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1 Preliminaries

1.1 Matrices

Definition 1.1. For m,n € N = {1,2,...}, we denote the class of real matrices of size
m x n (m rows, n columns) by

a1l a12 e A1n
asy az -+ A, , )

R™*" .= . . ] aij ERVie{l,...,m},je{l,...,n}
aml Om2 " Omn

We set R™ := R™*! to denote the class of real column vectors of length m.

Notation: For a matrix A € R™*", we often write A = (a;j) with a;; € R denoting
the (i,j)-th entry (row i, column j) of A, and A = (a1|az]|---|a,) with a1,...,a, € R™
denoting the column vectors of A.

1.1.1 Basic operations

For A = (a;;) € R™", B = (b;;) € R™", C = (¢;5) € R™! and a € R, we define
e addition: A+ B e R™*" (A4 B);j :=a;j +b;; Vie{l,...,m},j €{1,...,n},
e scalar multiplication: oA € R"™*", (aA);; = aa;j Vi € {1,...,m},j € {1,...,n},
e transposition: AT € R™™ (A1), :=a;; Vie {1,...,n},5 € {1,...,m},

e matrix multiplication: AC € R™*! given by

n

(AC)ij = amer; Vi€ {l,...,m},je{l,... 1}
k=1

Let us note that matrix multiplication allows us to form matrix-vector products, i.e.,

for a matrix A = (a;;) € R™" and a vector © = (z1,22,...,2,)T € R" = R™! we have

Az € R™ = R™ with entries (Az); = Y p_; aixxy for i € {1,...,m}.

Remark 1.1. (i) Matrix-vector product: For A = (ai|ag|---|ay) € R™™ and x =
(x1,22,...,7,)T € R, we have

n
Ar = Zxkak € span(aq,...,a,) € R™,
k=1

i.e., Ax is a linear combination of the columns a; of A with coefficients xy,.

(ii) Matrix-matrix product: For matrices A = (ailaz|---|a,) € R™™ and C =
(ci]cal - |c) € R let B := AC = (by|ba|-- - |b;) € R™*!. We then have

n
b; = Ac; = chiak € span(ay,...,a,) CR™ Vie{l,...,1},
k=1

i.e., b; is a linear combination of the columns aj of A with coefficients cg;.



1.1.2 Connection to linear maps

R’I’I’LX’FL

Any matrix A € induces a linear map via matrix-vector multiplication, that is, the

map
Ly:R" —R™, x— Az (1.1)

is linear. Recall that a map L : R" — R™ is called linear, denoted L € L(R™,R™), iff
(short for “if, and only if,”) it satisfies L(ax + y) = aL(z) + L(y) for all z,y € R™ and
«a € R. Conversely, any linear map from R™ to R™ can be represented by a m x n matrix
in the sense that for any L € L(R™ R™) there exists A € R™*" such that L = Ly.

Theorem 1.1. There holds L(R™, R™) ={L4 : A € R™*"} with L as in (1.1).

Proof. We have already observed that {L4 : A € R™*"} C L(R",R"™). For the converse
inclusion, given L € £L(R",R™), we have for any = = (z1,72,...,2,)T € R” that

=L (Z xe) = wiL(e;) = Az with A= (L(e1)|L(ea)| -+ [L(en)) € R™™.
i=1 =1

Here, e, ..., e, denote the canonical basis vectors of R". ]

Let us point out the behavior of the linear map (|1.1) under addition, scalar multipli-
cation and matrix multiplication: For A, B € R™*" C € R™! and «a € R, we have

Layp=1La+ Lp, Loa = alLa, Lac=LaoLc.

1.1.3 Range and nullspace

Definition 1.2. Let A € R™*". We then define

(i) the range of A to be R(A) :={y € R"|Jx € R" : y = Az},
(i) the nullspace of A to be N(A) := {z € R"| Az = 0},

(iii) the rank of A to be rk(A) := dim(R(A)),

(iv)

Remark 1.2. In view of Remark [L.1} we have for A = (a1|ag| - |a,) € R™*" that R(A) =
span(ay,...,a,). We also call R(A) the column space of A.

the nullity of A to be nullity(A) := dim(N(A4)).

Theorem 1.2. Let A, B € R™*" and C € R™*'. Then the following assertions hold.
(i) 0 < 1k(A) = 1k(AT) < min{m,n} (“column rank equals row rank”),
(i) tk(A) 4 nullity(A) = n (“rank-nullity theorem”),
(iii) tk(A) +rk(C) —n < rk(AC) < min{rk(A),rk(C)} (“Sylvester’s inequalities”),
(iv) tk(A + B) < rk(A) +rk(B),
(v) tk(ATA) = 1k(A) = rk(AAT).



Proof. See undergraduate linear algebra. O

In view of (i), we say that a matrix A € R"™*" is of full rank iff it satisfies rk(A) =
min{m,n}. Otherwise, when rk(A) < min{m,n}, we call A rank-deficient. For m > n,
we can characterize matrices of full rank as follows.

Theorem 1.3. Let A = (ailaz|---|an) € R™*™ withm > n. Then the following assertions
are equivalent.

(i) A is of full rank, i.e., rk(A) = n.
(ii) The columns ai,...,a, € R™ of A are linearly independent.
(iii) The associated linear map L4 given by (1.1) is injective.

Proof. (i)=(ii): If rtk(A) = dim(span(ay,...,ay)) = n, then clearly ai,...,a, are linearly
independent.

(ii)=-(iii): Suppose that the columns ay, ..., a, € R™ of A are linearly independent, and let
= (x1,22,...,20) ",y = (Y1, Y2, ..., yn)T € R? such that La(z) = La(y), i.e., Az = Ay.
Then A(z —y) = > ;(x;i — yi)a; = 0 € R™ and hence, z; —y; =0 for all i € {1,...,n},
e, =u1y.

(iii)=(i): We show the contrapositive —(i)= —(iii). To this end, suppose that A is not

of full rank. Then, rk(A) = dim(span(ay,...,a,)) < n and hence, ay, ..., a, are linearly
dependent. Then, there exists ¢ = (c1,ca,...,c,)T € R®\{0} such that >, ¢;a; = 0 and
we conclude that L4 is not injective as La(c) = Ac =0 = L4(0) and ¢ # 0. O

1.1.4 Invertible matrices

We now turn our attention to square matrices A € R™*". For n € N, we let

10 --- 0
1 -+ 0
I, = (erles] -~ len) = | . . | e R
00 --- 1
denote the n x n identity matrix. Here, eq,...,e, are the canonical basis vectors of R".

Definition 1.3. A matrix A € R™*"™ is said to be invertible (or non-singular) iff there
exists a matrix A~! € R™X", called the inverse of A, such that AA™' = A=14A =1,,.

Remark 1.3. Let A = (ai]as]|---|a,) € R™ ™ be invertible with inverse A~! € R™*" and
let b=Y7_, brex € R™. Further, let x = A71b = >°}_ xxer, € R™. We regard x as the
unique solution to Az = b, i.e., b= _, xpax. Observe that A~1b is the vector containing
the coefficients of the expansion of b in the basis {aj,...,a,}. Hence, multiplication by
A~1 corresponds to a change of basis operation.

Observe that invertibility of a matrix A € R™*™ is equivalent to invertibility of the
associated linear map L4 from (1.1). We state a few equivalent characterizations of in-
vertibility.

Theorem 1.4. For A € R™" we have the equivalences

A invertible & tk(A) =n & R(A) =R" & N(A) ={0} & det(A) #0 < 0¢& A(A).



Proof. See undergraduate linear algebra. O

Here, det(A) denotes the determinant and A(A) := {\ € C : det(4 — A\I,) = 0} the
spectrum (set of eigenvalues) of A € R™"*™.

Theorem 1.5. Let A,C € R™"™ be invertible matrices and let o € R\{0}. Then also
A7 AC, A, AT € R™™ are invertible and we have the following:

(i) (AL =4, (AC)'=C"147Y, (ad)l=1a"1 (AT)"1=(A"}T
(i) th(A™Y) = 1k(A) =n, det(A™!) = by

Proof. Assertion (i) is straightforward using Definition Note rk(A™1) = rk(4) = n
from Theorem and invertibility of A and A~!. Finally, note det(A) # 0 from Theorem
and det(A~!) det(A) = det(A~1A) = det(I,) = 1 using the multiplicative property of

the determinant. O

Remark 1.4. Let us provide the corresponding results for transposition. For matrices
A, B e R C e R™ and a scalar o € R, we have the following:

() (AT =4, (AC)T =CTAT, (aA)T =AY, (A+B)T = AT + BT,
(ii) tk(AT) =1k(A4), det(AT) = det(A).
Definition 1.4. A matrix A € R™ ™" is said to be symmetric iff AT = A. A matrix
Q@ € R™" is said to be orthogonal iff Q) is invertible and Q7! = Q7.
1.1.5 Orthogonality
Definition 1.5. Let z,y € R". We define
(i) the Euclidean inner product (z,y) := 'y € R, and
(ii) the Euclidean norm ||z|2 := \/(z,z) € R,

It can be shown that (x,y) = ||z||2||y||2 cos(by,y) for any x,y € R", where 6, , denotes
the angle between the vectors x and y. Further, it is straightforward to check that the
inner product is bilinear, i.e., we have for any z,z1,22,¥y,y1,y2 € R™ and o € R that

(azy +22,y) = afzr,y) + (22,9), (7,001 +y2) = alz,y1) + (z,12).
Further we have that (-,-) is symmetric, i.e., (x,y) = (y, z) for any x,y € R™.
Definition 1.6. We make the following definitions regarding orthogonality.
(i) Two vectors x,y € R™ are called orthogonal, denoted = L y, iff (z,y) = 0.
(ii) Two sets X,Y C R™ are called orthogonal, denoted X L Y, iffx L yVre X,y €Y.
(iii) A set S C R"\{0} is called orthogonal iff Vz,y € S:z #y=x L y.
(iv) A set S C R™\{0} is called orthonormal iff S is orthogonal and ||z|j2 =1 Vx € S.

Theorem 1.6. The vectors in an orthogonal set S C R"\{0} are linearly independent. In
particular, any orthogonal set S C R™\{0} containing n vectors is a basis for R™.



Proof. Let S = {v1,...,un} C R"\{0} be an orthogonal set and suppose that its elements
were linearly dependent. Then, there exists a vector vi € S which can be expressed as
Uk = D ieq1,.. N}\{k} CiVi for some ¢; € R, i € {1,..., N}\{k}, and we find that

Hvk”% = (v, V) = Z ci{vi,vg) =0
{1, NP\ (A}

as S is orthogonal. But this implies that vy = 0, contradicting v, € S C R™\{0}. O

With the concept of orthogonality at hand, we can decompose a given vector into
orthogonal components. Indeed, given an arbitrary vector x € R™ and an orthonormal set
{¢1,92,...,qn} CR™{0}, 1 < N <n, weset r:=x— Ziv:l<x,qk>qk € R™ and write

N

N
=Y (wq)a +r=> (qrah)z + 7.

k=1 k=1
Then {r} L {q1,...,qn} as we have for any i € {1,..., N} that

N

k=1
and we deduce that r is the part of z orthogonal to the subspace span(q,...,qn) C R",
and (7, qx)qr = (grgy )z is the part of z in direction g, for k € {1,..., N}. We will see later
that P, := qq’ is an orthogonal projector isolating the component in direction ¢ € R™.
Observe that if N = n, we have that {q1,...,q,} is a basis of R™ and hence, r = 0.

Remark 1.5. Let Q = (q1]g2| - - - |gn) € R™*™ be orthogonal. Then {q1,...,¢,} C R" is an

orthonormal basis of R”. Indeed, QTQ = I,, yields that q;rqj =g;; forall 4,5 € {1,...,n}.
Here, §;; denotes the Kronecker delta, i.e., §;; = 1 if i = j, and d;; = 0 if 7 # j.

Remark 1.6. The Euclidean inner product is invariant under orthogonal transformations,

i.e., for an orthogonal matrix @ € R™*" there holds (Qz, Qy) = (x,y) for any z,y € R".
In particular, we have ||Qx|2 = ||z||2 for any x € R™.

Let us also note that |det(Q)| = 1 for an orthognal matrix Q € R"*"™. The associated
linear map L¢ is an orthogonal transformation preserving the inner product on R", and
corresponds to a rigid rotation (when det(Q) = 1) or a reflection (when det(Q) = —1) of
the space. In dimension n = 2, we can characterize orthogonal matrices as follows.

Remark 1.7. Any orthogonal 2 x 2 matrix Q € R?*? with det(Q) = 1 can be written as

_ [cos(f) —sin(0) -
@= <sin(0) cos(6) > , 0€[0,2m),

with Lg rotating the plane anticlockwise by the angle ¢, and any orthogonal 2 x 2 matrix
Q € R?*? with det(Q) = —1 can be written as

_ [cos(B) sin(p) .
@= (Sin(ﬁ) —COS(B)) » Be02m),

with Lg reflecting the plane across y = tan(5/2)z if § # m, and across =0 if § = 7.

7



1.2 Norms

Definition 1.7. A map || | : V — [0,00) from a vector space V over R (or C) into the
set of non-negative real numbers is called a norm iff there holds

(i) definiteness: Yo € V : ||v]| =0 = v =0,
(ii) absolute homogeneity: ||av| = |af||v|| Vv € V,a € R (or C),
(iii) triangle inequality: ||v1 4+ va|| < ||vi]| + |lv2|| Vvi,v2 € V.

If V=R", wesay | || is a vector norm, and if V' = R"™*" we say | - || is a matrix norm.

1.2.1 Vector norms

The most important vector norms are the p-norms || - ||,, including the Euclidean norm
for p = 2.

Definition 1.8. For p € [1,00), we define the p-norm || - ||, : R™ — [0, 00) given by

n v
(B = (Zm«m) . x=(z1,29,...,2,)" €R™
=1

Further, we define the co-norm (or maximum norm) || - ||s : R” — [0, 00) given by

|z]loo == max |z, T = (xl,xg,...,xn)T e R".
1€1,....,n

Remark 1.8. In dimension n = 1, we have ||z||, = |z| Yz € R for any p € [1,00) U {oo}.

Lemma 1.1. Let p,q € (1,00) be such that there holds % + % = 1. Then, there holds
ab < %ap + %bq for any a,b € [0,00). This inequality is called Young’s inequality.

Proof. Let us assume that a,b € (0, 00) as the claim is trivial if @ = 0 or b = 0. Let us note
that the exponential function exp : R — R is convex, i.e., for any « € [0,1] and z,y € R
we have exp(az + (1 — a)y) < aexp(x) + (1 — ) exp(y). We find that

ab = exp(log(ab)) = exp(p~ ' (plog(a)) + (1 — p~")(qlog(b)))
aP bl

< p ' exp(plog(a)) + (1 —p~") exp(qlog(b)) = S

where log denotes the natural logarithm. O

Theorem 1.7. Let p,q € (1,00) be such that there holds % + % = 1. Then, for any two
vectors x = (x1,22,...,20) ,y = (y1,y2,...,yn)" € R" there holds

n n % n %
> wiyi| < (Zm\p) <Zlyilq> = [z lpllll,-
=1 =1 =1

This inequality is called Holder’s inequality. The special case p = q = 2 s also known as
the Cauchy—Schwarz inequality.

[(z,y)| =




Proof. Let us assume that z,y € R™\{0} as the claim is trivial if z = 0 or y = 0. Then
we have

7_’_7
2l lolle =p Ielb " q Iyl P q

Z |z |yl 12?:1|xi’p+122 1‘yz‘q 11 1,
|z

||$Hp||y|!q
where we have used Young’s inequality from Lemma O
Remark 1.9. We also have that [(z,y)| < ||z||1]|y|lco for any z,y € R™.
Theorem 1.8. The map || - ||, : R" — [0, 00) is indeed a norm for any p € [1,00) U{oco}.

Proof. The tricky part of the proof is the triangle inequality for p € (1, oo), and we leave
the remaining parts as an exercise. Let p € (1,00) and set ¢ := £ —P- Then 2 —|— 2 =1 and,

using Holder’s inequality from Theorem we find for any z = (:cl,a;Q, ozt y =
(y1,92,---,yn)T € R" that there holds

n n n
4+ yllp = i+ yilP < lwillw 4+ yilP D il + vl
i=1 =1 =1

1
n q
< (l[flp + llyllp) (Z\ﬂ% + yil(pl)q>
= (lzllp + lyllo) = + yI, 21, = Ulzly + lyllp) e+ yl5 ™,
and hence, ||z +yllp < [lz]l, + [[yllp- =
All vector norms are equivalent in the sense of the following result.

Theorem 1.9. Let || - |, || - ||| : R™ — [0,00) be norms on R™. Then, ||-| and ||-|| are
equivalent, that is, there exist constants Cy,Co > 0 such that

Cullall < llell < Colle| v € R™.

Proof. See undergraduate linear algebra. Actually, any two norms on a finite dimensional
space are equivalent. ]

1.2.2 Induced matrix norms

As a first observation, note that for A = (aj|az]---|a,) € R™*™ we have that
a
a2
vec(A): =] . | e R™, (note a; € R™ Vi € {1,...,n})
Qn

and we can use the aforementioned vector norms to measure its size. However, it is more
useful to view A € R™*™ in terms of the associated linear operator Ly € L(R™,R™) from
(1.1) and use the operator norm induced by given vector norms on R"™ and R™.



Definition 1.9. Consider the normed vector spaces (R", [ - [|()) and (R™, [ - ||)), i-e.,

| l(ny is & vector norm on R™ and || - [|() is a vector norm on R™. Then we define the
induced matrix norm || - [[(, ) : R™*™ — [0, 00) by
[ Az|
||A|](m7n) = sup 2 sup HAxH(m), A e R™",
zerm\ [0} 1Z]l(n) z€R™
||$||(n>:1
In the case that || - [[() = [| - [[m) = I| - [|p for p € [1,00) U {00}, we call
A
Al = sup 18— gy gy, a4 emmen
cerm\{0y [Zllp  zerr
lzllp=1
the p-norm of a matrix.
Theorem 1.10. The map | - [|mn) : R™*™ — [0,00) is a norm on R™*™ for any choice
of vector norms || - ||(ny on R™ and || - [|;,) on R™.
Proof. Exercise. O

Remark 1.10. For A € R™*", the number [|Al|(;, ) is the smallest constant C' > 0 such
that [|La(2)| (m) = |AZ]|(m) < Cllz|/n) Yo € R, ie., it is the greatest factor by which L4
can stretch a vector in R".

Remark 1.11. For nq,ng,n3 € Nlet || - [|(,,) be a norm on R, and let A € R"*"2 and
C € R™*"3_ Then we have that

[AC (n1m5) < 1Al ma) 1€l

ng,n3)-

Indeed, this follows from
[ACZ|(ny) < Ay ) ICT N (na) < NAll 1 ma) [C N mamp) 1Tl gy V2 € R,

Therefore, induced matrix norms are said to be submultiplicative. Note that general
matrix norms do not need to be submultiplicative (exercise).

Ezample 1.1. For a diagonal matrix

(65} 0 0
0 ay -

A= diag(ag, a9, ..., an) == | . L | e R,
0 0 - ap

we have that [|Al|, = max;eqy,. ny|ai] for all p € [1,00) U {oo}.

Proof. First, consider p € [1,00). Then, for any x = (1,22, ...,7,)T € R?, we have that

n n P
Axp:Za~a;~p< max |oy|P Z:vp: max |a; x|
ety =S e < (o o) S e = (o) ol

geoey

10



and hence, [|Al|, < max;cqy,. ny|ai. For the converse inequality, we use the canonical

basis vectors to find

||A”p Z ||A62||p — ||aiei||p

= |ay| Vie{l,...,n},

leill, — llell,

and hence, [|A[l, > max;c; . ny|ai| and we can conclude that [|All, = max;eqq,. nylail-
Now consider p = co. Then, for any = = (21, 72,...,2,)" € R", we have that

el = wc fosoi) < (_max lal) (o o)) = (o o) ol
(A KA A

1,...,n} e{1,....,n} €{1,....,n} i€{1,....,n}
and hence, ||Alloc < maxjey .. nylai|. The converse is shown as before. O
Ezample 1.2. For a matrix A = (ai|ag|---|an) = (b1|b2| - |by)T € R™*™ there holds

[Allso = max |[bslly,  [[Alh = max a1,
i€ } €

goooy geeey

ie., [|A]|x is the “maximum row sum” and ||A||; the “maximum column sum” of A.

Proof. We leave the claimed result for the oco-norm as an exercise and only prove
that [|Alli = maxjeqy. ) llaill1 for A = (ailaz|---|a,) € R™™.  For any vector
x = (r1,29,...,2,)" € R", we have that

n n n
s < Mlailledh < (max failh ) Soled = (_maxfailh) el
i = B ie{lny ) = ie{lm}

and hence, ||All1 < max;eqy,. 5y [|aill1. For the converse inequality, note that

[Az =

[Aeillr a1y

|AllL > =
leillh el

= ||a;||1 Vie{l,...,n},

and hence, [|A|]; > Max;e(1,. n} ||lai|]|1. We conclude that ||A|; = MaX;e(1,.. n} llaill1. O
Ezample 1.3. For a row vector A = a* € R " there holds ||A|2 = ||a||2.

Proof. For A = aT € R, we have ||Az|2 = [{a,z)| < |la|l2]|z||2 for any z € R and
hence, ||All2 < ||all2. If a = 0 € R™, we have ||Al|2 < 0 which yields ||A||2 = 0 = ||al|2. If
a € R™ {0}, there holds ||Al|, > [Aalz — el ;10 anq we conclude [|All2 = |jall2. O

llall2 llall2

Example 1.4. Let u € R™ and v € R™. Then, for the outer product A = uv™ € R™*" we
have that ||A|2 = ||ul|2]|v]]2.

Proof. We have ||Azx|y = ||uvT:c||2 = |lull2|(v,z)| < ||ull2||v]2||x|l2 for any x € R™ and
hence, ||All2 < |lull2||v]]2. If v = 0, we have ||Al|2 < 0 which yields ||All2 = 0 = ||ul|2]|v]|2.
If v € R"\{0}, there holds ||A]ly > Hmllz - H%glla _ ”“”ﬁlﬁi’”” = |lull2lv||2 and we
conclude that || All2 = ||u/|2]|v||2- O

The matrix 2-norm is also known as the spectral norm. We will see later that there
holds ||All2 = v/ Amax(ATA) for A € R™*" where Apax(ATA) denotes the largest eigen-
value of ATA.

11



1.2.3 Frobenius norm

Let us note that not all matrix norms are induced by vector norms. The most important
example of such a norm is the Frobenius norm.

Definition 1.10. The map || - |[F : R™*" — [0, 00) given by

JAllp == \/tr(AT4) = | fer(A4T) = A= (a) R

is called the Frobenius norm.

Here, tr(B) denotes the trace of a square matrix B, that is, the sum of its diagonal
entries.

Theorem 1.11. The map ||-||F is indeed a norm on R™*™. Further, the Frobenius norm
is submultiplicative, that is,

IAC|F < |AlFICIF YA ER™",.C e R™.

Proof. Exercise. 0
Remark 1.12. The Frobenius norm ||- || is induced by the Frobenius inner product (-,-)p :
R™*M x R™M*™ — R given by

(A,B)p :=tr(ATB) = tr(BAT) = Y ) "aybij, A= (aij), B = (bij) eR™",

i=1 j=1
ie, ||Allr = (A4, A)p VA € R™*". Further, we have the Cauchy-Schwarz inequality
(A, B)pl < |AllrlBlr VA, BeR™™,

We point out that, as for vector norms, also any two matrix norms are equivalent in
the sense of the following result.

Theorem 1.12. Let |||, || - || : R™*™ — [0, 00) be norms on R™*™. Then, || -| and || - ||
are equivalent, that is, there exist constants Cq,Cy > 0 such that

CLllAll < JJAIl < Coll A VA € R™

Proof. See undergraduate linear algebra (any two norms on a finite dimensional space are
equivalent). 0

1.2.4 Orthogonal invariance

The spectral norm and the Frobenius norm are invariant under multiplication by orthog-
onal matrices:

Theorem 1.13. Let A € R™*™. Further, let U € R™*™ and V € R™ "™ be two orthogonal
matrices. Then, we have that

(1) \UA[l2 = [|A]l2 and [[AV][2 = [[A]l2,

12



(ii) \UA|r = |Allp and [|AV|F = ||Al|F-

Proof. (i) In view of Remarkthere holds ||[Vz||2 = ||z||2 for any = € R™, and ||Uyl|2 =
lly||2 for any y € R™. We have that

UAzx 2 Ax 2
U Al = [UAz|]2 _ [Azfly 14l
z€R"\{0} [E41P zeR"\{0} [E41P
and, using that Ly : R™ — R™ is a bijection (as V is invertible),
[ AVl |AVz]la Ai|
4V, = = BTy ATy,
zeR"\{0} 2|2 zeR?\{0} [Vl zeR™\{0} 1Z]]2

(ii) Note that || B||%2 = tr(BTB) = tr(BBY) for any B € R™ ", Hence, we have that

IUA|% = tr(UA)T(UA)) = tr(ATUTUA) = tr(AT A) = || A %,
|AV||% = tr((AV)(AV)T) = tr(AVVTAT) = tr(44T) = || 4]%.
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2 Singular Value Decomposition

2.1 Definition and geometric interpretation

In this section, we introduce the singular value decomposition and provide a geometric
interpretation.

Definition of full and reduced SVD

We start by introducing some notation.

Definition 2.1. A matrix A € R™*" is called diagonal iff there exist p := min(m,n) real

numbers ai, ..., a, € R such that A = diag,,,,,, (a1, a2, ..., ®p,), where diag,,,, is defined
as follows.
(i) For m,n € N with m > n and aq,...,q, € R, we define
a1 0 0
0 a9 0
diag,, (1, a0,...,an) =1 0 0 - a,| € R™".
0 0 0
0 0 0
(ii) For m,n € N with m <n and aq,...,a, € R, we define
ap 0 -~ 0 0 - 0
0 ag --- 0 0 --- 0
diag,, (a1, 0, ... ) = | . L L | e R
0 0 -+ apm 0 --- 0

A singular value decomposition, abbreviated SVD, is defined as follows.

Definition 2.2. Let A € R™*" for some m,n € N and set p := min(m,n). If there exist

U = (up]ug| - |um) € R™™  orthogonal,
V = (vi1|va| - - - |vn) e R™"™  orthogonal,
Y = diag,, «p(01,02,...,0p) ER™"  with oy > 09>+ >0, >0,

such that there holds UTAV = ¥, or equivalently,
A=UxVT, (2.1)
then we call (2.1) a singular value decomposition (SVD) of A with singular values

o1,...,0p > 0, left singular vectors ui,...,u, € R™, and right singular vectors
V1,...,U0, € R",

14



Remark 2.1. The SVD (2.1)) can be simplified to
A=UxvT

with U = (uy---|uy) € R™*P, 3 = diag,y,(01,...,0p) € RP*P, V o= (v1]-|v,) €
R™ P, We call such a decomposition A = USVT with U € R™*? and V € R™*P having
orthonormal columns, and 3 € RP*P being diagonal with non-negative and non-increasing
diagonal entries, a reduced SVD of A.

Proof. If m > n (i.e., p = n), we have with U = (u1|- - - |u,) and 3 := diag,,».,, (01, . . ., 0p)
that (note V = V)

~

by

O(m—n) xn

USVT = (ug] -+ - |um) (1] |vn)T = USVT.

If m < n (ie., p=m), we have with ¥ := diag,,.,,(01,...,0m) and V = (v1|- - o)
that (note U = U)

USVT = (] -+ fum) (8]0 nomy ) (01 -+ o)™ = USVT.

O]

Note that in the proof of Remark we have used the notation 0,4, to denote the
r X s zero-matrix 0 € R"*S,

Ezxample 2.1. Two examples of SVDs for rectangular matrices are

U U R BN
V3 NIV
(1 0 -1 1>_<1 0>(\/§ 0 00) 5 7w 0
_ = _ 2 | >
11 0 1 0 1 0 V3 00 1\/5(1) ?@
Vi V3 V6 V6
11 75 00 =%\ /2 0 1 ot
11| [0 10 o0 0\/§<ﬁ—2>
— | 1 1 1 1 )
1 1 75 00 o 0 0 5 7
0 0 0 01 0 0 0
with corresponding reduced SVDs
N
3 V3
(1 0 —1 1)_(1 0><\/§ o> Ve
1 )
-11 0 1 0 1 oﬁ—lﬁ(l)
V3 V3
11 7 0 1 T
11:(1)1<2 0><@—12>
11 7 0|\0 v2)\5 &
0 0 0



Geometric interpretation

The geometric interpretation of the SVD is that the image of the 2-norm unit sphere
{z € R"|||z|]2 = 1} under any m x n matrix is a hyperellipse. A hyperellipse in R is
the m-dimensional generalization of en ellipse: it is the surface obtained by stretching the
2-norm unit sphere in R™ by some factors o1, ..., 0, > 0 in the directions of orthonormal
vectors uy,..., Uy, € R™.

Indeed, observe that a SVD A = USVT of a matrix A € R™*" can be rewritten as

AV = (a1]---lan)(0r] -+ -[on) = UZ = (ua] - - [um)diag, n (01,02, - -, 0p)
due to orthogonality of V' (recall that p := min(m,n)). Therefore,

itm>n: Avi=omu; VYie{l,...,n},

2.2
ifm<n: Avi=om; Vie{l,...,m}, Av;=0 Vje{m+1,...,n} (22)

Let us consider the following explicit example of a SVD for a 2 x 2 square matrix:

1 1 1 2\ T
_(2 W\_(n B\ (W10 0 N\("E B _ypT

V2 V2 Vs V5
with singular values o1 = 410, oo = 3v/10, left singular vectors u; = (%,—%)T,

, V2 = (%a %)T

12T
VERRE

ug = (%, %)T, and right singular vectors v; = (

§=foe B[] =1} VIS ={Viz|z e S}

0.5}

SVTS = (YW a2 € §)

10 10

-10 -10

10 5 0 5 10 10 5 o 5 10
Figure 1: Illustration of the SVD A = UXVT from (2.3).
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In this example, first VT reflects the unit sphere across the line y = LQ\/ESL', preserving

its shape, then X stretches the sphere into an ellipse aligned with ej, es by scaling the
x-coordinate by o1 and the y-coordinate by o9, and finally U rotates the ellipse clockwise
by the angle 7 (recall Remark . Thus, we see that the image of A = UXVT, or more
precisely the image of the associated linear map L4 = Ly o Ly o Lyyr is indeed an ellipse
with principal semiaxes oiu; and oous.

2.2 Existence and uniqueness

Theorem 2.1 (Existence result for SVD). Every matriz A € R™*™ has a SVD (2.1)), as
defined in Definition |2.2,

Proof. Step 1: We begin by setting

o1:= [|Alla = sup [|Az]lz.
TCR™
[z]l2=1
Observe that the 2-norm unit sphere S := {x € R" : ||z||]2 = 1} is a compact subset of R"
and that the map S 5 z — ||Az||2 € R is continuous (exercise). Therefore, there exists a
unit vector v; € R™ with ||v1]|2 = 1 such that ||Av;i||2 = o1, and hence, there holds

Avy = o1 (2.4)

for some unit vector u; € R™ with |lu;|2 = 1.
Step 2: Next, we construct orthogonal matrices V; € R™*™ and U; € R™*™ such that

UTAV — / 01 ‘ OIX(TL—I)\ c Ran 25
P W | B 29)

for some B € R(m—1)x(n-1)

To this end, we extend v; to an orthonormal basis {v1,...,v,} € R" of the space R"
and u; to an orthonormal basis {u1,...,u,} C R™ of the space R™, and set
V1= (v1] - |on) € R Up = (u1] - Jum) € R™*™.

Then, the matrices V; and U; are orthogonal by construction, and we have from ({2.4]) that

T
91 l;3/:2./416]Rm><n

ULAV, = (
T 0menyt |

for some w € R"1 and B € R™~1D*("=1) We are done with Step 2 if we can show that
w=0¢c R In order to do so, we set @ := % € R” and note that
01 ‘ ’IUT\ 01

2_ H(a%—i—wﬂu)
\O(mfl)xl ‘ B} w 9 Bw

which yields ||A1|l2 > v/o? + wTw. Since Vi and U; are orthogonal (thus also U{ is
orthogonal), we have from Theorem that ||A1]l2 = ||[ULf AVi|l2 = || A2 = o1. Hence,

o1 > y/o? + wTw > o1 and consequently, w = 0 € R"~! and we have (2.5).

1A [3

2
> (of +whw)? = (oF + whw) @,
2
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Step 3: We conclude the proof using induction on the dimension of A. Note that, from

(2.5)) we have

01
O(m—l)xl
Ul AVi = (01] 01 (n—1)) = diagy i, (01) if m =1,

UL AV, = = diag,,,» 1 (01) ifn =1,

ie., every A € R™*™ with m =1 or n = 1 has a SVD. Now, let A € R™*"™ with m,n € N
and m,n > 2. Then, in view of , and assuming the matrix B € RM=Dx(n—1) hag g
SVD B = U222V2T with orthogonal Us € Rm=Dx(m=1) "y, ¢ R(r=1x(n=1) g5 diagonal
Yy € Rm=Dx(n—1) with non-increasing non-negative diagonal entries, we find that

T, [ 01 01x(n—1)
Uidv = \Om-1yx1 | U252V5")

(1 0 (o 01x<n—1)>< L | 0nmn)

" \Opn—1)x1 Uy ) \Opm—ny1 | 22 Op—yx1 | Vo )~

i.e., we conclude that

UTAV _ / 01 ‘ le(n—l)\ —. %) € RMXn
O | % ) T °

is diagonal with non-increasing non-negative entries, where the orthogonal matrices U &
R™*m Y/ € R™ ™ are given by

1 ‘ O1>< —1 \ mxm / 1 ‘ 01>< n—1 \ nxn
U= (m-1) ) ¢ RmXm V.=V, (n=1) ) ¢ Rmx7,
! \Om-1)x1 | U2 ) ! \Opm—n)x1 | V2

It is quickly seen that U and V are indeed orthogonal, using that the product of two
orthogonal matrices is orthogonal. (Note oy is greater or equal than the diagonal entries

of X9 as, using orthogonal invariance of the spectral norm, o1 = || Allz = |[UTAV ||z = || 2|2,
which equals to the maximum of the absolute values of the diagonal entries of 3; see also
Remark [2.3]) O

The natural question to ask is if the SVD to a given matrix is unique. This is not the
case as can be seen from, e.g., the one-dimensional case.

Remark 2.2. Note that a matrix Q = (q) € R'*! is orthogonal iff ¢ € {—1,1}. Therefore,
a matrix A = (a) € R'™! must have the unique singular value oy = |a|. The SVD is not
unique as

(@) =M)(a)1)" = (=1)(a)(-DT ifa>0
(@) =MO)DL)"  =(=DO)(-DT=(=DO)D)" = (1)O)(-DT ifa=0
(a) = (=1)(=a)()" = (1) (=a)(-1)T if a <0

are SVDs for A = (a). However, the left and right singular vectors are unique up to signs.

We can show that the singular values are uniquely determined for any given matrix
A € R™™  For square matrices A € R™" with distinct singular values, we can prove
uniqueness for the left and right singular vectors up to signs.
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Remark 2.3. Let us note that the largest singular value o is uniquely determined as for
any A € R™*" with SVD A = ULV we have that (recall p := min(m,n))

1All2 = IUSV T2 = [[S]l2 = [|diag,, (1,02, -, 0p)ll2 = o1,

where we have used orthogonal invariance of the spectral norm (Theorem|[1.13)) and the fact
that [|diag,,, (01,02, ...,0p)|l2 = max;cqi . p1|oi| (exercise, see Example for square
diagonal matrices).

Theorem 2.2 (Uniqueness result for SVD). The singular values {o;} of any given matrix
A € R™*™ gre unique and we have

(ATA) , if m>n,

A
2 A
ooy} = {A(AAT) ,ifm <. (2:6)

Further, if A € R™*"™ is square and the singular values are positive and distinct, then the
left singular vectors {u;} and right singular vectors {v;} are unique up to signs.

Remark 2.4. What do we mean by “unique up to signs”? Recall that a SVD A = UXVT =
(u] - |[um)[diag,,upn (01, - - ., op)] (V1] -+ Jvn) T is equivalent to (2.2). So, one can always
find another SVD by replacing a chosen v; by —v; when also replacing u; by —u;. We
claim that, if A € R™*" is square and the singular values are positive and distinct, this is
the only way of obtaining other SVDs.

Proof of Theorem[2.2. Uniqueness of the singular values: For A € R™*"™ with SVD A =
USVT, we have

ATA=vTuTusvT = veTsyT e R,
AAT = uxvTyxTuT = uexTuT e RmX™,

Thus, AT A is similar to T, and AAT is similar to ¥XT. Note that

¥ = diag, ., (02,...,02), Xx' =diag,,.,,(07,...,02,0,...,0) if m>n, @)
Y1y = diag,, ., (0%,...,02%,0,...,0), XxV =diag,,.,,(c3,...,02) if m <n. '

As similar matrices have the same set of eigenvalues, we obtain (2.6). In particular, the

squares of the singular values o7, ..., 012, are uniquely determined. As singular values are
non-negative and non-increasing, this yields that o1,..., 0, are uniquely determined.

Uniqueness of {u;},{v;} up to signs: We do not give a rigorous proof, but note that

— geometrically — if the lengths of the semiaxes of a hyperellipse (i.e., the singular values

{oi}) are distinct, then the semiaxes (i.e., the vectors {o;u;}) are determined uniquely

up to signs from the geometry of the hyperellipse. Note that if ¥ and U is uniquely

determined, then also V must be uniquely determined from A = ULV as U and ¥ are
invertible (singular values were assumed to be positive).

O

Now that we know that there exists a SVD with uniquely determined X to any arbitrary
matrix, we can transform any given matrix into a diagonal matrix via a change of bases.
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Remark 2.5. Any matrix A € R™*" with a SVD A = ULVT reduces to the diagonal
matrix ¥ when the range is expressed in the basis of left singular vectors (columns of U)
and the domain in the basis of right singular vectors (columns of V). More precisely, for
any € R™ and b € R™, there holds

Ar=b — UZVTz=b —= xVTz=0UTp — 3xi/'=V,

where 2/ = VTz is the coordinate vector for the expansion of x in the basis of right
singular vectors and &’ = UTb the coordinate vector for the expansion of b in the basis of
left singular vectors.

Let us recall that for diagonalizable (also called non-defective) square matrices, we can
also use its eigenvalue decomposition to transform into a diagonal matrix.

Remark 2.6. If A € R™*" is diagonalizable with eigenvalue decomposition A = XDX !
for some invertible X € R™*™ and a diagonal matrix D € C™*™ containing the eigenvalues
of A on its diagonal, then for any z,b € C" we have

Ar=b = XDX 'z=b <— DX 'z=X" < D=V,
where 2/ = X '2,b = X~!b are the coordinate vectors for the expansions of ,b in the

basis of columns of X (eigenvectors).

Note that the SVD wuses two orthonormal bases (left and right singular vectors),
whereas the eigenvalue decomposition uses only one — not necessarily orthogonal — basis
(eigenvectors). The huge advantage of the SVD is that any matrix has a SVD. In contrast,
an eigenvalue decomposition only exists for certain square matrices, i.e., for diagonalizable
matrices (geometric multiplicity equals algebraic multiplicity for all eigenvalues).

2.3 Computation

We have seen that any matrix A € R™*™ has a SVD, and that the singular values are
uniquely determined from ([2.6)).

Remark 2.7. Observe that we have
A = Uldiag,, (01, .,0,)]V" is a SVD for A
— A" =Vidiag, (01, ..,0p)|U" is a SVD for AT
for any A € R™*",
In view of this remark, we can restrict our attention to matrices A € R™*" with m > n.

Algorithm 2.1 (Computation of SVD). Let A = (a1]---|a,) € R™*"™ with m > n. Then,
a SVD for A can be computed as follows.

1) Compute the so-called Gram matrix of ai,...,a, € R™ for the Euclidean inner
product on R™, that is,

(a1,a1) (a1,a2) -+ (a1,an)
ATA: (alf"'\an)T(a1|-~|an) _ <a2,:a1> <a27:a2> <a2a:an> c R
(an,a1) (an,az) -+ (an,an)

This matrix is symmetric (note (z,y) = (y,z) Va,y € R™), thus orthogonally diag-
onalizable, and its eigenvalues are non-negative numbers (see ([2.6))).
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2) Compute an eigenvalue decomposition
ATA=vDVT,

where V' = (v1]-- - |vy,) € R™ ™ is orthogonal, and D = diag,,,,,(A1,...,An) € R™*"
is diagonal with Ar,..., A\, € A(ATA) satisfying A\; > Ao > --- > A, > 0.

3) Set o; :=+/A; fori € {1,...,n}, and set
Y = diag,,x,(01,...,0,) € R™"
Note that TS = D.
4) Find an orthogonal matrix U = (u1] - - - |uy,) € R™*™ such that
UX. = AV, ie., ou=Av; Vie{l,...,n}.
Then, we have that A = ULV is a SVD for A.

Ezample 2.2. We compute a SVD of

(1 0 =1 1\ _ o
M._<_1 Lo 1>6R .

To this end, we set A := MT € R**? and apply Algorithm to A.

1) We compute ATA = (g g) € R2x2,

2) Weset V := (v1|vg) := <(1) (1]> € R?*2 and D := diagy, (A1, A\2) = <g g) € R2x2,

Then, V is orthogonal, D is diagonal with A\; > A9, and ATA =V DVT,

V3 0
3) Set X := diag, (01, 02) 1= diag, o (v A1, VA2) = o o |€ R4*2,
0 0

4) Find U = (uq|us|uslug) € R4 orthogonal with oyu; = Aw; for i € {1,2}. Then,
uy = %(1, 0,—1,1)" and us = %(—1, 1,0,1)T, which we can extend to an orthonor-

mal basis w1, ug, uz, us of R*. We can take

1 _1 _1 1
V3 V3 V6 V6
o L -2 0
U:: 1 \65 6/6 2 €R4X4.
A ST
V3 V3 NG

(The vectors us,us can be found using the fact that {us,us} needs to be an or-
thonormal basis of N'((u1|u2)T).)
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We obtain that A = UXVT is a SVD of A, and hence, transposing this equation,

S U R BN

V3 NI

(1 0 -1 1)_(1 0><\/§ 0 00) 0 5 -5 O
- 1 2

-1 1 0 1 0 1 0\/300—1%(1) (1)@
Vi VB V6 V6

is a SVD for M = AT. Note that this is the SVD given in Example

Further examples/exercises can be found on the problem sheets, where we will also
discuss a useful alternative to compute SVDs for square matrices A € R™ "™ which is

T
On><n A c RQnXQn‘

based on an eigenvalue decomposition of the symmetric matrix 1 1o
nxn

2.4 Matrix properties

We now state and prove some crucial results on the connection of the SVD to matrix
properties.

Theorem 2.3. Let A € R™*", set p := min(m,n), and let
A= UZVT = (ul, T ’um)[diagmxn(alv s 70]))](”1’ T ’vn)T

be a SVD for A. Further, let 0 < r < p denote the number of non-zero singular values of
A, so that o1,...,0, >0 and 0,41,...,0, = 0. Then, we have the following assertions.

(i) tk(A) =r.
(i) R(A) = span(uy,...,u,) and N(A) = span(vy41,...,0p).

(iii) ||Allz = o1 and |Allp = /321, 07
() {o1,...,00} = {VAX| A e AATAN{0} = {VA| X € A(AAT)}\{0}.
(v) If m = n, then |det(A)| =[], oi.
(i) If m=mn and A= AT, then {o1,..., 02} = {|A|| X € A(A)}.
Notation: We define {x;,...,2;} =0 for i,j € No with i > j. We define span() := {0}.

Proof. (i) Observe that for any invertible matrices M, € R™*™ and M, € R™*" there
holds rk(M, A) = rk(A) = rk(AM,,) (exercise). Further, observe that rk(X) = r. Hence,

rk(A) = tk(UZVT) = 1k(%) = r.
(ii) Note that there holds
RULVY) ={USVTz |z e R"} = {USy |y e R"} = {Uz |z € R(%)},
where we have used in the second equality that VT € R™*" is invertible, and

NOUSVT) = {2 e R"|USV 2 =0} = {z e R" |V T2 =0} = {z e R" | VTz € N(2)},
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where we have used in the second equality that U € R™*™ is invertible. Observing that
R(X) = span(ey, . ..,e,) CR™, N () = span(epi1,...,e,) CR™,

it follows that R(A) = span(uy,...,u,) and N (A) = span(v,41,...,vp).

(iii) We have already shown that ||A||2 = o1 in Remark It remains to prove the claim
that ||A||% = Y_/_, 02. To this end, recall from Theorem that the Frobenius norm is
invariant under multiplication by orthogonal matrices. Therefore, we have

T
IAIF = IUSVTF = 1S1F =D of
i=1
(iv) Recall from the proof of Theorem [2.2 that AT A is similar to X%, and that AAT is
similar to ¥XT. The claim now follows in view of ([2.7)).
(v) Assume m = n. Then, by the multiplicative property of the determinant we have

det(A) = det(UXVT) = det(U) det(X) det(VT) = det(U) det(X) det(V),

where we have used that det(M ™) = det(M) for any M € R™™ in the last step. Recalling
that |det(Q)| = 1 for any orthogonal matrix @ € R"*", we deduce that

|det(A)| = |det(%)| = [ [ o:-
=1

(vi) Assume m = n and that A is symmetric. Then, all of its eigenvalues are real,
and A is orthogonally diagonalizable, i.e., there exists an orthogonal matrix Q € R™*"
and a diagonal matrix D = diag,, ., (A1, ..., ) € R™™ with {A1,...,A\p} = A(A) such
that A = QDQT. We assume that the diagonal entries of D are ordered such that
A1l > [A2] > -+ > |An|. We then define the matrices

> = diag, (M), - [An]) € R, S = diag,, ., (sign(\1), . ..,sign(\,)) € R™*"
and note that D = 5 = 5T, Setting U := Q and V := QS, this yields
A=QusTQT =UsvT.

Observe that the matrices U,V are orthogonal (note SST = STS = I,,) and thus, this
is a SVD of A. Recalling that singular values of a matrix are uniquely determined, we
conclude that |A1],...,|\,| are the singular values of A. O

Remark 2.8. The proof of Theorem 2.3(vi) yields a method to obtain a SVD of a symmetric
matrix from its eigenvalue decomposition. A short alternative proof of (vi) goes as follows:
If A€ R™™ is a symmetric matrix with singular values oy > g9 > -+ > 7, > 0, we have
by Theorem 2.2 that {0,...,02} = A(ATA) = A(A?) = {\?| X € A(A)}, proving (vi).

Note the last equality can be shown as follows for A symmetric: A is orthog-
onally diagonalizable, i.e., A = QDQT for some Q € R™" orthogonal and D =
diag,, s, (A1, ..., An) € R™™ with {\1,...,\n} = A(A). Then, A2 = QD?Q" and thus,
A(A%) = A(D?) = {)\2,...,)\2}.

Theorem lays the foundation for many practical algorithms. In particular, from a
computational point of view, the standard way to compute the rank of a matrix is to count
the number of singular values greater than some very small tolerance, the most accurate
method for computing orthonormal bases of the range and the nullspace of a matrix is via
(ii), and the standard way to compute the spectral norm of a matrix A is via ||Al|2 = o7.
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2.5 Low-rank approximation

The problem of low-rank approximation deals with the following optimization problem:
Given some non-zero matrix A € R"™*™\{0} and some v € Ny with 0 < v < rk(A4), we
want to find the best approximation to A in the class {B € R™*™ |rk(B) < v}, that is,

minimize ||A — B, (2.8)
subject to B € R"™*" rk(B) < v, '
for some given matrix norm || - || : R™*™ — [0, 00). We are going to solve this optimization

problem for the spectral and Frobenius norms by using the SVD.
As a first step, let us observe that any matrix A can be written as the sum of r rank-one
matrices, where r := rk(A), using the SVD.

Remark 2.9. Let A € R™*" set p := min(m,n), and let
A=USVT = (u] - Jum)[diag,un (01, -, 0p)] (V1] -+ [va) T

be a SVD for A. Setting r := rk(A), we have that A can be written as

A= Z O'iuiU;F. (29)
i=1

Indeed, this follows from the fact that we can write ¥ as the sum of the r matrices
diag,, (01,0, ...,0), diag,,«,(0,02,0,...,0), ..., diag,,,,(0,...,0,0.).

You can find other, more simple, ways to express A € R™*™ as a sum of rank-one
matrices (exercise). However, the decomposition has the property that its v-th partial
sum captures the largest possible amount of “energy” of A, that is, it is a minimizer of
the optimization problem for the spectral and Frobenius norms.

Theorem 2.4 (Eckart—Young-Mirsky theorem). Let A € R™*™\{0}, set p := min(m,n),
and let

A=USVT = (] [um)[diagy, n (01, - -, 0p)] (1] -+~ [vn)

be a SVD for A. Further, let v € Ng with 0 < v <1k(A), and set

v
AV = E JZ"U,Z‘U;F.
=1

Then, A, is the best approzimation to A in the class {B € R™*™ |rk(B) < v} with respect
to the spectral norm, i.e.,
inf ||A—Bll2=||A—- A2 = 0vy1, (2.10)

BeR™*"
rk(B)<v

and with respect to the Frobenius norm, i.e.,
inf [[A-Bllr=[A-A|r=

BeR™*n
rk(B)<v
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We only prove the result for the spectral norm, that is, (2.10)), and omit the proof of
the result for the Frobenius norm.

Proof of (2.10). Let us write r := rk(A) and note that 1 < r < p as A € R™*"™\{0}.
Further, note 0 <v <r — 1.

Step 1: We start by showing that |4 — A, |2 = g,41. To this end, we use Remark [2.9]
to obtain

r
E aiuiv?

i=v+1

[A—Ayll2 =

- JV+17
2

r v
E UZ‘U,Z"UZT - E aiuiviT
i=1 i=1

2
where we have used in the last step that the the largest singular value of the matrix
Z;-":VH aiuiv;f is given by o,41. In particular, as rk(4,) < v, we find that

inf [|A—Blls < [|A=Alla = ug1.
BeRan
rk(B)<v

Step 2: It remains to prove that

inf ||A— Bll2 > op41.
BeRrmxn
rk(B)<v

Suppose that there exists a matrix B € R™*" with rk(B) < v and ||A — Blla < 0p41.
Then, by the rank-nullity theorem (see Theorem , there holds

dim(NV(B)) = nullity(B) =n —rk(B) >n—v
and we have that

[Az]2 = (A= B)zlls < [|A = Bllo[lzll2 < ovpallzll Vo e N(B)\{0}.  (2.11)

We also have for any v = Z;’:ll a;v; € span(vy, ..., v,41) that
v+1 2 v+1 v+1 v+1 2
[Av]5 = Y cioiusl| =Y afo} > o0 Y of =00 ||D i = onilvl3, (2.12)
=1 2 =1 i=1 i=1 9

where we have used that Av; = oyu; for all i € {1,...,v+ 1} (note v+ 1 < r < p), and
the Pythagorean theorem for orthogonal vectors, that is, for any two orthogonal vectors
a,b € R™ there holds ||a+b||2 = |la||3 + ||b]|3. Note that for the subspaces N := N(B) and
S :=span(vy,...,v,41) of the vector space R", we have

dim(N N S) > dim(N) + dim(S) —dim(N+S) > (n—v)+ (v +1) —n =1,

and hence, there exists a nonzero vector which is contained in both N and S. In view of
(2.11) and (2.12)), we obtain a contradiction and the result is proved. O]

A practical application of low-rank approximation is image compression.
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of Singapore TiT SINE of Singapore of Singapore

Figure 2: Low-rank approximation applied to an image. From left to right: original image
(991 x 751 matrix of rank 481), low-rank approximation with v = 10, 50, 100.

Remark 2.10. Let A € R™*™\{0} and write r := rk(A) € {1,...,p}, where p := min(m,n).
Then, there exist matrices M € R™*" and N € R"*" such that

A=MNT.

Proof. Let A = UV = (ug] - |um)[diag,,xn (01, - - -, 0p)](v1] - [vn)T be a SVD of A.
Noting that o1,...,0, > 0 and 0; = 0 Vr < j < p, we see that we can write A = MNT
with M = (ouq] - - |opuy) € R™*" and N = (vq] - - - |v,) € R™™". O

In view of Remark if the rank 7 of a matrix A € R™*" is small compared to m
and n, we only need r(m + n) numbers to describe A instead of mn numbers (e.g., when
m = n, storing r - 2n numbers is saving storage compared to storing n? numbers if r < 5)-
In the particular example of Figure 2, we have the following;:

e We need 991 - 751 = 744241 numbers to describe the original matrix/image. (Rk:
better to store mn numbers instead of r(m+n) numbers as 481(991+751) > 991-751.)

e For the rank-100 approximation, we only need 100(991 + 751) = 174200 numbers to
describe the matrix/image.

e For the rank-50 approximation, we only need 50(991 + 751) = 87100 numbers to
describe the matrix/image.

e For the rank-10 approximation, we only need 10(991 + 751) = 17420 numbers to
describe the matrix/image.

We see that it is much cheaper to store these three low-rank approximations compared to
the original image (which is great as it is quite hard to notice a difference between the
rank-100 approximation and the original image by the human eye).
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3 QR Factorization

3.1 Definition of full and reduced QR factorization

For simplicity, we restrict ourselves to “tall” matrices A € R™*" with m > n.

Definition 3.1. Let m,n € N with m > n. A matrix R = (r;;) € R™*" is called
upper-triangular iff r;; = 0 whenever i > j, i.e., iff it is of the form

1 T2 T
? R 0 rog -+ 7o
R = i e R™"  where R=| . | . | e rrn,
O(m—n)x : " " :
0 - 0 7

Definition 3.2. Let m,n € N with m > n, and let A € R™*"™. If there exist

Q= (q1] - |gm) € R™ ™ orthogonal,

R= % € R™™ upper-triangular,
O(m—n)xn

A=QR, (3.1)

such that there holds

then we call (3.1)) a QR factorization of A.

Remark 3.1. The QR factorization (3.1]) can be simplified to

R

O(mfn) Xxn

A=QR=(q1] " |qm) = (@] |an) -

We call such a factorization A = QR with Q € R™*™ having orthonormal columns and
R € R™ ™ being upper-triangular a reduced QR factorization of A.

Ezample 3.1. An example of a QR factorization is

-1 1 ~% = 0 0o|f[o 2
1 1 - i/g \{6 1 V6
viove va V(oo
0 0 o 0o o0 1/\0 0
with corresponding reduced QR factorization
11 11
V3 6
1 2 1
S| )
L1 s ow\0 %
0 0 0 0



3.2 Existence and uniqueness

Remark 3.2. Let A € R™*"™ with m > n. Then, finding a reduced QR factorization
A = QR with Q € R™*" having orthonormal columns and R € R™*™ upper-triangular,
i.e.,

1 T2 0 Tip
0 rog -+ T2 A
A=(ar|--lan) = (@l --lga) [ . . . . | =R,
0 -+ 0 7oy
is equivalent to finding n orthonormal vectors qi,...,q, € R™ and w real numbers
{rij}lgigjgn C R such that
ap = Tiqi,
az = ri2q1 + 12292,
(3.2)
An  =Tinq1 +T2nq2 + - + T"nnn-

We now describe a procedure, called Gram—Schmidt orthogonalization, for obtaining
a reduced QR factorization to a matrix A = (a1|---|a,) € R™*™ m > n, of full rank
rk(A) = n. We want to find orthonormal vectors ¢1,...,q, € R™ such that

span(qi,...,q;) = span(ay,...,a;) Vie{l,...,n}.

As a first step, let us set ¢ := H;ﬁ and ri; := ||la1||2 so that ¢ is a unit vector and we
have a1 = r11¢q; (thus also ¢; = rfllal as 711 > 0). We now make the following observation.
Remark 3.3. Let A = (a1]---|an) € R™ "™ m >n > 2, and assume rk(A) = n. Suppose,
for some k € {2,...,n}, we are given orthonormal vectors ¢i,...,qx—1 € R™ such that

gi € span(ay,...,a;) for all i € {1,...,k — 1}. Then, the vector

- k—1
dk -
G = £, where Gpi=ar— Y (q,ar)q
AP 2.
(note gr # 0 as A has full rank) is a unit vector satisfying g € span(ay,...,a;) and

{ac} L {q1,--.,qx—1} (see (1.2])). Observe that this allows us to write
k .
<ql7ak> 71f1§l§k_17
ag = TikqL, Tk = ~ .
; {iHkauz il =k

As desired, this procedure yields orthonormal vectors ¢y, . .., ¢, € R™ and real numbers
{rij}1<i<j<n € R satisfying (3.2]). These are given by

i1
. 1 I
Vi<ji<n: qurn<aj—27’ljfﬂ>7
JJ =1

- _ e a) ifi<j— 1,
ij — i1 o .
*lla; — Z{;l rqlle , if i =j.

(3.3)
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The sign of the values r;;, 1 < j < n, is not determined and we use the convention
to choose rj; > 0 so that the upper-triangular matrix R in the resulting reduced QR
factorization A = QR has positive diagonal entries.

Algorithm 3.1 (Gram-Schmidt). Let m,n € N, m > n, and A = (a1]---|a,) € R™*"
with rk(A) = n. Then, A has the reduced QR factorization A = QR with

iroTiz v Tin
Q — (q1| . |Qn) e Ran’ R — O 7”22 7«2:” c RM<™
6 0 TT.m
determined as follows.
Step 1) Compute
q1:=a; € R™, ri1 = [|qill2 > 0, ¢ = ;151 e R™.

If n =1, we stop. If n > 2, we continue as follows.

Step 2) Compute 712 := (q1,a2) € R. Then, compute

- N 1
G2 == az —ri2q1 € R™, ro2 := [|@2l2 > 0, 2= —@¢ € R™.

Step j) Compute 745 := (i, aj) € R for i € {1,...,5 — 1}. Then, compute

7j—1
- - 1
G=a;— Yy g R, =gl >0, g5i= g € R™.
=1 17

Step n) Compute 7y, := (g;,an) € R for i € {1,...,n — 1}. Then, compute
n—1 1
Gn = Qp — Zrlncﬂ € Rm’ Tnn ‘= ||Qn‘|2 > 0, Gn = —qn € R™.
=1 Tnn

Remark 3.4. Observe that this is well-defined for full-rank matrices, i.e., we have that
ri # 0 for all 4 € {1,...,n}. Indeed, if we would have rj; = 0 for some j € {1,...,n},
then G; = a; — Zf;ll rijqr = 0 and thus, a; € span(qi,...,qj—1) = span(ai,...,a;—1), a
contradiction to the assumption that A is of full rank.

Ezample 3.2. Consider the matrix

1 0 1
-1 1 1

A := (a1]ag)as) := 1 1 1€ RA*3, (3.4)
1 2 1

Note that A is of full rank, i.e., rk(A) = 3, and we can apply Algorithm [3.1]to A to obtain
a reduced QR factorization.
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1) Set ql = a1 = (1,*
q1 ‘= rl_llql = (%a _%a

1,1,1)T. Then, we have that ri; := |1/l = 2 and we set
1 1\T
575) .

2) Compute r12 := (q1,a2) = 1 and set ¢ = as — r12q1
72 1= ||@all2 = /5 and we set g3 := 3y G2 = (=35> %’ 2V5° 25
2

3) Compute r13 := (q1,a3) = 0 and ro3 := (q2,a3) = - Then, we have that g3 :=
as —ri3q1 —ra3qe = (2,2, =2, 2)T with rg3 := ||Gsll2 = %, and we set g3 1= 33 43 =
(i 13 L)T

257257 2v/57 2v/5
We deduce that A = QR with
i __1 3
I e & 210
A 2 A 2
I I O T
2
R G 00 7
2 2v/5 2V/5

is a reduced QR factorization of A. Note that a full QR factorization can be obtained by
“filling up” @ with an additional orthonormal column and R with an additional row of
zeros. We can take, e.g.,

‘H
=

1 c 1
2 25 25 2 2 1 0
_1 3 1 1 0 Vb 2
Q=| N 2% 1|, R= v
2 35 s 2 0 0 35
1 3 1 1 0 0 0
2 245 24/5 2

to find that A = QR is a (full) QR factorization of A.

Remark 3.5. From a reduced QR factorization, we can always obtain a full QR factor-
ization. More precisely, let A € R™*"™ m > n, and suppose we have a reduced QR
factorization A = QR with Q = (qi]- - lgn) € R™*™ having orthonormal columns and
R e R upper-triangular. Note that if m = n, this is already a full QR factoriza-
tion. If m > n, we can choose arbitrary orthonormal vectors ¢ni1,...,qm € R™ satis-
fying {Qn-i-lAy coosqm} L {q1,. .., gn}, and obtain with @ = (Q|gn+1|---[gm) € R™*™ and

R = i € R™*™ that A = QR is a (full) QR factorization of A.

O(m—n)xn
We can now prove that any arbitrary matrix A € R™*" m > n, has a full QR
factorization.

Theorem 3.1 (Existence result for QR). Let m,n € N with m > n. Then, every matriz
A e R™™ has a (full) QR factorization.

Proof. We know that every full-rank matrix A € R™*™ m > n, has a reduced QR
factorization (by the Gram—Schmidt Algorithm and Remark and hence, by Remark
B8 also a full QR factorization. It remains to consider the case of rank-deficient matrices.
To this end, let A € R™*" m > n, with 0 < rk(A) < n. Then, running Algorithm
there will be at least one step j, where ¢; = 0. Whenever this happens, we set r;; = 0 and
take ¢; € R™, ||gj||2 = 1, to be any arbitrary unit vector satisfying {¢;} L {q1,...,¢j-1},
and continue Algorithm This yields a reduced QR factorization for A, from which we
can then obtain a full QR factorization from Remark ]
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Remark 3.6. In particular, every matrix A € R™*™ m > n, has a reduced QR factoriza-
tion.

Note that we now have a way to compute reduced and full QR factorizations to arbi-
trary real m x n matrices with m > n. Exercises can be found on the problem sheets.

Let us observe that the QR factorization is not unique. Indeed, suppose we are given a
QR factorization A = QR and choose sq,..., 5, € {—1,1}. Then, for i =1,...,m we can
multiply the i-th column of @) and the i-th row of R by s; without changing the product
QR, thus yielding a new QR factorization. However, we can prove that the reduced QR
factorization A = QR of full-rank matrices A € R™*" m > n, is unique upon fixing the
sign of the diagonal entries of R.

Theorem 3.2 (Uniqueness result for QR). Let m,n € N with m > n. Then, every matrix
A € R™™ with rk(A) = n has a unique reduced QR factorization A = QR with R having
positive diagonal entries.

Proof. Let A € R™ ™ m > n, be a matrix of full rank, i.e., rk(A) = n. Then, in view of
Remarksand any reduced QR factorization A = QR with Q = (qi] -+ |gn) € R™>™
having orthonormal columns and R = (rij) € R™™ being upper-triangular must satisfy
. We have already observed in Remark that the values r;, 1 < 7 < n, given
by are non-zero since A is of full rank, and hence, the vectors ¢i,...,¢q, € R™ and
numbers {r;;}1<i<j<n € R are uniquely determined except for the sign of the values 7,
1 <4 < n. Once we fix those signs to r; > 0, 1 < i < n, by imposing that R should have
positive diagonal entries, we have shown the claim. ]

Remark 3.7 (Application of QR factorization: solution of linear systems). The QR fac-
torization provides a method to solve linear systems. For given A € R™*" m > n, and
b € R™, consider the problem of finding z € R™ such that Ax = b. Observe that, if we have
a QR factorization A = QR with Q € R™*™ orthogonal and R € R™*™ upper triangular,
we have

Az =b <= QRzx=b <= Rzx=Q"h.

Therefore, once we have computed a QR factorization A = QR, we can compute b=
QTb € R™ and solve the upper-triangular system Rz = b by backward substitution.
3.3 Projectors

We now introduce the concept of projectors, which is crucial to many algorithms in nu-
merical linear algebra.

Definition 3.3. A square matrix P € R™*"™ is called a projector, or a projection matrix,
iff it is idempotent, that is, P? = P.

Note that, in terms of the associated linear map Lp : R® — R", xz — Px, to a matrix
P € R™" the condition P? = P means that Lp o Lp = Lp.

Remark 3.8. Let P € R™ " be a projector. We make the following two observations.

(i) We have Py =y for any y € R(P).
Indeed, if y € R(P) then y = Pz for some x € R", and hence, Py = P?z = Pz = y.
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(ii) We have Px — z € N(P) for any = € R"™.
Indeed, there holds P(Px — x) = P?x — Px = Pz — Pz = 0 for any z € R".

The projector P projects onto R(P) along N (P).

Pr —«x
Px Pr —x

Px

R(P) R(P)

Figure 3: Left: Action of an oblique (i.e., a non-orthogonal) projector P € R™™ on a
vector x € R™. Right: Action of an orthogonal projector P € R™*" on a vector x € R™.

Remark 3.9. Let P € R™™™ be a projector. Then,
(I,-P)?*=I1*-2P+P*=1,-2P+P=1,-P,
ie., I, — P € R"™™ is a projector.

Definition 3.4. Let P € R™ " be a projector. Then, I, — P € R™ "™ is called the
complementary projector to P.

We are going to see that the complementary projector to P is the projector onto N'(P)
along R(P). Let us introduce the notion of complementary subspaces.

Definition 3.5. Let 57,52 C R™ be subspaces of R™. Then, S; and Sy are called comple-
mentary subspaces of R™ iff there holds S; + S2 = R™ and S; N Se = {0}.

We can now show the following results.
Theorem 3.3. Let P € R™*"™ be a projector. Then, we have the following assertions.
(i) R(I, — P) = N(P) and N (I, — P) = R(P).
(i) R(P) and N(P) are complementary subspaces of R™. Further, for any x € R™,
z = Px+ (I, — P)x € R(P) + N(P)
is the unique way of writing x = x1 + xo with x1 € R(P) and xo € N (P).

Proof. (i) Let us start by proving that R(I, — P) = N (P). We have already observed in
Remark [3.§[ii) that for any z € R™ there holds z — Pz € N'(P), and thus, R(I, — P) C
N (P). To see that also N (P) C R(I, — P), note that if x € N(P) we have x = 2 — Px €
R(I, — P). It remains to prove that N(I, — P) = R(P). Since I, — P € R"™" is a
projector, we have by the first part that N'(I,, — P) = R(I,, — (I, — P)) = R(P).

(ii) First, note R(P) and N(P) are subspaces of R™. Let us show that R(P)+N(P) =
R™. Clearly, R(P) + N(P) C R™ since R(P) C R"™ and N (P) C R™. For the converse,
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let z € R". Then, x = Pz + (I, — P)x € R(P) + R(I, — P), i.e.,, x € R(P) + N(P)
(note R(I, — P) = N(P) by (i)). We conclude that R(P) + N(P) = R™. Next, let
us show that R(P) N N (P) = {0}. Clearly 0 € R(P) N N(P) and it remains to show
R(P)NN(P) C {0}. To this end, let z € R(P) NN (P). Then, x = Pz for some & € R",
and there holds Pz = 0. Hence, P?% = 0 and since P? = P, we have z = P% = 0. We
conclude that R(P) NN (P) = {0}.

Since R(P) and N (P) are complementary subspaces of R™, we deduce that any 2z € R"
can be uniquely written as x = x1 + xo with 21 € R(P) and 29 € N(P) (will follow from
Step 1 in the proof of Theorem 3.4). O

We observe that a projector separates R™ into two complementary subspaces, namely
R(P) and N (P). Conversely, for any two arbitrary complementary subspaces, we can find
a suitable projector in the following sense.

Theorem 3.4. Let S1,S52 C R"™ be two complementary subspaces of R™. Then, there exists
a unique projector P € R™ "™ such that R(P) = S1 and N(P) = Sy. We call this projector
the projector onto Sy along Ss.

Proof. Let 51,52 C R™ be two complementary subspaces of R”, i.e., S1 + .S2 = R” and
S1NSy = {0}
Step 1: We start by showing that any x € R™ has a unique decomposition

r=1x1+x9 with 1 € 51, 29 € 5.

The existence of such a decomposition is guaranteed since S7 + So = R", and it only
remains to show uniqueness. To this end, suppose z = x1 + 2 = T1 + T2 for some
x1,T1 € S1 and x9,T9 € Sy. Then, we have x1 — 1 € S1, o — 29 € Sy, and hence,

xl—f1:f2—$2651ﬂ52:{0},

i.e., xr1 = i‘l and Tro = .i‘g.

Step 2: We construct a projector P € R™™ " such that R(P) = S; and N(P) = S.
To this end, we define a linear map L : R® — R" x — L(x), as follows: For a vector
x € R" with * = 1 + 29 where 1 € S and xy € Sy, we define L(z) := z1. Note that
by Step 1 (existence and uniqueness of such a decomposition), this yields a well-defined
map. We claim that L is linear, i.e., L € L(R™,R™). Indeed, given z = x; + 25 € R,
y =11 +y2 € R" with z1,y1 € S1, 22,92 € 59, and a € R, we have that

Lax +y) = L((ax1 + y1) + (a2 + 32)) = axy +y1 = aL(z) + L(y),
since ax +y = (ax1 + y1) + (axs + y2) with (ax; +y;) € S; for i € {1,2}. As L is linear,
we deduce that there exists a matrix P € R"*" such that L(x) = Px for any = € R" (see
Theorem [1.1)).

We check that P is a projector: For any x = z1 4+ 9 € R™ with 1 € S, 22 € So, we
have

P?y = L(L(z)) = L(21) = L(x1 +0) = 21 = L(z) = Px.

It follows that P? = P and hence, P is a projector.
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We check that R(P) = Si1: We have that R(P) = {L(z) |z € R"} C S; by definition
of the map L. Conversely, for y € S; note y = y + 0 with y € S1, 0 € Ss, so that
y=L(y) = Py € R(P).

We check that N (P) = Sa: This holds as for any = 21 + 22 € R" with 21 € S and
x9 € Sy there holds Pz =0 iff L(z) =0 iff z; = 0.

Step 8: We show that P is unique. To this end, suppose there exists another projector
P € R™™ such that R(P) = S; and N(P) = Sy. Then, in view of Remark we
must have Py = y for any y € R(P) = S;. Hence, for any 2 € R" with decomposition
T = x1 + 19 where x1 € S7, T9 € S, we must have that

Pr=Pxi+Pry=21+0=m = L(z) = Px.
We deduce that P = P and the claim is proved. O

Let us now turn our attention to the important class of orthogonal projectors.

Definition 3.6. A projector P € R™*" is called an orthogonal projector iff it projects
onto Sy along S for some subspaces S1, o of R™ with S1 L S5. A projector which is not
an orthogonal projector is called an oblique projector.

Note that an orthogonal projector does not need to be an orthogonal matrix. Actually,
if P € R™" is an orthogonal projector that is also an orthogonal matrix (PPT = PTP =
I,,), it follows from the next result that then, P must be the identity matrix P = I,,.

We have the following characterization of orthogonal projectors:

Theorem 3.5. A square matrix P € R™™ is an orthogonal projector iff there holds
pP?=p=rp"

Proof. “<=": Let P € R™" with P> = P = PT. Then, as P? = P, we have that P is a
projector (onto R(P) along N'(P)). We need to show that R(P) L N(P). To this end, let
x € N(P) and y € R(P), and recall from Theorem [3.3| that N (P) = R(I,, — P). Hence,
we have x = (I, — P)u = v — Pu and y = Pv for some u,v € R", and we find

(z,y) = (u — Pu, Pv) = (u, Pv) — (Pu, Pv) = (u, Pv) — (u, PTPv) =0,

where we have used in the last equality that PTP = P? = P. Therefore, P is an orthogonal
projector.

“—": Let P € R™ ™ be an orthogonal projector, i.e., P> = P and P projects onto
S; along Sy for some subspaces 51,52 of R™ with S; L So. Then, writing r := dim(5S1),
there exists an orthonormal basis {q1,...,¢,} of R” such that {q1,...,q,} is a basis of S}
and {qr+1,...,qn} is a basis of Sa. Let us set @ := (q1] - - - |gn) € R™*™ and note that @ is
orthogonal. Noting that

G ,if1<i<r,
Pqg; = ) .
0 ,ifr<i<n,
we have that

QTPQ = diag,,,(1,...,1,0,...,0) =: X € R™",
N e N,

r times (n-r) times
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This yields that P = QXQT is a SVD (and an eigenvalue decomposition) of P. We find
that

PT=0x"Q"=Q2Q" =P
since X is symmetric. O
Theorem 3.6. Let P € R"*™\{0} be a projector. Then, we have the following:
(i) all non-zero singular values of P are greater than or equal to 1.
(i) P is an orthogonal projector iff || P|l2 = 1.

Proof. The proof of (i) is an exercise. Assuming that (i) holds, let us prove (ii).

“=": If P is an orthogonal projector, we have seen in the proof of Theorem
that all non-zero singular values of P are equal to 1. We find that ||P||2 = 1 (note since
P # 0,xn, there is at least one non-zero singular value).

“<=": Suppose P € R"*"\{0} is a projector with ||P||2 = 1, and write r := rk(P).
Let P = USVT = (uy|---|up)diag, (01, ... 00)(v1] -+ |vn)T be a SVD of P. Since
l=01 >0y > >0, >0, it follows from (i) that o; = 1 for all i € {1,...,r}.
We deduce that P = YI_ oyuv}f = Yi_juv} and PT = 7 v;ul. Note that as
Puj = u; for all j € {1,...,r} (since uy,...,u, € R(P)), we have Y ;| u;i(vi,u;) = u,
and hence (left-multiply by u]T) (vj,uj) =1 for all j € {1,...,r}. This gives v; = u; for
all j € {1,...,7} (note |lv; — u;||3 = ||lv;|13 + |lujl|3 — 2(vj, uj) = 0) and we conclude that
P = PT. In view of Theorem [3.5) this implies that P is an orthogonal projector. O

Remark 3.10 (Projection with orthonormal basis). Let {qi,...,¢,} be an orthonormal
basis of R", and consider the complementary subspaces S; := span(qi,...,qr) and Sy :=
span(qr4+1,-.-,qn) of R™, where 1 < r < mn — 1. Then, the projector onto S; along Sy is
given by

P= QQT e Rnxn7

where Q = (q1]---|g,) € R™ (note R(P) = R(Q) = S; and N (P) = N(QT) = S).
Note that P is an orthogonal projector as S; L S (or note P2 = P = PT). The
corresponding linear map
Lp:R" > R", 2 QQTx =) (g¢)r=> (z.0)¢
i=1 i=1

projects the vector space R™ orthogonally onto S along Ss, i.e., it isolates the components

of a vector in directions ¢y, . . ., ¢-. Note that the complementary projector I,, — P is also an
orthogonal projector: it is the projector onto So along S, i.e., it isolates the components
of a vector in directions g,41,...,q,. The corresponding linear map is
n n
Li,p:R"=R", zw (I, —QQ")z = Z (@ig; )x = Z (2, ¢i) -
i=r+1 i=r+1

Observe that we can decompose any x € R™ uniquely into x = x1 + z9 with x1 € Sy,
xy € S, where 21 = QQTx and x5 = (I, — QQ")z.
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Remark 3.11 (Projection with arbitrary basis). Let S; be a subspace of R spanned by
n < m linearly independent vectors ay,...,a, € R™. We set A := (ay|---|a,) € R™*" so
that S; = R(A), and we want to construct an orthogonal projector P € R™*" onto Sj.
For x € R™ we must have Pz € Sy, i.e., Px = Ay for some y € R", and {Pzx —z} L Sy,
ie.,

(a1, Px — x)
Opx1 = : = AT(Px —z) = ATAy — ATz
(an, Pr — x)

Note that, in view of Theorern we have k(AT A) = rk(A4) = n and hence, ATA € R™*"
is invertible. We find that y = (ATA)"'ATz and thus Pz = Ay = A(ATA)"1ATz. We
conclude that the orthogonal projector onto S; = R(A) is given by

P = A(ATA)71AT ¢ RT™,

Observe that if A = Q has orthonormal columns, this reduces to P = QQT.

Remark 3.12 (Uniqueness of the orthogonal projector onto a given subspace). Let S C R"”
be a subspace of R"™. Then, there exists a unique orthogonal projector P € R™*" onto S.
In order to show uniqueness, suppose that P, P, € R™*"™ are orthogonal projectors with
R(P1) = R(P2) = S. Then, we have that (P, — Py)x = Piz — Pox € S for all x € R",
and also (P; — Py)z = (z — Pyx) — (v — Pyx) € S* (note that for 4 € {1,2} there holds
(x — Pix,y) = (z,y — Py) = (z,y — Py) = 0 for all y € R(P,;) = S). It follows that
(P — Py)x =0 € R” for any € R" and thus, P, = P,.

Observe that for the unique orthogonal projector P € R™ "™ onto S we have that
N(P) = St (exercise), i.e., P is the projector onto S along S*.

3.4 QR via Gram—Schmidt orthogonalization

Recall the Gram—Schmidt algorithm [3.1] for full-rank matrices, as well as the adjustments
for rank-deficient matrices discussed in Section Let us now provide a re-interpretation
of Algorithm [3.1]in terms of orthogonal projections.

Remark 3.13 (Gram-Schmidt via projectors). Let A = (ay|---|a,) € R™*™ m > n, and
assume rk(A) = n. Let q1,...,¢, € R™ be the orthonormal vectors obtained through
Algorithm [3.1] and define

P1 = Im
P:=1Ipn—Qi1QF |, where Qi1:=(q -|gi—1) € R™, 2<i<n.

Note that P, € R™*™ projects the vector space R™ onto the space orthogonal to
span(qi,...,¢—1). Then, we observe that ¢, ..., q, are given by

Pra; Pas P,ay

Q=557 s U= a5
" | Pnanl2

Q= =
| Prazll2’ | P2azll2’

i.e., ¢; is precisely the normalized orthogonal projection of a; onto the space orthogonal
to Spa’n(qlv sy Qi—1)~

Written down in an algorithmic way, we have the following algorithm.
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Algorithm 3.2 (Classical Gram-Schmidt iteration). Let A = (a1|---|a,) € R™*" m >
n, and rk(A) = n. The classical Gram—Schmidt iteration does the following:
for j=1,...,ndo
q4j = aj
fori=1,...,7j—1do
Tij = (qi, @j>
4j = qj — Tijq
end for

We call this the classical Gram—Schmidt iteration as, unfortunately, it is numerically
unstable (sensitive to rounding errors, we will discuss numerical stability later). However,
a simple modification leads to improved stability. The key observation is that the projector
P=1,— Qi,lQinl € R™™ of rank m — (i — 1) from Remark m can be decomposed
as the product of i — 1 projectors of rank m — 1:

Py = (In = gi-14;-1)(Im — 424 2) - (Im —qqi ), 2<i<n.
The modified Gram—Schmidt iteration is given below.

Algorithm 3.3 (Modified Gram—Schmidt iteration). Let A = (ay|---|a,) € R™*™ m >
n, and rk(A) = n. The modified Gram—-Schmidt iteration does the following:

fori=1,...,ndo

gi = a;
end for
fori=1,...,ndo
rii = ||Gill2
qi = idz
for j=i+1,...,ndo
Tij = (Gis G5)
q4j = qj — Tij4
end for
end for

We can assess the work of algorithms and by counting the number of floating
point operations, abbreviated flops. Every addition, subtraction, multiplication, division
and square root is counted as one flop.

Theorem 3.7. Algorithms and [3.9 require ~ 2mn? flops.
Proof. Let us only look at Algorithm We have the following number of additions:

(m—1)+ > (m—1)| =(m-1n+> (m—1)(n—1i)
i=1 j=it1 =1
=(m—1) <n+n2—n(n2+1)> :%(m—l)n(TH—l).
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We have the following number of subtractions:

n

& B - o o nn+1)\ 1 B

ZZ m—mZ(n z)—m(n — )= an(n 1).

=1 j=i1+1 =1

We have the following number of multiplications:

Z m+ Z (m+m)| =m (n+2Z(n—z’)) =m (n+2n* —n(n+1)) = mn’.
i=1

i=1 j=i+1

Further, we have Y 7" ; m = mn divisions, and ) ;" ; 1 = n square roots. In total, we have
1 1 2 2 n—1
#flops = i(m —Dnn+1)+ imn(n — 1)+ mn® 4+ mn+n=2mn° + (m — 5)n,

from which we see that #flops ~ 2mn?. O

Here, #flops ~ 2mn? means that lim, ;oo fi‘;%s =1.

Remark 3.14 (Gram—Schmidt = triangular orthogonalization). The outer steps of Algo-

rithm can be regarded as right-multiplication by an upper-triangular square matrix:
Schematically, the method does the following:

Al, _ T2 _rs - _Tin
T11 T11 11 11
0 1 0 0
0 0 1 0
0 0 1
1 0 0

1 _rs ... _Tom

722 T22 722

0 0 1 0

2. ARlRQ:(qﬂ*"*) o . . : :(q1‘q2|*""‘*)

0 0 1 0
0 0 1

n. AR\Ry--- Ry = (q1|ga] -+ lgn) = Q, i.e., we have A = QR with R = (Ry---R,)"".
Gram—Schmidt is a triangular orthogonalization method.

Next, we will discuss an orthogonal triangulation method for obtaining QR factoriza-
tions, the so-called Householder triangularization.
3.5 QR via Householder triangularization

An alternative method for computing QR factorizations is the so-called Householder tri-
angularization. Recall from Remark that Gram—Schmidt is a method of triangular
orthogonalization, i.e., A is transformed into a matrix with orthonormal columns via
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right-multiplication by upper-triangular matrices (AR R --- R, = Q, giving a reduced
QR factorization A = QR with R = (Ry---Ry,)~!). On the contrary, Householder tri-
angularization is a method of orthogonal triangulation, i.e., A is transformed into an
upper-triangular matrix via left-multiplication by orthogonal matrices:

Qn- Q1A= R. (3.5)

Remark 3.15. Let A € R™*™ m > n, and suppose we have found orthogonal matrices
Q1,...,Qn € R™™ and an upper-triangular matrix R € R"™*" such that (3.5) holds.
Then, A = QR with Q := QTQ¥ --- QT € R™*™ is a (full) QR factorization of A (note
that the product of orthogonal matrices is orthogonal).

We are going to construct the matrices Q1, ..., Q, € R"™*™ in a way so that A € R"™*"™,
m > n is transformed as follows: (illustration for m = 4, n = 3; L.m. short for left-multiply)

ailr a2 ai3 11 Ti2 T13 11 Ti2 T3 11 Ti2 T13
g1 azp Az | = 0 *x e 0 7ro2 o3 D 0 72 ro3
az] asy ass 0 * * 0 0 * 0 0 33
ajgr a42 Q43 0 * * 0 0 * 0 0 0

So, left-multiplication by @y should leave the first (k — 1) rows unchanged and introduce
zeros below the k-th main diagonal entry, thus leading to an upper-triangular matrix
R = Q- Q20Q1A after n such steps. We choose Q;, i € {1,...,n}, to be an orthogonal
matrix of the form

( Iiq | 0G—1)x(m—it+1) mxm
i = 6 R ?
? \O(m—it1)x (1) | F

where F € {F_, F,} € RUm=i+1)x(m=i+1) ghould act on vectors in R™+1 as follows:

(z,e1) x|zl
<I’, €2>
T = : L by Fix = : = *|z[]2e1.
<x7 em—i-l—l) 0

The idea is illustrated below: Fy reflects the space R™ ! along the hyperplane H.
orthogonal to the vector vy = %||z||2e1 — 2.

span(ep)

Figure 4: Illustration of Householder reflectors Fl..
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Noting that I, ;41 — HQ e Rm—i+1)x(m=i+1) jg the orthogonal projector onto the

Hv

hyperplane orthogonal to v € R™ ™! we find that (need to go twice as far)

U’UT

F=1In it —2——>
" [t

is as required. We call F' a Householder reflector.
In view of numerical stability, one should choose the reflector which moves x the larger
distance, i.e., we choose

v = sign((z, e1))||z[l2e1 + ,

where we define sign(a) = 1 for @ > 0 and sign(a) = —1 otherwise.
Example 3.3. We compute a QR factorization of the full-rank matrix A € R**3 defined in
(3.4) via Householder triangularization.

Q1: Set 1 := a1 = (1,—1,1,1)T and vy := sign((z1,e1))||x1ll2e1 + 21 = (3,-1,1, )T,
Then, compute

-3 3 -3 -3 -2 -1 0
T 4 4
s quvy 113 5 1 1 o 35 3
Qui=1 o2 6(—-3 1 5 —1]’ @QA=1 g —3
-3 1 -1 5 0o 3 3
Q2: Set x9 := (%,%,g)T and vy = sign((xe, e1))||x2|l2e1 + z2 = (\/5+%,% 2)T. Then,
435
85 0 0
V5
0, [ O N VB[ 0 —116 58 145
2 kogxl‘ 3—2((2”‘1) 35| 0 58 755416 —(30v/5 — 40)
0 —145 —(30v/5—40) 12v/5+ 100
-2 -1 0
0 —v5 =
and we have Q2Q1 A = 0 0 _24V5420
12\}%5—16
0 0 =5

. — 24+/5+200 124/5—-16\T
Qg. Set I3 = (* \@5 , — \/2; )

—55(7v/5 + 10,35 — 4)T. Then,

and compute vz := sign({xs, e1))||zs|2e1 + 23 =

29 0 0 0
022 T\ 1|0 29 0 0
\Ozxz \ 202 ) “29(0 0 -10v5-6 4V5-15
? 0 0 4/5-15 10v5+6

-2 -1 0
0 —-v6 —=%
and we have Q3Q20Q1A = 0 0 i/g
NG

0 0 0



Noting that Q1,Q2, Q3 are symmetric orthogonal matrices, we find that A = QR with

‘H
w

1 1
R B G Y,
Q:=QiQ03=| % 25 2% il R:= Y5
2TEE TRA ) O
2 2v/5 25 2

is a QR factorization of A.

Let us note that in practice, one would not form all of the above matrices explicitly.
To compute the factor R of a QR factorization of A, we can do the following;:

Algorithm 3.4 (Householder triangularization). Let m,n € N with m > n. For a matrix
A € R™*" the Householder triangularization produces the factor R of a QR factorization
A = QR and goes as follows:

fori=1,...,ndo
x=Aimi
v; = sign(zq)||x||2e1 + (z1 denotes the first entry of x)
YT Tl ¥
Aimim = Aimin — 20i(vF Aiomion)
end for
This algorithm stores the result R in place of A. The reflection vectors vq,...,v, are

stored for applying and forming @ (see Algorithms and .
Theorem 3.8. Algorithm requires ~ 2mn? — %n?’ flops.
Proof. Omitted. 0

Notation: Here, we have written A;, ., j,:j, to denote the (io — i1 +1) x (jo — j1 + 1)
sub-matrix of A with top-left corner a;,;, and bottom-right corner a;,;,.

For practical applications, there is often no need to construct ) explicitly. However,
in view of Remark we need to be able to compute matrix-vector products QTb. This
can be achieved with the following algorithm: (note Q = Q1Q2 - Qn, QT = Q- - Q2Q1
since the matrices @); are symmetric orthogonal matrices)

Algorithm 3.5 (Computing QTb implicitly). After running Algorithm a product QTb
with a given b € R™ can be calculated via:

fori=1,...,ndo
bi:m = bzm - 2Uz(vlTb'Lm)
end for,

leaving the result QTb in place of b.

If it is required to explicitly form @, this can be done by computing the columns
Qeq, . ..Qe,, via the following algorithm:

Algorithm 3.6 (Computing Qz implicitly). After running Algorithm a product Qx
with a given z € R™ can be calculated via:
fori=n,n—1,...,1do
. (Lo
Lim = Liim — 21}1(7% xz:m)
end for,

leaving the result Qx in place of x.
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3.6 QR via Givens rotations

Finally, we give a brief overview of a third method for computing QR factorizations:
Givens rotations. This method is particularly useful for sparse matrices (i.e., if there are
only few entries below the diagonal which need to be eliminated to reach upper-triangular
form). The key observation is the following:

Recall from Remark that any orthogonal matrix Q € R?*? with det(Q) = 1 is of

the form
o= (=0 O o,

and that Lgg) rotates the plane R? anticlockwise by the angle . Now, given some vector
x = (z1,22)" € R? with x5 # 0, we can eliminate its second component by rotating  onto
the vector Q(6)x = (||z||2,0)T using a suitable angle . Indeed, using the matrix Q(6)
with 6 € [0, 27) satisfying

X1 . Z2
0) = ——. 0) = — 3.6
R T N P 3
(note such a 6 exists as ||( xh — 22Ty = 1), we have that

27 [lzfl2

- (31820 (2) - ().

llz

sin(f)  cos(6) T2 0

For simplicity, we will illustrate how to transform a matrix into upper-triangular form
using Givens rotations at the following explicit example:

-2 -1 1
A=13 2 -1
4 1 4

Givens rotations in 3D are the following matrices (or rather their associated linear maps):

1 0 0 T T

G1(0) = |0 cos(@) —sin(@) |, Lg: 22| — | 72| where <QE2> =Q(0) (@) ,
0 sin(f) cos(d) x3 T3 o o
cos(#) 0 —sin(6) x1 Z1 -

Ga(0) = 0 1 0 » Layey: |22 ] = | 22| where <:f1> = Q(0) (301) ,
sin(f) 0 cos(0) x3 3 - s
cos(f) —sin(f) O 1 Z1 -

G3(0) = [ sin(0) cos(@) O], Lgye): |22] = [T2| where <:f1> = Q(0) <x1> )

Note that the matrices G;(0), i € {1,2,3}, are orthogonal matrices.

Step 1: Look at the first column of A and choose an entry below the diagonal which
we would like to eliminate, and choose an entry you would like to use for this elimination.
Say, we would like to eliminate the entry as; = 4 by using the entry as; = 3, thus leaving
the first row of A unchanged. To this end, we will use the Givens rotation G1(0) with 6
such that Q(6) rotates (3,4)T onto the vector (v32+42,0)T = (5,0)T. We know from
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(3-6) what to do: we take 6 € [0,2n) such that cos(§) = 2 and sin(¢) = —3 (we are not
interested in the precise value of #). Then,

1 0 0 -2 -1 1

o 3 4 _ 13
Gl . — O 54 g 5 GlA — 5 2 ?6
0 -5 3 0 -1 7%

Step 2: Next, eliminate the (2,1)-entry of G1 A using the (1,1)-entry (and we leave the
third row of G A unchanged). To this end, we will use a Givens rotation G3(#) with 6
such that G(6) rotates (—2,5)T onto (1/(—2)2 +52,0)T = (1/29,0)*. We know from (3.6))

what to do: we take 6 € [0,27) such that cos(6) = —\/%—9 and sin(6) = —\/%. Then,
2 5 12 11
~Vm vm V2 5 Um
Gg = -2 2 0 s G3G1A = 0 L __ 5l .
V29 V29 V29 52)/@
0 0 1 o -1 ¥

Step 3: We eliminate the (3,2)-entry of G3G1 A using its (2,2)-entry (and we leave the
first row of G3G1 A unchanged, note we do not destroy our previously obtained zeros). To

this end, we will use a Givens rotation G () with 6 such that G(f) rotates (\/%, —1)T onto
( (\/%—9)2 + (=1)2,0)T = (1/23,0)". We know from (3.6) what to do: we take 6 € [0, 2n)

such that cos(d) = —= and sin(#) = \/%. Then,

30
12 11
) LY ) V9 7% U
Gy = 0 V30 V30| G1G3G1A = 0 1/% \}% =: R.
0 29 1 0 0 __7
30 V30 V30

Noting that Gy, Gs, G1 € R3*3 are orthogonal, we have obtained the following QR factor-
ization: A = QR with

_2 _ V5 5 V29 12 11

. V29 V174 V6 v29 V29
Q:=GTGIGT = | vz V2 R=1| o 0 _ 103
VB T vsn V® 0 0 75

This example concludes the short introduction to Givens rotations.
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4 Linear Systems and Least Squares Problems

4.1 Gaussian elimination: LU factorization

In this section, we discuss the well-known Gaussian elimination — regarded as a matrix
factorization algorithm — to solve linear systems

Ax = b, z eR"

with given A € R™ "™ and b € R". We are going to introduce the LU (lower-upper)
factorization of a square matrix. Recalling the definition of upper-triangular matrices
from Definition we will also use the notion of lower-triangular square matrices:

Definition 4.1. A matrix L € R™ " is called lower-triangular iff LT is upper-triangular.
Further, a matrix L € R™*" is called unit lower-triangular iff L is lower-triangular and all
of its diagonal entries are equal to 1.

The standard version of Gaussian elimination transforms the matrix A into an upper-
triangular matrix

U=L,_1---Lyl A€ Rnxn’

via left-multiplication by unit lower-triangular matrices L1, ..., L,_1 € R™" of the form
1 1
* 1 1 1
le 7L2: . 7"',Ln71:
* 1 * 1 * 1

with zero-entries not shown. Assuming for the moment that the above is possible, this
leads to a factorization A = LU with L := L1_1 e L;il € R™"™ lower-triangular (exercise)
and U € R™™ upper-triangular.

Definition 4.2. Let n € N and A € R™ ™. 1If there exist a lower-triangular matrix
L € R™" and an upper-triangular matrix U € R™*"™ such that there holds

A=1LU, (4.1)
then we call (4.1)) a LU factorization of A.

Ezample 4.1 (Gaussian elimination). Consider the matrix

-2 2 1 -1
A= _11 i _21 _12 e R (4.2)
1 3 -3 4

We illustrate Gaussian elimination.
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Lq: The first step is to eliminate the sub-diagonal entries in the first column of A via
adding /-1 /1 times row 1 to row 2/3/4:

-2 2 1 -1 1 000
0o 2 2 -2 1 100
0 3 2 3 2 010
0 4 -2 % $ 001

Lo: The second step is to eliminate the sub-diagonal entries in the second column of L1 A
via adding —3 /-2 times row 2 to row 3/4:

-2 2 1 -1 1 0 00
o 2 5 -5 . o 1 00
LQLlA = 0 0 _241 % with L2 = 0 _g 1 0
0 0 —%¥ I 0 01

L3: The third step is to eliminate the sub-diagonal entries in the third column of Lol A
via adding —$ times row 3 to row 4:

-2 2 1 -1 10 0 O
o 2 2 -5 : 01 0 0
L3lol1 A= 0 0 _2211 2112 =:U with Lg:= 0 0 1 0
0 0 0 1 00 -%¥1
We find that A = LU with U as above and L given by
1 000\ /1L0O0O0 /L0 00 1 0 0 0
1 1
-2 1 00f]lo1o0oo0o|lfo1 0 0 -1 1.0 0
o p-lyp-17-1_| —3 — 2
L=y ly Ly 1 01o0)fo 2 1o0]]l0o0 1 0 3 10
-2 00 1/ \0 20 1/\00 %21 -1 2 21

is a LU factorization of A. Note how simple it is to compute L: the matrices L; can
be inverted by negating their sub-diagonal entries, and the matrix L can be obtained by
collecting these values appropriately.

Generally, if the i-th column z; of the matrix L;_1--- L1 A (the matrix A if i = 1)
is the vector z; = (x14,..., zm)T, then we eliminate the sub-diagonal entries in the i-th

column of L; 1 ---L1A via adding —ZZ times row i to row j for j =i+ 1,...,n:
1 0
1 0
L= _Titli g =1I,— lie;r S Ran’ li=1 2z | € R™.
Tni Tni
T 1 o

Now, as observed in Example we have L;l = I, + liel, i.e., the matrix L; can be

77
inverted by negating its sub-diagonal entries. Indeed, using that (e;,l;) = 0, we find

(In — LieD) (I + Lie}) = I, — el lief =1, = (I, —liel) ' = I, + Le}.
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Further, the matrix L is given by

1
Z21 1
T
-1 -1 31 32 1
L=L L 2= |21 a2
Tnl  Zp2 o, Tonol g
11 22 Tp—1,n—1

Indeed, looking at the product of two such matrices we find
L' Ll = (In+ Lief ) (In + Livielsy) = L+ Lie] +liviely,

as (e;,li+1) = 0. Similarly one can compute L = L1_1 e L;il to obtain the above matrix.
In view of these observations, the GauB-algorithm goes as follows:

Algorithm 4.1 (Gaussian elimination (without pivoting)). To obtain a LU factorization
of a given matrix A € R™*™ do as follows:
L=1,U=A
fori=1,....n—1do
forj=i+1,...,ndo
Usg

ljz' =
Ujin = Wjgm — Ljilliin
end for
end for.

Warning: A needs to be such that no division by zero happens in the algorithm above.
Theorem 4.1. Algom'thm requires ~ %n?’ flops.
Proof. Exercise. O

Remark 4.1. Compare this with ~ %n3 flops for computing a QR factorization of a n x n
matrix via Householder (see Theorem [3.8)). Gaussian elimination (with pivoting, see next
section) is the usual method of choice to solve linear systems.

Remark 4.2 (Solving linear systems via LU factorization). For given A € R™*™ and b € R",
consider the problem of finding z € R™ such that Ax = b. Observe that, if there exists a
LU factorization A = LU with L € R™*" lower-triangular and U € R™*" upper-triangular,
we have

Ly =,

Ar=b <+— LUr=b — {
Uz =y.

Therefore, once a LU factorization is computed (O(n?) flops, see Theorem , we can
first solve Ly = b for y by forward substitution (O(n?) flops) and then Uz = y for = by
backward substitution (O(n?) flops).

Remark 4.3 (Not every matrix has a LU factorization). The matrix A = <§) i) does

lii 0

not have a LU factorization. Indeed, if there were L = (l I
21 (22

> € R2*2 and U =

<“81 Z”) € R2%2 guch that A = LU, then there must hold l17u11 = 0 and l11u1s =
22

lo1u11 = lo1u12 + laouos = 1, which is not possible.
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Algorithm in its current form is impractical to solve general linear systems. For
instance, it fails for the matrix from Remark due to division by zero in the first step.
More dramatically, the algorithm is not stable for general n x n matrices as we will see
later in this course. Improvement in stability is obtained by pivoting, as we will explain
in the following section.

4.2 Gaussian elimination with partial pivoting: PA=LU factorization

In the i-th step of Gaussian elimination, we add multiples of row 7 to rows i +1,...,n to
obtain
11 Ti2 X1 X1,i+1 T1n 11 X120 o T1i Tig4+1 o Tin
T2 v X2 X2,i+1 cee T2n T2 X2 L2441t I2n
Lig Lii+1  c Lin = Lii  Tii+1 - Tin
Tit1,i Titli+1 0 Titln 0 * SR
Lns Tn it e LTnn 0 * e *

and we call z;; # 0 the pivot. Instead, we can also add multiples of row j with some
je{i+1,...,n} such that z;; # 0 torows ¢,...,j — 1,5+ 1,...,n to create zeros in the
respective rows and column i:

Ti1 Ti2 0 Tl Tig41 0 Tin Ti1 Ti2 0 Ty X141 0 Tin
L2 0 T2 X241 0 Ton L2 0 X2i L2410 T2

Tii  Tii+1 0 Tin 0 * R *

—t :

0 * *
Tj;  Tji+1l 0 Tyn Tji Tji+1 - Thn

. 0 * *

Tni Tngi+l - Tnn 0 * e *

In this case, xj; # 0 is called the pivot. This procedure is thought of as follows: In the i-th
step, choose a pivot x;; # 0 from column i and row j (some j € {4,...,n}), permute the
rows of the matrix such that x;; is moved to the main diagonal, and then do a standard
Gaussian elimination step. For numerical stability, the pivot is chosen as the largest entry
in modulus in column ¢ and rows i,...,n. This is called Gaussian elimination with partial
pivoting and leads to a LU factorization of PA for some permutation matrix P.

Definition 4.3. Let n € N and A € R™ ™. If there exist a lower-triangular matrix
L € R™"™ an upper-triangular matrix U € R™*" and a permutation matrix P € R™*"
(i.e., a matrix which has exactly one entry 1 in each row and column and zeros elsewhere)
such that there holds

PA=LU, (4.3)

then we call (4.3) a PA=LU factorization or a LU factorization with partial pivoting
corresponding to A.
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Remark 4.4. Observe that permutation matrices are orthogonal matrices.

We illustrate Gaussian elimination with partial pivoting at an example:

Ezample 4.2 (Gaussian elimination with partial pivoting). Consider the matrix A € R**4
defined in (4.2)). We illustrate Gaussian elimination with partial pivoting.

P1:

P2:

L2:

Ls:

As max{|-2|, |1],|—1],|1]} = |—2]|, we choose the (1,1)-entry —2 as pivot. Since this
is already on the diagonal, no permutation is needed:

PlA:A with P1 2214.

: We eliminate the sub-diagonal entries in the first column of PiA = A via adding

%/—% % times row 1 to row 2/3/4:

-2 2 1 -1 1 00 0
0o 2 2 -3 L 100
. Phe

2 2 2

As max{|2|,|3|, 4|} = |4], we choose the (4,2)-entry 4 as pivot. To this end, we
permute rows 2 and 4:

—2

—_
—_

PLi1PA= with P :=

N W kN
[
ol caro| ot
|w\ww\\1|
o O O
o O O
O = O O
S O = O

o O O
oot

[\el[o34

We eliminate the sub-diagonal entries in the second column of Py L1 P A via adding

—3 /—3 times row 2 to row 3/4:

-2 2 1 -1 1 0 00
_5 7

L2P2L1P1A - 0 4 32 29 with L2 = 0 13 00
0 0 g —g7 0 -3 10

i5 i 1
0 0 P - 0 -5 01

. As max{|2|, |12} = [22|, we choose the (4,3)-entry 12 as pivot. To this end, we
permute rows 3 and 4:

-2 2 1 -1 1 0 00
0 4 -2 1 0100
P3L2P2L1P1A 0 0 %g _% with P3. 000 1
0o 0 2 -3 0010

We eliminate the sub-diagonal entries in the third column of P3LoPyL1PiA via
adding —% times row 3 to row 4:

-2 2 1 -1 10 0 0
o 4 -5 I | . o1 0 o0
L3P3L2P2L1P1A— 0 0 1475 _1?7 =:U with L3 = 0 0 1 0
0 0 0 -4 00 —% 1
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Now, setting

1 0 00 1 000
0 1 00 L 100
b= L3, L= P3LoP; ' = "= PP 1Py tPy =] 3
3 3, L2 3442 1 1 34241
3 0 —3 10 2 73 3 010
0 -2 01 -1 00 1
yields LéL,QL/IP;gPQPlA = L3P3L2P2L1P1A = U. We find that PA = LU with
1 000 1 0 0 0
— _ 1000 1 e (7! Tl TN —% 1 0 0
P:i=BPPi=|0 1 o o| L= Ealaly) T = 1l 1o
1 3 1
0010 o2 L

is a PA=LU factorization. Note that in contrast to the LU factorization of A from Example
all the sub-diagonal entries of L in the above PA=LU factorization are in the interval
[—1,1]. This is due to the choice of pivot as the largest entry in modulus among the
candidates.

More generally, Gaussian elimination with partial pivoting transforms a matrix A €
R™ ™ into an upper-triangular matrix U € R™*"™ by Gaussian elimination with an addi-
tional left-multiplication of a permutation matrix P; at the beginning of step i:

Ly 1Py1--LoPo 11 PLA=U.

Here, Pi,...,P,_1 € R™" are permutation matrices and Lq,...,L,_1 € R™"™ are unit
lower-triangular. We deduce that

(Ly—q -+ LoLy)(Pyoy--- PPP)A=TU
with L)y == Lp_q and L} := Py_q -+ Py L;PY - Py for i € {1,...,n —2}. Observe
that the matrix L} has the same structure as L;. We then obtain that PA = LU is a
PA=LU factorization corresponding to A with

L:= (L

n

- LAD))TY, Pi=P,--- PPy,

Note that P is a permutation matrix as a product of permutation matrices, and it is
checked analogously to the previous section that L is well-defined and lower-triangular.
The GauB-algorithm with partial pivoting goes as follows:

Algorithm 4.2 (Gaussian elimination with partial pivoting). To obtain a PA=LU fac-
torization of a given matrix A € R™"*™ do as follows:
P=1,L=1,,U=A
fori=1,...,n—1do
Choose r € {i,...,n} such that [u.;| = maxpeg; . nyluril
Ui in 7 Urin
lit:ie1 < Uizt
Dil:n A4 DPrin
for j=i+1,...,ndo

Lo: — Ui
IV wgg
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Ujin = Wjim — Ljilliin
end for
end for.
Here, “<” denotes “interchange”. Warning: A needs to be such that no division by zero
happens in the algorithm above (as an exercise, think about how to obtain a PA=LU
factorization if all candidates for pivots are zero at some step 7).

Note that pivot selection requires O(n?) operations overall. Hence, to leading order,
Algorithmrequires the same amount of flops as Algorithrn (GauB without pivoting),
ie., %n?’. Gaussian elimination with partial pivoting is the standard way to solve linear
systems on a computer.

Remark 4.5 (Solving linear systems via PA=LU factorization). For given A € R™*" and
b € R", consider the problem of finding x € R™ such that Az = b. Observe that, if
there exists a factorization PA = LU with L € R™*"™ lower-triangular, U € R™*™ upper-
triangular, and P € R™*" a permutation matrix, we have

Ly = Pb,

Ar =0 <+ PAz=Pb <+ LUz=Pb <+— {
Uz =y.

Therefore, once a PA=LU factorization is computed (O(n?) flops), we can first form
b := Pb, then solve Ly = b for y by forward substitution (O(n?) flops) and then Uz = y
for x by backward substitution (O(n?) flops).

Let us provide an existence result for the LU and PA=LU factorization without proof
(see book “Matrix Analysis” by Horn and Johnson for proof).

Theorem 4.2 (Existence of LU and PA=LU factorization). The following assertions hold.
(i) Any matrizc A € R™"™ admits a PA=LU factorization.
(i) Let A € R™*™ be invertible. Then, there exists a LU factorization of A iff there holds
det(A1.,1:4) #0 for alli e {1,...,n}.
4.3 Gaussian elimination with full pivoting: PAQ=LU factorization

To improve numerical stability even further, one can use a strategy called full pivoting.
Here, every entry of the sub-matrix Xj., ;., of the working matrix X at step i is a candidate
for the pivot. Let us remark that this is a procedure which is rarely used in practice due to
its large computational cost. Gaussian elimination with full pivoting leads to a PAQ=LU
factorization defined as follows.

Definition 4.4. Let n € N and A € R™ ™. If there exist a lower-triangular matrix
L € R™" an upper-triangular matrix U € R™*"™ and permutation matrices P, Q € R™"*"
such that there holds

PAQ = LU, (4.4)

then we call (4.4) a PAQ=LU factorization or a LU factorization with full pivoting corre-
sponding to A.
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Remark 4.6. In view of Theorem any matrix A € R™*" admits a PAQ=LU factoriza-
tion with Q = I,,.

We illustrate Gaussian elimination with full pivoting at an example:

Ezample 4.3 (Gaussian elimination with full pivoting). Consider the matrix A € R***
defined in (4.2)). We illustrate Gaussian elimination with full pivoting.

Pval:

P, Qo:

Lo:

P37Q3:

As ma’X{|_2’7 ‘1|’ ’_1|7 |1‘7 |2’7 ‘1|’ |4|’ |3|7 |1‘7 |2’7 ‘_1|’ |_3’7 ‘_1|’ |_2|7 ’1|’ |4|} = |4|’
we choose the (3, 2)-entry 4 as pivot (note we could have also chosen the (4,4)-entry
4). To this end, we permute columns 1 and 2, and then rows 1 and 3:

4 -1 -1 1 0100 00 1 0
1 1 2 2 . 100 0 010 0
PAQu= 1o o | _q| wthQu=1, 49 o= ¢ ¢ ¢
3 1 -3 4 000 1 000 1

: We eliminate the sub-diagonal entries in the first column of P;AQ: via adding

1 —l/—% times row 1 to row 2/3/4:

4 2
4 -1 -1 1 1 0 0 0
o 2 2 38 -1 100
LiPAQy = i, 4 4| withLy:=| 1
o T i 3000
0 7 -1 7 -3 001
ASmax{|g‘7|_%’7‘£’7’%L’%L _%‘7 _%’7 —%|,|%|}:’14*3’,W8Ch0086th€ (474)_entry

% as pivot. To this end, we permute columns 2 and 4, and then rows 2 and 4:

4 1 -1 -1 1000
0 18 _9 1 0001
- 4 4 1 ; = P, =
P2L1P1AQ1Q2 0 _% % _% with Q2- Py 0 01 0
9 9 5
0o -8 8 s 0100

We eliminate the sub-diagonal entries in the second column of PoL1 P AQ1Q2 via
adding /-2 times row 2 to row 3/4:

4 1 -1 -1 1 0 00
13 _9 7
LR PAQQ= |0 & o 4| withLy= [0 00
0 0 TP 0 K 10
0 0 53 33 0 55 01
As max{| |, |5, |- %], 132} = |32], we choose the (4,4)-entry 32 as pivot. To this
end, we permute columns 3 and 4, and then rows 3 and 4:
4 1 -1 -1 10 00
o I -2 : 0100
P3L2P2L1P1AQ1Q2Q3 = 39 9 with Qg = P3 =
0 0 35 53 0 001
9 6
0 0 —33 13 0010



L3: We eliminate the sub-diagonal entries in the third column of P3LoPoL1 P AQ1Q2Q3
via adding % times row 3 to row 4:

4 1 -1 -1 10 0 0
o B I -9 . 01 0 0
L3P3La P L1 PLAQ1Q2Q3 = 3 o | = U with L3 :=
0 0 3 0 00 1 0
2 9
00 0 2 00 5 1
Now, setting

1 0 00 1 000

_ 0 1 00 IR -3100

5= Ly, Ly=PsLoPyt = | 21 g , L} = P3P0 Pyt Pyt = _z 01 0
0 &% 01 —1 00 1
yields LgLéL&Pz))PgPlAQlQQQg = L3P3LoPo L1 PLAQ1Q2Q3 = U. We find that PAQ =

LU with

0 010 0 010

0 0 01 1 0 0O

1 0 0O 01 00

and

1 0 0 O 4 1 -1 -1
3 3 7 _9
L= (LyLoyLh) ' =] § 19 00 , U= 0 o
% —g 19 0 0 0 33 g
3 —13 —35 1 00 0 35

is a PAQ = LU factorization.

More generally, Gaussian elimination with full pivoting transforms a matrix A € R™*"
into an upper-triangular matrix U € R™*" by Gaussian elimination with an additional
right-multiplication of a permutation matrix ); and left-multiplication of a permutation
matrix P; at the beginning of step 4:

Ly 1Py 1 LoPLiPLAQ1Q2 - Qn—1 = U.

Here, P,..., Py 1,Q1,...,Qn_1 € R™™ are permutation matrices and Ly,...,L, 1 €
R™ ™ are unit lower-triangular. We deduce that

(Ly_y - LYLY)(Pyoy - - PoP)A(Q1Q2 - Qn1) = U

with L} | := L,—1 and L, := P,_;- --PiHLiPZ;ll . --Pnill fori € {1,...,n —2} as in
the previous section. We then obtain that PAQ = LU is a PAQ=LU factorization corre-

sponding to A with
L:=(L,_,---LhL)™,  P:=P,y- PP, Q:=0Q1Qs - Qn_1.

Note that P and () are permutation matrices as products of permutation matrices, and
that L is well-defined and lower-triangular.

Full pivoting gives a further improvement in numerical stability over partial pivoting.
However, the pivot selection for full pivoting requires O(n?) operations overall, which is
why full pivoting is rarely used in practice. As an exercise, think about how a PAQ=LU
factorization can be used to solve a linear system Ax = b.
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4.4 Symmetric Gaussian elimination: Cholesky factorization

Let us turn our focus to symmetric positive definite matrices. We start by recalling
the definition of symmetric positive/negative definite and symmetric positive/negative
semidefinite matrices.

Definition 4.5. A symmetric matrix A € R"*"™ is called
(i) positive definite, denoted A > 0, iff (x, Az) > 0 for all z € R™\{0}.
(ii) positive semidefinite, denoted A > 0, iff (x, Ax) > 0 for all x € R™.
(iii) negative definite, denoted A < 0, iff (x, Az) < 0 for all z € R™\{0}.
(iv) negative semidefinite, denoted A < 0, iff (x, Az) <0 for all z € R™.
Let us recall the spectral theorem for symmetric matrices:

Theorem 4.3 (Spectral theorem for symmetric matrices). Symmetric matrices are orthog-
onally diagonalizable, i.e., for any symmetric matricx A € R™*"™ there exist an orthogonal
matriz Q € R™™ and a diagonal matriz D € R™™ such that A = QDQT. The diagonal
entries of D are the eigenvalues of A, and the column vectors of Q are eigenvectors of A.
In particular, all eigenvalues of a symmetric matriz are real.

Proof. See previous linear algebra courses. O
Theorem 4.4. For a symmetric matriz A € R™", we have
(i) A > 0 <= all eigenvalues of A are positive,
(ii) A= 0 <= all eigenvalues of A are non-negative,
(iii) A <0 <= all eigenvalues of A are negative,
(iv) A <0 <= all eigenvalues of A are non-positive.
Proof. Exercise (use Theorem [4.3)). O

Remark 4.7. Let A € R™ ™ be a symmetric positive definite matrix and let X € R™*" with
n > r and tk(X) = r. Then, the matrix XTAX is symmetric positive definite (exercise).

Without proof, let us state a useful criterion for checking positive definiteness.

Theorem 4.5 (Sylvester’s criterion for positive definiteness). Let A € R™™™ be a sym-
metric matriz. Then,

A=-0 <<= Vie {1, e ,n} : det(Al;i,l;i) > 0.

The number det(Ai.1:4) ts called the i-th leading principal minor of A. Therefore, a
symmetric matriz is positive definite iff all of its leading principal minors are positive.

Remark 4.8. In view of Theorem we have that any symmetric positive definite matrix
admits a LU factorization.
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It will turn out, that we can factorize a symmetric positive definite matrix twice as
quickly into triangular factors as a general matrix. This is due to the fact that we can
use symmetric Gaussian elimination which we describe in the following. This will yield a
so-called Cholesky factorization.

Definition 4.6. Let A € R"*™ be a symmetric positive definite matrix. If there exists an
upper-triangular matrix R € R™*" with positive diagonal entries such that there holds

A=RTR, (4.5)
then we call (4.5)) a Cholesky factorization of A.

Let us consider a symmetric positive definite matrix A € R™*". Then, we can write A
as block-matrix
T

all | w
A= e R™"
w | B

with @17 € R, w € R*! and a symmetric matrix B € R®~D*(=1) " Note that, since
A > 0, we have that a1; = det(A1.1,1.1) > 0 and B > 0. (The latter follows from the

fact that (x, Bx) = <@ , A @> for z € R"! and positive definiteness of A.) The

first step of symmetric Gaussian elimination (compare this with classical GauB}) goes as
follows:

Lt 0w - _ (7= | Yixen)
AR o () T B (—F h )

a1l

which we can equivalently write as

wT
A=RFAR, with Ry := (L)' = ( van ‘ Vai |
\Om—1)x1 | In-1)
Note that A; is again symmetric positive definite. Indeed, it is quickly checked that
A; = AT, and that A; = (LT)TALT > 0 by Remark 4.7 since LT € R™*™ is of full rank.

Therefore, we also have that the sub-matrix B — % e R(=1x(n—1) j5 symmetric positive
definite (same argument as when we deduced B > 0 from A > 0) and in particular, the

(1,1)-entry of B — % is positive. We deduce that we can factor
A} = RT AR,
with Ry € R™*™ upper-triangular with positive diagonal entries and As being of the form

wwT
ail

I O (rn— . .

Ay = [ 2 ‘ 2x(n—2) \, using the same procedure as before applied to B —
22| C )

Then, again, the sub-matrix C' is symmetric positive definite, and we can continue this

process until we arrive at a factorization
A= (R{R; - Ry)I,(R, - RoR1) = R'R

with R := R, ---RaR; € R™ ™ upper-triangular and having positive diagonal entries.
This is a Cholesky factorization of A.
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Theorem 4.6 (Existence and uniqueness of Cholesky factorization). Every symmetric
positive definite matriz A € R™™ admits a unique Cholesky factorization.

Proof. Symmetric Gaussian elimination as discussed above provides existence of a
Cholesky factorization (argument can be made rigorous via induction). For uniqueness,
suppose that R, M € R™*"™ are two upper-triangular matrices with positive diagonal entries
such that there holds A = RTR = MTM. Note that D := MR~ is an upper-triangular
matrix, but also, since

D= MR*l _ (MT)flRT — (Dfl)T’

it must be lower-triangular as well, hence diagonal. Noting that I, = D™D = D?, the
diagonal entries of D are all +1. Finally, since DR = M and the diagonal entries of R
and M are positive, we must have that R = M. ]

Ezample 4.4 (Symmetric Gaussian elimination). We consider the symmetric positive def-
inite matrix

16 -8 12
A=|-8 5 —9]| eRrR3>3.
12 -9 22

We illustrate symmetric Gaussian elimination for finding the unique Cholesky factorization
of A.

Lq: We eliminate the sub-diagonal entries in the first column of A by adding % / -% times

row 1 to row 2/3, and multiply the first row by \/;T = i:

4 -2 3 $ 00
LiA=|0 1 3| with Li:=| 5 10
0 -3 13 -3 0 1

Next, we right-multiply L; A with LT which creates a 1 in the (1,1) entry and zeros
in the (1,2) and (1, 3) entries:

1 0 0
LALT =0 1 -3
0 —3 13

Ly: We eliminate the sub-diagonal entry in the second column of L1 ALT by adding 3
times row 2 to row 3 (and multiply the second row by % =1):

0

10 100
LoliALT = [0 1 —3] with Ly:= [0 1 0
00 4 0 3 1

Next, we right-multiply LoLi ALT with L1 which creates a zero in the (2, 3) entry:

LyL 1 ALTLT =

S O =
O = O
= O O
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L3: We multiply the third row of LoL1ALTLI by ﬁ = %:

100 10
L3LyL ALTLY = [0 1 0| with Lg:= |0 1
00 2 00

= O O

Finally, we right-multiply L3LoLi ALT LY by L1 which creates a 1 in the (3, 3) entry:

100
L3Lol ALTLIL: = [0 1 0] = L.
00 1

We find that A = RTR with

4 00\ /1 0 0\ /10071 /4 —2 3
R=[L7'Ly' L' "= (-2 1 0|0 1 o)J|lo 10| =0 1 -3
3 0 1/\0 =3 1/ \o o 2 0 0 2

is the (unique) Cholesky factorization of A.
An efficient algorithm to obtain the Cholesky factorization to a given symmetric pos-

itive definite matrix is given below.

Algorithm 4.3 (Cholesky factorization). To obtain the Cholesky factorization A = RTR
of a given symmetric positive definite matrix A € R™*", do as follows:

R=A
fori=1,...,ndo

for j=i+1,...,ndo

A - RijimRij
Rjjin = Rjjin — R.;
end for
Riin

Riim = jo

end for.

Theorem 4.7. Algorithm requires ~ %n3 flops.
Proof. Exercise. O

Remark 4.9. This is only half the cost of Gaussian elimination.

Remark 4.10 (Solving linear systems via Cholesky factorization). For a given symmetric
positive definite matrix A € R™*™ and a vector b € R™, consider the problem of finding
x € R" such that Az = b. The standard way to solve the system in this case is by Cholesky
factorization: If A = RTR is the Cholesky factorization of A, we have

Ry =b,

Ar=b <= R'Rr=b {
Rx =y.

Therefore, once the Cholesky factorization is computed (O(n?) flops), we can first solve
Ry = b for y by forward substitution (O(n?) flops) and then Rz = y for = by backward
substitution (O(n?) flops).
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4.5 Least squares problems

Let us consider an over-determined linear system (more equations than unknowns): Given

a matrix A = (a;;) € R™" with m > n and a vector b = (by,...,by)T € R™, find a
vector © = (r1,...,7,)T € R" such that
airx v Qip b1
T
Ag = | b 0 Onn =] =0 (4.6)
Gn+1,1 *° OGpndln ’ bn+1
. . T,
am1 ce Amn b

Clearly, such a problem does not admit a solution in general.
Remark 4.11. Let m,n € N with m > n. Then, given A € R™*" and b € R™, there exists
a solution = € R™ to Az = b iff b € R(A). Noting that dim(R(4)) < n < m = dim(R™),
such an over-determined system Ax = b is, in general, only solvable for special choices of
beR™.

As we cannot expect a general over-determined system to admit a solution, we
pose the following problem instead: Find x € R™ such that the residual r := Ax — b is as
small as possible. To measure the size of r, we use the Euclidean norm.

Definition 4.7. Given A € R™*" m > n, and b € R™, we call the following problem the
least squares problem corresponding to the matrix A and the vector b:

Minimize ||Av — b||2 over v € R"™. (4.7)
If there exists a minimizer, i.e., a vector x € R™ such that

|Az — b||]2 = inf ||Av — b2,
vER™

then we call this minimizer x a solution to the least squares problem.

Before we discuss existence and uniqueness of solutions to least squares problems, we
provide some more motivation.

Ezample 4.5 (Polynomial interpolation vs. least squares fitting). Suppose we are given
data points (t1,y1),. .., (tn, yn) With t1,...,t, € R distinct and y1,...,y, € R.

(i) Polynomial interpolation: There exists a unique polynomial p(t) = Z;(l) pith of
degree n — 1 such that p(t;) = y; for all i € {1,...,n}. This polynomial p is called
the polynomial interpolant corresponding to the given data points. The coefficients
D0, ---,Pn—1 € R of the polynomial interpolant are uniquely determined from the
linear system

Loty 2 - !
Po Y1 2 n—1
1ty 2 - 1]
V(t1,... tn)] : =1 :1, V(te,... ty) = S :
Pn—1 Un 1 tn t,'% .. tz—l
Note that the so-called Vandermonde matriz V(t1,...,t,) is invertible since the

values {t;} are distinct (exercise). A typical behavior of polynomial interpolation is
the appearance of large oscillations near the ends of the interval [¢1,t,].
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(i)

ES
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N

-

=3

"

Polynomial least squares fitting: Let us now try to fit the data points by a lower-
degree polynomial p(t) = Z;@V:_ol prt® with N < n. The condition p(t;) = y; for

i€ {1,...,n} leads to the over-determined system
1oty 83 -
2 N-1 Po Y1
. ty t3 - )
Apcoet = b with A= . : . y Dcoeff ‘= , b= :
1 t, t% .. ty]:f—l PN-1 Yn

which may not have a solution. Instead, we choose the coefficient vector peoer =
(po,--.,pn—1)T € RY such that it solves the corresponding least squares problem

1 4pcoett = bll2 = inf [|Av —b]l2

(assume for the moment that such a minimizer exists). Observe that the correspond-
ing least squares fit p(t) = Z]k\/:—ol pirt® minimizes the quantity Voo p(t) — vil?
among polynomials of degree at most N — 1.

We are going to discuss later how to obtain such a solution. The least squares
solution does not interpolate the given data points, but it often describes the overall
behavior better than the interpolant (do experiments with MATLAB as an exercise).

Figure 5: Polynomial interpolant of degree 10 (left) and least squares fit of degree 7 (right)
to the data points (1,0),(2,0), (3,0), (4,1), (5,1),(6,1),(7,0),(8,0),(9,0), (10,0), (11,0).

Existence and uniqueness

Let us turn to the question of existence of solutions to least squares problems. First of all,

let us

introduce the minimization problem

Minimize [jw — b||2 over w € R(A). (4.8)

If there exists a minimizer y € R(A) such that ||y —b[|2 = inf,,er(a) [[w —b||2, then we call
this minimizer y a solution to (4.8)).

Remark 4.12. We observe the following relation between the least squares problem (|4.7))
and the minimization problem (|4.8)).
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(i) If there exists a solution = € R™ to the least squares problem (4.7)), then y = Ax €
R(A) is a solution to the minimization problem (4.8).

(i) If there exists a solution y € R(A) to the minimization problem (4.8), then any
x € R" satisfying Az = y is a solution to the least squares problem (|4.7]).

(iii) There holds inf,egn [|Av — b2 = inf,cr(a) [|w — b2

Geometrically, a solution y € R(A) to the minimization problem is the closest
point in R(A) to b (with distance measured in the Euclidean distance). We expect that the
solution to this problem should be given by y = Pb where P € R™*™ is the orthogonal
projector onto R(A). Let us now make this idea rigorous and start with the following
central result.

Theorem 4.8 (Existence of solutions to the normal equation). Let A € R™*". Then, for
any b € R™ there exists a vector x € R™ satisfying the equation

AT Az = A", (4.9)
We call an equation of the form (4.9) normal equation.

Proof. We need to show that ATb € R(ATA) for any b € R™. We are going to show that
R(AT) = R(ATA). This can be shown as follows:

R(AT) = IW(A)F = V(AT = R((ATA)T) = R(AT4), (4.10)

where we have used that AN/(A) = N (AT A) and the fact that [N(M)]*+ = R(MT) for any
matrix M (exercise). O

The main tool is the orthogonal projector onto the range of a given matrix.

Theorem 4.9 (Orthogonal projector onto range of matrix). Let A € R™*"™. Then, we
have the following assertions.

(i) R(A) and N'(AT) are complementary subspaces of R™,
(ii) R(A) L N(AT).

In particular, there exists a unique projector P € R"™ ™ such that R(P) = R(A) and
N(P) = N(AT) (the projector onto R(A) along N'(AT)), and this projector is the unique
orthogonal projector onto R(A).

Proof. Exercise. O
We can now prove the main result.

Theorem 4.10 (Existence and uniqueness result for least squares problems). Let A €
R™*"™ m >mn, and b € R™. Let P € R™ "™ be the orthogonal projector onto R(A) given
by Theorem[{.9 Then, we have the following results.

(i) There exists a unique solution to the minimization problem (4.8)), i.e., a unique
vector y € R(A) satisfying ||y — bll2 = infyer(a) [|lw — bll2. This solution is given by

y = Pb.
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(ii) There exists a solution to the least squares problem (4.7)), i.e., a vector x € R"
satisfying ||Az —b||2 = inf,crn ||Av —blla. Moreover, x € R™ is a solution to (4.7)) iff

Az = Pb, or equivalently, AT Ax = ATb.

(iii) The least squares problem (4.7) has a unique solution iff A is of full rank.
Proof. (i) We have Pb € R(P) = R(A) and

Jw = blla = \/ll(w — Pb) + (Pb — )3

= \/Hw — PO+ [[Pb bl > [[Pb— bl Vw € R(A)\{Pb},

where we have used that (w — Pb, Pb—b) = 0 for all w € R(A) (note that w — Pb € R(P)
for w € R(A) = R(P), that Pb—b € N(P), and R(P) L N(P)). It follows that y = Pb
is the unique element in R(A) satisfying ||y — bl[2 = inf,cr(a) ||w — 2.

(ii) By (i) and in view of Remark [£.12[(ii), any = € R" satisfying Az = Pb is a solution
to . Conversely, in view of Remark (i), if z € R™ is a solution to , then Az
is a solution to and consequently, using (i), we must have Az = Pb. It remains to
show that for z € R” there holds Az = Pb <= AT Ax = ATb. If z € R" is such that there
holds Az = Pb, then Ax —b= Pb—b € N(P) = N(AT), i.e., AT Az = ATh. Conversely, if
x € R™ is such that there holds AT Az = ATb, then Az —b € N(AT) = N(P) and hence,
Az — Pb = (I, — P)Azx + P(Ax — b) = 0, where we have used that Az € R(4) = R(P) =
N(I,, — P).

(iii) In view of (ii), the least squares problem has a unique solution iff the matrix
ATA € R™ " is invertible, i.e., iff tk(ATA) = n. Noting that rk(ATA) = rk(A) (note from
that rk(AT A) = rk(A") and recall rk(AT) = rk(A)), we find that has a unique
solution iff rk(A) = n, i.e., iff A is of full rank (note m > n). O

Remark 4.13. Let A € R™*™ m > n, and assume that rk(A) = n. As we have already
observed, this implies that AT A € R™ " is invertible. Consequently, the unique solution
to the least squares problem (4.7)) is given by

z=AbeR" where Af:=(ATA)71AT ¢ ™,

The matrix At is called the Moore-Penrose inverse (or pseudoinverse) of A. The Moore—
Penrose inverse is a generalization of the matrix inverse and is being discussed extensively
on the problem sheets.

Solution algorithms

We present three well-known algorithms for solving least squares problems. The first
solution algorithm is via the normal equation ATAz = ATb. Suppose that A is of full
rank and observe the following:

Remark 4.14. Let A € R™" m > n, b € R™ and assume rk(A4) = n. Then, the matrix
ATA € R™" is symmetric positive definite. Indeed, we have (ATA)T = AT A and

(x,ATAz) = (Az, Az) = ||Az]|2 >0 Yz e R"\{0}.
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Here, we have used that Az € R™\{0} for x € R™\{0} since rk(A) = n (recall that
nullity(A) = n — rk(A4) from Theorem (11)) Therefore, by Theorem AT A admits a
unique Cholesky factorization AT A = RT R with R € R™" upper-triangular with positive
diagonal entries, and the normal equation turns into

ATAz = A"p <= RTRxz = A"
This leads to the following algorithm:

Algorithm 4.4 (Solution of least squares problems via normal equation). Given m,n € N
with m > n, a matrix A € R"™*" with rk(A) = n, and a vector b € R™, the unique solution
x € R™ to the least squares problem (|4.7]) can be obtained as follows:

Step 1) Compute the matrix A := ATA € R™™ and the vector b := ATh € R™.

)

Step 2) Compute the Cholesky factorization A=RTR of A.

Step 3) Solve the lower-triangular system RY2 = b for z € R".
)

Step 4) Solve the upper-triangular system Rx = z for z € R"™.

The work for Algorithm is dominated by the computation of A = ATA (~ mn?

flops, using symmetry of [1) and the computation of its Cholesky factorization (~ %n:}

flops via Algorithm .
Theorem 4.11. Algorithm requires ~ mn? + %ng flops.

The second algorithm we present is via QR factorization, and is based on the following
observation.

Remark 4.15. Let A € R™*™ m > n, b € R™, and assume that we have found a reduced
QR factorization A = QR of A. Then, x € R" is a solution to the least squares problem
iff ATAx = ATb, or equivalently, RTQTQRz = RTQTb which can be simplified to
RTRx = RTQTbh. Observe that if A is of full rank, then R is invertible (see proof of
Theorem in which case the unique solution x € R™ to the least squares problem is
determined from

Rz = QTb.
This leads to the following algorithm:

Algorithm 4.5 (Solution of least squares problems via QR). Given m,n € N with m > n,
a matrix A € R"™*" with rk(A) = n, and a vector b € R™, the unique solution x € R" to
the least squares problem (4.7]) can be obtained as follows:

Step 1) Compute a reduced QR factorization A = QR of A.
Step 2) Compute b = Qb e R™.
Step 3) Solve the upper-triangular system Rz =b for z € R™.

The work for Algorithm is dominated by the computation of a reduced QR factor-
ization (~ 2mn? — %ng flops via Householder, see Algorithm .
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Theorem 4.12. Algorithm requires ~ 2mn? — %n?’ flops.
The third algorithm we present is via the SVD, and is based on the following observa-
tion.

Remark 4.16. Let A € R™*"™, m > n, b € R™, and assume that we have found a reduced
SVD A = USVT of A. Then, z € R” is a solution to the least squares problem (4.7)
iff ATAz = ATb, or equivalently, VETUTUSV Tz = VETUTH which can be simplified to
VTSV Ty = VSTUTh, Observe that if A is of full rank, then VST € R™" is invertible
in which case the unique solution x € R™ to the least squares problem is determined from

SVTa = U"b.
This leads to the following algorithm:

Algorithm 4.6 (Solution of least squares problems via SVD). Given m,n € N with
m > n, a matrix A € R™*" with rk(A) = n, and a vector b € R™, the unique solution
x € R™ to the least squares problem (|4.7]) can be obtained as follows:

Step 1) Compute a reduced SVD A = USVT of A.
Step 2) Compute b=UTb e R".

Step 3) Solve the diagonal system Sz =0 for z € R™
Step 4) Compute z = Vz € R™.

The work for Algorithm is dominated by the computation of a reduced SVD (re-
quires ~ 2mn? + 11n? flops, see Trefethen, Bau).

Theorem 4.13. Algom'thm@ requires ~ 2mn? + 11n3 flops.

Let us compare the three algorithms. In view of speed, the first algorithm (Algorithm
seems to be the best. However, the second algorithm (Algorithm is superior with
regards to numerical stability and is indeed the standard method to solve least squares
problems in practice. The third algorithm is rarely used due to its computational cost,
but it comes in handy when A is close to being rank-deficient.
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5 Conditioning and Stability

5.1 Conditioning of mathematical problems

In this section, we study the perturbation behavior of mathematical problems, which is
referred to as conditioning. We regard a problem as a function

XY

with normed vector spaces X (the data space) and Y (the solution space). A problem f,
together with a particular data point x € X (a pair (f,z) is called problem instance or
simply problem as well), is called well-conditioned if small changes in z only lead to small
changes in f(z). Otherwise, i.e., if a small change in x can lead to a large change in f(x),
we call the problem (instance) ill-conditioned.

The condition number defined below is a measure for the perturbation behavior of a
problem.

Definition 5.1. Let (X, | -|x) and (Y,] - |[y) be normed vector spaces. For a problem
f: X =Y and a given data point z € X, we define

(i) the absolute condition number & = &(x) by

k:=lim  sup 1f(z+ Az) — f(z)lly

=0  Azex Azl x ’
0<||Az|| x <&

(ii) and, if z € X\{0} and f(x) € Y'\{0}, the relative condition number x = k(x) by

If(z+Az)—f(2)|ly

— L I/ (@)l _ 51
AR L 4 [Azlx (5.1)
0<|[Az|| x <& =l x

We will choose the relative condition number to decide whether a problem is well-
conditioned (k is more important than & due to floating point arithmetic used by comput-
ers, see next section). If x is small (e.g., 1,10, 100), the problem is called well-conditioned,
and if & is large (e.g., 10%,10'2), the problem is called ill-conditioned.

Remark 5.1. Let X = R™ and Y = R"™ with chosen norms || - [|(,y on R” and || - ||,y on
R™. Consider a problem f : X — Y, a given data point z € R”, and assume that f is
differentiable at z. Then, we have

_ 5 @) mmy 2 )
1 ()l m)

where Jy(x) € R™*™ denotes the Jacobian of f at x whose entries are given by (J¢(z))i; =
0; fi, and || - [|(;5,,n) denotes the matrix norm on R™*" induced by the norms || - ||,y on R"

and || - ||y on R™ (recall Definition .

Ezample 5.1 (Some first examples on conditioning). (i) Constant multiple of a real number:
For X =Y = R with norm [ - [[(1) := || on R, consider the problem f : R — R, z + 7z,
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i.e., the problem of obtaining 7z from x € R. Note that f is differentiable on R and we
have J¢(z) = f'(x) = 7 for all x € R. Hence,

_r@lanleloy _ 17lle]

= =1
1 (@)l 7]
The problem is well-conditioned.
(ii) Addition of two real numbers: For X = R? with norm || - ||(2) := || - [|2 on R?, and
Y =R with norm |- ||y := | -| on R, consider the problem f : R* — R, (z1,22) — 1 +2,

i.e., the problem of finding the sum of two real values. Note that f is differentiable on R?
and we have Jy(z) = (O1f 0of) = (1 1) € R"*2 Hence,

) 2 /2 2
VY Ty sup ](1 1)z[:\/§w

|x1 + 1‘2| 2CR? ’1‘1 + SU2| ’
llz]l2=1

2] (2)
K= —F———— J €T =

Note that when zo &~ —x1 and 1 # 0 we have that x is large and the problem is ill-
conditioned. This effect is referred to as cancellation error.
(iii) Polynomial root-finding: Consider the polynomial

pi(t) =t —2t+1

with a double root at ¢ = 1. We are interested in the perturbation behavior in the roots
with respect to changes in the coefficients — say we keep the coefficients of ¢ and ¢ fixed,
and consider the polynomial

pe(t) =t =2t 4z

for x < 1. Note that the roots of p, are at t =1+ +/1 —z for z < 1.

To bring it into our setting, we set X = Y = R with norm |-| on R and define the
problem f: R — R, z — f(x) by setting f(x) to be the largest root of p, if x < 1, and
set f(z):= f(1) =1 for all z > 1 (note this doesn’t introduce perturbation errors to the
right of z =1 as f(1+ Azx) — f(1) =0 for Az > 0).

Let us show that the condition number of the problem at z =1 is k(1) = oo, i.e., the
problem is severely ill-conditioned. Observe that f(1) = 1. If we perturb = 1 by some
Az < 0, we find a change in f(z) of size |f(1 + Az) — f(1)] = vV/—Az. (If we perturb
x =1 by some Az > 0, we find no change in f(x) by construction). Hence, for any 6 > 0
we have

0+ A0~ f)] 1] V=Az |

sup sup = sup
Aze[—5,5]\{0} |Az| FD] Acel=s0) —AT  Aze[-s50) V—Az

and thus, k(1) = co.

We proceed with the conditioning of matrix-vector multiplication and the conditioning
of the solution of linear systems, leading to the two central conditioning theorems in
numerical linear algebra.
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Conditioning of matrix-vector multiplication

Let X = R" and Y = R"™ with chosen norms ||- ||,y on R™ and || - ||,y on R™, and consider
a matrix A € R™*". We are now looking at the problem

f:R*" - R™ x~— Az,

i.e., the problem of computing the matrix-vector product Az € R™ from x € R". Noting
that f is differentiable and J¢(z) = A for all x € R", we have by Remark [5.1] that

_ @l nm izl Al 21 0y

1@l 1Azl
where || - ||(,,) denotes the matrix norm on R™*™ induced by the norms || - ||,y on R"
and || - [|(my on R™. If m =n, || - |;m) = | - |(n), and A is invertible, then
k= HA”(n,n)M < HA”(n,n)HA_lH(n,n) (5'2)
| Az | (n)

This upper bound is attained for certain choices of x.

Definition 5.2. Let A € R™*" be invertible and let || - || be a norm on R"*™. Then, we
define the condition number of A with respect to the norm ||| to be . (4) := [|A] [[A71].
If this quantity is small, we call A well-conditioned. Otherwise, we call A ill-conditioned.

The condition number of a singular square matrix is typically defined to be co.

Theorem 5.1. Let A € R™*"™ be invertible. Consider the vector space R™ with a chosen
norm || - ||y on R", and let || - [|(;,n) denote the matriz norm on R™ " induced by the
vector norm || - [|(ny. Then, we have the following:

(i) For the problem f : R"™ — R", z — Az, i.e., the problem of finding b = Ax from
x € R™, the condition number k = k(x) is given by

[12]| ()

— < Ky A). 5.3
||bH(n) I ”(n,n)( ) (5.3)

k= HAH(n,n)
If I - iy = I - l2 is the vector 2-norm (and hence, || - |[(nn) = || - |2 the spectral

norm), we have equality in (5.3) if x is a multiple of a right singular vector of A
corresponding to the smallest singular value o,.

(ii) For the problem f : R™ — R"™, b+ A~'b, i.c., the problem of finding the solution
x € R" to Az = b from the right-hand side b € R"™, the condition number k = k(b)
s given by

16 )

-1
k=]A ”(n,n)m

If [ llny = |- ll2 is the vector 2-norm (and hence, |- ||(nn) = |- [|2 the spectral norm),
we have equality in (5.4) if b is a multiple of a left singular vector of A corresponding
to the largest singular value o7 .
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Proof. Observe that (5.3) has already been shown in (5.2)), and that (5.4) follows from
(5.2) with A replaced by A~! and x replaced by b. We leave the remaining parts as an
exercise. 0

Remark 5.2. Let us revisit the problem for A € R™*" being a rectangular matrix with
m > n and rk(A) = n. Then, observing that ATA = I,,, i.e., the Moore-Penrose inverse
AT € R™™ is a left-inverse, we find that

= 1Al SEATD < a1 4T)

m,n ||ACC||(m) > m,n n,m)»
where || - || (7,n) i the induced matrix norm on R™*", and | - ||(, ) is the induced matrix
norm on R™ ™ (induced by the vector norms || - ||,y on R™, || - ||,y on R™). We define

the condition number of A to be B0y ol oy (A) = |]AH(m7n)||AT||(n7m).

Next, let us discuss the conditioning of the solution of linear systems Ax = b with
respect to perturbations in the system matrix A.

Conditioning of linear systems

Let X = R™" and Y = R" with a chosen norm || - ||,y on R" and induced matrix norm
[ ll(nny on R"*™. Let b € R"™ be fixed. Consider the problem

f: A A7 e R" for A € R™™ invertible,

i.e., the problem of finding the solution z € R™ to Ax = b. Although the space of invertible
n X n matrices is not a vector space, we can still study the perturbation behavior of f since
a perturbed invertible matrix is still invertible if the perturbation is sufficiently small: the
following result is often referred to as the perturbation lemma.

Lemma 5.1 (Perturbation lemma). Let A € R™ "™ be invertible, and let || - || be a sub-
multiplicative norm on R™™ (i.e., a norm satisfying |MiMa| < ||Mi| || Mz2| for any
My, My € R™"). Then, for any AA € R™ ™ with ||AA| < ||A7Y|| 7L, the perturbed matriz
A+ AA € R™" is invertible and there holds

1A~

[AA[[JAH

Proof. Lemma 2.1 in “Applied Numerical Linear Algebra” by J.W. Demmel (SIAM, 1997)
shows that for any X € R™*" with || X|| < 1, we have that I, — X is invertible and there
holds (I, — X)™! = 3722, X* (Neumann series) and ||(I, — X)7!|| < ﬁ (we omit
the proof of this fact). Now let A € R™ "™ be invertible and AA € R™*"™ be such that
|AA| < ||[A~||7t. Observe that we can write

I(A+A4)7) < 7=

A+AA=(I,— X)A with X :=—(AA)A™! e R™"

and, using submultiplicativity of || ||, that || X | = ||[(AA)A~Y| < ||AA|| |A~!|| < 1. Hence,

we find that I,, — X is invertible as a product of invertible matrices, and we find that
I(A+ A4 = [[AH (I, — X) 71|

[ A

— I X1~ 1= [|AA] [ A

< AT = X) M < 5
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where we have used submultiplicativity of || - ||, the bound ||(I, — X)7!| < m and the

bound [X| = [[(AA)A™H] < [|AA] A ]

Recall from Remark that the induced norm |||, ,,) is submultiplicative and hence
the perturbation lemma can be applied. Let A € R™ " be invertible and let AA € R™*"™
be such that [|AAl,,) < HA_lH(_nl,n) (so that the perturbation lemma applies to the
perturbed matrix A + AA). We are interested in the quantity

J(A4) = IF(A+A4) = F Dl [Almm _ 1A+ AT = A D] [Allnn)
[AA () 1A (D) [AA () A=l ()

Note that writing (A + AA)~1b = x + Az for some Az € R” where z := A~1b, the vectors
x and x + Az are the solutions to

Az =b, (A+ AA)(x + Azx) =b.
This yields (AA)z + (A + AA)Ax =0, ie.,, Ax = —(A+ AA)"L(AA)z and hence,
(A+AA) - A=Az = —(A+ AA)HAA)AD.
We find that

I(A+ AA)TH(AA) A7 () 1Al (.

q(AA) =
(B4 1A Aoy [ 0] 0

< 1A+ AA) I All oy

HAH (n,n) HAil H (n,n)

T 1- HAAH(TL,n)HA_l ‘(n,n)

B B (o (A)

o HAA” n,n ’
L= AT By (A)

and it follows that the condition number for the problem f at the matrix A is bounded
by the condition number of the matrix A:

k= lim sup q(AA) < Bl (A). (5.5)
6—0 AAcR?XN !
0<[|AA]|(n,n) <6

It can actually be shown that there holds equality in the above estimate (we omit the
proof) and we arrive at the following important theorem:

Theorem 5.2. Consider the vector space R™ with a chosen norm || - ||,y on R", and let
|l - [l(n,n) denote the matriz norm on R™*" induced by the vector norm || - ||ny. Then, for

a fired b € R™, the condition number for the problem of finding the solution x € R™ of
Az =b from A € {M € R™"™: M invertible} is given by

K= By (A)-
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Conditioning of least squares problems

Given A € R™*"™ m > n, with tk(A) = n and b € R™, we consider the least squares
problem

Minimize ||Av — b||2 over v € R™.
Recall that in this situation we have

e 2 = A'b is the unique solution to the least squares problem, i.e., the unique vector
x € R" satisfying || Az — b||2 = infyern ||Av — b]|2,

e y = Ar = AATb = Pb is the unique point in R(A) closest to b in the Euclidean
distance, i.e., the unique vector y € R(A) satisfying |y — bl|2 = infyer(a) [|lw — b2,

where AT = (ATA)"1AT € R™™ is the Moore-Penrose inverse of the matrix A, and
P = AA" € R™™ is the orthogonal projector onto R(A) (see Remark [3.11]).

We consider the following mathematical problems:
(i) obtain y from b for fixed A, i.e., fysy : R — R™, b AATD,
(ii) obtain x from b for fixed A, i.e., fy. sz : R™ — R?, b ATD,

(iii) obtain y from A for fixed b, i.e., farsy : A — AATH € R™ for A € R™*" rk(A) = n,
(iv) obtain z from A for fixed b, i.e., fao e : A AT € R™ for A € R™*", rk(A) = n,
and we consider the 2-norm on R™ and R™, and the spectral norm on R™*™ and R"™*™.

Theorem 5.3 (Conditioning of least squares problems). In this situation, there holds

1 k(A) K(A)

(H(‘l)) ta‘n(é)
<
"‘ib'—>y c (9)7 Hbi—)l} K:AD—)y =

e <K(A) + —F—,
cos(0)’ Rarme < MA) + n

ncos(f)’

where Kk;j (i € {b, A}, j € {x,y}) denotes the condition number for f;.;, and

e [1, w(A))].

AATD All2]| At
I ||2> c {0727] _ [All2] A"l

nA:—AgAngl,H:—cosl< —
= Al G [AATH],

Before we prove the theorem, let us make some observations.

Remark 5.3. For A € R™"™ m > n, tk(A) = n, the condition number in the spectral
norm is given by x(A) = || Al|2||AT|]2 = 2L € [1,00) with 0y denoting the largest and oy,
the smallest singular value of A.

Remark 5.4. The angle 6 is a measure for the closeness of the projection Pb = AA'b to b.

Remark 5.5. If m = n, we have AT = A~! and hence # = 0. In particular, we find

A A1 _ . .
Kby = K(n ) = | ||AJ12b|}|b2”2 and K4z < K(A) = || A]|2]]A7Y2, i-e., we recover the previous

results ((5.4) and (5.5) on the conditioning of square linear systems.
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Proof of Theorem[5.3 (i) Let A € R™*™ m > n, with rk(A4) = n be fixed, and consider
the problem fy,, : R™ — R™, b AATh. We take a SVD of A: Let U € R™ ™ and
V € R™ ™ be orthogonal matrices and ¥ = diag,, (o1, ...,0,) € R™*" with 01 > 09 >
-+ >0, > 0 (all positive as rk(A) = n) be such that A = USVT. Then, XTEY € R™ " is
invertible and we find that
AT = (ATA) AT = (vxTuTtusy T lysTu?
= (veTevhH) vyt = vets) 12Tyt = veivT.

Hence, we have

AAT = UsVTYSiOT — restpT o v | O N
\O(m—n)xn ‘ O(m—n)x(m—n)/
Note that this is a SVD of AAT and we see that ||AAT||; = 1. We find that the condition
number Ky, sy = Kby (D) of fiyy is given by

_ s, 2Bl [JAAT]5[Bll2 b2 1

K - - - - )
T ey (0)]l2 [AATO[,  JAATB];  cos(d)

as required.

(ii) Let A € R™*"™ m > n, with rtk(A) = n be fixed, and consider the problem
fosz : R™ = R™, b Atb. Then, the condition number xy _yy = Kp e (D) of forsy is given
by

o W Ol2lBllz _ A llBlla g IAATB Bl k(A)
1 fosa(b)]]2 | AT0][2 [ All2[| ATbl|2 || 2 mcos(f)
as required.
(iii), (iv) We omit the proof for the two remaining problems fa.., and fa . O

5.2 Floating point numbers and floating point arithmetic

Before we start to study stability of numerical algorithms, we need to have an understand-
ing of the representation of real numbers on a computer. As a first observation, we note
that computers use a finite number of bits to represent a real number and hence,

e there must be a largest represented number z},,. > 0, a smallest represented number

T < 0, a smallest positive represented number x:ﬁn > 0, and a largest negative
represented number z_ . < 0, i.e., the set of all represented numbers is a finite
subset of [z xn. JU{0}U [zl ot ]

min’ *“max min’ *“max
e there must be gaps between represented numbers.

Definition 5.3. Given € N with 5 > 2 (the base, usually taken to be 2), t € N (the
precision), and emin, €max € Z (minimal and maximal exponent), we define the floating
point system F' = F'(,t, €min, €max) € R to be the set of real numbers that can be written
as

x=(-1)%- (mlﬂ_l BT - B = (—1)% - [0.my .. .myg - B¢

for some myq,...,my € {0,1,...,8—1}, e € Z N [emin, €max] and s € {0,1}. We call the
number [0.m; ...m¢]g € [0,1) the mantissa of z, and the number e € Z the exponent of x.
By requiring m; # 0 if z # 0 and setting m1 = 0 if x = 0, the representation is unique.
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Remark 5.6. In a floating point system F' = F(f3,t, émin, €max), the largest represented
number is

t
:I;l—';ax = (B - 1) (Z ﬁ_z> '56"‘&)( = (1 - B_t)ﬁemaxv
=1

the smallest represented number is =z, = —(1 — Bt pemax the smallest positive repre-
sented number is

+  _ n—1 €min — Q€min—1
xmln_ﬁ ﬂ mm_ﬁmm ,

and the largest negative represented number is z,,,, = —3°»~!. Therefore, we have

F(B, 1, emins emax) C [—(1 = B4 8%, —gemin=1] U {0} U [Bomin— (1 — 1) gemax].

Ezample 5.2. In the widely used IEEE double precision arithmetic, one uses 8 = 2, t = 53,
and the represented numbers are of the form

(1) (2™ e g2 - e 20102

(*1)8 . [Oml . m53]2 . 2[610"'60]2_1022

g (5.6)

with s, co,...,c10,m1,...,ms3 € {0,1}, biased exponent [c1g...cole € {1,...,2046}, and
my = 1 for normalization purposes. The excluded numbers [c1g...col2 € {0,2047} are
used for representing 0 and “NaN”. The number z from (j5.6]) is equivalent to

x=(=1)% (14 [0.mq...mgs)y) - 2Lcr0-0l271023 — (1) [ [14py . mgg), - 20C10--c0]271023

and is stored as the binary number

|\3//!010]09]08] .. |ealer|eo | ma|ms|mal . .. |msi|mse|mss |-
1 bit 11 bits 52 bits
Note that we have zf, . = (1 — 275%)21024 ~ 1.8 - 10, x:ﬂn =271022 x292.1073%% and
lir;lin = _(1 - 2_53)21024 ~—1.8- 103085 Trnax = _2_1022 ~ —2.2- 10_308.

Observe that, in IEEE double precision arithmetic, the represented numbers
e in the interval [1,2] are {1+ j-27°2|j € {0,1,...,2%}},
e in the interval [2,4] are {2+ j-27°1|j € {0,1,...,2%?}},

e in the interval [2F, 251] are {2 + - 2F=52|j € {0,1,...,2%2}}. Hence, the distance
between adjacent numbers in a relative sense is at most 2792 ~ 2.2 - 10716,
(Note that the represented numbers in [252, 2°3] are precisely the integers N N[22 2%3]).

Remark 5.7. The gaps between adjacent numbers in a floating point system scale in pro-
portion to their size. In contrast, in a fixed point system, one would have that the gaps
between any two adjacent numbers are of the same size.

We proceed with the definition of the machine epsilon corresponding to a floating point
system F', that is, a number measuring the resolution of F.
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Definition 5.4. To a floating point system F' = F(8,t, emin, €max), We associate the
number

1
1-t
E€machine = 5 B )

called the machine epsilon.

Remark 5.8. For any = € [2, Tmax) U [, 75, ] there exists a represented number
x’ € F satisfying
2 — 2
‘I‘| < €machines (57>

i.e., the distance between x and 2’ in a relative sense is at most €machine. Indeed, if we
define a rounding operator fl : [z u{oyulzt.  xt..] = F with the property

min?’ xmax]

min’ ““max
|z — fi(x)| = infyep|z —y| for all z € (2, Tmax) U {0} U [z, 2ih.], then 2/ = fi(z)

satisfies ((5.7). In particular,

Vo € [‘r;‘lilﬂxl;lax] U {0} U [mr—;in7

ma)

max de e [_5machine;5machine] s.t. ﬁ(x) = .%‘(1 + 5)-

(5.8)

X

Remark 5.9. The machine epsilon in IEEE double precision arithmetic is given by

21_53 53 16
€machine = 9 =27 1.1-10".

An example for a rounding operator fl is the natural rounding defined via fl(z) =
sign(z)[0.m1 ... ms3]22¢ if msg = 0 and fi(z) = sign(x)([0.m1 ... ms3)2+2753)2¢ if msy = 1.

We can now present the analogue of the elementary operations (addition, subtraction,
multiplication, and division of two real numbers) for two numbers of a floating point
system.

Definition 5.5. Let F' be a floating point system. We then define the floating point
operations @, 9, ®,® on F' by

r®y:=1Mzx*y), (r,yekF)
for ® € {®,0,®,0}.
In view of , we have the following result.
Theorem 5.4 (Fundamental axiom of floating point arithmetic). Let F' be a floating

point system and &) € {®,6,®,@}. Then, for allx,y € F (y # 0 if ® = @) there exists
€ € [—Emachines Emachine] Such that there holds

x®y=(z*y)(l+e). (5.9)

In particular, there holds |x ® y — = * y| < €machine [T * Y| for all x,y € F.
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5.3 Stability of numerical algorithms

Remark 5.10. From now on, for simplicity, we consider an idealized floating point system
F = F(f,t) ignoring overflow and underflow (all integer exponents e € Z allowed).

Let us start by discussing the mathematical definition of an algorithm for “solving” a
mathematical problem f : X — Y (with X,Y normed vector spaces). Suppose we have
a computer with floating point system satisfying . We regard an algorithm for the
problem as a map

f: XY,

where for z € X, f(ar:) is defined as follows: First, round x to a floating point num-
ber fi(z) (with a rounding operator fl satisfying (5.8))), then run the (fixed) implementa-
tion/program of the algorithm with input fi(z), and define f(z) to be the output (this is
going to be a collection of floating point numbers in Y).

As we are going to frequently use the Landau symbol O, let us briefly recall its defini-
tion:

Definition 5.6. For real-valued functions v = u(t) and v = v(t) of a variable t € R<q, we
define

u(t) =0(v(t)) ast \ 0 <= 3to,C > 0:|u(t) <Cu(t) Vte(0,t),
and
u(t) =0W(t)) ast — o0 <= Ttr,C >0: |u(t)| < Cu(t) Vit e (ty,00).

Let us now define what we mean by an algorithm being accurate and by an algorithm
being stable.

Definition 5.7. Let X and Y be normed vector spaces with norms || - [|x and || - [|y. Let
f: X — Y be aproblem and f : X — Y be an algorithm for f. Then, we make the
following definitions.

(i) f is called accurate iff for each z € X there holds

1f) = f@)ly _

(Emachine)- (510)
1f()lly
(ii) f is called stable iff for each 2 € X there holds
1f () = f(@)ly . o 17— 2lx
— = O(emachine) for some & € X with ~———— = O(emachine)-
IF @)y ]l

(5.11)

Hq Z,€machine

quantities inside the norm on the left-hand sides of (5.10) and (5.11]) do indeed implicitly
depend on epachine) are meant in the sense

Remark 5.11. The above statements of the form M = O(Emachine) (note the
50

Hp(a:, 5machine) H -0

HQ(.’I} e hi )H - (Emachine) aS  Emachine \ 0, uniformly in T,
» €machine
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which is to be understood as

EI6076' >0: Hp(xagmachine)n < CSmachine”Q(x)Emachine)” vé‘machine S (0u50)7 e X.

(Note that this makes ([5.10) and ([5.11]) well defined also when the denominator is zero).

The limit process emachine N\ 0 can be thought of as running the algorithm on a family of
computers satisfying (5.8]) and (5.9)) with corresponding values of €y achine tending to zero.

Remark 5.12. If the problem f is ill-conditioned, there is little hope to construct an
accurate algorithm f . Even if the only error would stem from rounding the input data
(and say everything else is performed exactly), this small perturbation can already lead
to large changes in the result if f is ill-conditioned. This is why the appropriate goal in
constructing algorithms is stability, which we think of as follows: if the algorithm f is
stable, it gives the almost right answer to an almost right question.

Often, one encounters algorithms which are backward stable, that is, they satisfy a
stronger condition than stability. Namely, backward stable algorithms give the exact
answer to an almost right question:

Definition 5.8. Let X and Y be normed vector spaces with norms || - ||x and || - ||ly.
Let f: X — Y be a problem and f : X — Y be an algorithm for f. Then, f is called
backward stable iff for each x € X there holds

; 12 — | x

f(x) = f(z) for some & € X with e = O(Emachine)- (5.12)
Tl X

Remark 5.13. Any backward stable algorithm is stable.

Let us make the following observation:

Theorem 5.5 (Independence of norm). If X, Y are finite-dimensional, the definitions of
accuracy, stability, and backward stability are independent of the choice of norms in X
and Y in the sense that the corresponding conditions either all hold or fail independently
of the choice of norms.

Proof. Exercise. O

Theorem 5.6 (Accuracy of backward stable algorithms). Let X and Y be normed vector
spaces with norms ||-||x and ||-||y. Consider a problem f : X — Y with condition number
k giwven by (5.1)), and a backward stable algorithm f: X — Y for f. Then, there holds

If (@) = f@)ly _ |
oy O emachine)-

In particular, if k(x) = O(1), then f is accurate.

Proof. Using the definition (5.12)) of backward stability and the definition (5.1]) of k = k(x),
we find (with Z from (5.12))

If (@) = f@)lly _ If @) = f@)lly
1) lly 1)y

(Here, the Landau notation o(1) denotes a quantity converging to 0 as emachine N 0.) [

|12 = x]lx
]l x

< (k(z) +0(1))

== O(/ﬁl(ﬂ?) Emachine)-
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Let us discuss some examples.

Ezample 5.3 (Stability of floating point arithmetic). The floating point operations
®,60,®,0 are all backward stable. We prove this for @& and leave the remaining op-
erations as an exercise. The key for the stability analysis are and . Let us
consider the problem

f : R2 — R, f(l‘l,.fvg) =21 + X2,
and the algorithm
FiRE SR, f(z, o) = f(z1) @ fl(22).

We choose the 1-norm || - [|; on R? and the absolute value |-| as norm on R (any other
choices are fine as well by Theorem . Let x = (z1,22)T € R2. Then, by (5.8)), we have
fi(z1) = z1(1 + 1) and fl(z2) = z2(1 + €2) for some €1,62 € [—Emachine, Emachine), and by

(5.9), we have fl(z1) ® fi(z2) = (fl(z1) + fl(z2))(1 + £3) for some €3 € [—€machines Emachine) -
Therefore, we find

fz) =fl(z1) ® fA(z2) = (A(z1) + f(22))(1 + €3)
= (371(1 + 81) + 1'2(1 + 82))(1 + 83)
=x1(1+e1)(1 +e3) + x2(l +e2)(1 +€3) = 71 + T2 = f(T)
with 71 = 21(1 +&1)(1 4+ €3), T2 = 22(1 + 2)(1 + €3) and & = (&1, Z2)T. We have
|T1 — 21| = |e1 + ez + c1es]|z1] < (Je| + |es] + len]|e3])|z1] £ C(Emachine)| 1]
|Zo — x| = |2 + €3 + €263 22| < (Je2| + |es] + |e2] |e3])|z2] < C(Emachine) 2]
with C'(gmachine) := 2€machine + elznachine, and hence,
”f — LU||1 = ‘Lf’l — $1| + |572 — $2| < C(Emachine)(‘xﬂ + |1:2D = C(Smachine)Hmul'

Since C(Emachine) = 2€machine —1—612nachme = O(Emachine ), it follows that f is backward stable.

Ezample 5.4 (Stability of adding 1). Let us consider the problem f : R — R, f(z) := x+1,
and the algorithm f : R — R, f(z) := fl(z)@1. Then, f is stable but not backward stable.
Stability can be shown as follows: We choose the absolute value |-| as norm on R. For
x € R set & = fl(z) so that we have |Z — x| < epachine|| and

[f(z) = @) =[{l(z)®1) —(Z+ D] =|(Z&1) - (Z+1)]
< 5machine|j + 1’ = Emachine’f({z'”'

It follows that f is stable. We leave it as an exercise to show that f is not backward stable
(hint: note that x @ 1 =1 for all x € F with |z| < %5machine).

Ezample 5.5 (Stability of computing inner and outer product). Examples without proof:

(i) Inner product: Consider the problem f : R"™ x R® — R, f(z,y) := 2%y. Then, the
algorithm

fiR"XR" =R, f(z,y):=
= [[[(fi(z1) @ A(y1)) @ (A(22) @ (y2))] @ (A(23) @ A(yz))] @ ... ] © (A(zn) @ f(yn))

is backward stable.
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(ii) Outer product: Consider the problem f : R™ x R® — R"™*"  f(x,y) := zy"’. Then,
the algorithm

fA(z1) @ A(y1) -+ A1) @ Ayn)

fiR™ xR = R™" fz,y) = : :

A(zm) @ fl(y1) -+ fzm) @ A(yn)

is stable, but not backward stable.

Ezample 5.6 (Unstable algorithm for computing eigenvalues). Consider the following al-
gorithm for computing eigenvalues of a matrix A € R"*": First, find the coefficients of
the characteristic polynomial (i.e., A — det(\l,, — A)) and then, find its roots. This al-
gorithm is unstable (hence, we do not use this algorithm in practice). Note that for e.g.
A = I, € R?*? we have the characteristic polynomial p; from Example [5.1{iii). When we
compute the characteristic polynomial, we will have errors of order O(emachine), leading
to errors in the roots of order O(y/machine). In IEEE double precision arithmetic, this
means a loss of eight digits of accuracy.

5.4 Stability of solution algorithms for linear systems

We discuss the stability of several solution algorithms for linear systems.

Solving linear systems via QR obtained from Householder triangularization

Let us analyze the following solution algorithm for linear systems in view of numerical
stability:

Algorithm 5.1 (Solving linear systems via QR factorization). Given an invertible matrix
A € R™™ and a vector b € R™, do the following to obtain the solution z € R™ to Az = b.

Step 1) Use Algorithm to obtain the factor R € R™*"™ of a QR factorization 4 = QR,
and the reflection vectors vy, ...,v, € R™ (the matrix @ is not explicitly formed).

Step 2) Use Algorithm (3.5 to compute y := QTb € R™ from the vectors vy, ..., v, and b.
Step 3) Solve the upper-triangular system Rz = y by backward substitution.

The main result is the following:

Theorem 5.7 (Backward stability of Algorithm . Algom'thm 1s backward stable in

the sense that

AA
(A+AA)Z=0b for some AA € R™"™ with ”HAH‘ = O(Emachine)
for all matriz norms || - || on R™™, where & € R™ is the solution computed by Algorithm

[5.1. In particular, in view of Theorem[5.6 and Theorem[5.3, we have

1% — z([(n)
— = 0O(ky. (A) emachine)
HCUH(n) Il re,m) achine
for any norm | - ||,y on R™ with corresponding induced matriz norm || - |5 n) on R™*",

where © = A~1b € R™ denotes the exact solution to Ax = b.
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Remark 5.14. The vector b € R" is considered fixed and the problem is f : A — A~1b
for A € R™" invertible, i.e., obtain the solution x to Ax = b from A. The algorithm is
f:A— f(A) for A € R™ " invertible with & = f(A) being the output of Algorithm
with input A.

It can be shown that each step of Algorithm is backward stable (we only state the
results and omit the proofs): For Step 1, we have the following result.

Theorem 5.8 (Backward stability of QR via Householder) Suppose we apply Algorithm
to an invertible matric A € R™ "™, leading to outputs R € R™™ qnd V1,y...,0, € R?
( the computed factor R and reflection vectors v; in floating point computatzon) Writing
Q:=0Q1Q5...Q, with Q; denoting the orthogonal matriz from Section E corresponding
to the reflection vector v;, there holds

QR=A+AA for some AA € R™™ with ||”A|H = O(Emachine) (5.13)

for all matriz norms || - || on R™*™.

For Step 2, i.e., the computation of y = QTb = Q~'b, we have that the computed
result ¢ satisfies

(Q+AQ)j=0b for some AQ € R™" with ||AQ|| = O(Emachine) (5.14)
for all matrix norms || - | on R™*™. For Step 3, i.e., the solution of the upper-triangular
system Rx = ¢ by backward substitution, we have that the computed result T satisfies

3 _— nxn o AR .

(R+AR)Z =7y for some AR € R with I = O(Emachine) (5.15)
for all matrix norms || - || on R™*". Now, we can prove Theorem
Proof of Theorem[5.7. Exercise. Use (5.13)), (5.14)) and (5.15). O

Solving linear systems via Gaussian elimination

Let us first consider the solution of non-singular linear systems Ax = b via LU factoriza-
tion (Gaussian elimination without pivoting; see Algorithm and Remark 4.2)) and via
PA=LU factorization (Gaussian elimination with partial pivoting; see Algorithm and

Remark .

Theorem 5.9. We have the following results.

(i) Gaussian elimination without pivoting: Suppose a LU factorization A = LU of an
invertible matriz A € R™ ™, for which there exists a LU factorization, is computed
by Algorithm[].1 Then, for sufficiently small values of emachine; N0 z€To-pivots arise
and the algorithm completes successfully in floating point arithmetic, and for the
computed L and U there holds

LU = A+ AA  for some AA € R™™™ with H!_JHHJH O(Emachine) (5.16)

for all matriz norms || - || on R™"*"™.
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(i) Gaussian elimination with partial pivoting: Suppose a PA=LU factorization PA =
LU of an invertible matriz A € R"*" is computed by Algorithm @ Then, for the
computed P, L, and U there holds

. AA
LU = PA+ AA  for some AA € R™"™ with H||A|H = O(p Emachine)
for all matriz norms || - || on R™ ™, where p denotes the growth factor of A defined

by

max; je{1,..., n}|uij|

maxi,je{l,...,n}‘aij‘ .

Further, if |l;j| <1 for all i > j, then P = P for emachine Sufficiently small.

We omit the proof, but discuss the implications.

Remark 5.15. Let us discuss the result (i) of Theorem Although it looks similar to
other stability results, this is very different in that the quantity ||L||||U|| appears instead
of || Al in the denominator of (5.16). Hence, we will have backward stability if || L||[|U|| =
O(||Al|). Otherwise, backward instability is to be expected. It is known that both L and U
can be unboundedly large and that Gaussian elimination without pivoting is unstable, and
hence, should not be used in general. We give a simple example illustrating the problem:

—20
Consider A := <101 1

1 0 10~20 1
T O ) R LA )

In IEEE double precision arithmetic, the computed result would be

. 1 0 ~ 10720 1
L= <1020 1>’ U“( 0 —1020>

10720 1

1 0
(2,2) entry. Considering Az = b := (1,0)T with exact solution x ~ (—1,1)T, we find from
LU = b that & = (0,1)T which is very different from the exact solution.

Remark 5.16. Let us discuss the result (ii) of Theorem It can be shown that the
growth factor p satisfies the bound p < 2"~! and that this is sharp. It is attained by
the matrix A = (a;;) € R™" with a;; = ajp, = 1 for all 1 < i < n, a;; = —1 for all
i > j, and a;; = 0 otherwise (exercise). A growth factor of 2" means a loss of around n
bits of precision, which is a huge problem for high-dimensional problems (as they arise in
practice). Still, according to our definition, Gaussian elimination with partial pivoting is
backward stable (as dependence of the constant on the dimension is allowed). However,
we should rather think of it as stable for most problems, but very unstable for certain
matrices. In practice, for problems with real applications studied in the past centuries,
Gaussian elimination with partial pivoting performed in a stable way.

), for which Gaussian elimination performed exactly gives

and we note that LU = < ) which is drastically different from LU = A in the
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Solving linear systems via Cholesky factorization

Cholesky factorization is the method of choice for linear systems with a symmetric positive
definite system matrix as it is always stable. To be precise, let us consider the following
algorithm:

Algorithm 5.2 (Solving linear systems via Cholesky factorization). Given a symmetric
positive definite matrix A € R™ ™ and a vector b € R", do the following to obtain the
solution z € R™ to Az = b.

Step 1) Use Algorithm to obtain the factor R € R™*"™ of the Cholesky factorization
A=R'R.

Step 2) Solve the lower-triangular system RTy = b for y € R™ by forward substitution.
Step 3) Solve the upper-triangular system Rz = y for x € R™ by backward substitution.
The main result is the following: (proof omitted)

Theorem 5.10 (Backward stability of Cholesky factorization and of Algorithm . We
have the following results:

(i) Backward stability of Cholesky factorization: Suppose we apply Algorithm to a
symmetric positive definite matriz A € R™ ", leading to an output R € R"™™ (the
computed factor R in floating point computation). Then, there holds

o~ AA
RTR=A+AA for some AA € R™" with HHAH‘ = O(Emachine)

for all matriz norms || - || on R™*™.

(i) Backward stability of Algorithm : Algorithm 1 backward stable in the sense

that
AA
(A+AA)Z=0b for some AA € R™™™ with HHAHH = O(Emachine)
for all matriz norms || - || on R"™", where & € R™ is the solution computed by
Algorithm [5.3

Remark 5.17. An intuitive reason for the stability of Cholesky factorization, compared
to LU factorization, is that the factor R in the Cholesky factorization A = RTR cannot
become very large compared to A (e.g., we have ||R|2 = ||RT||2 = \/||A]|2 (exercise)).

5.5 Stability of solution algorithms for least squares problems

Omitted. (If you are interested in this, see Trefethen-Bau Chapter 3.)
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6 Eigenvalue Problems

6.1 The eigenvalue problem: the basics

We study the eigenvalue problem corresponding to a square matrix A € C**":
Find z € C"\{0} and X € C such that Az = A\x.

We write C"™*" for the set of complex m x n matrices, and C™ := C™*! for the set of
complex column m-vectors. For A = (a;;) € C™*" write A := (a;;) € C™*" (complex
conjugate each entry), and denote the adjoint (conjugate transpose) by A* := AT € C"*™,
We introduce three important classes of square matrices:

A € C™" is called hermitian iff A* = A, (if A real: hermitian < symmetric)

A € C™™™ is called normal iff A*A = AA*,

A € C" "™ is called unitary iff A¥A = AA* =1,. (if A real: unitary < orthogonal)

We recall the basics for eigenvalue problems: For a square matrix A € C™*"™,

e )\ € Cis called an eigenvalue of A iff there holds Az = Az for some z € C™\{0}.
Then, any x € C"\{0} with Az = Az is called an eigenvector of A corresponding to
the eigenvalue .

Remark 6.1. If A is hermitian, then all of its eigenvalues are real. (exercise)
e its characteristic polynomial p4 is defined as py : C — C, z — det(zI, — A).

e its spectrum A(A) C C is defined by A(A) := {A € C: X is an eigenvalue of A}, and
its spectral radius p(A) € [0,00) is defined by p(A) := max{|\| : A € A(4)}.
Remark 6.2. There holds A(A) = {\ € C: pa(N\) = 0}. Indeed, A € C satisfies \ €
A(A) iff (Fxz € C"\{0} : (M, —A)z = 0) iff (\[,, — A is singular) iff det(Al,, — A) = 0.
Remark 6.3. Note that ps(z) = Ezzopkzk for some py,...,pp—1 € C and p, = 1,
i.e., pa is a monic polynomial. Hence, by the fundamental theorem of algebra, there
exist A1,..., A, € Csuch that pa(z) = [[7,(z — i), and thus A(A) = {\,..., A}
Note that det(A) = (—=1)"pa(0) = [Ti~; i and, comparing the coefficient of 2"~ in
det(zl, — A) =[], (z — Ni), that tr(A) = > A

e the algebraic multiplicity pa(\) € {1,...,n} of an eigenvalue A € A(A) is the mul-
tiplicity of A as a root of p4. We call A € A(A) with pa(X) =1 a simple eigenvalue.

e the eigenspace E\ C C" of an eigenvalue A € A(A) is defined to be Ey := N(A[,—A).
We call y4(A) := dim(E)) € {1,...,n} the geometric multiplicity of A € A(A).
Remark 6.4. There holds y4(A\) < pa(A) for any A € A(A). We omit the proof; see

undergraduate linear algebra.

e an eigenvalue A € A(A) is called defective iff y4(A) < ppa(A). A matrix A € C"*" is
called defective iff it has a defective eigenvalue.

e For an invertible matrix X € C™ ", the map Sy : C™*" — C™" A+ X 1AX is
called a similarity transformation of A. Further, a matrix B € C™*" is called similar
to A € C™™ iff 3X € C™ " invertible s.t. B = X 1AX.
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Remark 6.5. If B € C™*™ is similar to A € C"*", then p4 = pp, A(A) = A(B), and
there holds pa(A) = up(A) and v4(A) = vg(\) for all A € A(A) = A(B).

A very useful result for estimating the location of eigenvalues in the complex plane is
Gerschgorin’s theorem. We denote the closed disc in the complex plane around a point
a € C with radius »r > 0 by D(a,r) :={z€C:|z—a|] <r} CC.

Theorem 6.1 (Gerschgorin’s theorem). Let A = (a;j)1<i j<n € C"*". Define the numbers
T1,...,Tn > 0 given by

ri = Z ]aij], iE{l,...,n}.
Je{l,.,np\{i}
Then, there holds

n

A(A) € | D(aii, mi),
i=1
i.e., every eigenvalue of A lies in at least one of the m so-called Gerschgorin discs
D(ay1,71)y ..., D(appn,rn). Moreover, if there are 1 < k < n Gerschgorin discs such
that their union U is a connected set which is disjoint from the union of the remaining
n — k Gerschgorin discs, then U contains exactly k eigenvalues of A.

Proof. Let A € A(A). We can find an eigenvector x = (x1,...,7,)T € C*\{0} satisfying
Az = Az and [|2]|oc = maxgeqr,. nylok] = 1. Let @ € {1,...,n} be such that |z;] = 1.
Then,

IA = aii| = [(A = ai)xi| = |(Ax); — aziz;]

n
=D aijz; — asi| = > aijj| < rillzfeo =i,
j=1 JE{L, P\ {i}

ie., A € D(a;,r;). We conclude that every eigenvalue of A lies in at least one of the n
Gerschgorin discs. We omit the proof of the second part of the theorem. O

Remark 6.6. Noting that A(A) = A(AT) for any A € C™*" (observe ps = pyr), we can
obtain additional information on A(A) by applying Gerschgorin’s theorem to AT as well.
6.2 Eigenvalue-revealing factorizations

We start by discussing eigenvalue-revealing factorizations, i.e., factorizations of a given
matrix from which we can directly read off its eigenvalues.

Diagonalization

Let us first discuss the eigenvalue decomposition, which, as the name suggests, is an
eigenvalue-revealing decomposition.

Definition 6.1 (Eigenvalue decomposition). Let A € C™*™. If there exists an invertible
matrix X € C"*" and a diagonal matrix D € C"*" such that

A=XDX ! (6.1)
then we call (6.1)) an eigenvalue decomposition of A.
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Definition 6.2. For a matrix A € C*"*",
(i) we say A is diagonalizable iff there exists an eigenvalue decomposition of A.

(ii) we say A is unitary diagonalizable iff there exists an eigenvalue decomposition (/6. 1)
of A with X unitary, i.e., iff 4 X € C™*™ unitary, D € C"*" diagonal: A = XDX*.

Remark 6.7. Note that (6.1]) is equivalent to AX = XD. Writing X = (z1]...|z,) and
D = diag, v, (A1, .., An), this yields Ax; = Njz; for ¢ € {1,...,n}, i.e., ; is an eigenvec-
tor with corresponding eigenvalue A;. So, the eigenvalue decomposition is a eigenvalue-

revealing decomposition as we can directly read off the eigenvalues from the diagonal of
D.

Theorem 6.2 (Characterization of diagonalizable matrices). A matrix A € C**™ is di-
agonalizable iff it is non-defective, i.e., iff ya(A) = pa(X) for all A € A(A).

Proof. First, suppose A € C™*" has an eigenvalue decomposition A = X DX ! with some
invertible matrix X € C™*" and a diagonal matrix D € C"*". Then, A is similar to
D and hence, A(A) = A(D) =: A, and there holds p4(\) = pup(A) and y4(\) = vp(A)
for all A € A. Since D is diagonal, we have yp(A) = pup(A) for all A € A and hence,
Ya(A) = vp(A) = up(A) = pa(A) for all A € A, i.e., A is non-defective.

Conversely, suppose that A € C"*"™ is non-defective. Denote its distinct eigenvalues by
M, .-y A € A(A), E < n. Then, to each A\; we can find v4()\;) many linear independent
eigenvectors of A. Noting that eigenvectors to distinct eigenvalues are linearly independent
(exercise), we can find a total of Zle va(Ai) = Z;“:l pa(Ai) = n (first equality uses A
non-defective) linearly independent eigenvectors xi,...,z, € C"\{0} for A. Then, the
matrix X := (z1]...|z,) € C"*" is invertible and, setting D := diag,,,,(d1,...,dy) with
di,...,d, € C satisfying Azx; = d;x;, there holds AX = XD and hence A = XDX~'. O

Theorem 6.3 (Characterization of unitary diagonalizable matrices). A matriz A € C"*"
s unitary diagonalizable iff it is normal, i.e., iff A*A = AA*. In particular, every hermi-
tian matriz is unitary diagonalizable.

Proof. Omitted. O

Remark 6.8. If A € R™™™ is symmetric, then there exists a real eigenvalue decomposition
A=XDX ' =XDXT with X € R"™*" orthogonal and D € R"*" diagonal. We thus call
real symmetric matrices orthogonally diagonalizable. We omit the proof.

In the sense of the following definition, we thus have that any symmetric matrix is
orthogonally equivalent to a diagonal matrix.

Definition 6.3. Two matrices A, B € R™*" are called orthogonally equivalent iff there
exists an orthogonal matrix Q € R™*" such that A = QBQ™".
Schur factorization

The drawback of the eigenvalue decomposition is that it only exists for a certain class of
matrices (non-defective matrices). We now introduce the most useful eigenvalue-revealing
decomposition in numerical analysis.
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Definition 6.4 (Schur factorization). Let A € C™*". If there exists a unitary matrix
Q € C™™ and an upper-triangular matrix T' € C™*" such that

A=QTQ", (6.2)
then we call (6.2)) a Schur factorization of A.

Remark 6.9. Suppose A has a Schur factorization A = QT'Q*. Then, A is similar to T
and hence A(A) = A(T). Hence, since the eigenvalues of the upper-triangular matrix 7'
are its diagonal entries, we can read off the eigenvalues of A from the diagonal of T

Theorem 6.4 (Existence of Schur factorization). Every matriz A € C"*" has a Schur
factorization.

Proof. We use induction on n € N. For the case n = 1, i.e., A = (a) € C*!, we have
that A = (a) = (1)(a)(1) = [;AI{ is a Schur factorization of A. As induction hypothesis
suppose the claim is true for some n € N.

For the induction step, let A € C+Dx(+1) and our goal is to construct a Schur
factorization of A. Let A € A(A) and z € C""'\{0} be a corresponding normal-

ized eigenvector with z*z = 1 and Ar = Az. We can now find a unitary matrix
U= (u]...|up|tuny1) € COFDXHD) with first column uy = x. Then,
U AU = (21 ¢ clmrx(nd)
On><1 B

for some w € C" and B € C™"*™. By the hypothesis there exists a Schur factorization of
B, i.e., a unitary matrix V' € C™*™ and an upper-triangular matrix R € C™*" such that
B =V RV*. Then, we compute

1 [ 0xn\]" (1]
U AU
|: Onx1 Vv :| |: \Onxl‘ V }

len\] AR S NPT WA S K0 WA S N T
\Onx1 | V* ) \Onx1 | B) \Onsr | V)
A w*V
_ . (n+1)x(n+1)
=0 & =TeC )

and we find that

A=QTQ* with Q=U [+ 1%xn) ¢ clrnxern),
0n><1 V

Noting that ) is unitary and T is upper-triangular, this is a Schur factorization of A. [J

Remark 6.10. Note that if A € C™*"™ is normal and A = QT'Q* is a Schur factorization of
A, then T must be diagonal. (exercise)

6.3 Transformation into upper-Hessenberg form

We now turn our attention to the construction of algorithms for computing the eigenvalues
of a given matrix. Unfortunately, there does not exist an algorithm which can compute
the eigenvalues of an arbitrary matrix in a finite number of steps and thus, any eigenvalue
solver must be iterative. This can be seen as follows:
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Remark 6.11 (Eigenvalue solvers must be iterative). Let a := (ag,...,a,_1)T € C" and
let e1,...,e, € R™ denote the canonical basis vectors in R". Observe that the problem of
finding the roots of the monic polynomial p : C — C, p(z) = 2" + Z?;Ol a;2" is equivalent
to finding the eigenvalues of the matrix
A:=(B|—a) eC™", where B:= (esles|---|en) € R (=),

Indeed, denoting the roots of p by 21,..., 2, € C, the vector (1,2, 22,... ,zi"_l)T e C"is
an eigenvector of AT with eigenvalue z; for i € {1,...,n}. Hence, since A(A) = A(AT)
(see Remark [6.6), we find that A(A) = {z1,...,2,}.

We deduce that, if there were an algorithm which can compute the exact eigenvalues
of an arbitrary matrix in finite steps, we would have a formula for computing the roots
of any arbitrary polynomial. However, this is impossible since it is known that no such
formula exists for polynomials of degree greater than or equal to 5.

In view of this result, we will aim for algorithms that yield sequences converging
to the eigenvalues (desirably as rapidly as possible). Although we cannot find a Schur
factorization in a finite number of steps (i.e., we cannot transform a given matrix into an
upper-triangular matrix via unitary similarity transformations), we can transform a given
matrix into an “almost” triangular matrix (a so-called Hessenberg matrix) via unitary
similarity transformations in a finite number of steps: (illustration for n = 6)

— H=Q"AQ =

* X X X X ¥
O S SR S
EE S SR G
* K K X K ¥
* X X X X ¥
O S SR S
SO O O % ¥
OO O % * ¥
O O ¥ ¥ *x X
O ¥ ¥ ¥ X X
O S SR R
L S SR G

Definition 6.5 (upper-Hessenberg matrix). A square matrix A = (a;;) € C™*" is called
an upper-Hessenberg matrix iff a;; = 0 whenever 7 > j + 1.

Definition 6.6 (Hessenberg decomposition). Let A € C"*". If there exist a unitary
matrix Q € C™*" and an upper-Hessenberg matrix H € C™*" such that there holds

A=QHQ", (6.3)
then we call (6.3)) a Hessenberg decomposition of A.

Theorem 6.5 (Existence of Hessenberg decomposition). Any square matriz A € C™*™ has
a Hessenberg decomposition. Moreover, if A € R™ ™ is real, then there exists a Hessenberg
decomposition A = QHQT with Q € R™™ orthogonal and H € R™*™ upper-Hessenberyg.

Transformation into upper-Hessenberg form via unitary similarity transformations is
typically the first phase of any eigenvalue algorithm. Let us explain how to obtain such a
Hessenberg decomposition by looking at an explicit example.

1 1 0 -10
-2 -1 1 1 0

Ezxample 6.1. Consider the matrix A := | 1 1 -1 1 0]. Weexplain how to find
2 1 1 -1 0

0 1 1 1 1
an orthogonal matrix @ € R%*® such that QT AQ is an upper-Hessenberg matrix.
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Step 1: We want to find an orthogonal matrix Q1 € R5*% such that A; := QT AQ is of
*kook ok k%

x % % %
the form A; = [0 * % x x|. We take QT = Q; to be a Householder reflector that
0 *x * *x =x
0 * * * x
leaves the first row unchanged and introduces the desired zeros. Set z1 := (—2,1,2,0)T

and vy = Sigl’l(<l’1, €1>)H.’I}1H2€1 + 7 = (_57 17 27 O)Ta and take

1 0 0 0 0
2 1 2
(1| 0\ 0 -5 3 35 0
— — -0 1 4 2
Q1= \04 . ‘ I4_2v1v1 ) - g 15 15
X lox13 0 2 —-& 1+ 0
0 0 0 0 1

Then, Q1A = QT A has the desired zero-entries in its first column, and so does QF AQ;
(right-multiplication by @ leaves first column unchanged). Indeed, we have

1 —% * %k
3 —% * k%
A =QTAQ: = |0 % X% %
0 }1—15) * k%
0 35 *x % x

Step 2: We want to find an orthogonal matrix Qy € R3*5 such that As := Q1 A;1Q> is of

x ok kK ok
ko ok * ko ok

the form Ao = [0 * * x x|. We take QZT = (Y2 to be a Householder reflector that
0 0 *x * =%
0 0 % % =x

leaves the first two rows unchanged and introduces the desired zeros. Set x5 := (}Tg? }Tgv %)T

and vy := sign((z, e1))||w2ll2e1 + 22 = (17 + 5v/35,19,15)", and take

10 0 0 0
0 1 0 0 0
(L | O 0 0 —_17 19 _.3
Qs = vl | = 535 5v/35 V35
O3x2 | I3 — 27”1) 2 0 0 —_l9  3937546137V35 _ 9975—969v/35
2112 535 102550 20510
00 —-3 _ 9975-969v/35  2527+153v/35
/35 20510 4102
Then, Q241 = Q5 A; has the desired zero-entries in its second column, and so does
Q3 A1Q2:
4 4
—3 —— * %
. 7 2Y6°
— -2 x ok
- 3 9 9v/35
A2 :=QA1Q2= |0 ——Vé% % * ok
25651/35—8721
0 0 20510 X
_ 688543249+/35
0 0 20510 *
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Step 3: We want to find an orthogonal matrix Q3 € R>*® such that Az := Q3 A2Qs3 is
* ok ox ok ok

X ok k% ok
of the form A3 = |0 * *x *x x|. We take Q3T = ()3 to be a Householder reflector
0 0 % x =
0 0 0 % =

that leaves the first three rows unchanged and introduces the desired zeros. Set z3 :=
( 2565/35—8721 68854324935 )T

and vs := sign((zs, e1))||xs||2e1 + x3, and take

20510 ) 20510

1 0 0 0 0

010 0 0

I 0

ngz/ 3| 3X§3vT\: 00 1 0 0

k02><3 ‘ I — QW) 0 0 0 _285V/910-969v26 765v/26+361/910
2 15236 15236

000 765v/26+3611/910 2851/910—969+v/26

15236 15236

Then, Q3As = QEAQ has the desired zero-entry in its third column, and so does Q3TA2Q3:

1 4 __4 4 __ 2
3 335 V910 V26

3 _lt _ 2 _ 910 0
9 9v/35 105

QAQ=lo ~F B osE o =
9v/26 8
0 0 o 3% 0
0 0 0 0 -2

This is in upper-Hessenberg form. We find that A = QHQT with H as above and

1 0 0 0 0

0 —2 1L .1 1

13 3\2/3% \/%10 @

Q:=Q12Qs= |0 3 —35% ~m _§/7276
o 2 __71_ _‘7_ 3

3 3v/35 910 V26

0o 0 -3 26 0

V35 V910

is a Hessenberg decomposition of A (note @ is orthogonal as a product of orthogonal
matrices).

Using this methodology, any arbitrary square matrix A € C"*™ can be transformed
into upper-Hessenberg form via unitary similarity transformations in (at most) n—2 steps.
We are now able to find a Hessenberg decomposition to any given square matrix.

Remark 6.12 (Non-uniqueness of Hessenberg decomposition). The Hessenberg decompo-
sition is not unique. Consider, e.g., a 2 x 2 matrix A € C?*2. Then, for any unitary
Q € C?*2) we have that A = Q(Q*AQ)Q* is a Hessenberg decomposition of A (note
Q*AQ € C?*? is upper-Hessenberg as any 2 x 2 matrix is upper-Hessenberg).

Remark 6.13 (Hessenberg decomposition of hermitian matrices). Let A € C"*™ be hermi-
tian, and let A = QHQ* be a Hessenberg decomposition of A. Then, H* = (Q*AQ)* =
Q*A*Q = Q*AQ = H, i.e., H is a hermitian matrix in upper-Hessenberg form and thus,
H must be tridiagonal. Therefore, we can transform any hermitian matrix via unitary
similarity transformations into a hermitian tridiagonal matrix, and any real symmetric
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matrix via orthogonal similarity transformations into a symmetric tridiagonal matrix: (il-
lustration for n = 6)

¥ ok k% %k % % * x 0 0 0 O

¥ k% ok ok % * x x 0 0 O

A * k% x k% A= A ‘A 0O = * x 0 O
Tlx ox o ox o ox x| - = H=0'AQ= 0 0 « x *x 0
* % %k ok ok 0 0 0 x x =

x ok x % k% 0 00 0 % =

To summarize, we are now able to transform any square matrix A € C"*" via unitary
similarity transformations into upper-Hessenberg form H = Q*AQ), and if A is hermitian,
the resulting Hessenberg matrix is actually a hermitian tridiagonal matrix. Recall that
similarity transformations do not change the spectrum of the matrix and hence, A(A) =
A(H). This “reduction” to upper-Hessenberg form is typically the first step of eigenvalue
algorithms. Let us provide the following algorithm:

Algorithm 6.1 (Transformation into upper-Hessenberg form). Let A € R™*". To obtain
the factor H of a Hessenberg decomposition A = QHQT, do as follows:

fori=1,...,n—2do

Tr = Ai+l:n,i
v; = sign({z, 1) [elber + @
v = Ui

P vl

Ai—i—l:n,i:n = Ai-i—l:n,i:n — 2v; (U;[‘Ai—i—l:n,i:n)
Almittin = Atmittin — 2 (ALt 1:00i) OF
end for.
The algorithm stores the result H in place of A. Note that Q) is not explicitly formed, but
can be obtained from the vectors vy, ..., v,_9, if desired, analogously to Section 3.5.

Remark 6.14. The above algorithm works for complex matrices as well. Note sign(z) := ‘—;

for z € C, (x,y) := y*z for z,y € C", and ||z||2 := Vz*z for x € C".
Theorem 6.6. Algom'thm requires ~ %n:g flops.
Proof. Omitted. O

Remark 6.15. If A € R™™" is symmetric, clever modifications of Algorithm [6.1] n are used in
practice to transform into tridiagonal form (recall Remark -D using only ~ 2n? flops.

Theorem 6.7 (Backward stability of Hessenberg via Householder). Suppose we apply
Algorithm |6 . 1| to a matriz A € R™" leading to outputs H € R™™ and 0y,...,0, € R"
(the computed factor H and reflection vectors v; in floating point computatwn) Writing
Q:=Q1Qs...Qn_o with Q; denoting the orthogonal matrix corresponding to the reflection
vector v;, there holds

QHQT = A+ AA  for some AA € R™" with ”HAH‘ = O(Emachine)

for all matriz norms || - || on R™ ™.
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6.4 Some classical algorithms

Restriction: For simplicity, we will assume from now on that A = AT € R"*"_i.e., that
A is a real symmetric matrix. Then, there exist an orthogonal matrix Q € R™*" and a
diagonal matrix D = diag, ,(A1,...,An) € R™"™ with {A1,..., A} = A(4) C R such
that A = QDQ". (Note the i-th column of @Q is an eigenvector to the eigenvalue );.)

The Rayleigh quotient

The Rayleigh quotient plays an important role in the numerical computation of eigenvalues
and is defined as follows:

Definition 6.7 (Rayleigh quotient). Let A € R™*" be a symmetric matrix. We define
the map

rTAr  (Az, ) x x
R4 : R™M\{0} — R, x = L= <A , >
el a3 2" [l[l2

For z € R"\{0}, we call the value R4(x) € R the Rayleigh quotient of z (corresponding
to the matrix A).

Theorem 6.8 (Properties of the Rayleigh quotient). Let A € R™ " be a symmetric matriz.
Then, we have the following:

(i) If x € R™\{0} is an eigenvector of A, then Ra(x) is its corresponding eigenvalue.
(i) Ry is differentiable on R™\{0} with gradient

Az — (Ra(z))x
Ix]13

VR, :R"\{0} — R", T2

For x € R™\{0}, there holds VRa(z) = 0 iff x is an eigenvector of A (i.e., the
stationary points of R4 are the eigenvectors of A).

(iii) If ¢ € R™\{0} is an eigenvector of A, then |Ra(x) — Ra(q)| = O(||lz —q||3) as z — q.

Proof. (i) Let x € R™\{0} be an eigenvector of A and let A € R be its corresponding
eigenvalue, i.e., Ax = Az. Then, Ry(x) = <‘|?5"é> = <ﬁ‘§"é> = )\T‘Z’@ =\

(ii) Let us define the maps f,g: R® — R given by f(z) := #* Az and g(z) := 2"z, i.e.,
writing © = (21,...,2,)T:

f(z) = Z aijrizy,  g(w) = Zﬂfg
=1

ij=1

L~

Note that Ra(x) = g(—i) for any z € R"\{0}. We compute

~

n n n
Vf(a:) = Z a;j (xjei + xiej) = Z Q;i;Tje; + Z Q5 T;€5
i,j=1

ij=1 ij=1

n n
=2 Z aijzujei =2 Z(Al‘)zez = 2Ax
=1

1,j=1
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and Vg(z) = 2z (follows from previous calculation with A = I,, since g(z) = z'I,z).
Therefore, for any x € R™\{0}, we have

— z||2Ax — 2(2T Ax)x T — )z
VRA(x)z(W>(x):2” 134z — 2(=TAz)z _ Az — (Ra(x))

We now show the second part of (ii). If z € R™\{0} is such that VRs(z) = 0 € R", then
Az = (Ra(z))x and thus, z is an eigenvector of A (corresponding to the eigenvalue R4(x)).
Conversely, suppose z € R™\{0} is an eigenvector of A and denote the corresponding
eigenvalue by A, ie., Az = Az. We know from (i) that A = R4(z) and hence, Az =
(Ra(x))z. It follows that VR4(x) =0 € R".

12 N (13

(iii) Let ¢ € R™\{0} be an eigenvector of A. Since R4 is a smooth function, we have
by Taylor’s theorem that Ra(z) = Ra(q) + (VRA(q)) T2+ O(||z — q||3) as z — ¢. In view
of (ii), we have that VR4(¢) = 0 € R™ and the result follows. O

Power iteration (Von Mises iteration): A method for the largest eigenvalue

The following algorithm computes the largest (in absolute value) eigenvalue and a corre-
sponding normalized eigenvector of a given matrix (under suitable assumptions):

Algorithm 6.2 (Power iteration). Let A € R"*" be a symmetric matrix. Choose a vector
v® € R with [[v(@ ||y = 1, and do the following:
for k=1,2,3,... do
w = AvF=1)

pk) — w
Twllz

AR — <Av(k‘),v(k)>
end for

Remark 6.16. In practice, a suitable stopping criterion is necessary, an issue which we
neglect in this course.

Remark 6.17. The algorithm produces a sequence (U(k)) ren of vectors in R™ given by the

relation v*) = ﬁ Vk € N, ie., vk = % Vk € N, and a sequence (A®)),cn

of real numbers given by A(®¥) = R, (v*)) (note vy =1 for all k).

Theorem 6.9 (Convergence of power iteration). Let A € R™*™ be a symmetric matric
with an eigenvalue decomposition A = QDQT with Q = (q1|---|gn) € R™™ orthogonal and
D = diag,, ., (A1,..., A\n) € R with {\,..., A} = A(A) and |A1| > [A2] = -+ > |\
Let vl € R™ with [[v]]y = 1, and let (v®)) € R™ and (\F))pen be the sequences produced
by Algorithm . If || > |Xa| and (v q1) # 0, then there holds

A2

ME) 5 Xy with convergence rate  |A®) — \| = O < ™
1

2k
) as k — oo, (6.4)

and there holds

[o® — spqif2 = O < X2
A1

k
) as k— o0 (6.5)

for some (sp)ren € {—1,1}. (We may say span(v*)) converges to span(q) as k — oc.)
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Proof. Suppose |A1] > |[A2| and (v q1) # 0. Let us write v® = Y% ¢;q; with
1,...,¢n € R given by ¢; = (00, ¢;) for i € {1,...,n}. Note that ¢; # 0. Then, we
have that

k
o AR QDRQTO S ety et 0+ S E(X) a

- n Cq i k
q1 + Zi:2 a (*1) qi

[ARO, — 4O, S, cxfal, el

<

2

If A\; > 0, we find that v*) — sign(c;)q1 as k — oo with the desired rate (i.e., holds
with sg := sign(c;) for all k). If Ay < 0, we find holds with s := (—1)sign(cy).
Convergence of the sequence (A*%)) to A\; as claimed in now follows from Theorem
(iii) (recall A*) = R4 (v(®)) from Remark . O

Remark 6.18 (Drawbacks of power iteration). The power iteration has the following draw-
backs:

(i) It only computes the normalized eigenvector for the largest eigenvalue (and it com-
putes only this largest eigenvalue).

(ii) The rate of convergence for span(v*)) to span(q) is only linear, i.e., the error in
each step is reduced by a constant factor (= |3\\—;\)

(iii) If |[A1] > |A2|, but |A1] is close to Az, then the convergence is very slow (as |f\‘—f\ is
only slightly below 1).

Inverse iteration: Power iteration for (A — pul,)~!

Let us explain how to resolve the drawbacks (i) and (iii) from Remark of power
iteration. The key observation is the following:

Remark 6.19. Let A € R™ ™ be a symmetric matrix with an eigenvalue decomposition
A = QDQT with Q = (q1]+-+|gn) € R™™ orthogonal and D = diag,,,,(A1,.-.,\n) €
R™™ with {A1,...,A\n} = A(A). Let p € R\A(A). Then, the matrix A — pul,, € R™"™ is
invertible and we have that

AA—pL) ™) ={M - Q=) '}

Indeed, for i € {1,...,n}, we have that (A — ul,) " tq; = (N\; — ) "1g; since

(A= pLy) (N — )7 a) = (N — )7 (Ag — pa) = (N — 1)~ (s = g = g,

i.e., ¢; is an eigenvector to (A — ul,) ™! corresponding to the eigenvalue (\; — ). (Note
that the eigenvectors of (A — ul,)~! are the same as the eigenvectors of A.)

We observe that the eigenvalue of (A — ul,)~! with the largest absolute value is
(Aj — p)~1, where ), is the eigenvalue of A closest to p.

In view of this observation, we can apply the power iteration to (4 — ul,)~! to find
the eigenvalue of A which is closest to u (and a corresponding normalized eigenvector).

Algorithm 6.3 (Inverse iteration). Let A € R™ "™ be a symmetric matrix and p €
R\A(A). Choose a vector v(® € R™ with ||v(? ||y = 1, and do the following:
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for k=1,2,3,... do
Solve the linear system (A — pul,)w = pk=1) (= w=(A- M[n)*lv(kfl))

v =
wl[2
A8 Z (4p®), )
end for

Remark 6.20. Without going into detail, let us mention that possible ill-conditioning of
(A — pul,)~! when p is close to an eigenvalue of A does not pose a problem here.

Theorem 6.10 (Convergence of inverse iteration). Let A € R™™ be a symmetric matriz
with an eigenvalue decomposition A = QDQT with Q = (q1|---|gn) € R™™ orthogonal
and D = diag, ,(A1,...,An) € R™™ with {A\1,..., A} = A(A). Let p € R\A(A), let
v € R™ with vy = 1, and let (v®)) € R™ and (A F)en be the sequences produced
by Algorithm[6.3 Suppose that \j, \y € A(A) are such that | — Aj| < | — M| < | — A
Vie {1,...,n}\{j} (i-e., \; is the closest and Xy, the second closest eigenvalue of A to )
and that (v, q;) # 0. Then, there holds

k

) as k — oo

A —u 2k Aj— 1
A® = x| =0 (] J ) 0%~ syl = 0 (\A
E— M
for some (sg)ken € {—1,1}.

Ak —
Proof. This result follows from Theorem applied to the matrix A= (A - pul,)!
upon noting that Ay := (Aj — )~ tis the eigenvalue of A with the largest absolute value,
Ao i= (A — p) L is the eigenvalue of A with the second largest absolute value, and that
¢1 := q; is the eigenvector of A corresponding to the eigenvalue ;. O

Remark 6.21. If we have a good estimate for a certain eigenvalue of A, we can now apply
inverse iteration to produce this eigenvalue and a corresponding normalized eigenvector.
In particular, inverse iteration is the go-to method if one wants to find eigenvectors to
eigenvalues which are already known. The drawback of inverse iteration is the slow speed
of convergence (linear convergence, same as for power iteration).

Rayleigh quotient iteration: combining inverse iteration and Rayleigh quotient

The key idea of the Rayleigh quotient iteration is to combine the Rayleigh quotient (a
way to find an eigenvalue from an eigenvector) with inverse iteration (a way to find an
eigenvector from an eigenvalue).

Algorithm 6.4 (Rayleigh quotient iteration). Let A € R™ "™ be a symmetric matrix.
Choose a vector v(©) € R™ with [[o(@ s = 1, set A(O) := (A0 () and do the following:
for k=1,2,3,... do
Solve the linear system (A — AX*=D T, )w = v+=1

o) =
w2
AR — <Av(k)’v(k)>
end for

Theorem 6.11 (Convergence of Rayleigh quotient iteration). Let A € R™™ be a sym-
metric matriz with an eigenvalue decomposition A = QDQT with Q = (q1] - - - |g,) € R™"

90



orthogonal and D = diag, ., (A1,...,A\n) € R™™ with {\1,..., \n} = A(A). Then, for
almost all (all except for a set of measure zero) v(® € R™ with ||[v(® |y = 1, the sequences
(®)) C R™ and (A®)) C R produced by Algorithm converge to an eigenvector and
eigenvalue of A. Further, in this case and if A\; € A(A) is such that v s sufficiently
close to qj, then there holds

D == 0 (X0 =X)L 6 = siagilla = O ([0 = sigjllf) as k= o0

for some (sk)ken € {—1,1}.
Proof. Omitted. O

Remark 6.22. Let us emphasize that we have cubic convergence! (extremely quick)

-1 2 2
Ezample 6.2. Consider the symmetric matrix A= 2 1 2 |. We perform Rayleigh
2 2 -1
quotient iteration with v(® := %(1, —2,2)T. To illustrate the speed of convergence, we
have colored the correct digits in red.
Step 0: Compute
AO i 4y Oy = _157 — 1.8888. ..

Step 1: (k = 1.) Solve (A — AXOI3)w® = v We find w® = 3/(191, —265,184)".
Compute

191
(1) 3v15618 0.5094 ... 128518
.. v — =265 | _ | _ 1 .— D LMy = - _
vt TECIE Wigp ( 0043(())6;8... , o A = (A oY) 0281 1.8286. ..
315618 '
Step 2: (k= 2.) Solve (A — X 13)w® = v and compute
@) 0.49999838 ...
0@ = @i = | ~0-70710677.... | , A2 = (4@ @)y = —1.82842712475. ..
w2 0.50000162.. ..

(Remark: (A(®)) converges to 1 — 2v/2, and span(v*®)) converges to span((3, —%, 1))
Stopping at k = 2, we see that our approximation A3 to the exact eigenvalue is already

accurate to 11 digits. If the algorithm would be preformed in exact arithmetic, we would

expect at k = 3 accuracy to around 33 digits and, e.g., at k = 5 accuracy to around 297

digits).

6.5 The QR algorithm

Restriction: As in the previous section, we assume that A = AT € R™ " i.e., that A is a
real symmetric matrix. Then, there exist an orthogonal matrix Q € R™*™ and a diagonal
matrix D = diag, ., (A1, ..., An) € R™™ with {\1,...,\,} = A(4) CR and 4 = QDQT.

Let us recall that if A € R™™™ is symmetric, we can transform A into a symmetric
tridiagonal matrix via orthogonal similarity transforms, i.e., we can find a Hessenberg
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decomposition A = QHQT with Q € R™™" orthogonal and H € R™" symmetric and
tridiagonal (see Remark . This is what we do as the first step of the so-called QR
algorithm: we reduce A to tridiagonal form in the aforementioned way and work with H
instead of A.

QR algorithm

Let us discuss the following algorithm:

Algorithm 6.5 (QR algorithm). Let A € R"*" be a symmetric tridiagonal matrix. Set
A := A and do the following:
for k=1,2,3,... do
Compute a QR factorization A*—1) = Q) R(K) of Ak—1)
AF) = RE) Q)
end for

Remark 6.23. Note that the iterates in Algorithm satisfy A% = (Q(k))TA(k'*l)Q(k),
i.e., the QR algorithm consists of orthogonal similarity transformations.

We are going to see that the sequence (A(k))keN produced by Algorithm converges
under suitable assumptions to a Schur form of A (i.e., in view of Remark to a
diagonal matrix containing the eigenvalues of A on the diagonal). Let us introduce a
second method, the simultaneous iteration, which will actually turn out to be equivalent
to the QR algorithm.

Simultaneous iteration (block power iteration)

Suppose we are given a symmetric tridiagonal matrix A € R™"*" (i.e., Hessenberg reduc-
tion has already been performed). Consider the following natural approach. Take linearly

independent vectors v%o), e ,USLO) € R"™ and apply the power iteration to these vectors

simultaneously in the following sense: Setting V(©) := (v§0)| e |v§LO)), compute the matrix

V#) .= ARV () and write (v%k)| e \vgk)) =y = (Akv§0)| e \Akvq(lo)), and finally orthog-
onalize V(¥ in the sense of computing a QR factorization V) = Q) R() Then, under
suitable assumptions, the span of the first [ columns of Q¥ will converge to the span of
the eigenvectors corresponding to the [ largest (in absolute value) eigenvalues of A.

In practice, in view of numerical stability, the following normalized version of simulta-
neous iteration is used (orthonormalize at each step):

Algorithm 6.6 (Simultaneous iteration). Let A € R™ ™ be a symmetric tridiagonal
matrix. Choose an orthogonal matrix Q(©) € R™*™. Do the following:
for k=1,2,3,... do
Z = AQKD
Compute a QR factorization Z = QW RK) of Z
Alk) — (Q(k))TAQ(k)
end for

Theorem 6.12 (Convergence of simultaneous iteration). Let A € R™™" be a symmetric
tridiagonal matriz with an eigenvalue decomposition A = QDQT with Q = (q1|---|qn) €
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R™™ orthogonal and D = diag,, ., (A1, ..., An) € R™™ with {\1,...,\n} = A(A). Suppose
IA1] > A2 > - > Al
Then, if Algorithm is performed with an initial choice Q(©) € R™™ satisfying
det(My14) #0 Vie{l,...,n}, where M := QTQO

=(q (k) ] ]qgﬂ)), we have for any j € {1,...,n} that for some (sk)ken C

k
(k) =
llg;™ = skajlla = O ((m{ﬁﬁf—l} > ) |

Theorem 6.13 (Equivalence of QR algorithm and simultaneous iteration). Algorithm
and Algorithm with Q) := I,, produce the same sequences (A(k))keN. Further, we
have that

and writing Q¥
{=1,1} there holds

Ait1
Ai

1 k ~(k
QL) = QLRQSK - Qo = Q4%
~ 2 2) (1
Rélt) = Rélt) Rélt) Rélt) Rézl)% 'REQI){REQI)% - R( )
for any k € N, and there holds
A(k) — (Q(k) )T A Qg}){7
Q RQR

(Here, the subscript slt refers to the iterates from simultaneous iteration and the subscript
QR refers to the iterates from the QR algorithm.)

Theorem 6.14 (Convergence of QR algorithm). Let A € R™ "™ be a symmetric tridiag-
onal matriz with an eigenvalue decomposition A = QDQT with Q = (q1|---|gs) € R™"
orthogonal and D = diag,,,.,,(A1, ..., An) € R™™ with {\1,...,A\n} = A(A). Suppose

Al > Pl > o > Al
and that
det(Qr.i14) #0 Vie {1,...,n}.

Let (A®)cry and (Q)) e be the sequences produced by Algorithm applied to A, and
let (Q™))en be the sequence with Q) = ( ] ]N(k )= QWQR® ...QW for k € N.
Then, as k — oo, there holds A®) — D, and for any j € {1 ..,n} we have for some
(sk)ken € {—1,1} that (jj(-k) — 5xq; — 0. The speed of convergence is linear with constant

)\’L+1

MmaXie(1,..,n-1}

Remark 6.24. Note that the diagonal entries of the iterates A®) produced by the QR

algorithm are Rayleigh quotients: Writing A*) = (a(.]?)

i; ), we have

aff) = (e AVer) = (61, (QW)TAQWer) = (QWer, AQWer) = (3, 44" = Ra(@")

(23

for any i € {1,...,n}.



1 -1 0
Ezample 6.3 (QR algorithm). Let us consider the matrix A := [ -1 1 1]. The
0 1 1
matrix A has the eigenvalue decomposition A = QDQ" with
1+v2 0 0 2414... 0 0
D = diag3x3()\1,)\2, /\3) = 0 1 0 = 0 1 0 s
0 0 1-v2 0 0 —0.414...
11 1
2 2 T2 —-0.5  0.707... —0.5
Q = (q¢1]g2lq3) :== % 0 —% =10.707... 0 —0.707...
1 1 1
5 7 3 0.5 0.707. .. 0.5

Note that the assumptions of Theorem are satisfied. Let us perform the QR algorithm:

k = 1: We need to compute a QR factorization of A©) := A. We omit the details and take
the QR factorization A = QW RM with

5 0 % V2 V2 -
QW:=1-%5 0 Z|, RBRY:=[0 1 1
1
0 1 0 0 0
We compute
5 0 2 —0.707... 0
AW .= RWQM = [ — 7| =-0707... 1 0.707... |,
0 0 0.707... 0

=|-0707... 0 0.707...

1
1
V2
7 0.707... 0 0.707...
1
2
0 0 10

1

V2
A1) . — o) — | __L
QW =W =| -1

0

k = 2: We need to compute a QR factorization of A®). We omit the details and take the
QR factorization AV = QP R?) with

2v2 1 1 % —1 —ﬁ
3
1
RV R 00 ¥
We compute
I -1 0 2.333... —0.333... 0
AP =RPQ® = -1 1 1 ]=1-0333... 1 0.333... |,
0 3 -3 0 0.333... —0.333...
i i 3 % —% 0.666... 0.666... —0.333...
Q¥ .= QWQ® = —% 3 )= —0.666... 0.333... —0.666...
-3 5 2 —0.333... 0.666... 0.666...
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k = 3: We need to compute a QR factorization of A®). We omit the details and take the

QR factorization A® = QBIRG) with

T2 1 5v2 2 1
5/2 15 152 Tf _% T 15v2
QB = L 14 R® .— 1 1
=1 75v2 15 15\/} 0 5
1 22 _9
0 3 -5 00 55
We compute
Y 55 0 24 —0.141... 0
3) . pB)NHB) | 1 1]
A® = RBIQE) = | -1 } g | = | 014t 1 0.141... ],
0 L - 0 0.141... —0.4
4 3 4
) ) , V2 5 5y2 0.565... 0.6 0.565...
QW =QPQW=|-5% 0 5 |=|-0707... 0 0707... |.
e B —0.424... 0.8 —0.424...

: We need to compute a QR factorization of A®). We omit the details and take the

QR factorization A®) = QWRW with

17
oW .— | J1 W Y rRo— 5 1 ¥
17 815 857 ’ 51\%
0 53 5 0 0 57
We compute
a4 L0 2.411... —0.058... 0
AW =RWW = -L 1 L |= —0058... 1 0.058... |,
0 + —% 0.058... —0.411...
e 2 1% 0.529... 0.705... —0.470...
QW :=QWQW = | -12 %5 —12 0.705... 0.058... —0.705...
-£ 2 = —0.470... 0.705... 0.529...

We see that after 4 steps of the
approximations to the eigenvalues:

QR algorithm, we have obtained the following

41_

Mo~ =2411. (recall \; =14+ v2=2414...)
Ao R 1, (recall Ay = 1)
A3~ —1 = —0411..., (recall \3 =1 — V2= —0.414...)

and the following approximations to the (subspaces spanned by the) eigenvectors:

% 0.529. .. -1
span(q;) & span( —gg ) =span(| —0.705...]), (recall g1 = % )
. —0.470... 1
L 0.705. .. NG
span(qz) ~ span( %5 ) = span( | 0.058... |), (recallga =1 0 |)
= 0.705 %=
= 705 .. 7
—1% —0.470. .. —3
span(qz) ~ span( | —12 | ) =span(| —0.705...|)  (recall g3 = —% )
i 0.529... 1
17 2
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Exercise: do a few more iterations (you may use MATLAB). Further, perform simultaneous
iteration applied to A and verify at this example the results from Theorem [6.13

QR algorithm with Rayleigh quotient shift

Algorithm 6.7 (QR algorithm with Rayleigh quotient shift). Let A € R™*™ be a sym-
metric tridiagonal matrix. Set A(®) := A and do the following:

for k=1,2,3,... do
pk) = Ak [here, A s the (n,n)-entry of A*—1)]
Compute a QR factorization A®—Y — ,*) 1, = Q) RK) of the matrix A1 — K[,
A®) = Rk 1k,
end for
Remark 6.25. Let us make some observations.
(i) For k € N define Q) := QWQ® ...Q® and R®) .= R® ... R Then, for any
k € N we have
A®) = (QWNT 4QW) (A—pPL)A - p* V1) (A= pWVr1) = QPR
The first result follows from the fact that
AW = (QUNTQW (RKI QW) 4 W)y — (QW)T <(Q(k> RW)Q®) 1 u(mQ(k))
= (QUWNT << AR=D ok 4 M(mQ(k)) — (QW)T A= k)
for any k£ € N. The proof of the second result is omitted.

(ii) The first column of Q™) is the result of applying k steps of shifted power iteration
to ey with shifts (M, ..., u®), and the last column of Q™) is the result of applying
k steps of shifted inverse iteration to e, with shifts p™®), ..., u®). To see the latter,
define P := (ey,|---|e2]le1) € R™*™ and note that

(A= p® 1) A= uD L) (A = gD 1) TP = (QWEM) TP
= ((R®)=1@®) ) = (QWP)(P((RW)™)TP)
is a QR factorization of the left-hand side.
(iii) For any k € N, we have
AL = (en, APen) = (en, (QM)TAQWey) = (QWen, AQWe,) = (a7, A
— RA( (k:))
where q( ). = QWe,, denotes the last column of Q*)

(iv) The approximation p®) to the eigenvalue corresponding to the eigenvector approx-

imated by (jfzk), and the approximated eigenvector qN,(lk), are the result of Rayleigh

quotient iteration applied to e,. It follows that we have cubic convergence for the

(k)

convergence of span(g, ') to the span of an eigenvector.
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QR algorithm in practice

In practice, a technique called deflation is used:

Algorithm 6.8 (QR algorithm in practice). Let A be a real symmetric tridiagonal square
matrix. Set A©) := A and do the following:

for k=1,2,3,... do

Choose a shift (), e.g., the final diagonal entry of A*—1)
Compute a QR factorization A®—Y — ,*) 1, = Q) RK) of the matrix A1 — B[,
A®) = Bk 4 (k1
If an off-diagonal element AEI?H is sufficiently close to 0, set AEI?H =0, Agi)u =0
so that AK) = 14(1)1 ;1)2 is block-diagonal and apply the algorithm to Ay and As.

end for
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