modes in the AMM modeling or
number of finite elements in the finite element
method (FEM) modeling

0; = position vector of origin of the ith frame
expressed in the fixed-base frame

Pi = position vector from o; to point P expressed in
the fixed-base frame

r = position vector of point P expressed in the
fixed-base frame (for the AMM modeling)

T = position vector of the point P expressed in the
fixed-base frame (for the FEM modeling)

SeR?® = simplified strain vector

TeRV+! = nonconser vative generalized force vector applied
to the systzm

Via. Uib = linear displacements at nodes a and b of element {

w = virtual work done by the nonconservative forces

wix,t) = deflection at point P

w; = deflection at point P of element {

(X,0,Y) = local refercnce frame with axis OX being tangent
to the bearn at the base

(Xo, Og, Yy) = fixed-base frame

= local reference frame of element §

symmetric matrix of impermittivity

coefficients, e R3 %3

Be impermittivity per unit length of the smart
materials robot, b(c) + ¢3) B2

(1) = joint angle at the hub

= permeability coefficients matrix, e R**3

(xi, 0, yi)
8

I

73
I = permeability per unit length of the smart
materials robot, b(c| + ¢2) a3
oL = mass per unit length of the smart materials
robot, (¢, + c2)bp: + abp,
£1 = mass per unit volume of pure beam
P2 = mass per unit volume of smart materials
bias Pis = rotational displacements at nodes a and b
of element {
Yi(x) = the ith modes shape function or the eigenfunction

Introduction

OTH the rigid-body and elastic deformations should be pre-
cisely controlled in the mission of flexible space structures.
According to current thinking, a small number of high-authority ac-
tuators are attached to the host structure to achieve this task.'™* It
requires that the modes of the system be known to a high degree of
accuracy, which is actually very tough because accurate dynamics
for a large space structure are hard to obtain.
An alternative approach is the use of a smart structure, i.e., a
structure with networks of highly distributed actuators, sensors, and
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processors. Such a system allows the distributed control strategies to
be easily implementable, though it cannot be implemented by a small
number of sensors and actuators. Piezoelectric materials are readily
available to serve as actuators and sensors in this distributed control
approach because of their unique properties to achieve the trans-
formation between the mechanical and electrical energies. Much
theoretical and experimental work to investigate the properties of a
beam attached by piezoelectric materials®~® has been reported in the
literature. Pioneering research work has been carried out in Ref, 5 on
the modeling of smart structures. The effects of dynamic couplings
between the host structure and piezoelectric materials were exam-
ined. Dynamic models have been developed and experimentally
verified for three important cases: direct-voltage-driven electrodes,
direct-current-driven electrodes, and indirect drive cases. From the
basic piezoelectric stress-strain relationship, static and dynamic an-
alytic models were derived for segmented piezoelectric actuators
that were bonded to an elastic substructure or embedded in a lami-
nate composite.® Based on the conventional Euler-Bernoulli beam
theory, the model of a beam with its upper surface covered by piezo-
electric materials was derived from a dynamic force balance point
of view in Ref. 7. The model in Ref. 7 and its series solution were
developed from a virtual work approach in Ref. 8. The interactions
between the host structure and the smart materials were discussed
in Ref. 9, which showed that the mechanical properties of smart
materials should be considered in the modeling of a smart materials
beam.

In this paper, a flexible link robot covered by two piezoelectric
plates on both surfaces is discussed. Three models for this smart ma-
terials robot are obtained systematically. To obtain a full model with
both electrical dynamics and mechanical dynamics, both electrical
and mechanical properties of the smart materials (rather than the
piezoelectric stress-strain relationship only) and mechanical prop-
erties of the flexible robot are taken into consideration. First, Hamil-
ton’s approach is used to derive a theoretical model in the form
of partial differential equations (PDEs), which is too complicated
to be applicable in engineering practice. Then an assumed modes
method (AMM) and a finite element method (FEM) are used in as-
sociation with the Lagrange approach to obtain two approximated
finite dimensional models in forms of ordinary differential equations
(ODEzs). These two approximated models can be written in the con-
ventional state-space forms, for which advanced controller desi £gn
can be investigated. Based on these models, the system performance
of a smart materials robot is discussed.

The rest of the paper is organized as follows. First, fundamen-
tal concepts and equations of piezoelectric materials robots are
briefly described. Second, Hamilton’s approach is discussed in de-
tail. Third, models based on AMM and FEM, respectively, are de-
veloped. Finally, the comparative simulation studies are carried out,
followed by a conclusion.

Fundamentals of Piezoelectric Materials Robots

Piezoelectric materials are a special kind of material that can
realize the energy transformation between mechanical energy and
electrical energy. To introduce the dynamics of the electrical quanti-
ties, we will consider all of the mechanical energy, electrical energy,
and magnetic energy.

In this paper, superscript M is used for the mechanical quantities,
E for the electrical quantities, C for the coupled quantities, and S
for the quantities related to the smart materials.

We have the following fundamental relationships.

1) Piezoelectric effects'®:

F¥ =8 — hD (1
E=—h"S+ 38D (2)
2) Magnetic properties, neglecting the piezomagnetic effects:
B = pH 3)
3) Mechanical properties of the pure beam:

FM = Mg (4)

Modeling with Hamilton’s Approach
System Structure and Basic Assum ption

The flexible robot under study is enveloped by two plates of piezo-
electric materials, which can act as actuators or sensors for better
controller performance. One end of the beam is rigidly attached
to the rotor of a motor in the horizontal plane. Thus, the effect of
gravity is neglected.

It is assumed that only the motor torque is applied to the hub and
the tip payload is considered as a point mass. The schematics of the
system are shown in Fig. 1, and the geometry of the system is shown
in Fig. 2.

From Fig. 2, itis easily found that, except for the joint angle, which
is a function of time ¢ only, all functions depend on both x and ¢,
and their definition domains are [0, L] x [0, co] unless otherwise
stated.

In this paper, we make the standard assumption of small deflec-
tion. As shown in Fig. 2, electriczl displacement D(x, ) is perpen-
dicular to the beam in the plane of XOY. Thus its z component
D, =0. Moreover, due to the small deflection, we have D, < Dy;
therefore, we assume that D, = 0. The magnetic field intensity H is
perpendicular to the plane X OY; consequently, H, = H, = 0. We
will be concerned about only D, and H, in the following discussion.

Kinetic Energy

The kinetic energy includes two parts: the mechanical kinetic
energy and the electrical kinetic energy. The latter is actually the
magnetic energy. It is called elecirical kinetic energy here because
it is related to the time derivative of the electrical displacement and
is independent of the electrical displacement,!! which will be shown
later on. In the following derivation, we assume that the length of
the beam is constant.

First, the mechanical kinetic energy is derived. The position vec-
tor r of a point P on the beam cun be expressed in the fixed-base

frame as
cosf —sn@ x
r=1\ . (3)
sin@  cos@ wix,t)

Y

L L
I o‘-' ____________ L x,
fz/ N N N I O N |

Z, ' [[m]  Piezoelectric Material

D < Pure Beam
Fig.1 Structure of the flexible link robot enveloped with piezoelectric
materials.

Z(Zy
Fig.2 Coordinate systems of the smart materials robot.
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and we have

d
dr «a}—(xcosﬁ—w(x,!) sin@)

F=—
d
de a{xsine—i—w(x,t)cosﬁ

cos® —sind|[x—w(x, )6
sinf  cosf || 6x + w(x, )

cos@ —sinf —w(x, 1) 6
sinf cos@ Ox + wix, ) ©

where x = 0 because the length of the beam is assumed to be a
constant.
The mechanical kinetic energy is then given by

Il

(c1 + €2)bpy + abp,
2

1 . L
EM = 51,.92 + j{: FT (x, DF(x, £) dx

ms .+ . _ 1l 2 p
+ ud (L, 0)r(L, 1) = 2!;.6' + 2

3 L
X (%92 +f ([—w(x, NP +2x6u(x, 1) +w?(x, t)}dx)
0

nis 2 . . 2
+ 7{[w(£, 081" + (L8 + w(L, )]} (7

The first term on the right-hand side of Eq. (7) is the kinetic energy
of the hub, the second term is that of the smart materials beam, and
the third term is that of the payload.

The electrical kinetic energy, i.e., magnetic energy, is derived as
follows.

According to the Maxwell equation,'

2
VXH=']_ (8)

and recalling that D, = D, =0, H, = H, =0, as stated in the pre-
ceding subsection, the equation of H, can be written as

H(x,1) = —f Dy, 1) dE ©)
0

We can see that H.(x,t) is a function of the time derivative of

D,(x, t). Thus, the magnetic energy is looked on as the electrical
kinetic energy, which is in the form

pE _ bt eus f’“[[‘b & r)df]zdx
k y\&8,
2 [H] L]

T r :
= — D&, nd dx
= M L. D) E] (10)

The total kinetic energy of the system is the sum of mechanical
kinetic energy and electrical kinetic energy, i.e.,

E, = EY + Ef an

Potential Energy

Recalling that the robot is in the horizontal plane, we do not
include gravitational energy.

Before calculating the mechanical potential energy, a strain cal-
culation is in order':

wix, )

S =—y——, H=85=8=8=8=0
Dx?

The total potential energy is given by

Ll
E,=—b STFS + ETD]dy dx
2
0 —g—-\—c;
1 [fErd
+ —bf f STFM dy dx
2 o J-g
1 L §-+q
+ —bf f [3TFS + ETD]dy dx
2 Jo Jg
bf1]|cha® | (a * ta e
—5(5[ 4 teu (5“') +(£+'~“2) vy
N f‘ w(x, )
0 ax?

1 L 2w (x,
+5ku(c1 —c2)(c; + ¢ +a)f D_‘.(x,t)de)
1]

2 L
dx + (¢ +cz)ﬁ23f D:(x,t)dx
0

ax?

2
L [F[Pwix, 0 B ("2
=5, [ PP ] dx + 2 .[: D_?(x,r)dx

Pw(x, 1)
ax?
From Eq. (12), it can be found that the potential energy includes

three parts: the mechanical potential energy, the electrical potential
energy, and the coupled notential energy.

L
+hL/ Dy(x,1) dx (12)
[

Virtual Work

The virtual work includes two parts: the mechanical virtual work.
which is from the motor torque, and the electrical virtual work,
which is done by the voliages exerted on the smart materials actua-
tors. We will derive them successively.

The mechanical virtual work is in the form
5 dw(0, 1)

ilx

Assuming that the applied voltage is a function of both x and ¢, the
electrical virtual work is obtained:

SWH = + 186 (13)

L
awfzf bV (x, )8 D, (x, 1) dx (14)
0

The total virtual work is then given by
W =8sWM 4 sWE (15)

Hamilton’s Approach
The celebrated Hamilton’s principle is described as'*

1
af (Ex—E,+W)dt =0 (16)
o
where §( ) denotes the variational operator.

In deriving the model by Hamilton’s approach, the following con-
ditions are used:

dx =10

=10, n=1,23,...

83(1y) = 66(n) =0
(17
Swix, ty) =dwix, ) =0

(5D),(::. Iy) = JD_‘.(x, n)=2>0

Sw(0, 1) =: 0, is:u(o,:) =0
ax

3

where the first two cond:tions are due to the constant length of the
beam, the following thre: conditions are standard assumptions that
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variations vanish at the two endpoints corresponding tor =1, and 1,,
the last two conditions hold because the beam is fixed at x = 0, and
the local reference frame is selected such that axis OX is tangent
to the beam at the base.

Substituting Egs. (11-15) into the left-hand side of Eq. (16), in-
voking the conditions in Eq. (17), and integrating by parts, we arrive
at

H
f 8(Ex — E, + W)dt

fn n L
=f P:é@df+/ f Pdw(x, 1) dx dt
iy g VO

o plL n
+f f P38D_‘.(x,r)dxdr+f Pysw(L, t)dt
1w Jo fo

n P n L
+f Ps(—ﬁw(LJ)dr+f Pﬁf 3D, (&, 0 dEdr (18)
o dx o 0 ’
where

3 L
Pi= (_1,, — LB"L)é -po [Rw(x, HDi(x, )6
(1]

+w?(x, N8 + xiv(x, ] dx — ms2w(L, Dw(L, 16
+wH L. 06+ L% + Lin(L, 0] + 1

Py = prlwix, 1}92 —x6 —w(x, )]

Mtw(x, n —h 3Dy (x, 1)
dx* L ax?

—Cr

x '3 B
P, =mf0 [ Buc.oacas - g, (19)
0

Pw(x, 1)

—h
E N2

+bVix, 1)

Py = ms[w(L, )8 — Lé — w(L, 1)]

Pw(L, 1) aD, (L, 1)
+ ¢y, PFE + hy, ax
82w(L,t
Py=—c, 2D b
dx? ’

L X
Py = —mf f By (&, 1) d& dx
1] 0
which, to satisfy Eq. (16), yields the PDEs

L"pL .. L . . 2 .
I, + T 9+ pr [2wx, Hwix, 16 + w(x, 1)6
0

+xw(x, )] dx + my[2w(L, Dw(L, )0 + w(L, 1)d

+ L% + Li(L, )] =1 20)
. . a4 1 D, (x, 1
pLlw(x, 6% — x6 — i(x, )] = ¢ WX gy PO D)
x4 ax?
2n
x pE o ']2 (x,t
,u;,f f By 0 ds d& = By Dy )+ XDy
o Jo dx
(22)
and boundary conditions (BCs)
w0, ) =0 (23)
a
M =0 (24)
ax

. 3
mylw(L, 6% — L§ — (L. )] + ¢, 22D
ax3
D,(L,
+;ILM =0 25)
ax
2

c_,‘M—l-hLD,‘(L..') =0 (26)

dx?

L X

“f—f f Dy(¢§,1)dédx =0 @7

0 0

Equation (20) illustrates the moment balance at the base of the robot,
Eq. (21) represents the dynamics of vibration of the smart materials
robot, and Eq. (22) is the dynamics of the electrical displacement.
Conditions (23) and (24) hold bzcause the beam is fixed at x =0,
and the local reference frame X Q'Y is selected such that axis O X is
tangent to the beam at the base. Equation (21) is related to Eq. (22)
through term £,[9°D,(x,1)/3x"], Eq. (22) is related to Eq. (21)
through term k, [0?w(x, r)/3x?], and BCs (25) and (26) are also
related to each other. However, all of these relativenesses, dynamics
of the electrical displacement (22), and BC (27) do not exist in
the model of a pure flexible robot. As a matter of fact, only when
Dy =0, hy =0, and V = 0 does the dynamic model of a smart
materials robot degrade to that of a pure flexible robot.

_,After some simplifications, e g., Dy(x,t)=0, V(x.) =V (1),
8 =0, and ¢ = 0, the dynamics of the deflection will become the
same form as that in Ref. 7 under the assumption that the moment of
inertia of the tip payload is zero. It is clear that the model described
by Egs. (20-27) is infinite dimensional and is too complicated to
be directly used for controller design. Therefore, the following two
sections are dedicated to the derivation of two approximated finite
dimensional models by AMM and FEM, respectively.

AMM Modeling
Due to the assumption of smal’ deflection, arc approximation®

r=x8+4 wix,t) (28)

is used to simplify the model statec in the preceding section. Because
o is so small (usually in the range of 10~2-10~?), that item

x 3 .
m,ff Doz, 1) dz dé
(1] (1]

in Eq. (22) can be taken as zero, and condition (27) can be removed.
After these simplifications, we arrive at a simplified model:

Lip.\ . Lo 25 .
I;.+T 4+ pL [xw(x, O]dx +m3[L°0 + Li(L. )] =t
: 0

(29)
= . _ hi \ Pwx, 1) hpb 3?V(x, 1)
—pr[x0 +w(x, 1)) = (c,, - E)—f}-x“_ ﬂ_:T
(30)
hy 2wix, 1) b
Dyx,t) = —— — + —V(x.n 31
e P TR @D
with BCs
w(0. 1) = 0, w®.n _,
x
B\ Pw(L,0) b V(L) .
(C'L - E‘) axd + .B_L x = m3[LE& 4+ w(L, )]
(32)

hi\d*w(L.t)y hob
( } E) R T

For the convenience of derivation. it will be temporarily assumed
that V(x, 1) =0, and this assumption will be removed later in the
discussion. A constrained modes method is applied, which means
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d = 0. Under these assumptions, a further simplified boundary prob-
lem is obtained.
1) Equations:

P A CAIEN))

Tt h = (‘L B E)T (33)
_ hy wx, 0
Dyx.t) =—gr =57 (34)
2) BCs:
2
w(0, 1) =0, %‘2 -0, d u;iI; D _o

(35)

2 3
maw(L, t) = (CL —_ IFIL)—-_a wiL, 1)

B ax3

To solve Eq. (33) under conditions (35), we invoke the variable
separation method; thus the solution of Eq. (33) is assumed to be of
the form'?

w(x, 1) =¥x)QQ@) (36)

Substituting this equation into Eq. (33), we have

lpm'(x] ) CL,GL - ki - _ Q(I)
¥ (x) pLBL Q@)

where primes denote the derivatives of x and dots denote the deriva-
tives of ¢. It is clear that the left-hand side of Eq. (37) is a function
of x only, whereas the right-hand side depends only on ¢. Therefore,
both sides of Eq. (37) should be equal to a constant. If k is used
to denote the constant, PDE (37) can be reduced into two ODEs,
namely,

(37

0() = —kQ() (38)
et _ pLJBL
W (x) = C—;.ﬁL —i2 kW (x) (39)
and the BCs (35) become
w(0) =0, v(0) =0, w(L)=0
(40)
I _ m3.|BL
w(L) = W —cihr —cLﬂLN(L)

It is easy to show that k = 0 and k[pr B/ (cL B — h})] < O will lead
to trivial solutions. Thus, we will consider the condition

C___L;f%hi >0 @n
Equation (39) can be rewritten as
W (x) = (v/L) W (x) (42)
with
v ! pLBL
(1) ~*zi2m

The general solution to Eq. (42) is of the form
W(x) = C, cos(vx/L) + C;cosh(vx/L) + Cisin(vx/L)
+ Cysinh(vx /L) (44)
From BCs (40), a set of equations is obtained:
C +Cy=0, Ciy+Cy =0
—Cycosv + Czcoshv — Cysinv — Cysinhv =0
Cilsinv + (mav/pr L) cos v] + Cz[sinh v 45)
+ (mav/py L) coshv]cosh v + Cs3[(m3v/pL L) sinv — cos v]

+ Cy[coshv + (m3v/p L) sinhv] =0

To obtain nontrivial solutions, the determinant of the coefficient
matrix of Egs. (45) must be zero, i.e.,

1 + cosh v cos v + (mav/pyL)(sinhvcosv — coshvsinv) =0
(46)
which may be satisfied by an infinite number of v. Note that only
positive v are used. Therefore it is possible to avoid trivial solutions
only when condition (41) is satisfied. As for condition (41), because
p and B, are positive constants, three cases exist.

1) Case 1:

k=0, cLBL — f?i =0 47)
2) Case 2:

k <0, cLBL—hy <0 (48)
3) Case 3:

k>0, ctPL—hi =0 49

In the firstcase, k > 0is required, and it can be found that the solution
to Eq. (38) is harmonic. In the second case, however, the solution
to Eq. (38) will be divergent because k < 0. From the preceding
analysis, one can see that the parameters of the smart materials
robot are directly related to the performance of the system. This
result can also be derived from the FEM modeling later. In the third
case, because ¢ 8; — h3 =0, Eq. (33) and conditions (35) become
the following.

Equation:
—pri(x, 1) =0
BCs:
aw(O,
w(0, 1) = 0, w0 _,
dx
a? ot
Fwlk,n _ mao(L, 1) =0
ax2

which clearly leads to a trivial solution. Therefore, to avoid a diver-
gent solution and a trivia! solution, it is assumed that ¢, 8, — h? >0
and k > 0 from now on.

Considering the first three equations in Egs. (45), the general
solution (44) can be rewritten as

W(x) = Cy{cosh(vx/L) — cos(vx/L)
— y[sinh(vx /L) — sin(vx/L)]} (50)
where

cosh v + cos v

= 51
sinhv + sinv Gh

The simplified smart materials robot system (33-35) under condi-
tions (47) can be solved if initial conditions are properly specified:

wi(x, 0) = wy(x) (52)
wix, 0) = wos(x) (33)

Letting 0 <vy <wv; < - - <00 be an infinite number of positive
solutions to Eq. (46), we can obtain an infinite number of solutions
to the boundary value problem, where i = 1,2,...,

Wi (x) = A;{cosh(vix /L) — cos(vjx /L)
— yilsinh(v;x /L) -~ sin(ux/L)]) = A; ¥, (x) (54)

where the various ¥; are calculated by Eq. (46) with the correspond-
ing v;, and the constants. A; are to be determinated later.

Because only case 1, Eq. (47), needs to be considered, constant
k must be a positive scalar. Letting k = @® with w being a positive
number, Eq. (38) is now in the form

D)+ w* Q) =0 (55)
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which indicates that Q(t) is harmonic with frequency w. Corre-
sponding to the infinite number of v;, an infinite number of natural

frequencies exist:
2 — h?
w; = Y ﬂ_{ff-’—L (56)
L2 PLBL

Subsequently, an infinite number of solutions to Eq. (55) can be
obtained:

qi(t) = B;cosw;t + C; sinw;t (57)

where B; and C; are constants that will be determinated from the
initial conditions later. Note that Eq. (33) is linear and homogeneous.
From the superposition or linearity principles,'® a solution w(x, )
is given by

we. =Y Y (0g ) (58)

i=1

The remaining problem is to determine A;, B;, and C;. Before pro-
ceeding, the following orthogonal conditions are introduced:

L 0 i#j
oL f Vi dx + may (LW (L) = T (59
0 P =]
— h 3 L "o 0 i :}é J
Qﬁ‘—*ff Yl de =1, Y (60)
B [ wip, =]
By using these two orthogonal conditions, it can be found that
| 7
Ai = [ =3 -3 :r 61)
Jy wix)ydx + (ma/p ) (L)
L L5
B; —_—f wo (X)) (x)dx + Zwu(fa)‘;'i(l-) (62)
i
] L . niz
G = f W Y () X + g (LI(L) | (63)
wy 0 PL

Moreover, from
Loy
¥, () dx = L
0
when my = 0, A; can be further calculated by

L~z my =10
A= [ 4ms (sinh v; cos v; — cosh v; sin v; )2} |
L+ - - my > 0
Pr sinh v; + sinv;
(64)

From Egs. (34) and (58), the solution to the electrical displacement
can be derived as

OO

Dy(x, 1) E——w"{x}q. ) (65)

From Eq. (65), it can be seen that the electrical displacement is also
the function of various g, (f), which means that the electrical dynam-
ics with very high frequency have been neglected. It is reasonable
because the frequencies of the mechanical vibration are far below
those of the electrical vibration.

Note that the solutions of w(x, ¢) and D, (x, 1) obtained earlier are
valid only for the conservative smart materials robot. For the original
system (29-32), which is driven by torque 7 and voltages V and thus
is nonconservative, the solutions (58) and (65) are invalid. However,
in the AMM modeling, the vibration of the nonconservative system
is also assumed to be of the forms (58) and (65), except that the
various ¢;(r), i=1,2,..., are not given by Eq. (57) but depend

on the torque 7 and voltage V. In the context, the various g, (1),
i=1,2,..., are called the generalized coordinates of the system.

As stated earlier, in the AMM modeling, the elastic vibration of
the smart materials robot is assumed to be of the form

wix,t) = Z: ¥ (x)qi (1)

P=10

where the various ¥, (x) are giver by Eq. (54) and the various g, (1)
are the generalized coordinates. Each g; (t) corresponds to a degree
of freedom of the system.

It is well known that the first several modes (corresponding to
lower frequencies) are dominant in describing the system dynamics.
The infinite series can be truncated into a finite one, i.e.,

N
wx, 0 =Y Yix)g (.,

i=1}

D=x=1L (66)

N

D(rr:Z

u'f”(x)e (1), 0=x=L (67)

Define the generalized coordinates vector as
2= q q

From Eqgs. (7), (10), (11), (66), and (67) and considering the orthog-
onal conditions (59) and (60), the Kinetic energy of the system is
then given by

gn]" € RN (68)

Ec=E} + Ef = 10"M,0 (69)

where M, € RW+ D> +1D g 3 symmetric and positive definite in-
ertia matrix given by

d my mi .. m¥
mYy  of  m} miY
My=|mi mi of o omi (70)
my m o omi ... ol
with elements defined as follows:
N
d=IL +1,+ I, + p qu
i=1
with
Iy = 3pL L3, I, =mylL?
h L
fr,t—pn-”; Lf WA (x) dx, i=1.2... (1)
L i

m = “"Lf YY) (x) dx
Lji=12,..., P #j

L
mi‘ = po xyr(x)dx 4+ ma Ll (L), i=1,2,...
iy

Similarly, using Eqgs. (12), (66), and (67), we can rewrite the potential
energy of the system in the form

E, = 3Q0"K\Q (72)
where

“’i‘pL] e RN+ =N +D)

(73)
The same process can be applied to the virtual work (15), and it can
be rewritten as

K, =diag[0 wip. wipL

SW = F150 (74)
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where

Fy= [r - M—Lf Vix, Dy (x) dx

T
bh L

__‘-f Vix, Dy (x)de--- —
BL Jo

bh, "
—=~ | v oy dxjj

The dynamic model of the smart materials robot can then be derived
from the Euler-Lagrange equation
L
i.(__ — 8_,[. = (75)
dtag 90

where L = E} — E,.
Substituting Eqs. (69} (72), and (74) into Euler-Lagrange equa-
tion (75) yields the dynamic model of the smart materials robot:

My(@)0+CA(Q.0)Q +KsQ =F, (76)

where the elements C,4 _z; of C4 € RW*1 > (V41 can be calculated
by

am s - Moy dmy i Ima_ij
Cipi = - 77
A—kj ‘_E= <3 ( % a4, 24, qi 7y

withm 4 _;; being the i jth element of matrix M 4. Substituting m 4 _;
just defined into Eq. (77), we obtain

N
oL Z qiqi  PLg1o pLgnd
i=1

Cy=| —pPLq1b (78)

—PLQNQ

It can be proven that M, — 2C, is skew symmetric. It can be seen
that the AMM model of a smart materials robot is also differ-
ent from the AMM model of a pure flexible robot, which can be
derived from the AMM model of a smart materials robot by setting
h.l, =0.

FEM Modeling

In this section, under the same assumptions as stated before, we
derive the model of a smart materials robot by the FEM associ-
ated with the Lagrangian approach. According to the FEM, with-
out losing generality, let the beam be divided into N parts with
the same length A = L/N. Thus the system geometry changes into
the form shown in Fig. 3.

Analysis of Finite Element

Assuming the deflection w; (x;, 1), 0 < x; < h can be represented
by a weighted sum of vi;, ¢4, Vip, and ¢;;,. In accordance with
the boundary conditions, e.g., w; (0, 1) = vi4, dw; (0, 1)/0x = ¢ia,
w;i(h, 1) = vy, dw;(h, 1)/0x = ¢, the weights can be chosen as
third-order polynomials. Therefore, we have'®

wi(x;) = PT(x)oy (79)

0,(q) X,
Fig. 3 Coordinate systems of the smart materials robot (FEM).

where
1= (3x7/ k%) + (257 /W) Via
by | HCEm @ | e
(352 /h) — (22 /)
—(x2/1) + (x}/h?) Piv

Moreover, the electrical displacement can also be expressed as

Dy, (x;) = Pl (x:)qai

(80)
Pp(x) =[1—(xi/h) xi/h)", @ = ldia  dip]”
For clarity, Maxwell equation (8) is rewritten here as
VxH= 99—
at
and we arrive at
Hi (xi) = P (xi)gy (81)

where
~x7/2h]"

From Eq. (81), it can be seen that the magnetic field intensity is re-
lated to the velocity of the coordinates. As a consequence, magnetic
energy will be treated as electrical kinetic energy as before."!

Py(x) = |—xi + (x}/2h)

Kinetic Energy
As stated earlier, kinetic energy includes both mechanical kinetic
energy and so-called electrical kinetic energy, i.e., magnetic energy.
The position vector ol point P in the ith element is given by

ri =0 +pi

where o; and p; are expressed in the fixed-base frame as follows:

(i — h X;
0; = a() 0 . pi=a®) | wi(x;)
0 0
with
cos® —sing 0O
a(f) = [sine cos@® O
0 0 1

being the transfomation matrix from the local reference frame to
the fixed-base frame. Thus the mechanical kinetic energy of the ith
element is

h
1 . 1,
Eﬁ =[J Em(xi}’i Fpdx; = EQH

h
x f m(x,-)a.?"(x.-.a.-)a,-(x.-.a.-)dx.-éu=14T.-Mf’é..- (82)
4]

2
where
—P:,{X.-}C!j 0 0
ai(xi,0) = [[(G = Dh+x]1 PT(x) | qii = [a-]
g
0 0

and MM = m(x;)N¥ with

m(x;) =
abp|+(r:|+r:2)bp;. i=1,..., (N=1)
abp, + (¢ + €2)bp: + m3d(x; — h), i=N

being the mass per unit length and N¥ being defined in the Ap-
pendix.
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The electrical kinetic energy of the ith element is

L E l L | T 1 h p% e
ES; = —bf f [BTH)dydx; + —bf f [BTH] dy dx;
2 0 J-g e 2 o Jg

1., [ .
= 59‘;;[ [H-.?ab(f—‘l + )Py (xi)Pz (x:')] dx;g,;
0

1. .
= @My (83)
where Mf = p13:b(c; + c2)NE, with N being defined in the Ap-
pendix.
The total kinetic energy is then given by
Evi = Eg + B¢, = 340MY i + 3aTMF G (84)
Potential Energy
Potential energy includes three parts: the mechanical one, the
electrical one, and the coupled one, which will be obtained as shown
in Eq. (86).
The same as before, the strain is in order!?

wx;, 1)
5 = —yo el
LS T T

= —yPT (x)q);
S =85 =58=58=S=0
where

P.\'(xi') =

Rt T ht e T e TRt e

[ 6 12x;, 4 6x, 6 12x, 2 ex,-T

The total potential energy for the ith element is then given by

1 fhr-d
Eyi= —bf f (STFS + E"D]dy dx,
2 0S8y

1 (e
+—bff STFM dy dx;
2 Jo -4
1 LIS B
+5bff [STFS + ETD)dydx;
o Jg
1 Bl [eMad a
=3 [ Gef e+ (5 )
3
a
+(5 +C’2) bl

1 . h
+ 59’%;[ [{Cl + ¢2)bBanPp (x;)PT, (xi)] dx;ga;
1]

3

o
?] }PJ (x; )P:'(Xs)) dx;qy;

h
+q%; f [h12b(c) — e2)(er + ¢z + @)Pp(x)PT (x;)] dxiqy
[}

1
= _QI;KM‘II-' + E‘I;K,-EQz; +91,K qii (86)

where KM = 3b{((cl1a’/4) + ci[(@/2) + c1)* + (@/2 + ¢2)’ —
a*/ 41} PY, ;— (c1 + )b BnPY, and K = 1hpblc) — )
(ci+c2+a)PE, with PM, PE and P¢ bemg deﬁncdmthcAppcndm

Virtual Work

Similarly, virtual work also includes the mechanical one and the
electrical one.

The mechanical virtual work done by the applied force is

h aw Lt ]
sWM =f t.-(x,—.r)liwdx;—kf % (%, )56 dx;
0 x; 1]

where ; (x;, t) is the motor torque applied to the ith element. Con-
sidering that there is only a motcr torque z(r) acting at the base, we
obtain the mechanical virtual work as
SWM == 5qT. F¥ (87)
where
FY = [z(1),0,7(1),0,0]"
=1[0,0,0,0,0]7, for i#1

The electrical virtual work done by the voltage is

h
SWE = | bVi(x;, 08D;(x;, 1) dx;
[H]

Assuming that voltage V; (x;, t) does not dcpend on x;, we have
SWE = 5L FE (88)
where
FFf =[(bhV;/2) (bhV;/D))"
Dynamic Equations

Applying the Euler—Lagrange equation (89), we can obtain the
dynamic equation of the whole system:

T = 5o =Fn; (89)

where @, ; are the components of the combination of vectors gqy;
andgq,i =1,..., N, which leads to the generalized coordinates

01 = (8, via, Pra» V2us P2as - - -
Q: = di. daa, - - ., dye, dnp]”

X A, . . .
L= Z[Ek.:' —E,il= Z [E(QT;'M:“QIE +‘I£‘M.'E‘hf)

i=1 i=1

T
s UNar DNas Vb, Pnl

1 1
(2q..K”q=. 2q§Kfq:.-) qz.KCq.,]

1 .7 x | R
= OM 0+ 50, M0,

1 1 1
- (EQIK”QI + Egixfgz) - 501K 0, 90)
and
T
FlsQ, = ZSqI.F" = (ZF. ) 30,
i=1 fe=l
o9
i=N i T
F;‘EQZ: Z‘ngFf = (E ar.x:) ‘SQZ
i=1 i=1
i=N

Z iextr MF = Z stexl Z i.ext

i=1 =1 i=1
(92)
Z iext? Z i.ext

i=1
with #; .., being the extended forin of matrix %; in accordance with
@, and @2, whereas %; is in accordance with g;; and ¢,;. The term
Iy 1s added to M, 11 to include the kinetic energy of the hub, i.c.,
11,6, With regard to the boundary conditions, v, = 0, ¢, = 0,
corrcspondmg rows and/or columns of extended matrices should be
removed.
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Subsequently, the dynamic equations of the whole system are
given by

MO, + C"(Q,, 0 +KMQ: + K @2 = F, 93)
MEQ, + KEQ, +K°Q = F, 94)

Note that ;2 and Q1,3 have been removed from the vector Qy;
correspondingly, the coefficient matrices’ rows and/or columns that
are related to coordinates Q) 2 and Q) 3 are also removed. The jkth
elements of the centripetal/Coriolis matrix CM have the following
form:

xfamy oMY amY o
Qi 9Qix Q. ’

I=1

If we further define @ = [@7 @I]", Egs. (93) and (94) can be
combined into

MQ +C(Q,0)0+KQ=F (95)
[M” 0 ] [c” 0]
Af = . C’=
0 M- 0 0
) e
K = N F=
K¢ KE F;

This model will be referred to as the full FEM model in the later
discussion.

Because matrix MF in Eq. (94) is very small, dynamics equa-
tion (94) is usually omitted. Thus a reduced system is obtained:

where

MM@, +CM(Q,.0)0, + (K¥ — K KE'K°)Q,
= Fi—-K“KF, 96)

This model can also be derived by removing the electrical kinetic
energy from the system kinetic energy. It will be referred to as the
reduced FEM model in the following discussion.

We have the following remarks on the system properties, which
are similar to those of the pure flexible robot.*

1) The matrix M is symmetric and positive definite.

2) The matrix M — C(Q, Q) is skew symmetric.

3) Although K¥ and K® are semipositive definite, K in the
full FEM model and K — K€" KE™' K€ in the reduced FEM model
can be nonpositive definite if the value or structure of K € changes.

Remark 3 is in compliance with the results of the AMM modeling.
It shows that the open-loop system may be unstable for certain
system parameters. Note that, although the first two properties are
similar to those of a pure flexible robot, the third property is quite
different from that of a pure flexible robot.

Open-Loop Simulation

We will take the open-loop simulations of both the AMM model
and the FEM model and compare them with each other. The system
parameters are listed in Table 1.

Figures 4 and 5 show the tip deflection of the system when no
voltages are applied and a torque 0.1 Nm is applied on the hub for
0.1 s. Figure 4 shows that the responses become close to each other
as the number of the mode in the AMM model increases. It verifies
that the dynamics of a smart materials robot is determined by the
dominant modes with lower frequencies. From Fig. 5, itis easy to see
that the responses of the AMM model and the FEM model become
closer to each other as the number of elements of the FEM model
increases. These figures verify the correctness of both models.

When the frequency responses are investigated, two cases are
checked. First, we use the torque as the input and the joint angle and
the tip deflection as the outputs. Second, the voltage at the base is
used as the input, and the outputs are the same as in the first case.
If voltages are applied at other points of the beam, the frequency
responses can be similarly obtained.

Table 1 System parameters

Names Values
I, kgm? 0.05
a, m 0.008
cy,m 0.008
¢2, M 0.004
b, m 0.01
£1, kg{m3 500
P2, kg/m? 500
m3, kg 0
L,m |
o, Nim? 3x 108
¢§p, Nim? 3 x 108
w, H/m 1.2x10°%
B, WF 4% 1012
h, V/im 1 x 107

0.008}
0.006}
0.004}
o002
g o
g -0.002
-0.004}
-0.006}
~0.008}

solid: | mode  dash-<oiied: 2 modes
-0.01 -

\J

dashed: 3 modeas doned: 4 modes
n L M

0 0.5 1 15 2 2.5 3 3.5
t(s)

Fig.4 Tip deflections of smart materials robot with different numbers
of modes.

0.01

0.008}
0.006 F

0.004

-0.0081
0.01 solid: 1 element o "'."“t Jelements  doted: AMM

0 0.5 1 1.5 2 2.5 3 3.5
tis)

Fig. 5 Tip deflections of smart materials robot.

When only the torque is used as the input, from the frequency
responses shown in Figs. 6 and 7. we can see that the response of the
AMM model and that of the FEM model are very close to each other
in the low-frequency ranges. In Fig. 6, from the resonant vibration
peaks, it can be seen that strong couplings of the first two flexible
modes, which are of lower frequencies, exist, whereas the couplings
with higher-frequency modes are too weak to be seen and thus can be
omitted in practice. Froni the frequency response in Fig. 7, it can also
be clearly seen that the electrical dynamics with high frequencies
are so strongly damped that they can be omitted. This is in line with
the theoretical results derived in the preceding sections of AMM
modeling and FEM modleling.
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200
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solid: AMM
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- dotted: reduced FEM
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Fig. 6 Frequency response with torque as input and angle as output.
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Fig. 7 Frequency response with torque as input and tip deflection as
output.
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dash-dotted: full FEM
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g
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-1200¢

-1400 B

~1600 : : - .
10° 10° 10* 10° 10° 10" 10"
Frequency { Hz )

Fig. 8 Frequency response with voltage as input and angle as output.

When only the base voltage is used as input, it can be seen that
differences exist in Figs. 8 and 9. This is reasonable because we
treated electrical parts of the system differently in the three mod-
els. In the AMM model, both the electrical displacements and the
mechanical deflections are functions of the same generalized co-
ordinates as described in Eqs. (66) and (67), and electrical kinetic
energy is included in Eq. (69). In the full FEM model, both elec-
trical dynamics and the electrical kinetic energy are considered. In

Table 2 Eigenvalues of K
h, Vim

10° 1.7669
34.0678
0.8 x 108
2.4 x 108
1010 1.7408
33.5658
0.8 x 108
2.4 x 108
10" —0.8625
~16.631
0.8 x 108
2.4 x 10%
1012 —261.119
—5035.97
0.8 x 108
2.4 x 10%

Eigenvalues

Table 3 lliggnvalyes
KE™

of KM — K€
h,Vim Eigenvalues
10° 1.7669
34.0678
1010 1.7408
33.5658
101! —0.8625
—16.631
10?2 —261.119
—5036.29
0 T
solid: AMM

-2001
dash-dotted: full FEM

-400F dotted: reduced FEM

Magnitude ( dB )

-1000

-12001

-1400 . L . 4 2
10° 10° 10° 10° 10° ° 10"
Frequency ( Hz )

Fig. 9 Frequency response with voltage as input and tip deflection as
output.

the reduced FEM model, because ME is very small, the electrical
dynamics is ignored, and the electrical kinetic energy is omitted
as shown in Eq. (96). Therefore. in Figs. 8 and 9, there are reso-
nant vibration peaks in the high-frequency range (10'"-10'? Hz)
for the full FEM model, whereas there are no such peaks for the
AMM model and the reduced FEM model. From Figs. 8 and 9, it
can be seen that the electrical dynamics is strongly damped (from
—100 dB in the low-frequency range to more than — 1000 dB in the
high-frequency range) in all cases; therefore, all of the models can
be used in practice for different applications.

For a one-element system, the zigenvalues of item K in Eq. (95)
and those of the item K — K< K5 K€ in Eq. (96) are listed in
Tables 2 and 3. We found that some eigenvalues become negative
when /1,; becomes sufficient large and results in an unstable system.
The results verify Remark 3 stated in the preceding section.



1476 GE, LEE, AND GONG

Conclusion

Three dynamic models of a smart materials robot have been de-
rived in this paper. Although the infinite dimensional Hamilton
model is too complicated to be applicable in engineering practice, it
is the foundation to understand the properties of this system and to
derive the AMM model and the FEM model, which have been trun-
cated into finite dimensional form. Both the AMM model and the
FEM model can be used in the controller design, whereas the gener-
alized coordinates in the FEM model are more physically meaning-
ful than those in the AMM model. All of these models have shown
that the model of a smart materials robot cannot be simply taken to
be the same as that of a pure flexible robot. The electrical dynamics
and mechanical dynamics have been included in the full models,
and the systemic analyses and frequency responses have shown that
the former dynamics can be omitted in engineering applications.
Both mathematical models and numerical simulations have shown
that the stability of the open-loop system depends on the parameter
and the structure of the smart materials robot.

Appendix: Entries of Matrices N¥, NF, P}, PE, and P{
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