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1 Preliminaries

1.1 Matrices

Definition 1.1. For m,n ∈ N = {1, 2, . . . }, we denote the class of real matrices of size
m× n (m rows, n columns) by

Rm×n :=




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


∣∣∣∣∣∣∣∣∣ aij ∈ R ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

 .

We set Rm := Rm×1 to denote the class of real column vectors of length m.

Notation: For a matrix A ∈ Rm×n, we often write A = (aij) with aij ∈ R denoting
the (i, j)-th entry (row i, column j) of A, and A = (a1|a2| · · · |an) with a1, . . . , an ∈ Rm

denoting the column vectors of A.

1.1.1 Basic operations

For A = (aij) ∈ Rm×n, B = (bij) ∈ Rm×n, C = (cij) ∈ Rn×l and α ∈ R, we define

• addition: A+B ∈ Rm×n, (A+B)ij := aij + bij ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},

• scalar multiplication: αA ∈ Rm×n, (αA)ij := αaij ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n},

• transposition: AT ∈ Rn×m, (AT)ij := aji ∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},

• matrix multiplication: AC ∈ Rm×l given by

(AC)ij :=
n∑

k=1

aikckj ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , l}.

Let us note that matrix multiplication allows us to form matrix-vector products, i.e.,
for a matrix A = (aij) ∈ Rm×n and a vector x = (x1, x2, . . . , xn)

T ∈ Rn = Rn×1, we have
Ax ∈ Rm×1 = Rm with entries (Ax)i =

∑n
k=1 aikxk for i ∈ {1, . . . ,m}.

Remark 1.1. (i) Matrix-vector product: For A = (a1|a2| · · · |an) ∈ Rm×n and x =
(x1, x2, . . . , xn)

T ∈ Rn, we have

Ax =
n∑

k=1

xkak ∈ span(a1, . . . , an) ⊆ Rm,

i.e., Ax is a linear combination of the columns ak of A with coefficients xk.

(ii) Matrix-matrix product: For matrices A = (a1|a2| · · · |an) ∈ Rm×n and C =
(c1|c2| · · · |cl) ∈ Rn×l, let B := AC = (b1|b2| · · · |bl) ∈ Rm×l. We then have

bi = Aci =

n∑
k=1

ckiak ∈ span(a1, . . . , an) ⊆ Rm ∀i ∈ {1, . . . , l},

i.e., bi is a linear combination of the columns ak of A with coefficients cki.
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1.1.2 Connection to linear maps

Any matrix A ∈ Rm×n induces a linear map via matrix-vector multiplication, that is, the
map

LA : Rn → Rm, x 7→ Ax (1.1)

is linear. Recall that a map L : Rn → Rm is called linear, denoted L ∈ L(Rn,Rm), iff
(short for “if, and only if,”) it satisfies L(αx + y) = αL(x) + L(y) for all x, y ∈ Rn and
α ∈ R. Conversely, any linear map from Rn to Rm can be represented by a m× n matrix
in the sense that for any L ∈ L(Rn,Rm) there exists A ∈ Rm×n such that L = LA.

Theorem 1.1. There holds L(Rn,Rm) = {LA : A ∈ Rm×n} with LA as in (1.1).

Proof. We have already observed that {LA : A ∈ Rm×n} ⊆ L(Rn,Rm). For the converse
inclusion, given L ∈ L(Rn,Rm), we have for any x = (x1, x2, . . . , xn)

T ∈ Rn that

L(x) = L

(
n∑

i=1

xiei

)
=

n∑
i=1

xiL(ei) = Ax with A := (L(e1)|L(e2)| · · · |L(en)) ∈ Rm×n.

Here, e1, . . . , en denote the canonical basis vectors of Rn.

Let us point out the behavior of the linear map (1.1) under addition, scalar multipli-
cation and matrix multiplication: For A,B ∈ Rm×n, C ∈ Rn×l and α ∈ R, we have

LA+B = LA + LB, LαA = αLA, LAC = LA ◦ LC .

1.1.3 Range and nullspace

Definition 1.2. Let A ∈ Rm×n. We then define

(i) the range of A to be R(A) := {y ∈ Rm| ∃x ∈ Rn : y = Ax},

(ii) the nullspace of A to be N (A) := {x ∈ Rn |Ax = 0},

(iii) the rank of A to be rk(A) := dim(R(A)),

(iv) the nullity of A to be nullity(A) := dim(N (A)).

Remark 1.2. In view of Remark 1.1, we have for A = (a1|a2| · · · |an) ∈ Rm×n that R(A) =
span(a1, . . . , an). We also call R(A) the column space of A.

Theorem 1.2. Let A,B ∈ Rm×n and C ∈ Rn×l. Then the following assertions hold.

(i) 0 ≤ rk(A) = rk(AT) ≤ min{m,n} (“column rank equals row rank”),

(ii) rk(A) + nullity(A) = n (“rank-nullity theorem”),

(iii) rk(A) + rk(C)− n ≤ rk(AC) ≤ min{rk(A), rk(C)} (“Sylvester’s inequalities”),

(iv) rk(A+B) ≤ rk(A) + rk(B),

(v) rk(ATA) = rk(A) = rk(AAT).

4



Proof. See undergraduate linear algebra.

In view of (i), we say that a matrix A ∈ Rm×n is of full rank iff it satisfies rk(A) =
min{m,n}. Otherwise, when rk(A) < min{m,n}, we call A rank-deficient. For m ≥ n,
we can characterize matrices of full rank as follows.

Theorem 1.3. Let A = (a1|a2| · · · |an) ∈ Rm×n with m ≥ n. Then the following assertions
are equivalent.

(i) A is of full rank, i.e., rk(A) = n.

(ii) The columns a1, . . . , an ∈ Rm of A are linearly independent.

(iii) The associated linear map LA given by (1.1) is injective.

Proof. (i)⇒(ii): If rk(A) = dim(span(a1, . . . , an)) = n, then clearly a1, . . . , an are linearly
independent.
(ii)⇒(iii): Suppose that the columns a1, . . . , an ∈ Rm of A are linearly independent, and let
x = (x1, x2, . . . , xn)

T, y = (y1, y2, . . . , yn)
T ∈ Rn such that LA(x) = LA(y), i.e., Ax = Ay.

Then A(x− y) =
∑n

i=1(xi − yi)ai = 0 ∈ Rm and hence, xi − yi = 0 for all i ∈ {1, . . . , n},
i.e., x = y.
(iii)⇒(i): We show the contrapositive ¬(i)⇒ ¬(iii). To this end, suppose that A is not
of full rank. Then, rk(A) = dim(span(a1, . . . , an)) < n and hence, a1, . . . , an are linearly
dependent. Then, there exists c = (c1, c2, . . . , cn)

T ∈ Rn\{0} such that
∑n

i=1 ciai = 0 and
we conclude that LA is not injective as LA(c) = Ac = 0 = LA(0) and c ̸= 0.

1.1.4 Invertible matrices

We now turn our attention to square matrices A ∈ Rn×n. For n ∈ N, we let

In := (e1|e2| · · · |en) :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ∈ Rn×n

denote the n× n identity matrix. Here, e1, . . . , en are the canonical basis vectors of Rn.

Definition 1.3. A matrix A ∈ Rn×n is said to be invertible (or non-singular) iff there
exists a matrix A−1 ∈ Rn×n, called the inverse of A, such that AA−1 = A−1A = In.

Remark 1.3. Let A = (a1|a2| · · · |an) ∈ Rn×n be invertible with inverse A−1 ∈ Rn×n, and
let b =

∑n
k=1 bkek ∈ Rn. Further, let x = A−1b =

∑n
k=1 xkek ∈ Rn. We regard x as the

unique solution to Ax = b, i.e., b =
∑n

k=1 xkak. Observe that A−1b is the vector containing
the coefficients of the expansion of b in the basis {a1, . . . , an}. Hence, multiplication by
A−1 corresponds to a change of basis operation.

Observe that invertibility of a matrix A ∈ Rn×n is equivalent to invertibility of the
associated linear map LA from (1.1). We state a few equivalent characterizations of in-
vertibility.

Theorem 1.4. For A ∈ Rn×n, we have the equivalences

A invertible ⇔ rk(A) = n ⇔ R(A) = Rn ⇔ N (A) = {0} ⇔ det(A) ̸= 0 ⇔ 0 ̸∈ Λ(A).
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Proof. See undergraduate linear algebra.

Here, det(A) denotes the determinant and Λ(A) := {λ ∈ C : det(A − λIn) = 0} the
spectrum (set of eigenvalues) of A ∈ Rn×n.

Theorem 1.5. Let A,C ∈ Rn×n be invertible matrices and let α ∈ R\{0}. Then also
A−1, AC, αA,AT ∈ Rn×n are invertible and we have the following:

(i) (A−1)−1 = A, (AC)−1 = C−1A−1, (αA)−1 = 1
αA

−1, (AT)−1 = (A−1)T.

(ii) rk(A−1) = rk(A) = n, det(A−1) = 1
det(A) .

Proof. Assertion (i) is straightforward using Definition 1.3. Note rk(A−1) = rk(A) = n
from Theorem 1.4 and invertibility of A and A−1. Finally, note det(A) ̸= 0 from Theorem
1.4 and det(A−1) det(A) = det(A−1A) = det(In) = 1 using the multiplicative property of
the determinant.

Remark 1.4. Let us provide the corresponding results for transposition. For matrices
A,B ∈ Rm×n, C ∈ Rn×l, and a scalar α ∈ R, we have the following:

(i) (AT)T = A, (AC)T = CTAT, (αA)T = αAT, (A+B)T = AT +BT.

(ii) rk(AT) = rk(A), det(AT) = det(A).

Definition 1.4. A matrix A ∈ Rn×n is said to be symmetric iff AT = A. A matrix
Q ∈ Rn×n is said to be orthogonal iff Q is invertible and Q−1 = QT.

1.1.5 Orthogonality

Definition 1.5. Let x, y ∈ Rn. We define

(i) the Euclidean inner product ⟨x, y⟩ := xTy ∈ R, and

(ii) the Euclidean norm ∥x∥2 :=
√
⟨x, x⟩ ∈ R.

It can be shown that ⟨x, y⟩ = ∥x∥2∥y∥2 cos(θx,y) for any x, y ∈ Rn, where θx,y denotes
the angle between the vectors x and y. Further, it is straightforward to check that the
inner product is bilinear, i.e., we have for any x, x1, x2, y, y1, y2 ∈ Rn and α ∈ R that

⟨αx1 + x2, y⟩ = α⟨x1, y⟩+ ⟨x2, y⟩, ⟨x, αy1 + y2⟩ = α⟨x, y1⟩+ ⟨x, y2⟩.

Further we have that ⟨·, ·⟩ is symmetric, i.e., ⟨x, y⟩ = ⟨y, x⟩ for any x, y ∈ Rn.

Definition 1.6. We make the following definitions regarding orthogonality.

(i) Two vectors x, y ∈ Rn are called orthogonal, denoted x ⊥ y, iff ⟨x, y⟩ = 0.

(ii) Two sets X,Y ⊆ Rn are called orthogonal, denoted X ⊥ Y , iff x ⊥ y ∀x ∈ X, y ∈ Y .

(iii) A set S ⊆ Rn\{0} is called orthogonal iff ∀x, y ∈ S : x ̸= y =⇒ x ⊥ y.

(iv) A set S ⊆ Rn\{0} is called orthonormal iff S is orthogonal and ∥x∥2 = 1 ∀x ∈ S.

Theorem 1.6. The vectors in an orthogonal set S ⊆ Rn\{0} are linearly independent. In
particular, any orthogonal set S ⊆ Rn\{0} containing n vectors is a basis for Rn.
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Proof. Let S = {v1, . . . , vN} ⊆ Rn\{0} be an orthogonal set and suppose that its elements
were linearly dependent. Then, there exists a vector vk ∈ S which can be expressed as
vk =

∑
i∈{1,...,N}\{k} civi for some ci ∈ R, i ∈ {1, . . . , N}\{k}, and we find that

∥vk∥22 = ⟨vk, vk⟩ =
∑

i∈{1,...,N}\{k}

ci⟨vi, vk⟩ = 0

as S is orthogonal. But this implies that vk = 0, contradicting vk ∈ S ⊆ Rn\{0}.

With the concept of orthogonality at hand, we can decompose a given vector into
orthogonal components. Indeed, given an arbitrary vector x ∈ Rn and an orthonormal set
{q1, q2, . . . , qN} ⊆ Rn\{0}, 1 ≤ N ≤ n, we set r := x−

∑N
k=1⟨x, qk⟩qk ∈ Rn and write

x =
N∑
k=1

⟨x, qk⟩qk + r =
N∑
k=1

(qkq
T
k )x+ r.

Then {r} ⊥ {q1, . . . , qN} as we have for any i ∈ {1, . . . , N} that

⟨r, qi⟩ = ⟨x, qi⟩ −
N∑
k=1

⟨x, qk⟩⟨qk, qi⟩ = ⟨x, qi⟩ − ⟨x, qi⟩ = 0, (1.2)

and we deduce that r is the part of x orthogonal to the subspace span(q1, . . . , qN ) ⊆ Rn,
and ⟨x, qk⟩qk = (qkq

T
k )x is the part of x in direction qk for k ∈ {1, . . . , N}. We will see later

that Pq := qqT is an orthogonal projector isolating the component in direction q ∈ Rn.
Observe that if N = n, we have that {q1, . . . , qn} is a basis of Rn and hence, r = 0.

Remark 1.5. Let Q = (q1|q2| · · · |qn) ∈ Rn×n be orthogonal. Then {q1, . . . , qn} ⊂ Rn is an
orthonormal basis of Rn. Indeed, QTQ = In yields that qTi qj = δij for all i, j ∈ {1, . . . , n}.

Here, δij denotes the Kronecker delta, i.e., δij = 1 if i = j, and δij = 0 if i ̸= j.

Remark 1.6. The Euclidean inner product is invariant under orthogonal transformations,
i.e., for an orthogonal matrix Q ∈ Rn×n there holds ⟨Qx,Qy⟩ = ⟨x, y⟩ for any x, y ∈ Rn.
In particular, we have ∥Qx∥2 = ∥x∥2 for any x ∈ Rn.

Let us also note that |det(Q)| = 1 for an orthognal matrix Q ∈ Rn×n. The associated
linear map LQ is an orthogonal transformation preserving the inner product on Rn, and
corresponds to a rigid rotation (when det(Q) = 1) or a reflection (when det(Q) = −1) of
the space. In dimension n = 2, we can characterize orthogonal matrices as follows.

Remark 1.7. Any orthogonal 2× 2 matrix Q ∈ R2×2 with det(Q) = 1 can be written as

Q =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ [0, 2π),

with LQ rotating the plane anticlockwise by the angle θ, and any orthogonal 2× 2 matrix
Q ∈ R2×2 with det(Q) = −1 can be written as

Q =

(
cos(β) sin(β)
sin(β) − cos(β)

)
, β ∈ [0, 2π),

with LQ reflecting the plane across y = tan(β/2)x if β ̸= π, and across x = 0 if β = π.
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1.2 Norms

Definition 1.7. A map ∥ · ∥ : V → [0,∞) from a vector space V over R (or C) into the
set of non-negative real numbers is called a norm iff there holds

(i) definiteness: ∀v ∈ V : ∥v∥ = 0 =⇒ v = 0,

(ii) absolute homogeneity: ∥αv∥ = |α|∥v∥ ∀v ∈ V, α ∈ R (or C),

(iii) triangle inequality: ∥v1 + v2∥ ≤ ∥v1∥+ ∥v2∥ ∀v1, v2 ∈ V .

If V = Rn, we say ∥ · ∥ is a vector norm, and if V = Rm×n, we say ∥ · ∥ is a matrix norm.

1.2.1 Vector norms

The most important vector norms are the p-norms ∥ · ∥p, including the Euclidean norm
for p = 2.

Definition 1.8. For p ∈ [1,∞), we define the p-norm ∥ · ∥p : Rn → [0,∞) given by

∥x∥p :=

(
n∑

i=1

|xi|p
) 1

p

, x = (x1, x2, . . . , xn)
T ∈ Rn.

Further, we define the ∞-norm (or maximum norm) ∥ · ∥∞ : Rn → [0,∞) given by

∥x∥∞ := max
i∈{1,...,n}

|xi|, x = (x1, x2, . . . , xn)
T ∈ Rn.

Remark 1.8. In dimension n = 1, we have ∥x∥p = |x| ∀x ∈ R for any p ∈ [1,∞) ∪ {∞}.

Lemma 1.1. Let p, q ∈ (1,∞) be such that there holds 1
p + 1

q = 1. Then, there holds

ab ≤ 1
pa

p + 1
q b

q for any a, b ∈ [0,∞). This inequality is called Young’s inequality.

Proof. Let us assume that a, b ∈ (0,∞) as the claim is trivial if a = 0 or b = 0. Let us note
that the exponential function exp : R → R is convex, i.e., for any α ∈ [0, 1] and x, y ∈ R
we have exp(αx+ (1− α)y) ≤ α exp(x) + (1− α) exp(y). We find that

ab = exp(log(ab)) = exp(p−1(p log(a)) + (1− p−1)(q log(b)))

≤ p−1 exp(p log(a)) + (1− p−1) exp(q log(b)) =
ap

p
+

bq

q
,

where log denotes the natural logarithm.

Theorem 1.7. Let p, q ∈ (1,∞) be such that there holds 1
p + 1

q = 1. Then, for any two

vectors x = (x1, x2, . . . , xn)
T, y = (y1, y2, . . . , yn)

T ∈ Rn there holds

|⟨x, y⟩| =

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

= ∥x∥p∥y∥q.

This inequality is called Hölder’s inequality. The special case p = q = 2 is also known as
the Cauchy–Schwarz inequality.
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Proof. Let us assume that x, y ∈ Rn\{0} as the claim is trivial if x = 0 or y = 0. Then
we have

|⟨x, y⟩|
∥x∥p∥y∥q

≤
n∑

i=1

|xi|
∥x∥p

|yi|
∥y∥q

≤ 1

p

∑n
i=1|xi|p

∥x∥pp
+

1

q

∑n
i=1|yi|q

∥y∥qq
=

1

p
+

1

q
= 1,

where we have used Young’s inequality from Lemma 1.1.

Remark 1.9. We also have that |⟨x, y⟩| ≤ ∥x∥1∥y∥∞ for any x, y ∈ Rn.

Theorem 1.8. The map ∥ · ∥p : Rn → [0,∞) is indeed a norm for any p ∈ [1,∞) ∪ {∞}.

Proof. The tricky part of the proof is the triangle inequality for p ∈ (1,∞), and we leave
the remaining parts as an exercise. Let p ∈ (1,∞) and set q := p

p−1 . Then
1
p +

1
q = 1 and,

using Hölder’s inequality from Theorem 1.7, we find for any x = (x1, x2, . . . , xn)
T, y =

(y1, y2, . . . , yn)
T ∈ Rn that there holds

∥x+ y∥pp =
n∑

i=1

|xi + yi|p ≤
n∑

i=1

|xi||xi + yi|p−1 +
n∑

i=1

|yi||xi + yi|p−1

≤ (∥x∥p + ∥y∥p)

(
n∑

i=1

|xi + yi|(p−1)q

) 1
q

= (∥x∥p + ∥y∥p)∥x+ y∥p−1
(p−1)q = (∥x∥p + ∥y∥p)∥x+ y∥p−1

p ,

and hence, ∥x+ y∥p ≤ ∥x∥p + ∥y∥p.

All vector norms are equivalent in the sense of the following result.

Theorem 1.9. Let ∥ · ∥, ||| · ||| : Rn → [0,∞) be norms on Rn. Then, ∥ · ∥ and ||| · ||| are
equivalent, that is, there exist constants C1, C2 > 0 such that

C1∥x∥ ≤ |||x||| ≤ C2∥x∥ ∀x ∈ Rn.

Proof. See undergraduate linear algebra. Actually, any two norms on a finite dimensional
space are equivalent.

1.2.2 Induced matrix norms

As a first observation, note that for A = (a1|a2| · · · |an) ∈ Rm×n, we have that

vec(A) :=


a1
a2
...
an

 ∈ Rmn, (note ai ∈ Rm ∀i ∈ {1, . . . , n})

and we can use the aforementioned vector norms to measure its size. However, it is more
useful to view A ∈ Rm×n in terms of the associated linear operator LA ∈ L(Rn,Rm) from
(1.1) and use the operator norm induced by given vector norms on Rn and Rm.

9



Definition 1.9. Consider the normed vector spaces (Rn, ∥ · ∥(n)) and (Rm, ∥ · ∥(m)), i.e.,
∥ · ∥(n) is a vector norm on Rn and ∥ · ∥(m) is a vector norm on Rm. Then we define the
induced matrix norm ∥ · ∥(m,n) : Rm×n → [0,∞) by

∥A∥(m,n) := sup
x∈Rn\{0}

∥Ax∥(m)

∥x∥(n)
= sup

x∈Rn

∥x∥(n)=1

∥Ax∥(m), A ∈ Rm×n.

In the case that ∥ · ∥(n) = ∥ · ∥(m) = ∥ · ∥p for p ∈ [1,∞) ∪ {∞}, we call

∥A∥p := sup
x∈Rn\{0}

∥Ax∥p
∥x∥p

= sup
x∈Rn

∥x∥p=1

∥Ax∥p, A ∈ Rm×n

the p-norm of a matrix.

Theorem 1.10. The map ∥ · ∥(m,n) : Rm×n → [0,∞) is a norm on Rm×n for any choice
of vector norms ∥ · ∥(n) on Rn and ∥ · ∥(m) on Rm.

Proof. Exercise.

Remark 1.10. For A ∈ Rm×n, the number ∥A∥(m,n) is the smallest constant C ≥ 0 such
that ∥LA(x)∥(m) = ∥Ax∥(m) ≤ C∥x∥(n) ∀x ∈ Rn, i.e., it is the greatest factor by which LA

can stretch a vector in Rn.

Remark 1.11. For n1, n2, n3 ∈ N let ∥ · ∥(nk) be a norm on Rnk , and let A ∈ Rn1×n2 and
C ∈ Rn2×n3 . Then we have that

∥AC∥(n1,n3) ≤ ∥A∥(n1,n2)∥C∥(n2,n3).

Indeed, this follows from

∥ACx∥(n1) ≤ ∥A∥(n1,n2)∥Cx∥(n2) ≤ ∥A∥(n1,n2)∥C∥(n2,n3)∥x∥(n3) ∀x ∈ Rn3 .

Therefore, induced matrix norms are said to be submultiplicative. Note that general
matrix norms do not need to be submultiplicative (exercise).

Example 1.1. For a diagonal matrix

A := diag(α1, α2, . . . , αn) :=


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn

 ∈ Rn×n,

we have that ∥A∥p = maxi∈{1,...,n}|αi| for all p ∈ [1,∞) ∪ {∞}.

Proof. First, consider p ∈ [1,∞). Then, for any x = (x1, x2, . . . , xn)
T ∈ Rn, we have that

∥Ax∥pp =
n∑

i=1

|αixi|p ≤
(

max
i∈{1,...,n}

|αi|p
) n∑

i=1

|xi|p =
(

max
i∈{1,...,n}

|αi|
)p

∥x∥pp,
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and hence, ∥A∥p ≤ maxi∈{1,...,n}|αi|. For the converse inequality, we use the canonical
basis vectors to find

∥A∥p ≥
∥Aei∥p
∥ei∥p

=
∥αiei∥p
∥ei∥p

= |αi| ∀i ∈ {1, . . . , n},

and hence, ∥A∥p ≥ maxi∈{1,...,n}|αi| and we can conclude that ∥A∥p = maxi∈{1,...,n}|αi|.
Now consider p = ∞. Then, for any x = (x1, x2, . . . , xn)

T ∈ Rn, we have that

∥Ax∥∞ = max
i∈{1,...,n}

|αixi| ≤
(

max
i∈{1,...,n}

|αi|
)(

max
i∈{1,...,n}

|xi|
)

=

(
max

i∈{1,...,n}
|αi|
)
∥x∥∞,

and hence, ∥A∥∞ ≤ maxi∈{1,...,n}|αi|. The converse is shown as before.

Example 1.2. For a matrix A = (a1|a2| · · · |an) = (b1|b2| · · · |bm)T ∈ Rm×n there holds

∥A∥∞ = max
i∈{1,...,m}

∥bi∥1, ∥A∥1 = max
j∈{1,...,n}

∥aj∥1,

i.e., ∥A∥∞ is the “maximum row sum” and ∥A∥1 the “maximum column sum” of A.

Proof. We leave the claimed result for the ∞-norm as an exercise and only prove
that ∥A∥1 = maxi∈{1,...,n} ∥ai∥1 for A = (a1|a2| · · · |an) ∈ Rm×n. For any vector

x = (x1, x2, . . . , xn)
T ∈ Rn, we have that

∥Ax∥1 =

∥∥∥∥∥
n∑

i=1

xiai

∥∥∥∥∥
1

≤
n∑

i=1

|xi|∥ai∥1 ≤
(

max
i∈{1,...,n}

∥ai∥1
) n∑

i=1

|xi| =
(

max
i∈{1,...,n}

∥ai∥1
)
∥x∥1

and hence, ∥A∥1 ≤ maxi∈{1,...,n} ∥ai∥1. For the converse inequality, note that

∥A∥1 ≥
∥Aei∥1
∥ei∥1

=
∥ai∥1
∥ei∥1

= ∥ai∥1 ∀i ∈ {1, . . . , n},

and hence, ∥A∥1 ≥ maxi∈{1,...,n} ∥ai∥1. We conclude that ∥A∥1 = maxi∈{1,...,n} ∥ai∥1.

Example 1.3. For a row vector A = aT ∈ R1×n there holds ∥A∥2 = ∥a∥2.

Proof. For A = aT ∈ R1×n, we have ∥Ax∥2 = |⟨a, x⟩| ≤ ∥a∥2∥x∥2 for any x ∈ Rn and
hence, ∥A∥2 ≤ ∥a∥2. If a = 0 ∈ Rn, we have ∥A∥2 ≤ 0 which yields ∥A∥2 = 0 = ∥a∥2. If

a ∈ Rn\{0}, there holds ∥A∥2 ≥ ∥Aa∥2
∥a∥2 = |⟨a,a⟩|

∥a∥2 = ∥a∥2 and we conclude ∥A∥2 = ∥a∥2.

Example 1.4. Let u ∈ Rm and v ∈ Rn. Then, for the outer product A = uvT ∈ Rm×n we
have that ∥A∥2 = ∥u∥2∥v∥2.

Proof. We have ∥Ax∥2 = ∥uvTx∥2 = ∥u∥2|⟨v, x⟩| ≤ ∥u∥2∥v∥2∥x∥2 for any x ∈ Rn and
hence, ∥A∥2 ≤ ∥u∥2∥v∥2. If v = 0, we have ∥A∥2 ≤ 0 which yields ∥A∥2 = 0 = ∥u∥2∥v∥2.
If v ∈ Rn\{0}, there holds ∥A∥2 ≥ ∥Av∥2

∥v∥2 = ∥uvTv∥2
∥v∥2 = ∥u∥2|⟨v,v⟩|

∥v∥2 = ∥u∥2∥v∥2 and we

conclude that ∥A∥2 = ∥u∥2∥v∥2.

The matrix 2-norm is also known as the spectral norm. We will see later that there
holds ∥A∥2 =

√
λmax(ATA) for A ∈ Rm×n, where λmax(A

TA) denotes the largest eigen-
value of ATA.
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1.2.3 Frobenius norm

Let us note that not all matrix norms are induced by vector norms. The most important
example of such a norm is the Frobenius norm.

Definition 1.10. The map ∥ · ∥F : Rm×n → [0,∞) given by

∥A∥F :=
√

tr(ATA) =
√
tr(AAT) =

√√√√ m∑
i=1

n∑
j=1

|aij |2, A = (aij) ∈ Rm×n,

is called the Frobenius norm.

Here, tr(B) denotes the trace of a square matrix B, that is, the sum of its diagonal
entries.

Theorem 1.11. The map ∥ · ∥F is indeed a norm on Rm×n. Further, the Frobenius norm
is submultiplicative, that is,

∥AC∥F ≤ ∥A∥F ∥C∥F ∀A ∈ Rm×n, C ∈ Rn×l.

Proof. Exercise.

Remark 1.12. The Frobenius norm ∥·∥F is induced by the Frobenius inner product ⟨·, ·⟩F :
Rm×n × Rm×n → R given by

⟨A,B⟩F := tr(ATB) = tr(BAT) =

m∑
i=1

n∑
j=1

aijbij , A = (aij), B = (bij) ∈ Rm×n,

i.e., ∥A∥F =
√
⟨A,A⟩F ∀A ∈ Rm×n. Further, we have the Cauchy–Schwarz inequality

|⟨A,B⟩F | ≤ ∥A∥F ∥B∥F ∀A,B ∈ Rm×n.

We point out that, as for vector norms, also any two matrix norms are equivalent in
the sense of the following result.

Theorem 1.12. Let ∥ · ∥, ||| · ||| : Rm×n → [0,∞) be norms on Rm×n. Then, ∥ · ∥ and ||| · |||
are equivalent, that is, there exist constants C1, C2 > 0 such that

C1∥A∥ ≤ |||A||| ≤ C2∥A∥ ∀A ∈ Rm×n.

Proof. See undergraduate linear algebra (any two norms on a finite dimensional space are
equivalent).

1.2.4 Orthogonal invariance

The spectral norm and the Frobenius norm are invariant under multiplication by orthog-
onal matrices:

Theorem 1.13. Let A ∈ Rm×n. Further, let U ∈ Rm×m and V ∈ Rn×n be two orthogonal
matrices. Then, we have that

(i) ∥UA∥2 = ∥A∥2 and ∥AV ∥2 = ∥A∥2,

12



(ii) ∥UA∥F = ∥A∥F and ∥AV ∥F = ∥A∥F .

Proof. (i) In view of Remark 1.6 there holds ∥V x∥2 = ∥x∥2 for any x ∈ Rn, and ∥Uy∥2 =
∥y∥2 for any y ∈ Rm. We have that

∥UA∥2 = sup
x∈Rn\{0}

∥UAx∥2
∥x∥2

= sup
x∈Rn\{0}

∥Ax∥2
∥x∥2

= ∥A∥2

and, using that LV : Rn → Rn is a bijection (as V is invertible),

∥AV ∥2 = sup
x∈Rn\{0}

∥AV x∥2
∥x∥2

= sup
x∈Rn\{0}

∥AV x∥2
∥V x∥2

= sup
x̃∈Rn\{0}

∥Ax̃∥2
∥x̃∥2

= ∥A∥2.

(ii) Note that ∥B∥2F = tr(BTB) = tr(BBT) for any B ∈ Rm×n. Hence, we have that

∥UA∥2F = tr((UA)T(UA)) = tr(ATUTUA) = tr(ATA) = ∥A∥2F ,
∥AV ∥2F = tr((AV )(AV )T) = tr(AV V TAT) = tr(AAT) = ∥A∥2F .
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2 Singular Value Decomposition

2.1 Definition and geometric interpretation

In this section, we introduce the singular value decomposition and provide a geometric
interpretation.

Definition of full and reduced SVD

We start by introducing some notation.

Definition 2.1. A matrix A ∈ Rm×n is called diagonal iff there exist p := min(m,n) real
numbers α1, . . . , αp ∈ R such that A = diagm×n(α1, α2, . . . , αp), where diagm×n is defined
as follows.

(i) For m,n ∈ N with m ≥ n and α1, . . . , αn ∈ R, we define

diagm×n(α1, α2, . . . , αn) :=



α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


∈ Rm×n.

(ii) For m,n ∈ N with m < n and α1, . . . , αm ∈ R, we define

diagm×n(α1, α2, . . . , αm) :=


α1 0 · · · 0 0 · · · 0
0 α2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · αm 0 · · · 0

 ∈ Rm×n.

A singular value decomposition, abbreviated SVD, is defined as follows.

Definition 2.2. Let A ∈ Rm×n for some m,n ∈ N and set p := min(m,n). If there exist

U = (u1|u2| · · · |um) ∈ Rm×m orthogonal,

V = (v1|v2| · · · |vn) ∈ Rn×n orthogonal,

Σ = diagm×n(σ1, σ2, . . . , σp) ∈ Rm×n with σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0,

such that there holds UTAV = Σ, or equivalently,

A = UΣV T, (2.1)

then we call (2.1) a singular value decomposition (SVD) of A with singular values
σ1, . . . , σp ≥ 0, left singular vectors u1, . . . , um ∈ Rm, and right singular vectors
v1, . . . , vn ∈ Rn.
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Remark 2.1. The SVD (2.1) can be simplified to

A = Û Σ̂V̂ T

with Û := (u1| · · · |up) ∈ Rm×p, Σ̂ := diagp×p(σ1, . . . , σp) ∈ Rp×p, V̂ = (v1| · · · |vp) ∈
Rn×p. We call such a decomposition A = Û Σ̂V̂ T with Û ∈ Rm×p and V̂ ∈ Rn×p having
orthonormal columns, and Σ̂ ∈ Rp×p being diagonal with non-negative and non-increasing
diagonal entries, a reduced SVD of A.

Proof. If m ≥ n (i.e., p = n), we have with Û = (u1| · · · |un) and Σ̂ := diagn×n(σ1, . . . , σn)

that (note V̂ = V )

UΣV T = (u1| · · · |um)

(
Σ̂

0(m−n)×n

)
(v1| · · · |vn)T = Û Σ̂V T.

If m < n (i.e., p = m), we have with Σ̂ := diagm×m(σ1, . . . , σm) and V̂ = (v1| · · · |vm)

that (note Û = U)

UΣV T = (u1| · · · |um)
(
Σ̂ 0m×(n−m)

)
(v1| · · · |vn)T = U Σ̂V̂ T.

Note that in the proof of Remark 2.1, we have used the notation 0r×s to denote the
r × s zero-matrix 0 ∈ Rr×s.

Example 2.1. Two examples of SVDs for rectangular matrices are

(
1 0 −1 1
−1 1 0 1

)
=

(
1 0
0 1

)(√
3 0 0 0

0
√
3 0 0

)
1√
3

− 1√
3

− 1√
6

1√
6

0 1√
3

− 2√
6

0

− 1√
3

0 0 2√
6

1√
3

1√
3

1√
6

1√
6


T

,


1 1
−1 1
1 1
0 0

 =


1√
2

0 0 − 1√
2

0 1 0 0
1√
2

0 0 1√
2

0 0 1 0



2 0

0
√
2

0 0
0 0


(

1√
2

− 1√
2

1√
2

1√
2

)T

,

with corresponding reduced SVDs

(
1 0 −1 1
−1 1 0 1

)
=

(
1 0
0 1

)(√
3 0

0
√
3

)
1√
3

− 1√
3

0 1√
3

− 1√
3

0
1√
3

1√
3


T

,


1 1
−1 1
1 1
0 0

 =


1√
2

0

0 1
1√
2

0

0 0


(
2 0

0
√
2

)( 1√
2

− 1√
2

1√
2

1√
2

)T

.
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Geometric interpretation

The geometric interpretation of the SVD is that the image of the 2-norm unit sphere
{x ∈ Rn| ∥x∥2 = 1} under any m × n matrix is a hyperellipse. A hyperellipse in Rm is
the m-dimensional generalization of en ellipse: it is the surface obtained by stretching the
2-norm unit sphere in Rm by some factors σ1, . . . , σm ≥ 0 in the directions of orthonormal
vectors u1, . . . , um ∈ Rm.

Indeed, observe that a SVD A = UΣV T of a matrix A ∈ Rm×n can be rewritten as

AV = (a1| · · · |an)(v1| · · · |vn) = UΣ = (u1| · · · |um)diagm×n(σ1, σ2, . . . , σp)

due to orthogonality of V (recall that p := min(m,n)). Therefore,

if m ≥ n : Avi = σiui ∀i ∈ {1, . . . , n},
if m < n : Avi = σiui ∀i ∈ {1, . . . ,m}, Avj = 0 ∀j ∈ {m+ 1, . . . , n}.

(2.2)

Let us consider the following explicit example of a SVD for a 2× 2 square matrix:

A :=

(
2 11
10 −5

)
=

(
1√
2

1√
2

− 1√
2

1√
2

)(
4
√
10 0

0 3
√
10

)(− 1√
5

2√
5

2√
5

1√
5

)T

=: UΣV T, (2.3)

with singular values σ1 = 4
√
10, σ2 = 3

√
10, left singular vectors u1 = ( 1√

2
,− 1√

2
)T,

u2 = ( 1√
2
, 1√

2
)T, and right singular vectors v1 = (− 1√

5
, 2√

5
)T, v2 = ( 2√

5
, 1√

5
)T.

Figure 1: Illustration of the SVD A = UΣV T from (2.3).
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In this example, first V T reflects the unit sphere across the line y = 1+
√
5

2 x, preserving
its shape, then Σ stretches the sphere into an ellipse aligned with e1, e2 by scaling the
x-coordinate by σ1 and the y-coordinate by σ2, and finally U rotates the ellipse clockwise
by the angle π

4 (recall Remark 1.7). Thus, we see that the image of A = UΣV T, or more
precisely the image of the associated linear map LA = LU ◦ LΣ ◦ LV T is indeed an ellipse
with principal semiaxes σ1u1 and σ2u2.

2.2 Existence and uniqueness

Theorem 2.1 (Existence result for SVD). Every matrix A ∈ Rm×n has a SVD (2.1), as
defined in Definition 2.2.

Proof. Step 1 : We begin by setting

σ1 := ∥A∥2 = sup
x∈Rn

∥x∥2=1

∥Ax∥2.

Observe that the 2-norm unit sphere S := {x ∈ Rn : ∥x∥2 = 1} is a compact subset of Rn

and that the map S ∋ x 7→ ∥Ax∥2 ∈ R is continuous (exercise). Therefore, there exists a
unit vector v1 ∈ Rn with ∥v1∥2 = 1 such that ∥Av1∥2 = σ1, and hence, there holds

Av1 = σ1u1 (2.4)

for some unit vector u1 ∈ Rm with ∥u1∥2 = 1.
Step 2 : Next, we construct orthogonal matrices V1 ∈ Rn×n and U1 ∈ Rm×m such that

UT
1 AV1 =

(
σ1 01×(n−1)

0(m−1)×1 B

)
∈ Rm×n (2.5)

for some B ∈ R(m−1)×(n−1).
To this end, we extend v1 to an orthonormal basis {v1, . . . , vn} ⊆ Rn of the space Rn

and u1 to an orthonormal basis {u1, . . . , um} ⊆ Rm of the space Rm, and set

V1 := (v1| · · · |vn) ∈ Rn×n, U1 := (u1| · · · |um) ∈ Rm×m.

Then, the matrices V1 and U1 are orthogonal by construction, and we have from (2.4) that

UT
1 AV1 =

(
σ1 wT

0(m−1)×1 B

)
=: A1 ∈ Rm×n

for some w ∈ Rn−1 and B ∈ R(m−1)×(n−1). We are done with Step 2 if we can show that

w = 0 ∈ Rn−1. In order to do so, we set w̃ :=

(
σ1
w

)
∈ Rn and note that

∥A1w̃∥22

=

∥∥∥∥( σ1 wT

0(m−1)×1 B

)(
σ1
w

)∥∥∥∥2
2

=

∥∥∥∥(σ2
1 + wTw

Bw

)∥∥∥∥2
2

≥ (σ2
1 + wTw)2 = (σ2

1 + wTw)∥w̃∥22,

which yields ∥A1∥2 ≥
√

σ2
1 + wTw. Since V1 and U1 are orthogonal (thus also UT

1 is
orthogonal), we have from Theorem 1.13 that ∥A1∥2 = ∥UT

1 AV1∥2 = ∥A∥2 = σ1. Hence,
σ1 ≥

√
σ2
1 + wTw ≥ σ1 and consequently, w = 0 ∈ Rn−1 and we have (2.5).
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Step 3: We conclude the proof using induction on the dimension of A. Note that, from
(2.5) we have

UT
1 AV1 =

(
σ1

O(m−1)×1

)
= diagm×1(σ1) if n = 1,

UT
1 AV1 = (σ1| 01×(n−1)) = diag1×n(σ1) if m = 1,

i.e., every A ∈ Rm×n with m = 1 or n = 1 has a SVD. Now, let A ∈ Rm×n with m,n ∈ N
and m,n ≥ 2. Then, in view of (2.5), and assuming the matrix B ∈ R(m−1)×(n−1) has a
SVD B = U2Σ2V

T
2 with orthogonal U2 ∈ R(m−1)×(m−1), V2 ∈ R(n−1)×(n−1) and diagonal

Σ2 ∈ R(m−1)×(n−1) with non-increasing non-negative diagonal entries, we find that

UT
1 AV1 =

(
σ1 01×(n−1)

0(m−1)×1 U2Σ2V
T
2

)
=

(
1 01×(m−1)

0(m−1)×1 U2

)(
σ1 01×(n−1)

0(m−1)×1 Σ2

)(
1 01×(n−1)

0(n−1)×1 V2

)T

,

i.e., we conclude that

UTAV =

(
σ1 01×(n−1)

0(m−1)×1 Σ2

)
=: Σ ∈ Rm×n

is diagonal with non-increasing non-negative entries, where the orthogonal matrices U ∈
Rm×m, V ∈ Rn×n are given by

U := U1

(
1 01×(m−1)

0(m−1)×1 U2

)
∈ Rm×m, V := V1

(
1 01×(n−1)

0(n−1)×1 V2

)
∈ Rn×n.

It is quickly seen that U and V are indeed orthogonal, using that the product of two
orthogonal matrices is orthogonal. (Note σ1 is greater or equal than the diagonal entries
of Σ2 as, using orthogonal invariance of the spectral norm, σ1 = ∥A∥2 = ∥UTAV ∥2 = ∥Σ∥2,
which equals to the maximum of the absolute values of the diagonal entries of Σ; see also
Remark 2.3.)

The natural question to ask is if the SVD to a given matrix is unique. This is not the
case as can be seen from, e.g., the one-dimensional case.

Remark 2.2. Note that a matrix Q = (q) ∈ R1×1 is orthogonal iff q ∈ {−1, 1}. Therefore,
a matrix A = (a) ∈ R1×1 must have the unique singular value σ1 = |a|. The SVD is not
unique as

(a) = (1)(a)(1)T = (−1)(a)(−1)T if a > 0

(a) = (1)(0)(1)T = (−1)(0)(−1)T = (−1)(0)(1)T = (1)(0)(−1)T if a = 0

(a) = (−1)(−a)(1)T = (1)(−a)(−1)T if a < 0

are SVDs for A = (a). However, the left and right singular vectors are unique up to signs.

We can show that the singular values are uniquely determined for any given matrix
A ∈ Rm×n. For square matrices A ∈ Rn×n with distinct singular values, we can prove
uniqueness for the left and right singular vectors up to signs.
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Remark 2.3. Let us note that the largest singular value σ1 is uniquely determined as for
any A ∈ Rm×n with SVD A = UΣV T we have that (recall p := min(m,n))

∥A∥2 = ∥UΣV T∥2 = ∥Σ∥2 = ∥diagm×n(σ1, σ2, . . . , σp)∥2 = σ1,

where we have used orthogonal invariance of the spectral norm (Theorem 1.13) and the fact
that ∥diagm×n(σ1, σ2, . . . , σp)∥2 = maxi∈{1,...,p}|σi| (exercise, see Example 1.1 for square
diagonal matrices).

Theorem 2.2 (Uniqueness result for SVD). The singular values {σi} of any given matrix
A ∈ Rm×n are unique and we have

{σ2
1, . . . , σ

2
p} =

{
Λ(ATA) , if m ≥ n,

Λ(AAT) , if m < n.
(2.6)

Further, if A ∈ Rn×n is square and the singular values are positive and distinct, then the
left singular vectors {ui} and right singular vectors {vi} are unique up to signs.

Remark 2.4. What do we mean by “unique up to signs”? Recall that a SVD A = UΣV T =
(u1| · · · |um)[diagm×n(σ1, . . . , σp)](v1| · · · |vn)T is equivalent to (2.2). So, one can always
find another SVD by replacing a chosen vi by −vi when also replacing ui by −ui. We
claim that, if A ∈ Rn×n is square and the singular values are positive and distinct, this is
the only way of obtaining other SVDs.

Proof of Theorem 2.2. Uniqueness of the singular values: For A ∈ Rm×n with SVD A =
UΣV T, we have

ATA = V ΣTUTUΣV T = V ΣTΣV T ∈ Rn×n,

AAT = UΣV TV ΣTUT = UΣΣTUT ∈ Rm×m.

Thus, ATA is similar to ΣTΣ, and AAT is similar to ΣΣT. Note that

ΣTΣ = diagn×n(σ
2
1, . . . , σ

2
n), ΣΣT = diagm×m(σ2

1, . . . , σ
2
n, 0, . . . , 0) if m ≥ n,

ΣTΣ = diagn×n(σ
2
1, . . . , σ

2
m, 0, . . . , 0), ΣΣT = diagm×m(σ2

1, . . . , σ
2
m) if m < n.

(2.7)

As similar matrices have the same set of eigenvalues, we obtain (2.6). In particular, the
squares of the singular values σ2

1, . . . , σ
2
p are uniquely determined. As singular values are

non-negative and non-increasing, this yields that σ1, . . . , σp are uniquely determined.

Uniqueness of {ui}, {vi} up to signs: We do not give a rigorous proof, but note that
– geometrically – if the lengths of the semiaxes of a hyperellipse (i.e., the singular values
{σi}) are distinct, then the semiaxes (i.e., the vectors {σiui}) are determined uniquely
up to signs from the geometry of the hyperellipse. Note that if Σ and U is uniquely
determined, then also V must be uniquely determined from A = UΣV T as U and Σ are
invertible (singular values were assumed to be positive).

Now that we know that there exists a SVD with uniquely determined Σ to any arbitrary
matrix, we can transform any given matrix into a diagonal matrix via a change of bases.
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Remark 2.5. Any matrix A ∈ Rm×n with a SVD A = UΣV T reduces to the diagonal
matrix Σ when the range is expressed in the basis of left singular vectors (columns of U)
and the domain in the basis of right singular vectors (columns of V ). More precisely, for
any x ∈ Rn and b ∈ Rm, there holds

Ax = b ⇐⇒ UΣV Tx = b ⇐⇒ ΣV Tx = UTb ⇐⇒ Σx′ = b′,

where x′ = V Tx is the coordinate vector for the expansion of x in the basis of right
singular vectors and b′ = UTb the coordinate vector for the expansion of b in the basis of
left singular vectors.

Let us recall that for diagonalizable (also called non-defective) square matrices, we can
also use its eigenvalue decomposition to transform into a diagonal matrix.

Remark 2.6. If A ∈ Rn×n is diagonalizable with eigenvalue decomposition A = XDX−1

for some invertible X ∈ Rn×n and a diagonal matrix D ∈ Cn×n containing the eigenvalues
of A on its diagonal, then for any x, b ∈ Cn we have

Ax = b ⇐⇒ XDX−1x = b ⇐⇒ DX−1x = X−1b ⇐⇒ Dx′ = b′,

where x′ = X−1x, b′ = X−1b are the coordinate vectors for the expansions of x, b in the
basis of columns of X (eigenvectors).

Note that the SVD uses two orthonormal bases (left and right singular vectors),
whereas the eigenvalue decomposition uses only one – not necessarily orthogonal – basis
(eigenvectors). The huge advantage of the SVD is that any matrix has a SVD. In contrast,
an eigenvalue decomposition only exists for certain square matrices, i.e., for diagonalizable
matrices (geometric multiplicity equals algebraic multiplicity for all eigenvalues).

2.3 Computation

We have seen that any matrix A ∈ Rm×n has a SVD, and that the singular values are
uniquely determined from (2.6).

Remark 2.7. Observe that we have

A = U [diagm×n(σ1, . . . , σp)]V
T is a SVD for A

⇐⇒ AT = V [diagn×m(σ1, . . . , σp)]U
T is a SVD for AT

for any A ∈ Rm×n.

In view of this remark, we can restrict our attention to matrices A ∈ Rm×n withm ≥ n.

Algorithm 2.1 (Computation of SVD). Let A = (a1| · · · |an) ∈ Rm×n with m ≥ n. Then,
a SVD for A can be computed as follows.

1) Compute the so-called Gram matrix of a1, . . . , an ∈ Rm for the Euclidean inner
product on Rm, that is,

ATA = (a1| · · · |an)T(a1| · · · |an) =


⟨a1, a1⟩ ⟨a1, a2⟩ · · · ⟨a1, an⟩
⟨a2, a1⟩ ⟨a2, a2⟩ · · · ⟨a2, an⟩

...
...

. . .
...

⟨an, a1⟩ ⟨an, a2⟩ · · · ⟨an, an⟩

 ∈ Rn×n.

This matrix is symmetric (note ⟨x, y⟩ = ⟨y, x⟩ ∀x, y ∈ Rm), thus orthogonally diag-
onalizable, and its eigenvalues are non-negative numbers (see (2.6)).
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2) Compute an eigenvalue decomposition

ATA = V DV T,

where V = (v1| · · · |vn) ∈ Rn×n is orthogonal, and D = diagn×n(λ1, . . . , λn) ∈ Rn×n

is diagonal with λ1, . . . , λn ∈ Λ(ATA) satisfying λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

3) Set σi :=
√
λi for i ∈ {1, . . . , n}, and set

Σ := diagm×n(σ1, . . . , σn) ∈ Rm×n

Note that ΣTΣ = D.

4) Find an orthogonal matrix U = (u1| · · · |um) ∈ Rm×m such that

UΣ = AV, i.e., σiui = Avi ∀i ∈ {1, . . . , n}.

Then, we have that A = UΣV T is a SVD for A.

Example 2.2. We compute a SVD of

M :=

(
1 0 −1 1
−1 1 0 1

)
∈ R2×4.

To this end, we set A := MT ∈ R4×2 and apply Algorithm 2.1 to A.

1) We compute ATA =

(
3 0
0 3

)
∈ R2×2.

2) We set V := (v1|v2) :=
(
1 0
0 1

)
∈ R2×2 andD := diag2×2(λ1, λ2) :=

(
3 0
0 3

)
∈ R2×2.

Then, V is orthogonal, D is diagonal with λ1 ≥ λ2, and ATA = V DV T.

3) Set Σ := diag4×2(σ1, σ2) := diag4×2(
√
λ1,

√
λ2) =


√
3 0

0
√
3

0 0
0 0

 ∈ R4×2.

4) Find U = (u1|u2|u3|u4) ∈ R4×4 orthogonal with σiui = Avi for i ∈ {1, 2}. Then,
u1 =

1√
3
(1, 0,−1, 1)T and u2 =

1√
3
(−1, 1, 0, 1)T, which we can extend to an orthonor-

mal basis u1, u2, u3, u4 of R4. We can take

U :=


1√
3

− 1√
3

− 1√
6

1√
6

0 1√
3

− 2√
6

0

− 1√
3

0 0 2√
6

1√
3

1√
3

1√
6

1√
6

 ∈ R4×4.

(The vectors u3, u4 can be found using the fact that {u3, u4} needs to be an or-
thonormal basis of N ((u1|u2)T).)

21



We obtain that A = UΣV T is a SVD of A, and hence, transposing this equation,

(
1 0 −1 1
−1 1 0 1

)
=

(
1 0
0 1

)(√
3 0 0 0

0
√
3 0 0

)
1√
3

− 1√
3

− 1√
6

1√
6

0 1√
3

− 2√
6

0

− 1√
3

0 0 2√
6

1√
3

1√
3

1√
6

1√
6


T

is a SVD for M = AT. Note that this is the SVD given in Example 2.1.

Further examples/exercises can be found on the problem sheets, where we will also
discuss a useful alternative to compute SVDs for square matrices A ∈ Rn×n which is

based on an eigenvalue decomposition of the symmetric matrix

(
0n×n AT

A 0n×n

)
∈ R2n×2n.

2.4 Matrix properties

We now state and prove some crucial results on the connection of the SVD to matrix
properties.

Theorem 2.3. Let A ∈ Rm×n, set p := min(m,n), and let

A = UΣV T = (u1| · · · |um)[diagm×n(σ1, . . . , σp)](v1| · · · |vn)T

be a SVD for A. Further, let 0 ≤ r ≤ p denote the number of non-zero singular values of
A, so that σ1, . . . , σr > 0 and σr+1, . . . , σp = 0. Then, we have the following assertions.

(i) rk(A) = r.

(ii) R(A) = span(u1, . . . , ur) and N (A) = span(vr+1, . . . , vn).

(iii) ∥A∥2 = σ1 and ∥A∥F =
√∑r

i=1 σ
2
i .

(iv) {σ1, . . . , σr} = {
√
λ |λ ∈ Λ(ATA)}\{0} = {

√
λ |λ ∈ Λ(AAT)}\{0}.

(v) If m = n, then |det(A)| =
∏n

i=1 σi.

(vi) If m = n and A = AT, then {σ1, . . . , σn} = {|λ| |λ ∈ Λ(A)}.

Notation: We define {xi, . . . , xj} := ∅ for i, j ∈ N0 with i > j. We define span(∅) := {0}.

Proof. (i) Observe that for any invertible matrices Mm ∈ Rm×m and Mn ∈ Rn×n there
holds rk(MmA) = rk(A) = rk(AMn) (exercise). Further, observe that rk(Σ) = r. Hence,

rk(A) = rk(UΣV T) = rk(Σ) = r.

(ii) Note that there holds

R(UΣV T) = {UΣV Tx |x ∈ Rn} = {UΣy | y ∈ Rn} = {Uz | z ∈ R(Σ)},

where we have used in the second equality that V T ∈ Rn×n is invertible, and

N (UΣV T) = {x ∈ Rn |UΣV Tx = 0} = {x ∈ Rn |ΣV Tx = 0} = {x ∈ Rn |V Tx ∈ N (Σ)},
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where we have used in the second equality that U ∈ Rm×m is invertible. Observing that

R(Σ) = span(e1, . . . , er) ⊆ Rm, N (Σ) = span(er+1, . . . , en) ⊆ Rn,

it follows that R(A) = span(u1, . . . , ur) and N (A) = span(vr+1, . . . , vn).
(iii) We have already shown that ∥A∥2 = σ1 in Remark 2.3. It remains to prove the claim
that ∥A∥2F =

∑r
i=1 σ

2
i . To this end, recall from Theorem 1.13 that the Frobenius norm is

invariant under multiplication by orthogonal matrices. Therefore, we have

∥A∥2F = ∥UΣV T∥2F = ∥Σ∥2F =
r∑

i=1

σ2
i .

(iv) Recall from the proof of Theorem 2.2 that ATA is similar to ΣTΣ, and that AAT is
similar to ΣΣT. The claim now follows in view of (2.7).
(v) Assume m = n. Then, by the multiplicative property of the determinant we have

det(A) = det(UΣV T) = det(U) det(Σ) det(V T) = det(U) det(Σ) det(V ),

where we have used that det(MT) = det(M) for any M ∈ Rn×n in the last step. Recalling
that |det(Q)| = 1 for any orthogonal matrix Q ∈ Rn×n, we deduce that

|det(A)| = |det(Σ)| =
n∏

i=1

σi.

(vi) Assume m = n and that A is symmetric. Then, all of its eigenvalues are real,
and A is orthogonally diagonalizable, i.e., there exists an orthogonal matrix Q ∈ Rn×n

and a diagonal matrix D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A) such
that A = QDQT. We assume that the diagonal entries of D are ordered such that
|λ1| ≥ |λ2| ≥ · · · ≥ |λn|. We then define the matrices

Σ̃ := diagn×n(|λ1|, . . . , |λn|) ∈ Rn×n, S := diagn×n(sign(λ1), . . . , sign(λn)) ∈ Rn×n,

and note that D = Σ̃S = Σ̃ST. Setting Ũ := Q and Ṽ := QS, this yields

A = QΣ̃STQT = Ũ Σ̃Ṽ T.

Observe that the matrices Ũ , Ṽ are orthogonal (note SST = STS = In) and thus, this
is a SVD of A. Recalling that singular values of a matrix are uniquely determined, we
conclude that |λ1|, . . . , |λn| are the singular values of A.

Remark 2.8. The proof of Theorem 2.3(vi) yields a method to obtain a SVD of a symmetric
matrix from its eigenvalue decomposition. A short alternative proof of (vi) goes as follows:
If A ∈ Rn×n is a symmetric matrix with singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, we have
by Theorem 2.2 that {σ2

1, . . . , σ
2
n} = Λ(ATA) = Λ(A2) = {λ2

∣∣λ ∈ Λ(A)}, proving (vi).
Note the last equality can be shown as follows for A symmetric: A is orthog-

onally diagonalizable, i.e., A = QDQT for some Q ∈ Rn×n orthogonal and D =
diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A). Then, A2 = QD2QT and thus,
Λ(A2) = Λ(D2) = {λ2

1, . . . , λ
2
n}.

Theorem 2.3 lays the foundation for many practical algorithms. In particular, from a
computational point of view, the standard way to compute the rank of a matrix is to count
the number of singular values greater than some very small tolerance, the most accurate
method for computing orthonormal bases of the range and the nullspace of a matrix is via
(ii), and the standard way to compute the spectral norm of a matrix A is via ∥A∥2 = σ1.
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2.5 Low-rank approximation

The problem of low-rank approximation deals with the following optimization problem:
Given some non-zero matrix A ∈ Rm×n\{0} and some ν ∈ N0 with 0 ≤ ν < rk(A), we
want to find the best approximation to A in the class {B ∈ Rm×n | rk(B) ≤ ν}, that is,{

minimize ∥A−B∥,
subject to B ∈ Rm×n, rk(B) ≤ ν,

(2.8)

for some given matrix norm ∥ ·∥ : Rm×n → [0,∞). We are going to solve this optimization
problem for the spectral and Frobenius norms by using the SVD.

As a first step, let us observe that any matrix A can be written as the sum of r rank-one
matrices, where r := rk(A), using the SVD.

Remark 2.9. Let A ∈ Rm×n, set p := min(m,n), and let

A = UΣV T = (u1| · · · |um)[diagm×n(σ1, . . . , σp)](v1| · · · |vn)T

be a SVD for A. Setting r := rk(A), we have that A can be written as

A =
r∑

i=1

σiuiv
T
i . (2.9)

Indeed, this follows from the fact that we can write Σ as the sum of the r matrices
diagm×n(σ1, 0, . . . , 0), diagm×n(0, σ2, 0, . . . , 0), . . . , diagm×n(0, . . . , 0, σr).

You can find other, more simple, ways to express A ∈ Rm×n as a sum of rank-one
matrices (exercise). However, the decomposition (2.9) has the property that its ν-th partial
sum captures the largest possible amount of “energy” of A, that is, it is a minimizer of
the optimization problem (2.8) for the spectral and Frobenius norms.

Theorem 2.4 (Eckart–Young–Mirsky theorem). Let A ∈ Rm×n\{0}, set p := min(m,n),
and let

A = UΣV T = (u1| · · · |um)[diagm×n(σ1, . . . , σp)](v1| · · · |vn)T

be a SVD for A. Further, let ν ∈ N0 with 0 ≤ ν < rk(A), and set

Aν =

ν∑
i=1

σiuiv
T
i .

Then, Aν is the best approximation to A in the class {B ∈ Rm×n | rk(B) ≤ ν} with respect
to the spectral norm, i.e.,

inf
B∈Rm×n

rk(B)≤ν

∥A−B∥2 = ∥A−Aν∥2 = σν+1, (2.10)

and with respect to the Frobenius norm, i.e.,

inf
B∈Rm×n

rk(B)≤ν

∥A−B∥F = ∥A−Aν∥F =

√√√√ r∑
i=ν+1

σ2
i .
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We only prove the result for the spectral norm, that is, (2.10), and omit the proof of
the result for the Frobenius norm.

Proof of (2.10). Let us write r := rk(A) and note that 1 ≤ r ≤ p as A ∈ Rm×n\{0}.
Further, note 0 ≤ ν ≤ r − 1.

Step 1 : We start by showing that ∥A−Aν∥2 = σν+1. To this end, we use Remark 2.9
to obtain

∥A−Aν∥2 =

∥∥∥∥∥
r∑

i=1

σiuiv
T
i −

ν∑
i=1

σiuiv
T
i

∥∥∥∥∥
2

=

∥∥∥∥∥
r∑

i=ν+1

σiuiv
T
i

∥∥∥∥∥
2

= σν+1,

where we have used in the last step that the the largest singular value of the matrix∑r
i=ν+1 σiuiv

T
i is given by σν+1. In particular, as rk(Aν) ≤ ν, we find that

inf
B∈Rm×n

rk(B)≤ν

∥A−B∥2 ≤ ∥A−Aν∥2 = σν+1.

Step 2 : It remains to prove that

inf
B∈Rm×n

rk(B)≤ν

∥A−B∥2 ≥ σν+1.

Suppose that there exists a matrix B ∈ Rm×n with rk(B) ≤ ν and ∥A − B∥2 < σν+1.
Then, by the rank-nullity theorem (see Theorem 1.2), there holds

dim(N (B)) = nullity(B) = n− rk(B) ≥ n− ν

and we have that

∥Ax∥2 = ∥(A−B)x∥2 ≤ ∥A−B∥2∥x∥2 < σν+1∥x∥2 ∀x ∈ N (B)\{0}. (2.11)

We also have for any v =
∑ν+1

i=1 αivi ∈ span(v1, . . . , vν+1) that

∥Av∥22 =

∥∥∥∥∥
ν+1∑
i=1

αiσiui

∥∥∥∥∥
2

2

=
ν+1∑
i=1

α2
i σ

2
i ≥ σ2

ν+1

ν+1∑
i=1

α2
i = σ2

ν+1

∥∥∥∥∥
ν+1∑
i=1

αivi

∥∥∥∥∥
2

2

= σ2
ν+1∥v∥22, (2.12)

where we have used that Avi = σiui for all i ∈ {1, . . . , ν + 1} (note ν + 1 ≤ r ≤ p), and
the Pythagorean theorem for orthogonal vectors, that is, for any two orthogonal vectors
a, b ∈ Rn there holds ∥a+ b∥22 = ∥a∥22+ ∥b∥22. Note that for the subspaces N := N (B) and
S := span(v1, . . . , vν+1) of the vector space Rn, we have

dim(N ∩ S) ≥ dim(N) + dim(S)− dim(N + S) ≥ (n− ν) + (ν + 1)− n = 1,

and hence, there exists a nonzero vector which is contained in both N and S. In view of
(2.11) and (2.12), we obtain a contradiction and the result is proved.

A practical application of low-rank approximation is image compression.
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Figure 2: Low-rank approximation applied to an image. From left to right: original image
(991× 751 matrix of rank 481), low-rank approximation with ν = 10, 50, 100.

Remark 2.10. Let A ∈ Rm×n\{0} and write r := rk(A) ∈ {1, . . . , p}, where p := min(m,n).
Then, there exist matrices M ∈ Rm×r and N ∈ Rn×r such that

A = MNT.

Proof. Let A = UΣV T = (u1| · · · |um)[diagm×n(σ1, . . . , σp)](v1| · · · |vn)T be a SVD of A.
Noting that σ1, . . . , σr > 0 and σj = 0 ∀r < j ≤ p, we see that we can write A = MNT

with M := (σ1u1| · · · |σrur) ∈ Rm×r and N := (v1| · · · |vr) ∈ Rn×r.

In view of Remark 2.10, if the rank r of a matrix A ∈ Rm×n is small compared to m
and n, we only need r(m+ n) numbers to describe A instead of mn numbers (e.g., when
m = n, storing r · 2n numbers is saving storage compared to storing n2 numbers if r < n

2 ).
In the particular example of Figure 2, we have the following:

• We need 991 · 751 = 744241 numbers to describe the original matrix/image. (Rk:
better to storemn numbers instead of r(m+n) numbers as 481(991+751) > 991·751.)

• For the rank-100 approximation, we only need 100(991+ 751) = 174200 numbers to
describe the matrix/image.

• For the rank-50 approximation, we only need 50(991 + 751) = 87100 numbers to
describe the matrix/image.

• For the rank-10 approximation, we only need 10(991 + 751) = 17420 numbers to
describe the matrix/image.

We see that it is much cheaper to store these three low-rank approximations compared to
the original image (which is great as it is quite hard to notice a difference between the
rank-100 approximation and the original image by the human eye).
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3 QR Factorization

3.1 Definition of full and reduced QR factorization

For simplicity, we restrict ourselves to “tall” matrices A ∈ Rm×n with m ≥ n.

Definition 3.1. Let m,n ∈ N with m ≥ n. A matrix R = (rij) ∈ Rm×n is called
upper-triangular iff rij = 0 whenever i > j, i.e., iff it is of the form

R =

(
R̂

0(m−n)×n

)
∈ Rm×n, where R̂ =


r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .
. . .

...
0 · · · 0 rnn

 ∈ Rn×n.

Definition 3.2. Let m,n ∈ N with m ≥ n, and let A ∈ Rm×n. If there exist

Q = (q1| · · · |qm) ∈ Rm×m orthogonal,

R =

(
R̂

0(m−n)×n

)
∈ Rm×n upper-triangular,

such that there holds

A = QR, (3.1)

then we call (3.1) a QR factorization of A.

Remark 3.1. The QR factorization (3.1) can be simplified to

A = QR = (q1| · · · |qm)

(
R̂

0(m−n)×n

)
= (q1| · · · |qn)R̂.

We call such a factorization A = Q̂R̂ with Q̂ ∈ Rm×n having orthonormal columns and
R̂ ∈ Rn×n being upper-triangular a reduced QR factorization of A.

Example 3.1. An example of a QR factorization is


1 1
−1 1
1 1
0 0

 =


1√
3

1√
6

1√
2

0

− 1√
3

2√
6

0 0
1√
3

1√
6

− 1√
2

0

0 0 0 1



√
3 1√

3

0 4√
6

0 0
0 0


with corresponding reduced QR factorization


1 1
−1 1
1 1
0 0

 =


1√
3

1√
6

− 1√
3

2√
6

1√
3

1√
6

0 0


(√

3 1√
3

0 4√
6

)
.
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3.2 Existence and uniqueness

Remark 3.2. Let A ∈ Rm×n with m ≥ n. Then, finding a reduced QR factorization
A = Q̂R̂ with Q̂ ∈ Rm×n having orthonormal columns and R̂ ∈ Rn×n upper-triangular,
i.e.,

A = (a1| · · · |an) = (q1| · · · |qn)


r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .
. . .

...
0 · · · 0 rnn

 = Q̂R̂,

is equivalent to finding n orthonormal vectors q1, . . . , qn ∈ Rm and n(n+1)
2 real numbers

{rij}1≤i≤j≤n ⊆ R such that
a1 = r11q1,

a2 = r12q1 + r22q2,
...

an = r1nq1 + r2nq2 + · · ·+ rnnqn.

(3.2)

We now describe a procedure, called Gram–Schmidt orthogonalization, for obtaining
a reduced QR factorization to a matrix A = (a1| · · · |an) ∈ Rm×n, m ≥ n, of full rank
rk(A) = n. We want to find orthonormal vectors q1, . . . , qn ∈ Rm such that

span(q1, . . . , qi) = span(a1, . . . , ai) ∀i ∈ {1, . . . , n}.

As a first step, let us set q1 := a1
∥a1∥2 and r11 := ∥a1∥2 so that q1 is a unit vector and we

have a1 = r11q1 (thus also q1 = r−1
11 a1 as r11 > 0). We now make the following observation.

Remark 3.3. Let A = (a1| · · · |an) ∈ Rm×n, m ≥ n ≥ 2, and assume rk(A) = n. Suppose,
for some k ∈ {2, . . . , n}, we are given orthonormal vectors q1, . . . , qk−1 ∈ Rm such that
qi ∈ span(a1, . . . , ai) for all i ∈ {1, . . . , k − 1}. Then, the vector

qk := ± q̃k
∥q̃k∥2

, where q̃k := ak −
k−1∑
l=1

⟨ql, ak⟩ql

(note q̃k ̸= 0 as A has full rank) is a unit vector satisfying qk ∈ span(a1, . . . , ak) and
{qk} ⊥ {q1, . . . , qk−1} (see (1.2)). Observe that this allows us to write

ak =
k∑

l=1

rlkql, rlk :=

{
⟨ql, ak⟩ , if 1 ≤ l ≤ k − 1,

±∥q̃k∥2 , if l = k.

As desired, this procedure yields orthonormal vectors q1, . . . , qn ∈ Rm and real numbers
{rij}1≤i≤j≤n ⊆ R satisfying (3.2). These are given by

∀ 1 ≤ j ≤ n : qj =
1

rjj

(
aj −

j−1∑
l=1

rljql

)
,

∀ 1 ≤ i ≤ j ≤ n : rij =

{
⟨qi, aj⟩ , if i ≤ j − 1,

±∥aj −
∑j−1

l=1 rljql∥2 , if i = j.

(3.3)

28



The sign of the values rjj , 1 ≤ j ≤ n, is not determined and we use the convention
to choose rjj > 0 so that the upper-triangular matrix R̂ in the resulting reduced QR
factorization A = Q̂R̂ has positive diagonal entries.

Algorithm 3.1 (Gram–Schmidt). Let m,n ∈ N, m ≥ n, and A = (a1| · · · |an) ∈ Rm×n

with rk(A) = n. Then, A has the reduced QR factorization A = Q̂R̂ with

Q̂ := (q1| · · · |qn) ∈ Rm×n, R̂ :=


r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .
. . .

...
0 · · · 0 rnn

 ∈ Rn×n

determined as follows.

Step 1) Compute

q̃1 := a1 ∈ Rm, r11 := ∥q̃1∥2 > 0, q1 :=
1

r11
q̃1 ∈ Rm.

If n = 1, we stop. If n ≥ 2, we continue as follows.

Step 2) Compute r12 := ⟨q1, a2⟩ ∈ R. Then, compute

q̃2 := a2 − r12q1 ∈ Rm, r22 := ∥q̃2∥2 > 0, q2 :=
1

r22
q̃2 ∈ Rm.

...

Step j) Compute rij := ⟨qi, aj⟩ ∈ R for i ∈ {1, . . . , j − 1}. Then, compute

q̃j := aj −
j−1∑
l=1

rljql ∈ Rm, rjj := ∥q̃j∥2 > 0, qj :=
1

rjj
q̃j ∈ Rm.

...

Step n) Compute rin := ⟨qi, an⟩ ∈ R for i ∈ {1, . . . , n− 1}. Then, compute

q̃n := an −
n−1∑
l=1

rlnql ∈ Rm, rnn := ∥q̃n∥2 > 0, qn :=
1

rnn
q̃n ∈ Rm.

Remark 3.4. Observe that this is well-defined for full-rank matrices, i.e., we have that
rii ̸= 0 for all i ∈ {1, . . . , n}. Indeed, if we would have rjj = 0 for some j ∈ {1, . . . , n},
then q̃j = aj −

∑j−1
l=1 rljql = 0 and thus, aj ∈ span(q1, . . . , qj−1) = span(a1, . . . , aj−1), a

contradiction to the assumption that A is of full rank.

Example 3.2. Consider the matrix

A := (a1|a2|a3) :=


1 0 1
−1 1 1
1 1 −1
1 2 1

 ∈ R4×3. (3.4)

Note that A is of full rank, i.e., rk(A) = 3, and we can apply Algorithm 3.1 to A to obtain
a reduced QR factorization.
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1) Set q̃1 := a1 = (1,−1, 1, 1)T. Then, we have that r11 := ∥q̃1∥2 = 2 and we set
q1 := r−1

11 q̃1 = (12 ,−
1
2 ,

1
2 ,

1
2)

T.

2) Compute r12 := ⟨q1, a2⟩ = 1 and set q̃2 := a2 − r12q1 = (−1
2 ,

3
2 ,

1
2 ,

3
2)

T. Then,

r22 := ∥q̃2∥2 =
√
5 and we set q2 := r−1

22 q̃2 = (− 1
2
√
5
, 3
2
√
5
, 1
2
√
5
, 3
2
√
5
)T.

3) Compute r13 := ⟨q1, a3⟩ = 0 and r23 := ⟨q2, a3⟩ = 2√
5
. Then, we have that q̃3 :=

a3− r13q1− r23q2 = (65 ,
2
5 ,−

6
5 ,

2
5)

T with r33 := ∥q̃3∥2 = 4√
5
, and we set q3 := r−1

33 q̃3 =

( 3
2
√
5
, 1
2
√
5
,− 3

2
√
5
, 1
2
√
5
)T.

We deduce that A = Q̂R̂ with

Q̂ :=


1
2 − 1

2
√
5

3
2
√
5

−1
2

3
2
√
5

1
2
√
5

1
2

1
2
√
5

− 3
2
√
5

1
2

3
2
√
5

1
2
√
5

 , R̂ :=

2 1 0

0
√
5 2√

5

0 0 4√
5


is a reduced QR factorization of A. Note that a full QR factorization can be obtained by
“filling up” Q̂ with an additional orthonormal column and R̂ with an additional row of
zeros. We can take, e.g.,

Q :=


1
2 − 1

2
√
5

3
2
√
5

1
2

−1
2

3
2
√
5

1
2
√
5

1
2

1
2

1
2
√
5

− 3
2
√
5

1
2

1
2

3
2
√
5

1
2
√
5

−1
2

 , R :=


2 1 0

0
√
5 2√

5

0 0 4√
5

0 0 0


to find that A = QR is a (full) QR factorization of A.

Remark 3.5. From a reduced QR factorization, we can always obtain a full QR factor-
ization. More precisely, let A ∈ Rm×n, m ≥ n, and suppose we have a reduced QR
factorization A = Q̂R̂ with Q̂ = (q1| · · · |qn) ∈ Rm×n having orthonormal columns and
R̂ ∈ Rn×n upper-triangular. Note that if m = n, this is already a full QR factoriza-
tion. If m > n, we can choose arbitrary orthonormal vectors qn+1, . . . , qm ∈ Rm satis-
fying {qn+1, . . . , qm} ⊥ {q1, . . . , qn}, and obtain with Q = (Q̂|qn+1| · · · |qm) ∈ Rm×m and

R =

(
R̂

0(m−n)×n

)
∈ Rm×n that A = QR is a (full) QR factorization of A.

We can now prove that any arbitrary matrix A ∈ Rm×n, m ≥ n, has a full QR
factorization.

Theorem 3.1 (Existence result for QR). Let m,n ∈ N with m ≥ n. Then, every matrix
A ∈ Rm×n has a (full) QR factorization.

Proof. We know that every full-rank matrix A ∈ Rm×n, m ≥ n, has a reduced QR
factorization (by the Gram–Schmidt Algorithm 3.1 and Remark 3.4) and hence, by Remark
3.5, also a full QR factorization. It remains to consider the case of rank-deficient matrices.
To this end, let A ∈ Rm×n, m ≥ n, with 0 ≤ rk(A) < n. Then, running Algorithm 3.1,
there will be at least one step j, where q̃j = 0. Whenever this happens, we set rjj = 0 and
take qj ∈ Rm, ∥qj∥2 = 1, to be any arbitrary unit vector satisfying {qj} ⊥ {q1, . . . , qj−1},
and continue Algorithm 3.1. This yields a reduced QR factorization for A, from which we
can then obtain a full QR factorization from Remark 3.5.
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Remark 3.6. In particular, every matrix A ∈ Rm×n, m ≥ n, has a reduced QR factoriza-
tion.

Note that we now have a way to compute reduced and full QR factorizations to arbi-
trary real m× n matrices with m ≥ n. Exercises can be found on the problem sheets.

Let us observe that the QR factorization is not unique. Indeed, suppose we are given a
QR factorization A = QR and choose s1, . . . , sm ∈ {−1, 1}. Then, for i = 1, . . . ,m we can
multiply the i-th column of Q and the i-th row of R by si without changing the product
QR, thus yielding a new QR factorization. However, we can prove that the reduced QR
factorization A = Q̂R̂ of full-rank matrices A ∈ Rm×n, m ≥ n, is unique upon fixing the
sign of the diagonal entries of R̂.

Theorem 3.2 (Uniqueness result for QR). Let m,n ∈ N with m ≥ n. Then, every matrix
A ∈ Rm×n with rk(A) = n has a unique reduced QR factorization A = Q̂R̂ with R̂ having
positive diagonal entries.

Proof. Let A ∈ Rm×n, m ≥ n, be a matrix of full rank, i.e., rk(A) = n. Then, in view of
Remarks 3.2 and 3.3, any reduced QR factorization A = Q̂R̂ with Q̂ = (q1| · · · |qn) ∈ Rm×n

having orthonormal columns and R̂ = (rij) ∈ Rn×n being upper-triangular must satisfy
(3.3). We have already observed in Remark 3.4 that the values rii, 1 ≤ i ≤ n, given
by (3.3) are non-zero since A is of full rank, and hence, the vectors q1, . . . , qn ∈ Rm and
numbers {rij}1≤i≤j≤n ⊆ R are uniquely determined except for the sign of the values rii,
1 ≤ i ≤ n. Once we fix those signs to rii > 0, 1 ≤ i ≤ n, by imposing that R̂ should have
positive diagonal entries, we have shown the claim.

Remark 3.7 (Application of QR factorization: solution of linear systems). The QR fac-
torization provides a method to solve linear systems. For given A ∈ Rm×n, m ≥ n, and
b ∈ Rm, consider the problem of finding x ∈ Rn such that Ax = b. Observe that, if we have
a QR factorization A = QR with Q ∈ Rm×m orthogonal and R ∈ Rm×n upper triangular,
we have

Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = QTb.

Therefore, once we have computed a QR factorization A = QR, we can compute b̃ :=
QTb ∈ Rm and solve the upper-triangular system Rx = b̃ by backward substitution.

3.3 Projectors

We now introduce the concept of projectors, which is crucial to many algorithms in nu-
merical linear algebra.

Definition 3.3. A square matrix P ∈ Rn×n is called a projector, or a projection matrix,
iff it is idempotent, that is, P 2 = P .

Note that, in terms of the associated linear map LP : Rn → Rn, x 7→ Px, to a matrix
P ∈ Rn×n, the condition P 2 = P means that LP ◦ LP = LP .

Remark 3.8. Let P ∈ Rn×n be a projector. We make the following two observations.

(i) We have Py = y for any y ∈ R(P ).
Indeed, if y ∈ R(P ) then y = Px for some x ∈ Rn, and hence, Py = P 2x = Px = y.
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(ii) We have Px− x ∈ N (P ) for any x ∈ Rn.
Indeed, there holds P (Px− x) = P 2x− Px = Px− Px = 0 for any x ∈ Rn.

The projector P projects onto R(P ) along N (P ).

Px− x

x

R(P )

Px
Px− x

x

R(P )

Px

Figure 3: Left: Action of an oblique (i.e., a non-orthogonal) projector P ∈ Rn×n on a
vector x ∈ Rn. Right: Action of an orthogonal projector P ∈ Rn×n on a vector x ∈ Rn.

Remark 3.9. Let P ∈ Rn×n be a projector. Then,

(In − P )2 = I2n − 2P + P 2 = In − 2P + P = In − P,

i.e., In − P ∈ Rn×n is a projector.

Definition 3.4. Let P ∈ Rn×n be a projector. Then, In − P ∈ Rn×n is called the
complementary projector to P .

We are going to see that the complementary projector to P is the projector onto N (P )
along R(P ). Let us introduce the notion of complementary subspaces.

Definition 3.5. Let S1, S2 ⊆ Rn be subspaces of Rn. Then, S1 and S2 are called comple-
mentary subspaces of Rn iff there holds S1 + S2 = Rn and S1 ∩ S2 = {0}.

We can now show the following results.

Theorem 3.3. Let P ∈ Rn×n be a projector. Then, we have the following assertions.

(i) R(In − P ) = N (P ) and N (In − P ) = R(P ).

(ii) R(P ) and N (P ) are complementary subspaces of Rn. Further, for any x ∈ Rn,

x = Px+ (In − P )x ∈ R(P ) +N (P )

is the unique way of writing x = x1 + x2 with x1 ∈ R(P ) and x2 ∈ N (P ).

Proof. (i) Let us start by proving that R(In − P ) = N (P ). We have already observed in
Remark 3.8(ii) that for any x ∈ Rn there holds x − Px ∈ N (P ), and thus, R(In − P ) ⊆
N (P ). To see that also N (P ) ⊆ R(In −P ), note that if x ∈ N (P ) we have x = x−Px ∈
R(In − P ). It remains to prove that N (In − P ) = R(P ). Since In − P ∈ Rn×n is a
projector, we have by the first part that N (In − P ) = R(In − (In − P )) = R(P ).

(ii) First, note R(P ) and N (P ) are subspaces of Rn. Let us show that R(P )+N (P ) =
Rn. Clearly, R(P ) + N (P ) ⊆ Rn since R(P ) ⊆ Rn and N (P ) ⊆ Rn. For the converse,
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let x ∈ Rn. Then, x = Px + (In − P )x ∈ R(P ) + R(In − P ), i.e., x ∈ R(P ) + N (P )
(note R(In − P ) = N (P ) by (i)). We conclude that R(P ) + N (P ) = Rn. Next, let
us show that R(P ) ∩ N (P ) = {0}. Clearly 0 ∈ R(P ) ∩ N (P ) and it remains to show
R(P ) ∩N (P ) ⊆ {0}. To this end, let x ∈ R(P ) ∩N (P ). Then, x = Px̃ for some x̃ ∈ Rn,
and there holds Px = 0. Hence, P 2x̃ = 0 and since P 2 = P , we have x = Px̃ = 0. We
conclude that R(P ) ∩N (P ) = {0}.

Since R(P ) and N (P ) are complementary subspaces of Rn, we deduce that any x ∈ Rn

can be uniquely written as x = x1 + x2 with x1 ∈ R(P ) and x2 ∈ N (P ) (will follow from
Step 1 in the proof of Theorem 3.4).

We observe that a projector separates Rn into two complementary subspaces, namely
R(P ) and N (P ). Conversely, for any two arbitrary complementary subspaces, we can find
a suitable projector in the following sense.

Theorem 3.4. Let S1, S2 ⊆ Rn be two complementary subspaces of Rn. Then, there exists
a unique projector P ∈ Rn×n such that R(P ) = S1 and N (P ) = S2. We call this projector
the projector onto S1 along S2.

Proof. Let S1, S2 ⊆ Rn be two complementary subspaces of Rn, i.e., S1 + S2 = Rn and
S1 ∩ S2 = {0}.

Step 1 : We start by showing that any x ∈ Rn has a unique decomposition

x = x1 + x2 with x1 ∈ S1, x2 ∈ S2.

The existence of such a decomposition is guaranteed since S1 + S2 = Rn, and it only
remains to show uniqueness. To this end, suppose x = x1 + x2 = x̃1 + x̃2 for some
x1, x̃1 ∈ S1 and x2, x̃2 ∈ S2. Then, we have x1 − x̃1 ∈ S1, x̃2 − x2 ∈ S2, and hence,

x1 − x̃1 = x̃2 − x2 ∈ S1 ∩ S2 = {0},

i.e., x1 = x̃1 and x2 = x̃2.

Step 2 : We construct a projector P ∈ Rn×n such that R(P ) = S1 and N (P ) = S2.
To this end, we define a linear map L : Rn → Rn, x 7→ L(x), as follows: For a vector
x ∈ Rn with x = x1 + x2 where x1 ∈ S1 and x2 ∈ S2, we define L(x) := x1. Note that
by Step 1 (existence and uniqueness of such a decomposition), this yields a well-defined
map. We claim that L is linear, i.e., L ∈ L(Rn,Rn). Indeed, given x = x1 + x2 ∈ Rn,
y = y1 + y2 ∈ Rn with x1, y1 ∈ S1, x2, y2 ∈ S2, and α ∈ R, we have that

L(αx+ y) = L((αx1 + y1) + (αx2 + y2)) = αx1 + y1 = αL(x) + L(y),

since αx+ y = (αx1 + y1) + (αx2 + y2) with (αxi + yi) ∈ Si for i ∈ {1, 2}. As L is linear,
we deduce that there exists a matrix P ∈ Rn×n such that L(x) = Px for any x ∈ Rn (see
Theorem 1.1).

We check that P is a projector: For any x = x1 + x2 ∈ Rn with x1 ∈ S1, x2 ∈ S2, we
have

P 2x = L(L(x)) = L(x1) = L(x1 + 0) = x1 = L(x) = Px.

It follows that P 2 = P and hence, P is a projector.
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We check that R(P ) = S1: We have that R(P ) = {L(x) |x ∈ Rn} ⊆ S1 by definition
of the map L. Conversely, for y ∈ S1 note y = y + 0 with y ∈ S1, 0 ∈ S2, so that
y = L(y) = Py ∈ R(P ).

We check that N (P ) = S2: This holds as for any x = x1 + x2 ∈ Rn with x1 ∈ S1 and
x2 ∈ S2 there holds Px = 0 iff L(x) = 0 iff x1 = 0.

Step 3 : We show that P is unique. To this end, suppose there exists another projector
P̃ ∈ Rn×n such that R(P̃ ) = S1 and N (P̃ ) = S2. Then, in view of Remark 3.8, we
must have P̃ y = y for any y ∈ R(P̃ ) = S1. Hence, for any x ∈ Rn with decomposition
x = x1 + x2 where x1 ∈ S1, x2 ∈ S2, we must have that

P̃ x = P̃ x1 + P̃ x2 = x1 + 0 = x1 = L(x) = Px.

We deduce that P̃ = P and the claim is proved.

Let us now turn our attention to the important class of orthogonal projectors.

Definition 3.6. A projector P ∈ Rn×n is called an orthogonal projector iff it projects
onto S1 along S2 for some subspaces S1, S2 of Rn with S1 ⊥ S2. A projector which is not
an orthogonal projector is called an oblique projector.

Note that an orthogonal projector does not need to be an orthogonal matrix. Actually,
if P ∈ Rn×n is an orthogonal projector that is also an orthogonal matrix (PPT = PTP =
In), it follows from the next result that then, P must be the identity matrix P = In.

We have the following characterization of orthogonal projectors:

Theorem 3.5. A square matrix P ∈ Rn×n is an orthogonal projector iff there holds

P 2 = P = PT.

Proof. “⇐=”: Let P ∈ Rn×n with P 2 = P = PT. Then, as P 2 = P , we have that P is a
projector (onto R(P ) along N (P )). We need to show that R(P ) ⊥ N (P ). To this end, let
x ∈ N (P ) and y ∈ R(P ), and recall from Theorem 3.3 that N (P ) = R(In − P ). Hence,
we have x = (In − P )u = u− Pu and y = Pv for some u, v ∈ Rn, and we find

⟨x, y⟩ = ⟨u− Pu, Pv⟩ = ⟨u, Pv⟩ − ⟨Pu, Pv⟩ = ⟨u, Pv⟩ − ⟨u, PTPv⟩ = 0,

where we have used in the last equality that PTP = P 2 = P . Therefore, P is an orthogonal
projector.

“=⇒”: Let P ∈ Rn×n be an orthogonal projector, i.e., P 2 = P and P projects onto
S1 along S2 for some subspaces S1, S2 of Rn with S1 ⊥ S2. Then, writing r := dim(S1),
there exists an orthonormal basis {q1, . . . , qn} of Rn such that {q1, . . . , qr} is a basis of S1

and {qr+1, . . . , qn} is a basis of S2. Let us set Q := (q1| · · · |qn) ∈ Rn×n and note that Q is
orthogonal. Noting that

Pqi =

{
qi , if 1 ≤ i ≤ r,

0 , if r < i ≤ n,

we have that

QTPQ = diagn×n(1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0︸ ︷︷ ︸
(n-r) times

) =: Σ ∈ Rn×n.
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This yields that P = QΣQT is a SVD (and an eigenvalue decomposition) of P . We find
that

PT = QΣTQT = QΣQT = P

since Σ is symmetric.

Theorem 3.6. Let P ∈ Rn×n\{0} be a projector. Then, we have the following:

(i) all non-zero singular values of P are greater than or equal to 1.

(ii) P is an orthogonal projector iff ∥P∥2 = 1.

Proof. The proof of (i) is an exercise. Assuming that (i) holds, let us prove (ii).
“=⇒”: If P is an orthogonal projector, we have seen in the proof of Theorem 3.5

that all non-zero singular values of P are equal to 1. We find that ∥P∥2 = 1 (note since
P ̸= 0n×n, there is at least one non-zero singular value).

“⇐=”: Suppose P ∈ Rn×n\{0} is a projector with ∥P∥2 = 1, and write r := rk(P ).
Let P = UΣV T = (u1| · · · |un)diagn×n(σ1, . . . , σn)(v1| · · · |vn)T be a SVD of P . Since
1 = σ1 ≥ σ2 ≥ · · · ≥ σr > 0, it follows from (i) that σi = 1 for all i ∈ {1, . . . , r}.
We deduce that P =

∑r
i=1 σiuiv

T
i =

∑r
i=1 uiv

T
i and PT =

∑r
i=1 viu

T
i . Note that as

Puj = uj for all j ∈ {1, . . . , r} (since u1, . . . , ur ∈ R(P )), we have
∑r

i=1 ui⟨vi, uj⟩ = uj
and hence (left-multiply by uTj ) ⟨vj , uj⟩ = 1 for all j ∈ {1, . . . , r}. This gives vj = uj for

all j ∈ {1, . . . , r} (note ∥vj − uj∥22 = ∥vj∥22 + ∥uj∥22 − 2⟨vj , uj⟩ = 0) and we conclude that
P = PT. In view of Theorem 3.5, this implies that P is an orthogonal projector.

Remark 3.10 (Projection with orthonormal basis). Let {q1, . . . , qn} be an orthonormal
basis of Rn, and consider the complementary subspaces S1 := span(q1, . . . , qr) and S2 :=
span(qr+1, . . . , qn) of Rn, where 1 ≤ r ≤ n − 1. Then, the projector onto S1 along S2 is
given by

P = Q̂Q̂T ∈ Rn×n,

where Q̂ := (q1| · · · |qr) ∈ Rn×r (note R(P ) = R(Q̂) = S1 and N (P ) = N (Q̂T) = S2).
Note that P is an orthogonal projector as S1 ⊥ S2 (or note P 2 = P = PT). The
corresponding linear map

LP : Rn → Rn, x 7→ Q̂Q̂Tx =
r∑

i=1

(qiq
T
i )x =

r∑
i=1

⟨x, qi⟩qi

projects the vector space Rn orthogonally onto S1 along S2, i.e., it isolates the components
of a vector in directions q1, . . . , qr. Note that the complementary projector In−P is also an
orthogonal projector: it is the projector onto S2 along S1, i.e., it isolates the components
of a vector in directions qr+1, . . . , qn. The corresponding linear map is

LIn−P : Rn → Rn, x 7→ (In − Q̂Q̂T)x =

n∑
i=r+1

(qiq
T
i )x =

n∑
i=r+1

⟨x, qi⟩qi.

Observe that we can decompose any x ∈ Rn uniquely into x = x1 + x2 with x1 ∈ S1,
x2 ∈ S2, where x1 = Q̂Q̂Tx and x2 = (In − Q̂Q̂T)x.

35



Remark 3.11 (Projection with arbitrary basis). Let S1 be a subspace of Rm spanned by
n ≤ m linearly independent vectors a1, . . . , an ∈ Rm. We set A := (a1| · · · |an) ∈ Rm×n so
that S1 = R(A), and we want to construct an orthogonal projector P ∈ Rm×m onto S1.
For x ∈ Rm we must have Px ∈ S1, i.e., Px = Ay for some y ∈ Rn, and {Px − x} ⊥ S1,
i.e.,

0n×1 =

⟨a1, Px− x⟩
...

⟨an, Px− x⟩

 = AT(Px− x) = ATAy −ATx.

Note that, in view of Theorem 1.2, we have rk(ATA) = rk(A) = n and hence, ATA ∈ Rn×n

is invertible. We find that y = (ATA)−1ATx and thus Px = Ay = A(ATA)−1ATx. We
conclude that the orthogonal projector onto S1 = R(A) is given by

P = A(ATA)−1AT ∈ Rm×m.

Observe that if A = Q̂ has orthonormal columns, this reduces to P = Q̂Q̂T.

Remark 3.12 (Uniqueness of the orthogonal projector onto a given subspace). Let S ⊆ Rn

be a subspace of Rn. Then, there exists a unique orthogonal projector P ∈ Rn×n onto S.
In order to show uniqueness, suppose that P1, P2 ∈ Rn×n are orthogonal projectors with
R(P1) = R(P2) = S. Then, we have that (P1 − P2)x = P1x − P2x ∈ S for all x ∈ Rn,
and also (P1 − P2)x = (x − P2x) − (x − P1x) ∈ S⊥ (note that for i ∈ {1, 2} there holds
⟨x − Pix, y⟩ = ⟨x, y − PT

i y⟩ = ⟨x, y − Piy⟩ = 0 for all y ∈ R(Pi) = S). It follows that
(P1 − P2)x = 0 ∈ Rn for any x ∈ Rn and thus, P1 = P2.

Observe that for the unique orthogonal projector P ∈ Rn×n onto S we have that
N (P ) = S⊥ (exercise), i.e., P is the projector onto S along S⊥.

3.4 QR via Gram–Schmidt orthogonalization

Recall the Gram–Schmidt algorithm 3.1 for full-rank matrices, as well as the adjustments
for rank-deficient matrices discussed in Section 3.2. Let us now provide a re-interpretation
of Algorithm 3.1 in terms of orthogonal projections.

Remark 3.13 (Gram–Schmidt via projectors). Let A = (a1| · · · |an) ∈ Rm×n, m ≥ n, and
assume rk(A) = n. Let q1, . . . , qn ∈ Rm be the orthonormal vectors obtained through
Algorithm 3.1 and define

P1 := Im

Pi := Im − Q̂i−1Q̂
T
i−1, where Q̂i−1 := (q1| · · · |qi−1) ∈ Rm×i, 2 ≤ i ≤ n.

Note that Pi ∈ Rm×m projects the vector space Rm onto the space orthogonal to
span(q1, . . . , qi−1). Then, we observe that q1, . . . , qn are given by

q1 =
P1a1

∥P1a1∥2
, q2 =

P2a2
∥P2a2∥2

, · · · , qn =
Pnan

∥Pnan∥2
,

i.e., qi is precisely the normalized orthogonal projection of ai onto the space orthogonal
to span(q1, . . . , qi−1).

Written down in an algorithmic way, we have the following algorithm.
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Algorithm 3.2 (Classical Gram–Schmidt iteration). Let A = (a1| · · · |an) ∈ Rm×n, m ≥
n, and rk(A) = n. The classical Gram–Schmidt iteration does the following:

for j = 1, . . . , n do
q̃j = aj
for i = 1, . . . , j − 1 do
rij = ⟨qi, aj⟩
q̃j = q̃j − rijqi

end for
rjj = ∥q̃j∥2
qj =

1
rjj

q̃j
end for

We call this the classical Gram–Schmidt iteration as, unfortunately, it is numerically
unstable (sensitive to rounding errors, we will discuss numerical stability later). However,
a simple modification leads to improved stability. The key observation is that the projector
Pi = Im − Q̂i−1Q̂

T
i−1 ∈ Rm×m of rank m − (i − 1) from Remark 3.13 can be decomposed

as the product of i− 1 projectors of rank m− 1:

Pi = (Im − qi−1q
T
i−1)(Im − qi−2q

T
i−2) · · · (Im − q1q

T
1 ), 2 ≤ i ≤ n.

The modified Gram–Schmidt iteration is given below.

Algorithm 3.3 (Modified Gram–Schmidt iteration). Let A = (a1| · · · |an) ∈ Rm×n, m ≥
n, and rk(A) = n. The modified Gram–Schmidt iteration does the following:

for i = 1, . . . , n do
q̃i = ai

end for
for i = 1, . . . , n do

rii = ∥q̃i∥2
qi =

1
rii
q̃i

for j = i+ 1, . . . , n do
rij = ⟨qi, q̃j⟩
q̃j = q̃j − rijqi

end for
end for

We can assess the work of algorithms 3.2 and 3.3 by counting the number of floating
point operations, abbreviated flops. Every addition, subtraction, multiplication, division
and square root is counted as one flop.

Theorem 3.7. Algorithms 3.2 and 3.3 require ∼ 2mn2 flops.

Proof. Let us only look at Algorithm 3.3. We have the following number of additions:

n∑
i=1

(m− 1) +
n∑

j=i+1

(m− 1)

 = (m− 1)n+
n∑

i=1

(m− 1)(n− i)

= (m− 1)

(
n+ n2 − n(n+ 1)

2

)
=

1

2
(m− 1)n(n+ 1).
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We have the following number of subtractions:

n∑
i=1

n∑
j=i+1

m = m
n∑

i=1

(n− i) = m

(
n2 − n(n+ 1)

2

)
=

1

2
mn(n− 1).

We have the following number of multiplications:

n∑
i=1

m+

n∑
j=i+1

(m+m)

 = m

(
n+ 2

n∑
i=1

(n− i)

)
= m

(
n+ 2n2 − n(n+ 1)

)
= mn2.

Further, we have
∑n

i=1m = mn divisions, and
∑n

i=1 1 = n square roots. In total, we have

#flops =
1

2
(m− 1)n(n+ 1) +

1

2
mn(n− 1) +mn2 +mn+ n = 2mn2 + (m− n−1

2 )n,

from which we see that #flops ∼ 2mn2.

Here, #flops ∼ 2mn2 means that limm,n→∞
#flops
2mn2 = 1.

Remark 3.14 (Gram–Schmidt = triangular orthogonalization). The outer steps of Algo-
rithm 3.3 can be regarded as right-multiplication by an upper-triangular square matrix:
Schematically, the method does the following:

1. AR1 = (a1| · · · |an)


1
r11

− r12
r11

− r13
r11

· · · − r1n
r11

0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1

 = (q1| ∗ | · · · |∗),

2. AR1R2 = (q1| ∗ | · · · |∗)



1 0 · · · · · · 0
0 1

r22
− r23

r22
· · · − r2n

r22
0 0 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1


= (q1|q2| ∗ | · · · |∗)

...

n. AR1R2 · · ·Rn = (q1|q2| · · · |qn) = Q̂, i.e., we have A = Q̂R̂ with R̂ = (R1 · · ·Rn)
−1.

Gram–Schmidt is a triangular orthogonalization method.

Next, we will discuss an orthogonal triangulation method for obtaining QR factoriza-
tions, the so-called Householder triangularization.

3.5 QR via Householder triangularization

An alternative method for computing QR factorizations is the so-called Householder tri-
angularization. Recall from Remark 3.14 that Gram–Schmidt is a method of triangular
orthogonalization, i.e., A is transformed into a matrix with orthonormal columns via
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right-multiplication by upper-triangular matrices (AR1R2 · · ·Rn = Q̂, giving a reduced
QR factorization A = Q̂R̂ with R̂ = (R1 · · ·Rn)

−1). On the contrary, Householder tri-
angularization is a method of orthogonal triangulation, i.e., A is transformed into an
upper-triangular matrix via left-multiplication by orthogonal matrices:

Qn · · ·Q2Q1A = R. (3.5)

Remark 3.15. Let A ∈ Rm×n, m ≥ n, and suppose we have found orthogonal matrices
Q1, . . . , Qn ∈ Rm×m and an upper-triangular matrix R ∈ Rm×n such that (3.5) holds.
Then, A = QR with Q := QT

1 Q
T
2 · · ·QT

n ∈ Rm×m is a (full) QR factorization of A (note
that the product of orthogonal matrices is orthogonal).

We are going to construct the matrices Q1, . . . , Qn ∈ Rm×m in a way so that A ∈ Rm×n,
m ≥ n is transformed as follows: (illustration form = 4, n = 3; l.m. short for left-multiply)

a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

 =⇒
l.m.Q1


r11 r12 r13
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

 =⇒
l.m.Q2


r11 r12 r13
0 r22 r23
0 0 ∗
0 0 ∗

 =⇒
l.m.Q3


r11 r12 r13
0 r22 r23
0 0 r33
0 0 0

 .

So, left-multiplication by Qk should leave the first (k − 1) rows unchanged and introduce
zeros below the k-th main diagonal entry, thus leading to an upper-triangular matrix
R = Qn · · ·Q2Q1A after n such steps. We choose Qi, i ∈ {1, . . . , n}, to be an orthogonal
matrix of the form

Qi =

(
Ii−1 0(i−1)×(m−i+1)

0(m−i+1)×(i−1) F

)
∈ Rm×m,

where F ∈ {F−, F+} ∈ R(m−i+1)×(m−i+1) should act on vectors in Rm−i+1 as follows:

x =


⟨x, e1⟩
⟨x, e2⟩

...
⟨x, em−i+1⟩

 =⇒
l.m.F± F±x =


±∥x∥2

0
...
0

 = ±∥x∥2e1.

The idea is illustrated below: F± reflects the space Rm−i+1 along the hyperplane H±
orthogonal to the vector v± = ±∥x∥2e1 − x.

F+x = ∥x∥2e1F−x = −∥x∥2e1 O
span(e1)

x

H+

H−

v+v−

Figure 4: Illustration of Householder reflectors F±.
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Noting that Im−i+1 − vvT

∥v∥22
∈ R(m−i+1)×(m−i+1) is the orthogonal projector onto the

hyperplane orthogonal to v ∈ Rm−i+1, we find that (need to go twice as far)

F = Im−i+1 − 2
vvT

∥v∥22

is as required. We call F a Householder reflector.
In view of numerical stability, one should choose the reflector which moves x the larger

distance, i.e., we choose

v = sign(⟨x, e1⟩)∥x∥2e1 + x,

where we define sign(α) = 1 for α ≥ 0 and sign(α) = −1 otherwise.

Example 3.3. We compute a QR factorization of the full-rank matrix A ∈ R4×3 defined in
(3.4) via Householder triangularization.

Q1: Set x1 := a1 = (1,−1, 1, 1)T and v1 := sign(⟨x1, e1⟩)∥x1∥2e1 + x1 = (3,−1, 1, 1)T.
Then, compute

Q1 := I4 − 2
v1v

T
1

∥v1∥22
=

1

6


−3 3 −3 −3
3 5 1 1
−3 1 5 −1
−3 1 −1 5

 , Q1A =


−2 −1 0
0 4

3
4
3

0 2
3 −4

3
0 5

3
2
3

 .

Q2: Set x2 := (43 ,
2
3 ,

5
3)

T and v2 := sign(⟨x2, e1⟩)∥x2∥2e1 + x2 = (
√
5 + 4

3 ,
2
3 ,

5
3)

T. Then,

Q2 :=

(
1 01×3

03×1 I3 − 2
v2vT2
∥v2∥22

)
=

√
5

435


435√
5

0 0 0

0 −116 −58 −145

0 −58 75
√
5 + 16 −(30

√
5− 40)

0 −145 −(30
√
5− 40) 12

√
5 + 100



and we have Q2Q1A =


−2 −1 0

0 −
√
5 − 2√

5

0 0 −24
√
5+200
145

0 0 −12
√
5−16
29

.

Q3: Set x3 := (−24
√
5+200
145 ,−12

√
5−16
29 )T and compute v3 := sign(⟨x3, e1⟩)∥x3∥2e1 + x3 =

− 4
29(7

√
5 + 10, 3

√
5− 4)T. Then,

Q3 :=

(
I2 02×2

02×2 I2 − 2
v3vT3
∥v3∥22

)
=

1

29


29 0 0 0
0 29 0 0

0 0 −10
√
5− 6 4

√
5− 15

0 0 4
√
5− 15 10

√
5 + 6

 .

and we have Q3Q2Q1A =


−2 −1 0

0 −
√
5 − 2√

5

0 0 4√
5

0 0 0

.
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Noting that Q1, Q2, Q3 are symmetric orthogonal matrices, we find that A = QR with

Q := Q1Q2Q3 =


−1

2
1

2
√
5

3
2
√
5

−1
2

1
2 − 3

2
√
5

1
2
√
5

−1
2

−1
2 − 1

2
√
5

− 3
2
√
5

−1
2

−1
2 − 3

2
√
5

1
2
√
5

1
2

 , R :=


−2 −1 0

0 −
√
5 − 2√

5

0 0 4√
5

0 0 0


is a QR factorization of A.

Let us note that in practice, one would not form all of the above matrices explicitly.
To compute the factor R of a QR factorization of A, we can do the following:

Algorithm 3.4 (Householder triangularization). Let m,n ∈ N with m ≥ n. For a matrix
A ∈ Rm×n, the Householder triangularization produces the factor R of a QR factorization
A = QR and goes as follows:

for i = 1, . . . , n do
x = Ai:m,i

vi = sign(x1)∥x∥2e1 + x (x1 denotes the first entry of x)
vi =

1
∥vi∥2 vi

Ai:m,i:n = Ai:m,i:n − 2vi(v
T
i Ai:m,i:n)

end for

This algorithm stores the result R in place of A. The reflection vectors v1, . . . , vn are
stored for applying and forming Q (see Algorithms 3.5 and 3.6).

Theorem 3.8. Algorithm 3.4 requires ∼ 2mn2 − 2
3n

3 flops.

Proof. Omitted.

Notation: Here, we have written Ai1:i2,j1:j2 to denote the (i2 − i1 + 1) × (j2 − j1 + 1)
sub-matrix of A with top-left corner ai1j1 and bottom-right corner ai2j2 .

For practical applications, there is often no need to construct Q explicitly. However,
in view of Remark 3.7, we need to be able to compute matrix-vector products QTb. This
can be achieved with the following algorithm: (note Q = Q1Q2 · · ·Qn, Q

T = Qn · · ·Q2Q1

since the matrices Qi are symmetric orthogonal matrices)

Algorithm 3.5 (Computing QTb implicitly). After running Algorithm 3.4, a product QTb
with a given b ∈ Rm can be calculated via:

for i = 1, . . . , n do
bi:m = bi:m − 2vi(v

T
i bi:m)

end for,

leaving the result QTb in place of b.

If it is required to explicitly form Q, this can be done by computing the columns
Qe1, . . . Qem via the following algorithm:

Algorithm 3.6 (Computing Qx implicitly). After running Algorithm 3.4, a product Qx
with a given x ∈ Rm can be calculated via:

for i = n, n− 1, . . . , 1 do
xi:m = xi:m − 2vi(v

T
i xi:m)

end for,

leaving the result Qx in place of x.
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3.6 QR via Givens rotations

Finally, we give a brief overview of a third method for computing QR factorizations:
Givens rotations. This method is particularly useful for sparse matrices (i.e., if there are
only few entries below the diagonal which need to be eliminated to reach upper-triangular
form). The key observation is the following:

Recall from Remark 1.7 that any orthogonal matrix Q ∈ R2×2 with det(Q) = 1 is of
the form

Q(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ [0, 2π),

and that LQ(θ) rotates the plane R2 anticlockwise by the angle θ. Now, given some vector

x = (x1, x2)
T ∈ R2 with x2 ̸= 0, we can eliminate its second component by rotating x onto

the vector Q(θ)x = (∥x∥2, 0)T using a suitable angle θ. Indeed, using the matrix Q(θ)
with θ ∈ [0, 2π) satisfying

cos(θ) =
x1

∥x∥2
, sin(θ) = − x2

∥x∥2
(3.6)

(note such a θ exists as ∥( x1
∥x∥2 ,−

x2
∥x∥2 )

T∥2 = 1), we have that

Q(θ)x =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x1
x2

)
=

(√
x21 + x22
0

)
.

For simplicity, we will illustrate how to transform a matrix into upper-triangular form
using Givens rotations at the following explicit example:

A =

−2 −1 1
3 2 −1
4 1 4

 .

Givens rotations in 3D are the following matrices (or rather their associated linear maps):

G1(θ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 , LG1(θ) :

x1
x2
x3

 7→

x1
x̃2
x̃3

 where

(
x̃2
x̃3

)
= Q(θ)

(
x2
x3

)
,

G2(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 , LG2(θ) :

x1
x2
x3

 7→

x̃1
x2
x̃3

 where

(
x̃1
x̃3

)
= Q(θ)

(
x1
x3

)
,

G3(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , LG3(θ) :

x1
x2
x3

 7→

x̃1
x̃2
x3

 where

(
x̃1
x̃2

)
= Q(θ)

(
x1
x2

)
.

Note that the matrices Gi(θ), i ∈ {1, 2, 3}, are orthogonal matrices.
Step 1 : Look at the first column of A and choose an entry below the diagonal which

we would like to eliminate, and choose an entry you would like to use for this elimination.
Say, we would like to eliminate the entry a31 = 4 by using the entry a21 = 3, thus leaving
the first row of A unchanged. To this end, we will use the Givens rotation G1(θ) with θ
such that Q(θ) rotates (3, 4)T onto the vector (

√
32 + 42, 0)T = (5, 0)T. We know from
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(3.6) what to do: we take θ ∈ [0, 2π) such that cos(θ) = 3
5 and sin(θ) = −4

5 (we are not
interested in the precise value of θ). Then,

G1 :=

1 0 0
0 3

5
4
5

0 −4
5

3
5

 , G1A =

−2 −1 1
5 2 13

5
0 −1 16

5

 .

Step 2 : Next, eliminate the (2,1)-entry of G1A using the (1,1)-entry (and we leave the
third row of G1A unchanged). To this end, we will use a Givens rotation G3(θ) with θ
such that G(θ) rotates (−2, 5)T onto (

√
(−2)2 + 52, 0)T = (

√
29, 0)T. We know from (3.6)

what to do: we take θ ∈ [0, 2π) such that cos(θ) = − 2√
29

and sin(θ) = − 5√
29
. Then,

G3 :=

− 2√
29

5√
29

0

− 5√
29

− 2√
29

0

0 0 1

 , G3G1A =


√
29 12√

29
11√
29

0 1√
29

− 51
5
√
29

0 −1 16
5

 .

Step 3 : We eliminate the (3,2)-entry of G3G1A using its (2,2)-entry (and we leave the
first row of G3G1A unchanged, note we do not destroy our previously obtained zeros). To
this end, we will use a Givens rotation G1(θ) with θ such that G(θ) rotates ( 1√

29
,−1)T onto

(
√

( 1√
29
)2 + (−1)2, 0)T = (

√
30
29 , 0)

T. We know from (3.6) what to do: we take θ ∈ [0, 2π)

such that cos(θ) = 1√
30

and sin(θ) =
√

29
30 . Then,

G̃1 :=


1 0 0

0 1√
30

−
√

29
30

0
√

29
30

1√
30

 , G̃1G3G1A =


√
29 12√

29
11√
29

0
√

30
29 − 103√

870

0 0 − 7√
30

 =: R.

Noting that G1, G3, G̃1 ∈ R3×3 are orthogonal, we have obtained the following QR factor-
ization: A = QR with

Q := GT
1 G

T
3 G̃

T
1 =


− 2√

29
−

√
5√

174
−

√
5√
6

3√
29

11
√
2√

435
−

√
2√
15

4√
29

− 19√
870

− 1√
30

 , R :=


√
29 12√

29
11√
29

0
√
30√
29

− 103√
870

0 0 − 7√
30

 .

This example concludes the short introduction to Givens rotations.
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4 Linear Systems and Least Squares Problems

4.1 Gaussian elimination: LU factorization

In this section, we discuss the well-known Gaussian elimination – regarded as a matrix
factorization algorithm – to solve linear systems

Ax = b, x ∈ Rn

with given A ∈ Rn×n and b ∈ Rn. We are going to introduce the LU (lower-upper)
factorization of a square matrix. Recalling the definition of upper-triangular matrices
from Definition 3.1, we will also use the notion of lower-triangular square matrices:

Definition 4.1. A matrix L ∈ Rn×n is called lower-triangular iff LT is upper-triangular.
Further, a matrix L ∈ Rn×n is called unit lower-triangular iff L is lower-triangular and all
of its diagonal entries are equal to 1.

The standard version of Gaussian elimination transforms the matrix A into an upper-
triangular matrix

U = Ln−1 · · ·L2L1A ∈ Rn×n,

via left-multiplication by unit lower-triangular matrices L1, . . . , Ln−1 ∈ Rn×n of the form

L1 =


1
∗ 1
...

. . .
...

. . .

∗ 1

 , L2 =


1

1

∗ . . .
...

. . .

∗ 1

 , · · · , Ln−1 =


1

1
. . .

1
∗ 1


with zero-entries not shown. Assuming for the moment that the above is possible, this
leads to a factorization A = LU with L := L−1

1 · · ·L−1
n−1 ∈ Rn×n lower-triangular (exercise)

and U ∈ Rn×n upper-triangular.

Definition 4.2. Let n ∈ N and A ∈ Rn×n. If there exist a lower-triangular matrix
L ∈ Rn×n and an upper-triangular matrix U ∈ Rn×n such that there holds

A = LU, (4.1)

then we call (4.1) a LU factorization of A.

Example 4.1 (Gaussian elimination). Consider the matrix

A =


−2 2 1 −1
1 1 2 −2
−1 4 −1 1
1 3 −3 4

 ∈ R4×4. (4.2)

We illustrate Gaussian elimination.

44



L1: The first step is to eliminate the sub-diagonal entries in the first column of A via
adding 1

2/−
1
2/

1
2 times row 1 to row 2/3/4:

L1A =


−2 2 1 −1
0 2 5

2 −5
2

0 3 −3
2

3
2

0 4 −5
2

7
2

 with L1 :=


1 0 0 0
1
2 1 0 0
−1

2 0 1 0
1
2 0 0 1

 .

L2: The second step is to eliminate the sub-diagonal entries in the second column of L1A
via adding −3

2/−2 times row 2 to row 3/4:

L2L1A =


−2 2 1 −1
0 2 5

2 −5
2

0 0 −21
4

21
4

0 0 −15
2

17
2

 with L2 :=


1 0 0 0
0 1 0 0
0 −3

2 1 0
0 −2 0 1

 .

L3: The third step is to eliminate the sub-diagonal entries in the third column of L2L1A
via adding −10

7 times row 3 to row 4:

L3L2L1A =


−2 2 1 −1
0 2 5

2 −5
2

0 0 −21
4

21
4

0 0 0 1

 =: U with L3 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −10

7 1

 .

We find that A = LU with U as above and L given by

L := L−1
1 L−1

2 L−1
3 =


1 0 0 0
−1

2 1 0 0
1
2 0 1 0
−1

2 0 0 1



1 0 0 0
0 1 0 0
0 3

2 1 0
0 2 0 1



1 0 0 0
0 1 0 0
0 0 1 0
0 0 10

7 1

 =


1 0 0 0
−1

2 1 0 0
1
2

3
2 1 0

−1
2 2 10

7 1


is a LU factorization of A. Note how simple it is to compute L: the matrices Li can
be inverted by negating their sub-diagonal entries, and the matrix L can be obtained by
collecting these values appropriately.

Generally, if the i-th column xi of the matrix Li−1 · · ·L1A (the matrix A if i = 1)
is the vector xi = (x1i, . . . , xni)

T, then we eliminate the sub-diagonal entries in the i-th
column of Li−1 · · ·L1A via adding −xji

xii
times row i to row j for j = i+ 1, . . . , n:

Li =



1
. . .

1
−xi+1,i

xii
1

...
. . .

−xni
xii

1


= In − lie

T
i ∈ Rn×n, li :=



0
...
0

xi+1,i

xii
...

xni
xii


∈ Rn.

Now, as observed in Example 4.1, we have L−1
i = In + lie

T
i , i.e., the matrix Li can be

inverted by negating its sub-diagonal entries. Indeed, using that ⟨ei, li⟩ = 0, we find

(In − lie
T
i )(In + lie

T
i ) = In − lie

T
i lie

T
i = In =⇒ (In − lie

T
i )

−1 = In + lie
T
i .
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Further, the matrix L is given by

L = L−1
1 · · ·L−1

n−1 =


1
x21
x11

1
x31
x11

x32
x22

1
...

...
. . .

. . .
xn1
x11

xn2
x22

· · · xn,n−1

xn−1,n−1
1

 .

Indeed, looking at the product of two such matrices we find

L−1
i L−1

i+1 = (In + lie
T
i )(In + li+1e

T
i+1) = In + lie

T
i + li+1e

T
i+1

as ⟨ei, li+1⟩ = 0. Similarly one can compute L = L−1
1 · · ·L−1

n−1 to obtain the above matrix.
In view of these observations, the Gauß-algorithm goes as follows:

Algorithm 4.1 (Gaussian elimination (without pivoting)). To obtain a LU factorization
of a given matrix A ∈ Rn×n, do as follows:

L = In, U = A
for i = 1, . . . , n− 1 do

for j = i+ 1, . . . , n do
lji =

uji

uii

uj,i:n = uj,i:n − ljiui,i:n
end for

end for.

Warning: A needs to be such that no division by zero happens in the algorithm above.

Theorem 4.1. Algorithm 4.1 requires ∼ 2
3n

3 flops.

Proof. Exercise.

Remark 4.1. Compare this with ∼ 4
3n

3 flops for computing a QR factorization of a n× n
matrix via Householder (see Theorem 3.8). Gaussian elimination (with pivoting, see next
section) is the usual method of choice to solve linear systems.

Remark 4.2 (Solving linear systems via LU factorization). For given A ∈ Rn×n and b ∈ Rn,
consider the problem of finding x ∈ Rn such that Ax = b. Observe that, if there exists a
LU factorization A = LU with L ∈ Rn×n lower-triangular and U ∈ Rn×n upper-triangular,
we have

Ax = b ⇐⇒ LUx = b ⇐⇒

{
Ly = b,

Ux = y.

Therefore, once a LU factorization is computed (O(n3) flops, see Theorem 4.1), we can
first solve Ly = b for y by forward substitution (O(n2) flops) and then Ux = y for x by
backward substitution (O(n2) flops).

Remark 4.3 (Not every matrix has a LU factorization). The matrix A =

(
0 1
1 1

)
does

not have a LU factorization. Indeed, if there were L =

(
l11 0
l21 l22

)
∈ R2×2 and U =(

u11 u12
0 u22

)
∈ R2×2 such that A = LU , then there must hold l11u11 = 0 and l11u12 =

l21u11 = l21u12 + l22u22 = 1, which is not possible.
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Algorithm 4.1 in its current form is impractical to solve general linear systems. For
instance, it fails for the matrix from Remark 4.3 due to division by zero in the first step.
More dramatically, the algorithm is not stable for general n × n matrices as we will see
later in this course. Improvement in stability is obtained by pivoting, as we will explain
in the following section.

4.2 Gaussian elimination with partial pivoting: PA=LU factorization

In the i-th step of Gaussian elimination, we add multiples of row i to rows i+ 1, . . . , n to
obtain

x11 x12 · · · x1i x1,i+1 · · · x1n

x22 · · · x2i x2,i+1 · · · x2n

. . .
...

...
...

xii xi,i+1 · · · xin

xi+1,i xi+1,i+1 · · · xi+1,n

...
...

...
xni xn,i+1 · · · xnn


=⇒



x11 x12 · · · x1i x1,i+1 · · · x1n

x22 · · · x2i x2,i+1 · · · x2n

. . .
...

...
...

xii xi,i+1 · · · xin

0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗


and we call xii ̸= 0 the pivot. Instead, we can also add multiples of row j with some
j ∈ {i+ 1, . . . , n} such that xji ̸= 0 to rows i, . . . , j − 1, j + 1, . . . , n to create zeros in the
respective rows and column i:

x11 x12 · · · x1i x1,i+1 · · · x1n

x22 · · · x2i x2,i+1 · · · x2n

. . .
...

...
...

xii xi,i+1 · · · xin

...
...

...

xji xj,i+1 · · · xjn

...
...

...

xni xn,i+1 · · · xnn



=⇒



x11 x12 · · · x1i x1,i+1 · · · x1n

x22 · · · x2i x2,i+1 · · · x2n

. . .
...

...
...

0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗
xji xj,i+1 · · · xjn

0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗



.

In this case, xji ̸= 0 is called the pivot. This procedure is thought of as follows: In the i-th
step, choose a pivot xji ̸= 0 from column i and row j (some j ∈ {i, . . . , n}), permute the
rows of the matrix such that xji is moved to the main diagonal, and then do a standard
Gaussian elimination step. For numerical stability, the pivot is chosen as the largest entry
in modulus in column i and rows i, . . . , n. This is called Gaussian elimination with partial
pivoting and leads to a LU factorization of PA for some permutation matrix P .

Definition 4.3. Let n ∈ N and A ∈ Rn×n. If there exist a lower-triangular matrix
L ∈ Rn×n, an upper-triangular matrix U ∈ Rn×n, and a permutation matrix P ∈ Rn×n

(i.e., a matrix which has exactly one entry 1 in each row and column and zeros elsewhere)
such that there holds

PA = LU, (4.3)

then we call (4.3) a PA=LU factorization or a LU factorization with partial pivoting
corresponding to A.
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Remark 4.4. Observe that permutation matrices are orthogonal matrices.

We illustrate Gaussian elimination with partial pivoting at an example:

Example 4.2 (Gaussian elimination with partial pivoting). Consider the matrix A ∈ R4×4

defined in (4.2). We illustrate Gaussian elimination with partial pivoting.

P1: As max{|−2|, |1|, |−1|, |1|} = |−2|, we choose the (1, 1)-entry −2 as pivot. Since this
is already on the diagonal, no permutation is needed:

P1A = A with P1 := I4.

L1: We eliminate the sub-diagonal entries in the first column of P1A = A via adding
1
2/−

1
2/

1
2 times row 1 to row 2/3/4:

L1P1A =


−2 2 1 −1
0 2 5

2 −5
2

0 3 −3
2

3
2

0 4 −5
2

7
2

 with L1 :=


1 0 0 0
1
2 1 0 0
−1

2 0 1 0
1
2 0 0 1

 .

P2: As max{|2|, |3|, |4|} = |4|, we choose the (4, 2)-entry 4 as pivot. To this end, we
permute rows 2 and 4:

P2L1P1A =


−2 2 1 −1
0 4 −5

2
7
2

0 3 −3
2

3
2

0 2 5
2 −5

2

 with P2 :=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

L2: We eliminate the sub-diagonal entries in the second column of P2L1P1A via adding
−3

4/−
1
2 times row 2 to row 3/4:

L2P2L1P1A =


−2 2 1 −1
0 4 −5

2
7
2

0 0 3
8 −9

8
0 0 15

4 −17
4

 with L2 :=


1 0 0 0
0 1 0 0
0 −3

4 1 0
0 −1

2 0 1

 .

P3: As max{|38 |, |
15
4 |} = |154 |, we choose the (4, 3)-entry 15

4 as pivot. To this end, we
permute rows 3 and 4:

P3L2P2L1P1A =


−2 2 1 −1
0 4 −5

2
7
2

0 0 15
4 −17

4
0 0 3

8 −9
8

 with P3 :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

L3: We eliminate the sub-diagonal entries in the third column of P3L2P2L1P1A via
adding − 1

10 times row 3 to row 4:

L3P3L2P2L1P1A =


−2 2 1 −1
0 4 −5

2
7
2

0 0 15
4 −17

4
0 0 0 − 7

10

 =: U with L3 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

10 1

 .
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Now, setting

L′
3 := L3, L

′
2 := P3L2P

−1
3 =


1 0 0 0
0 1 0 0
0 −1

2 1 0
0 −3

4 0 1

 , L′
1 := P3P2L1P

−1
2 P−1

3 =


1 0 0 0
1
2 1 0 0
1
2 0 1 0
−1

2 0 0 1


yields L′

3L
′
2L

′
1P3P2P1A = L3P3L2P2L1P1A = U . We find that PA = LU with

P := P3P2P1 =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 , L := (L′
3L

′
2L

′
1)

−1 =


1 0 0 0
−1

2 1 0 0
−1

2
1
2 1 0

1
2

3
4

1
10 1


is a PA=LU factorization. Note that in contrast to the LU factorization of A from Example
4.1, all the sub-diagonal entries of L in the above PA=LU factorization are in the interval
[−1, 1]. This is due to the choice of pivot as the largest entry in modulus among the
candidates.

More generally, Gaussian elimination with partial pivoting transforms a matrix A ∈
Rn×n into an upper-triangular matrix U ∈ Rn×n by Gaussian elimination with an addi-
tional left-multiplication of a permutation matrix Pi at the beginning of step i:

Ln−1Pn−1 · · ·L2P2L1P1A = U.

Here, P1, . . . , Pn−1 ∈ Rn×n are permutation matrices and L1, . . . , Ln−1 ∈ Rn×n are unit
lower-triangular. We deduce that

(L′
n−1 · · ·L′

2L
′
1)(Pn−1 · · ·P2P1)A = U

with L′
n−1 := Ln−1 and L′

i := Pn−1 · · ·Pi+1LiP
−1
i+1 · · ·P

−1
n−1 for i ∈ {1, . . . , n− 2}. Observe

that the matrix L′
i has the same structure as Li. We then obtain that PA = LU is a

PA=LU factorization corresponding to A with

L := (L′
n−1 · · ·L′

2L
′
1)

−1, P := Pn−1 · · ·P2P1.

Note that P is a permutation matrix as a product of permutation matrices, and it is
checked analogously to the previous section that L is well-defined and lower-triangular.

The Gauß-algorithm with partial pivoting goes as follows:

Algorithm 4.2 (Gaussian elimination with partial pivoting). To obtain a PA=LU fac-
torization of a given matrix A ∈ Rn×n, do as follows:

P = In, L = In, U = A
for i = 1, . . . , n− 1 do

Choose r ∈ {i, . . . , n} such that |uri| = maxk∈{i,...,n}|uki|
ui,i:n ↔ ur,i:n
li,1:i−1 ↔ lr,1:i−1

pi,1:n ↔ pr,1:n
for j = i+ 1, . . . , n do

lji =
uji

uii
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uj,i:n = uj,i:n − ljiui,i:n
end for

end for.

Here, “↔” denotes “interchange”. Warning: A needs to be such that no division by zero
happens in the algorithm above (as an exercise, think about how to obtain a PA=LU
factorization if all candidates for pivots are zero at some step i).

Note that pivot selection requires O(n2) operations overall. Hence, to leading order,
Algorithm 4.2 requires the same amount of flops as Algorithm 4.1 (Gauß without pivoting),
i.e., 2

3n
3. Gaussian elimination with partial pivoting is the standard way to solve linear

systems on a computer.

Remark 4.5 (Solving linear systems via PA=LU factorization). For given A ∈ Rn×n and
b ∈ Rn, consider the problem of finding x ∈ Rn such that Ax = b. Observe that, if
there exists a factorization PA = LU with L ∈ Rn×n lower-triangular, U ∈ Rn×n upper-
triangular, and P ∈ Rn×n a permutation matrix, we have

Ax = b ⇐⇒ PAx = Pb ⇐⇒ LUx = Pb ⇐⇒

{
Ly = Pb,

Ux = y.

Therefore, once a PA=LU factorization is computed (O(n3) flops), we can first form
b̃ := Pb, then solve Ly = b̃ for y by forward substitution (O(n2) flops) and then Ux = y
for x by backward substitution (O(n2) flops).

Let us provide an existence result for the LU and PA=LU factorization without proof
(see book “Matrix Analysis” by Horn and Johnson for proof).

Theorem 4.2 (Existence of LU and PA=LU factorization). The following assertions hold.

(i) Any matrix A ∈ Rn×n admits a PA=LU factorization.

(ii) Let A ∈ Rn×n be invertible. Then, there exists a LU factorization of A iff there holds
det(A1:i,1:i) ̸= 0 for all i ∈ {1, . . . , n}.

4.3 Gaussian elimination with full pivoting: PAQ=LU factorization

To improve numerical stability even further, one can use a strategy called full pivoting.
Here, every entry of the sub-matrix Xi:n,i:n of the working matrix X at step i is a candidate
for the pivot. Let us remark that this is a procedure which is rarely used in practice due to
its large computational cost. Gaussian elimination with full pivoting leads to a PAQ=LU
factorization defined as follows.

Definition 4.4. Let n ∈ N and A ∈ Rn×n. If there exist a lower-triangular matrix
L ∈ Rn×n, an upper-triangular matrix U ∈ Rn×n, and permutation matrices P,Q ∈ Rn×n

such that there holds

PAQ = LU, (4.4)

then we call (4.4) a PAQ=LU factorization or a LU factorization with full pivoting corre-
sponding to A.
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Remark 4.6. In view of Theorem 4.2, any matrix A ∈ Rn×n admits a PAQ=LU factoriza-
tion with Q = In.

We illustrate Gaussian elimination with full pivoting at an example:

Example 4.3 (Gaussian elimination with full pivoting). Consider the matrix A ∈ R4×4

defined in (4.2). We illustrate Gaussian elimination with full pivoting.

P1, Q1: As max{|−2|, |1|, |−1|, |1|, |2|, |1|, |4|, |3|, |1|, |2|, |−1|, |−3|, |−1|, |−2|, |1|, |4|} = |4|,
we choose the (3, 2)-entry 4 as pivot (note we could have also chosen the (4, 4)-entry
4). To this end, we permute columns 1 and 2, and then rows 1 and 3:

P1AQ1 =


4 −1 −1 1
1 1 2 −2
2 −2 1 −1
3 1 −3 4

 with Q1 :=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , P1 :=


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .

L1: We eliminate the sub-diagonal entries in the first column of P1AQ1 via adding
−1

4/−
1
2/−

3
4 times row 1 to row 2/3/4:

L1P1AQ1 =


4 −1 −1 1
0 5

4
9
4 −9

4
0 −3

2
3
2 −3

2
0 7

4 −9
4

13
4

 with L1 :=


1 0 0 0
−1

4 1 0 0
−1

2 0 1 0
−3

4 0 0 1

 .

P2, Q2: As max{|54 |, |−
3
2 |, |

7
4 |, |

9
4 |, |

3
2 |, |−

9
4 |, |−

9
4 |, |−

3
2 |, |

13
4 |} = |134 |, we choose the (4, 4)-entry

13
4 as pivot. To this end, we permute columns 2 and 4, and then rows 2 and 4:

P2L1P1AQ1Q2 =


4 1 −1 −1
0 13

4 −9
4

7
4

0 −3
2

3
2 −3

2
0 −9

4
9
4

5
4

 with Q2 := P2 :=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

L2: We eliminate the sub-diagonal entries in the second column of P2L1P1AQ1Q2 via
adding 6

13/
9
13 times row 2 to row 3/4:

L2P2L1P1AQ1Q2 =


4 1 −1 −1
0 13

4 −9
4

7
4

0 0 6
13 − 9

13
0 0 9

13
32
13

 with L2 :=


1 0 0 0
0 1 0 0
0 6

13 1 0
0 9

13 0 1

 .

P3, Q3: As max{| 613 |, |
9
13 |, |−

9
13 |, |

32
13 |} = |3213 |, we choose the (4, 4)-entry 32

13 as pivot. To this
end, we permute columns 3 and 4, and then rows 3 and 4:

P3L2P2L1P1AQ1Q2Q3 =


4 1 −1 −1
0 13

4
7
4 −9

4
0 0 32

13
9
13

0 0 − 9
13

6
13

 with Q3 := P3 :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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L3: We eliminate the sub-diagonal entries in the third column of P3L2P2L1P1AQ1Q2Q3

via adding 9
32 times row 3 to row 4:

L3P3L2P2L1P1AQ1Q2Q3 =


4 1 −1 −1
0 13

4
7
4 −9

4
0 0 32

13
9
13

0 0 0 21
32

 =: U with L3 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 9

32 1

 .

Now, setting

L′
3 := L3, L

′
2 := P3L2P

−1
3 =


1 0 0 0
0 1 0 0
0 9

13 1 0
0 6

13 0 1

 , L′
1 := P3P2L1P

−1
2 P−1

3 =


1 0 0 0
−3

4 1 0 0
−1

4 0 1 0
−1

2 0 0 1


yields L′

3L
′
2L

′
1P3P2P1AQ1Q2Q3 = L3P3L2P2L1P1AQ1Q2Q3 = U . We find that PAQ =

LU with

P := P3P2P1 =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 , Q := Q1Q2Q3 =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 ,

and

L := (L′
3L

′
2L

′
1)

−1 =


1 0 0 0
3
4 1 0 0
1
4 − 9

13 1 0
1
2 − 6

13 − 9
32 1

 , U =


4 1 −1 −1
0 13

4
7
4 −9

4
0 0 32

13
9
13

0 0 0 21
32


is a PAQ = LU factorization.

More generally, Gaussian elimination with full pivoting transforms a matrix A ∈ Rn×n

into an upper-triangular matrix U ∈ Rn×n by Gaussian elimination with an additional
right-multiplication of a permutation matrix Qi and left-multiplication of a permutation
matrix Pi at the beginning of step i:

Ln−1Pn−1 · · ·L2P2L1P1AQ1Q2 · · ·Qn−1 = U.

Here, P1, . . . , Pn−1, Q1, . . . , Qn−1 ∈ Rn×n are permutation matrices and L1, . . . , Ln−1 ∈
Rn×n are unit lower-triangular. We deduce that

(L′
n−1 · · ·L′

2L
′
1)(Pn−1 · · ·P2P1)A(Q1Q2 · · ·Qn−1) = U

with L′
n−1 := Ln−1 and L′

i := Pn−1 · · ·Pi+1LiP
−1
i+1 · · ·P

−1
n−1 for i ∈ {1, . . . , n − 2} as in

the previous section. We then obtain that PAQ = LU is a PAQ=LU factorization corre-
sponding to A with

L := (L′
n−1 · · ·L′

2L
′
1)

−1, P := Pn−1 · · ·P2P1, Q := Q1Q2 · · ·Qn−1.

Note that P and Q are permutation matrices as products of permutation matrices, and
that L is well-defined and lower-triangular.

Full pivoting gives a further improvement in numerical stability over partial pivoting.
However, the pivot selection for full pivoting requires O(n3) operations overall, which is
why full pivoting is rarely used in practice. As an exercise, think about how a PAQ=LU
factorization can be used to solve a linear system Ax = b.
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4.4 Symmetric Gaussian elimination: Cholesky factorization

Let us turn our focus to symmetric positive definite matrices. We start by recalling
the definition of symmetric positive/negative definite and symmetric positive/negative
semidefinite matrices.

Definition 4.5. A symmetric matrix A ∈ Rn×n is called

(i) positive definite, denoted A ≻ 0, iff ⟨x,Ax⟩ > 0 for all x ∈ Rn\{0}.

(ii) positive semidefinite, denoted A ⪰ 0, iff ⟨x,Ax⟩ ≥ 0 for all x ∈ Rn.

(iii) negative definite, denoted A ≺ 0, iff ⟨x,Ax⟩ < 0 for all x ∈ Rn\{0}.

(iv) negative semidefinite, denoted A ⪯ 0, iff ⟨x,Ax⟩ ≤ 0 for all x ∈ Rn.

Let us recall the spectral theorem for symmetric matrices:

Theorem 4.3 (Spectral theorem for symmetric matrices). Symmetric matrices are orthog-
onally diagonalizable, i.e., for any symmetric matrix A ∈ Rn×n there exist an orthogonal
matrix Q ∈ Rn×n and a diagonal matrix D ∈ Rn×n such that A = QDQT. The diagonal
entries of D are the eigenvalues of A, and the column vectors of Q are eigenvectors of A.
In particular, all eigenvalues of a symmetric matrix are real.

Proof. See previous linear algebra courses.

Theorem 4.4. For a symmetric matrix A ∈ Rn×n, we have

(i) A ≻ 0 ⇐⇒ all eigenvalues of A are positive,

(ii) A ⪰ 0 ⇐⇒ all eigenvalues of A are non-negative,

(iii) A ≺ 0 ⇐⇒ all eigenvalues of A are negative,

(iv) A ⪯ 0 ⇐⇒ all eigenvalues of A are non-positive.

Proof. Exercise (use Theorem 4.3).

Remark 4.7. Let A ∈ Rn×n be a symmetric positive definite matrix and let X ∈ Rn×r with
n ≥ r and rk(X) = r. Then, the matrix XTAX is symmetric positive definite (exercise).

Without proof, let us state a useful criterion for checking positive definiteness.

Theorem 4.5 (Sylvester’s criterion for positive definiteness). Let A ∈ Rn×n be a sym-
metric matrix. Then,

A ≻ 0 ⇐⇒ ∀i ∈ {1, . . . , n} : det(A1:i,1:i) > 0.

The number det(A1:i,1:i) is called the i-th leading principal minor of A. Therefore, a
symmetric matrix is positive definite iff all of its leading principal minors are positive.

Remark 4.8. In view of Theorem 4.2, we have that any symmetric positive definite matrix
admits a LU factorization.
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It will turn out, that we can factorize a symmetric positive definite matrix twice as
quickly into triangular factors as a general matrix. This is due to the fact that we can
use symmetric Gaussian elimination which we describe in the following. This will yield a
so-called Cholesky factorization.

Definition 4.6. Let A ∈ Rn×n be a symmetric positive definite matrix. If there exists an
upper-triangular matrix R ∈ Rn×n with positive diagonal entries such that there holds

A = RTR, (4.5)

then we call (4.5) a Cholesky factorization of A.

Let us consider a symmetric positive definite matrix A ∈ Rn×n. Then, we can write A
as block-matrix

A =

(
a11 wT

w B

)
∈ Rn×n

with a11 ∈ R, w ∈ Rn−1 and a symmetric matrix B ∈ R(n−1)×(n−1). Note that, since
A ≻ 0, we have that a11 = det(A1:1,1:1) > 0 and B ≻ 0. (The latter follows from the

fact that ⟨x,Bx⟩ =

〈(
0

x

)
, A

(
0

x

)〉
for x ∈ Rn−1 and positive definiteness of A.) The

first step of symmetric Gaussian elimination (compare this with classical Gauß) goes as
follows:

L1AL
T
1 =

(
1 01×(n−1)

0(n−1)×1 B − wwT

a11

)
=: A1 with L1 :=

(
1√
a11

01×(n−1)

− w
a11

In−1

)
,

which we can equivalently write as

A = RT
1 A1R1 with R1 := (L−1

1 )T =

( √
a11

wT
√
a11

0(n−1)×1 In−1

)
.

Note that A1 is again symmetric positive definite. Indeed, it is quickly checked that
A1 = AT

1 , and that A1 = (LT
1 )

TALT
1 ≻ 0 by Remark 4.7 since LT

1 ∈ Rn×n is of full rank.

Therefore, we also have that the sub-matrix B− wwT

a11
∈ R(n−1)×(n−1) is symmetric positive

definite (same argument as when we deduced B ≻ 0 from A ≻ 0) and in particular, the

(1, 1)-entry of B − wwT

a11
is positive. We deduce that we can factor

A1 = RT
2 A2R2

with R2 ∈ Rn×n upper-triangular with positive diagonal entries and A2 being of the form

A2 =

(
I2 02×(n−2)

0(n−2)×2 C

)
, using the same procedure as before applied to B − wwT

a11
.

Then, again, the sub-matrix C is symmetric positive definite, and we can continue this
process until we arrive at a factorization

A = (RT
1 R

T
2 · · ·RT

n )In(Rn · · ·R2R1) = RTR

with R := Rn · · ·R2R1 ∈ Rn×n upper-triangular and having positive diagonal entries.
This is a Cholesky factorization of A.
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Theorem 4.6 (Existence and uniqueness of Cholesky factorization). Every symmetric
positive definite matrix A ∈ Rn×n admits a unique Cholesky factorization.

Proof. Symmetric Gaussian elimination as discussed above provides existence of a
Cholesky factorization (argument can be made rigorous via induction). For uniqueness,
suppose thatR,M ∈ Rn×n are two upper-triangular matrices with positive diagonal entries
such that there holds A = RTR = MTM . Note that D := MR−1 is an upper-triangular
matrix, but also, since

D = MR−1 = (MT)−1RT = (D−1)T,

it must be lower-triangular as well, hence diagonal. Noting that In = DTD = D2, the
diagonal entries of D are all ±1. Finally, since DR = M and the diagonal entries of R
and M are positive, we must have that R = M .

Example 4.4 (Symmetric Gaussian elimination). We consider the symmetric positive def-
inite matrix

A :=

16 −8 12
−8 5 −9
12 −9 22

 ∈ R3×3.

We illustrate symmetric Gaussian elimination for finding the unique Cholesky factorization
of A.

L1: We eliminate the sub-diagonal entries in the first column of A by adding 1
2/-

3
4 times

row 1 to row 2/3, and multiply the first row by 1√
a11

= 1
4 :

L1A =

4 −2 3
0 1 −3
0 −3 13

 with L1 :=

 1
4 0 0
1
2 1 0
−3

4 0 1

 .

Next, we right-multiply L1A with LT
1 which creates a 1 in the (1, 1) entry and zeros

in the (1, 2) and (1, 3) entries:

L1AL
T
1 =

1 0 0
0 1 −3
0 −3 13

 .

L2: We eliminate the sub-diagonal entry in the second column of L1AL
T
1 by adding 3

times row 2 to row 3 (and multiply the second row by 1√
1
= 1):

L2L1AL
T
1 =

1 0 0
0 1 −3
0 0 4

 with L2 :=

1 0 0
0 1 0
0 3 1

 .

Next, we right-multiply L2L1AL
T
1 with LT

2 which creates a zero in the (2, 3) entry:

L2L1AL
T
1 L

T
2 =

1 0 0
0 1 0
0 0 4

 .
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L3: We multiply the third row of L2L1AL
T
1 L

T
2 by 1√

4
= 1

2 :

L3L2L1AL
T
1 L

T
2 =

1 0 0
0 1 0
0 0 2

 with L3 :=

1 0 0
0 1 0
0 0 1

2

 .

Finally, we right-multiply L3L2L1AL
T
1 L

T
2 by LT

3 which creates a 1 in the (3, 3) entry:

L3L2L1ALT
1 L

T
2 L

T
3 =

1 0 0
0 1 0
0 0 1

 = I3.

We find that A = RTR with

R := [L−1
1 L−1

2 L−1
3 ]T =

 4 0 0
−2 1 0
3 0 1

1 0 0
0 1 0
0 −3 1

1 0 0
0 1 0
0 0 2

T

=

4 −2 3
0 1 −3
0 0 2


is the (unique) Cholesky factorization of A.

An efficient algorithm to obtain the Cholesky factorization to a given symmetric pos-
itive definite matrix is given below.

Algorithm 4.3 (Cholesky factorization). To obtain the Cholesky factorization A = RTR
of a given symmetric positive definite matrix A ∈ Rn×n, do as follows:

R = A
for i = 1, . . . , n do

for j = i+ 1, . . . , n do
Rj,j:n = Rj,j:n − Ri,j:nRij

Rii

end for
Ri,i:n =

Ri,i:n√
Rii

end for.

Theorem 4.7. Algorithm 4.3 requires ∼ 1
3n

3 flops.

Proof. Exercise.

Remark 4.9. This is only half the cost of Gaussian elimination.

Remark 4.10 (Solving linear systems via Cholesky factorization). For a given symmetric
positive definite matrix A ∈ Rn×n and a vector b ∈ Rn, consider the problem of finding
x ∈ Rn such that Ax = b. The standard way to solve the system in this case is by Cholesky
factorization: If A = RTR is the Cholesky factorization of A, we have

Ax = b ⇐⇒ RTRx = b ⇐⇒

{
RTy = b,

Rx = y.

Therefore, once the Cholesky factorization is computed (O(n3) flops), we can first solve
RTy = b for y by forward substitution (O(n2) flops) and then Rx = y for x by backward
substitution (O(n2) flops).
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4.5 Least squares problems

Let us consider an over-determined linear system (more equations than unknowns): Given
a matrix A = (aij) ∈ Rm×n with m > n and a vector b = (b1, . . . , bm)T ∈ Rm, find a
vector x = (x1, . . . , xn)

T ∈ Rn such that

Ax =



a11 · · · a1n
...

...
an1 · · · ann

an+1,1 · · · an+1,n
...

...
am1 · · · amn


x1

...
xn

 =



b1
...
bn
bn+1
...
bm


= b. (4.6)

Clearly, such a problem does not admit a solution in general.

Remark 4.11. Let m,n ∈ N with m > n. Then, given A ∈ Rm×n and b ∈ Rm, there exists
a solution x ∈ Rn to Ax = b iff b ∈ R(A). Noting that dim(R(A)) ≤ n < m = dim(Rm),
such an over-determined system Ax = b is, in general, only solvable for special choices of
b ∈ Rm.

As we cannot expect a general over-determined system (4.6) to admit a solution, we
pose the following problem instead: Find x ∈ Rn such that the residual r := Ax− b is as
small as possible. To measure the size of r, we use the Euclidean norm.

Definition 4.7. Given A ∈ Rm×n, m ≥ n, and b ∈ Rm, we call the following problem the
least squares problem corresponding to the matrix A and the vector b:

Minimize ∥Av − b∥2 over v ∈ Rn. (4.7)

If there exists a minimizer, i.e., a vector x ∈ Rn such that

∥Ax− b∥2 = inf
v∈Rn

∥Av − b∥2,

then we call this minimizer x a solution to the least squares problem.

Before we discuss existence and uniqueness of solutions to least squares problems, we
provide some more motivation.

Example 4.5 (Polynomial interpolation vs. least squares fitting). Suppose we are given
data points (t1, y1), . . . , (tn, yn) with t1, . . . , tn ∈ R distinct and y1, . . . , yn ∈ R.

(i) Polynomial interpolation: There exists a unique polynomial p(t) =
∑n−1

k=0 pkt
k of

degree n − 1 such that p(ti) = yi for all i ∈ {1, . . . , n}. This polynomial p is called
the polynomial interpolant corresponding to the given data points. The coefficients
p0, . . . , pn−1 ∈ R of the polynomial interpolant are uniquely determined from the
linear system

[V (t1, . . . , tn)]

 p0
...

pn−1

 =

y1
...
yn

 , V (t1, . . . , tn) =


1 t1 t21 · · · tn−1

1

1 t2 t22 · · · tn−1
2

...
...

...
...

1 tn t2n · · · tn−1
n

 .

Note that the so-called Vandermonde matrix V (t1, . . . , tn) is invertible since the
values {ti} are distinct (exercise). A typical behavior of polynomial interpolation is
the appearance of large oscillations near the ends of the interval [t1, tn].
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(ii) Polynomial least squares fitting: Let us now try to fit the data points by a lower-
degree polynomial p(t) =

∑N−1
k=0 pkt

k with N < n. The condition p(ti) = yi for
i ∈ {1, . . . , n} leads to the over-determined system

Apcoeff = b with A :=


1 t1 t21 · · · tN−1

1

1 t2 t22 · · · tN−1
2

...
...

...
...

1 tn t2n · · · tN−1
n

 , pcoeff :=

 p0
...

pN−1

 , b :=

y1
...
yn


which may not have a solution. Instead, we choose the coefficient vector pcoeff =
(p0, . . . , pN−1)

T ∈ RN such that it solves the corresponding least squares problem

∥Apcoeff − b∥2 = inf
v∈RN

∥Av − b∥2

(assume for the moment that such a minimizer exists). Observe that the correspond-
ing least squares fit p(t) =

∑N−1
k=0 pkt

k minimizes the quantity
√∑n

i=1|p(ti)− yi|2
among polynomials of degree at most N − 1.

We are going to discuss later how to obtain such a solution. The least squares
solution does not interpolate the given data points, but it often describes the overall
behavior better than the interpolant (do experiments with MATLAB as an exercise).

Figure 5: Polynomial interpolant of degree 10 (left) and least squares fit of degree 7 (right)
to the data points (1, 0), (2, 0), (3, 0), (4, 1), (5, 1), (6, 1), (7, 0), (8, 0), (9, 0), (10, 0), (11, 0).

Existence and uniqueness

Let us turn to the question of existence of solutions to least squares problems. First of all,
let us introduce the minimization problem

Minimize ∥w − b∥2 over w ∈ R(A). (4.8)

If there exists a minimizer y ∈ R(A) such that ∥y− b∥2 = infw∈R(A) ∥w− b∥2, then we call
this minimizer y a solution to (4.8).

Remark 4.12. We observe the following relation between the least squares problem (4.7)
and the minimization problem (4.8).
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(i) If there exists a solution x ∈ Rn to the least squares problem (4.7), then y = Ax ∈
R(A) is a solution to the minimization problem (4.8).

(ii) If there exists a solution y ∈ R(A) to the minimization problem (4.8), then any
x ∈ Rn satisfying Ax = y is a solution to the least squares problem (4.7).

(iii) There holds infv∈Rn ∥Av − b∥2 = infw∈R(A) ∥w − b∥2.

Geometrically, a solution y ∈ R(A) to the minimization problem (4.8) is the closest
point in R(A) to b (with distance measured in the Euclidean distance). We expect that the
solution to this problem should be given by y = Pb where P ∈ Rm×m is the orthogonal
projector onto R(A). Let us now make this idea rigorous and start with the following
central result.

Theorem 4.8 (Existence of solutions to the normal equation). Let A ∈ Rm×n. Then, for
any b ∈ Rm there exists a vector x ∈ Rn satisfying the equation

ATAx = ATb. (4.9)

We call an equation of the form (4.9) normal equation.

Proof. We need to show that ATb ∈ R(ATA) for any b ∈ Rm. We are going to show that
R(AT) = R(ATA). This can be shown as follows:

R(AT) = [N (A)]⊥ = [N (ATA)]⊥ = R((ATA)T) = R(ATA), (4.10)

where we have used that N (A) = N (ATA) and the fact that [N (M)]⊥ = R(MT) for any
matrix M (exercise).

The main tool is the orthogonal projector onto the range of a given matrix.

Theorem 4.9 (Orthogonal projector onto range of matrix). Let A ∈ Rm×n. Then, we
have the following assertions.

(i) R(A) and N (AT) are complementary subspaces of Rm,

(ii) R(A) ⊥ N (AT).

In particular, there exists a unique projector P ∈ Rm×m such that R(P ) = R(A) and
N (P ) = N (AT) (the projector onto R(A) along N (AT)), and this projector is the unique
orthogonal projector onto R(A).

Proof. Exercise.

We can now prove the main result.

Theorem 4.10 (Existence and uniqueness result for least squares problems). Let A ∈
Rm×n, m ≥ n, and b ∈ Rm. Let P ∈ Rm×m be the orthogonal projector onto R(A) given
by Theorem 4.9. Then, we have the following results.

(i) There exists a unique solution to the minimization problem (4.8), i.e., a unique
vector y ∈ R(A) satisfying ∥y − b∥2 = infw∈R(A) ∥w − b∥2. This solution is given by

y = Pb.
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(ii) There exists a solution to the least squares problem (4.7), i.e., a vector x ∈ Rn

satisfying ∥Ax− b∥2 = infv∈Rn ∥Av− b∥2. Moreover, x ∈ Rn is a solution to (4.7) iff

Ax = Pb, or equivalently, ATAx = ATb.

(iii) The least squares problem (4.7) has a unique solution iff A is of full rank.

Proof. (i) We have Pb ∈ R(P ) = R(A) and

∥w − b∥2 =
√

∥(w − Pb) + (Pb− b)∥22

=
√
∥w − Pb∥22 + ∥Pb− b∥22 > ∥Pb− b∥2 ∀w ∈ R(A)\{Pb},

where we have used that ⟨w−Pb, Pb− b⟩ = 0 for all w ∈ R(A) (note that w−Pb ∈ R(P )
for w ∈ R(A) = R(P ), that Pb− b ∈ N (P ), and R(P ) ⊥ N (P )). It follows that y = Pb
is the unique element in R(A) satisfying ∥y − b∥2 = infw∈R(A) ∥w − b∥2.

(ii) By (i) and in view of Remark 4.12(ii), any x ∈ Rn satisfying Ax = Pb is a solution
to (4.7). Conversely, in view of Remark 4.12(i), if x ∈ Rn is a solution to (4.7), then Ax
is a solution to (4.8) and consequently, using (i), we must have Ax = Pb. It remains to
show that for x ∈ Rn there holds Ax = Pb ⇐⇒ ATAx = ATb. If x ∈ Rn is such that there
holds Ax = Pb, then Ax− b = Pb− b ∈ N (P ) = N (AT), i.e., ATAx = ATb. Conversely, if
x ∈ Rn is such that there holds ATAx = ATb, then Ax− b ∈ N (AT) = N (P ) and hence,
Ax−Pb = (Im −P )Ax+P (Ax− b) = 0, where we have used that Ax ∈ R(A) = R(P ) =
N (Im − P ).

(iii) In view of (ii), the least squares problem has a unique solution iff the matrix
ATA ∈ Rn×n is invertible, i.e., iff rk(ATA) = n. Noting that rk(ATA) = rk(A) (note from
(4.10) that rk(ATA) = rk(AT) and recall rk(AT) = rk(A)), we find that (4.7) has a unique
solution iff rk(A) = n, i.e., iff A is of full rank (note m ≥ n).

Remark 4.13. Let A ∈ Rm×n, m ≥ n, and assume that rk(A) = n. As we have already
observed, this implies that ATA ∈ Rn×n is invertible. Consequently, the unique solution
to the least squares problem (4.7) is given by

x = A†b ∈ Rn, where A† := (ATA)−1AT ∈ Rn×m.

The matrix A† is called the Moore–Penrose inverse (or pseudoinverse) of A. The Moore–
Penrose inverse is a generalization of the matrix inverse and is being discussed extensively
on the problem sheets.

Solution algorithms

We present three well-known algorithms for solving least squares problems. The first
solution algorithm is via the normal equation ATAx = ATb. Suppose that A is of full
rank and observe the following:

Remark 4.14. Let A ∈ Rm×n, m ≥ n, b ∈ Rm and assume rk(A) = n. Then, the matrix
ATA ∈ Rn×n is symmetric positive definite. Indeed, we have (ATA)T = ATA and

⟨x,ATAx⟩ = ⟨Ax,Ax⟩ = ∥Ax∥22 > 0 ∀x ∈ Rn\{0}.
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Here, we have used that Ax ∈ Rm\{0} for x ∈ Rn\{0} since rk(A) = n (recall that
nullity(A) = n− rk(A) from Theorem 1.2(ii)). Therefore, by Theorem 4.6, ATA admits a
unique Cholesky factorization ATA = RTR with R ∈ Rn×n upper-triangular with positive
diagonal entries, and the normal equation turns into

ATAx = ATb ⇐⇒ RTRx = ATb.

This leads to the following algorithm:

Algorithm 4.4 (Solution of least squares problems via normal equation). Given m,n ∈ N
with m ≥ n, a matrix A ∈ Rm×n with rk(A) = n, and a vector b ∈ Rm, the unique solution
x ∈ Rn to the least squares problem (4.7) can be obtained as follows:

Step 1) Compute the matrix Ã := ATA ∈ Rn×n and the vector b̃ := ATb ∈ Rn.

Step 2) Compute the Cholesky factorization Ã = RTR of Ã.

Step 3) Solve the lower-triangular system RTz = b̃ for z ∈ Rn.

Step 4) Solve the upper-triangular system Rx = z for x ∈ Rn.

The work for Algorithm 4.4 is dominated by the computation of Ã = ATA (∼ mn2

flops, using symmetry of Ã) and the computation of its Cholesky factorization (∼ 1
3n

3

flops via Algorithm 4.3).

Theorem 4.11. Algorithm 4.4 requires ∼ mn2 + 1
3n

3 flops.

The second algorithm we present is via QR factorization, and is based on the following
observation.

Remark 4.15. Let A ∈ Rm×n, m ≥ n, b ∈ Rm, and assume that we have found a reduced
QR factorization A = Q̂R̂ of A. Then, x ∈ Rn is a solution to the least squares problem
(4.7) iff ATAx = ATb, or equivalently, R̂TQ̂TQ̂R̂x = R̂TQ̂Tb which can be simplified to
R̂TR̂x = R̂TQ̂Tb. Observe that if A is of full rank, then R̂ is invertible (see proof of
Theorem 3.2) in which case the unique solution x ∈ Rn to the least squares problem is
determined from

R̂x = Q̂Tb.

This leads to the following algorithm:

Algorithm 4.5 (Solution of least squares problems via QR). Given m,n ∈ N with m ≥ n,
a matrix A ∈ Rm×n with rk(A) = n, and a vector b ∈ Rm, the unique solution x ∈ Rn to
the least squares problem (4.7) can be obtained as follows:

Step 1) Compute a reduced QR factorization A = Q̂R̂ of A.

Step 2) Compute b̃ = Q̂Tb ∈ Rn.

Step 3) Solve the upper-triangular system R̂x = b̃ for x ∈ Rn.

The work for Algorithm 4.5 is dominated by the computation of a reduced QR factor-
ization (∼ 2mn2 − 2

3n
3 flops via Householder, see Algorithm 3.4).
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Theorem 4.12. Algorithm 4.5 requires ∼ 2mn2 − 2
3n

3 flops.

The third algorithm we present is via the SVD, and is based on the following observa-
tion.

Remark 4.16. Let A ∈ Rm×n, m ≥ n, b ∈ Rm, and assume that we have found a reduced
SVD A = Û Σ̂V T of A. Then, x ∈ Rn is a solution to the least squares problem (4.7)
iff ATAx = ATb, or equivalently, V Σ̂TÛTÛ Σ̂V Tx = V Σ̂TÛTb which can be simplified to
V Σ̂TΣ̂V Tx = V Σ̂TÛTb. Observe that if A is of full rank, then V Σ̂T ∈ Rn×n is invertible
in which case the unique solution x ∈ Rn to the least squares problem is determined from

Σ̂V Tx = ÛTb.

This leads to the following algorithm:

Algorithm 4.6 (Solution of least squares problems via SVD). Given m,n ∈ N with
m ≥ n, a matrix A ∈ Rm×n with rk(A) = n, and a vector b ∈ Rm, the unique solution
x ∈ Rn to the least squares problem (4.7) can be obtained as follows:

Step 1) Compute a reduced SVD A = Û Σ̂V T of A.

Step 2) Compute b̃ = ÛTb ∈ Rn.

Step 3) Solve the diagonal system Σ̂z = b̃ for z ∈ Rn.

Step 4) Compute x = V z ∈ Rn.

The work for Algorithm 4.6 is dominated by the computation of a reduced SVD (re-
quires ∼ 2mn2 + 11n3 flops, see Trefethen, Bau).

Theorem 4.13. Algorithm 4.5 requires ∼ 2mn2 + 11n3 flops.

Let us compare the three algorithms. In view of speed, the first algorithm (Algorithm
4.4) seems to be the best. However, the second algorithm (Algorithm 4.5) is superior with
regards to numerical stability and is indeed the standard method to solve least squares
problems in practice. The third algorithm 4.6 is rarely used due to its computational cost,
but it comes in handy when A is close to being rank-deficient.
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5 Conditioning and Stability

5.1 Conditioning of mathematical problems

In this section, we study the perturbation behavior of mathematical problems, which is
referred to as conditioning. We regard a problem as a function

f : X → Y

with normed vector spaces X (the data space) and Y (the solution space). A problem f ,
together with a particular data point x ∈ X (a pair (f, x) is called problem instance or
simply problem as well), is called well-conditioned if small changes in x only lead to small
changes in f(x). Otherwise, i.e., if a small change in x can lead to a large change in f(x),
we call the problem (instance) ill-conditioned.

The condition number defined below is a measure for the perturbation behavior of a
problem.

Definition 5.1. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be normed vector spaces. For a problem
f : X → Y and a given data point x ∈ X, we define

(i) the absolute condition number κ̂ = κ̂(x) by

κ̂ := lim
δ→0

sup
∆x∈X

0<∥∆x∥X≤δ

∥f(x+∆x)− f(x)∥Y
∥∆x∥X

,

(ii) and, if x ∈ X\{0} and f(x) ∈ Y \{0}, the relative condition number κ = κ(x) by

κ := lim
δ→0

sup
∆x∈X

0<∥∆x∥X≤δ

∥f(x+∆x)−f(x)∥Y
∥f(x)∥Y
∥∆x∥X
∥x∥X

. (5.1)

We will choose the relative condition number to decide whether a problem is well-
conditioned (κ is more important than κ̂ due to floating point arithmetic used by comput-
ers, see next section). If κ is small (e.g., 1, 10, 100), the problem is called well-conditioned,
and if κ is large (e.g., 106, 1012), the problem is called ill-conditioned.

Remark 5.1. Let X = Rn and Y = Rm with chosen norms ∥ · ∥(n) on Rn and ∥ · ∥(m) on
Rm. Consider a problem f : X → Y , a given data point x ∈ Rn, and assume that f is
differentiable at x. Then, we have

κ̂ = ∥Jf (x)∥(m,n), κ =
∥Jf (x)∥(m,n)∥x∥(n)

∥f(x)∥(m)

where Jf (x) ∈ Rm×n denotes the Jacobian of f at x whose entries are given by (Jf (x))ij =
∂jfi, and ∥ · ∥(m,n) denotes the matrix norm on Rm×n induced by the norms ∥ · ∥(n) on Rn

and ∥ · ∥(m) on Rm (recall Definition 1.9).

Example 5.1 (Some first examples on conditioning). (i) Constant multiple of a real number:
For X = Y = R with norm ∥ · ∥(1) := | · | on R, consider the problem f : R → R, x 7→ 7x,
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i.e., the problem of obtaining 7x from x ∈ R. Note that f is differentiable on R and we
have Jf (x) = f ′(x) = 7 for all x ∈ R. Hence,

κ =
∥Jf (x)∥(1,1)∥x∥(1)

∥f(x)∥(1)
=

|7||x|
|7x|

= 1.

The problem is well-conditioned.

(ii) Addition of two real numbers: For X = R2 with norm ∥ · ∥(2) := ∥ · ∥2 on R2, and
Y = R with norm ∥·∥(1) := | · | on R, consider the problem f : R2 → R, (x1, x2) 7→ x1+x2,
i.e., the problem of finding the sum of two real values. Note that f is differentiable on R2

and we have Jf (x) =
(
∂1f ∂2f

)
=
(
1 1

)
∈ R1×2. Hence,

κ =
∥x∥(2)

∥f(x)∥(1)
∥Jf (x)∥(1,2) =

√
x21 + x22

|x1 + x2|
sup
z∈R2

∥z∥2=1

|
(
1 1

)
z| =

√
2

√
x21 + x22

|x1 + x2|
.

Note that when x2 ≈ −x1 and x1 ̸= 0 we have that κ is large and the problem is ill-
conditioned. This effect is referred to as cancellation error.

(iii) Polynomial root-finding: Consider the polynomial

p1(t) := t2 − 2t+ 1

with a double root at t = 1. We are interested in the perturbation behavior in the roots
with respect to changes in the coefficients – say we keep the coefficients of t2 and t fixed,
and consider the polynomial

px(t) := t2 − 2t+ x

for x ≤ 1. Note that the roots of px are at t = 1±
√
1− x for x ≤ 1.

To bring it into our setting, we set X = Y = R with norm | · | on R and define the
problem f : R → R, x 7→ f(x) by setting f(x) to be the largest root of px if x ≤ 1, and
set f(x) := f(1) = 1 for all x > 1 (note this doesn’t introduce perturbation errors to the
right of x = 1 as f(1 + ∆x)− f(1) = 0 for ∆x > 0).

Let us show that the condition number of the problem at x = 1 is κ(1) = ∞, i.e., the
problem is severely ill-conditioned. Observe that f(1) = 1. If we perturb x = 1 by some
∆x < 0, we find a change in f(x) of size |f(1 + ∆x) − f(1)| =

√
−∆x. (If we perturb

x = 1 by some ∆x > 0, we find no change in f(x) by construction). Hence, for any δ > 0
we have

sup
∆x∈[−δ,δ]\{0}

|f(1 + ∆x)− f(1)|
|∆x|

|1|
|f(1)|

= sup
∆x∈[−δ,0)

√
−∆x

−∆x
= sup

∆x∈[−δ,0)

1√
−∆x

= ∞,

and thus, κ(1) = ∞.

We proceed with the conditioning of matrix-vector multiplication and the conditioning
of the solution of linear systems, leading to the two central conditioning theorems in
numerical linear algebra.
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Conditioning of matrix-vector multiplication

Let X = Rn and Y = Rm with chosen norms ∥·∥(n) on Rn and ∥·∥(m) on Rm, and consider
a matrix A ∈ Rm×n. We are now looking at the problem

f : Rn → Rm, x 7→ Ax,

i.e., the problem of computing the matrix-vector product Ax ∈ Rm from x ∈ Rn. Noting
that f is differentiable and Jf (x) = A for all x ∈ Rn, we have by Remark 5.1 that

κ =
∥Jf (x)∥(m,n)∥x∥(n)

∥f(x)∥(m)
=

∥A∥(m,n)∥x∥(n)
∥Ax∥(m)

,

where ∥ · ∥(m,n) denotes the matrix norm on Rm×n induced by the norms ∥ · ∥(n) on Rn

and ∥ · ∥(m) on Rm. If m = n, ∥ · ∥(m) = ∥ · ∥(n), and A is invertible, then

κ = ∥A∥(n,n)
∥A−1Ax∥(n)
∥Ax∥(n)

≤ ∥A∥(n,n)∥A−1∥(n,n). (5.2)

This upper bound is attained for certain choices of x.

Definition 5.2. Let A ∈ Rn×n be invertible and let ∥ · ∥ be a norm on Rn×n. Then, we
define the condition number of A with respect to the norm ∥·∥ to be κ∥·∥(A) := ∥A∥ ∥A−1∥.
If this quantity is small, we call A well-conditioned. Otherwise, we call A ill-conditioned.

The condition number of a singular square matrix is typically defined to be ∞.

Theorem 5.1. Let A ∈ Rn×n be invertible. Consider the vector space Rn with a chosen
norm ∥ · ∥(n) on Rn, and let ∥ · ∥(n,n) denote the matrix norm on Rn×n induced by the
vector norm ∥ · ∥(n). Then, we have the following:

(i) For the problem f : Rn → Rn, x 7→ Ax, i.e., the problem of finding b = Ax from
x ∈ Rn, the condition number κ = κ(x) is given by

κ = ∥A∥(n,n)
∥x∥(n)
∥b∥(n)

≤ κ∥·∥(n,n)
(A). (5.3)

If ∥ · ∥(n) = ∥ · ∥2 is the vector 2-norm (and hence, ∥ · ∥(n,n) = ∥ · ∥2 the spectral
norm), we have equality in (5.3) if x is a multiple of a right singular vector of A
corresponding to the smallest singular value σn.

(ii) For the problem f : Rn → Rn, b 7→ A−1b, i.e., the problem of finding the solution
x ∈ Rn to Ax = b from the right-hand side b ∈ Rn, the condition number κ = κ(b)
is given by

κ = ∥A−1∥(n,n)
∥b∥(n)
∥x∥(n)

≤ κ∥·∥(n,n)
(A). (5.4)

If ∥·∥(n) = ∥·∥2 is the vector 2-norm (and hence, ∥·∥(n,n) = ∥·∥2 the spectral norm),
we have equality in (5.4) if b is a multiple of a left singular vector of A corresponding
to the largest singular value σ1.
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Proof. Observe that (5.3) has already been shown in (5.2), and that (5.4) follows from
(5.2) with A replaced by A−1 and x replaced by b. We leave the remaining parts as an
exercise.

Remark 5.2. Let us revisit the problem for A ∈ Rm×n being a rectangular matrix with
m ≥ n and rk(A) = n. Then, observing that A†A = In, i.e., the Moore-Penrose inverse
A† ∈ Rn×m is a left-inverse, we find that

κ = ∥A∥(m,n)

∥A†Ax∥(n)
∥Ax∥(m)

≤ ∥A∥(m,n)∥A†∥(n,m),

where ∥ · ∥(m,n) is the induced matrix norm on Rm×n, and ∥ · ∥(n,m) is the induced matrix
norm on Rn×m (induced by the vector norms ∥ · ∥(n) on Rn, ∥ · ∥(m) on Rm). We define

the condition number of A to be κ∥·∥(m,n),∥·∥(n,m)
(A) := ∥A∥(m,n)∥A†∥(n,m).

Next, let us discuss the conditioning of the solution of linear systems Ax = b with
respect to perturbations in the system matrix A.

Conditioning of linear systems

Let X = Rn×n and Y = Rn with a chosen norm ∥ · ∥(n) on Rn and induced matrix norm
∥ · ∥(n,n) on Rn×n. Let b ∈ Rn be fixed. Consider the problem

f : A 7→ A−1b ∈ Rn for A ∈ Rn×n invertible,

i.e., the problem of finding the solution x ∈ Rn to Ax = b. Although the space of invertible
n×n matrices is not a vector space, we can still study the perturbation behavior of f since
a perturbed invertible matrix is still invertible if the perturbation is sufficiently small: the
following result is often referred to as the perturbation lemma.

Lemma 5.1 (Perturbation lemma). Let A ∈ Rn×n be invertible, and let ∥ · ∥ be a sub-
multiplicative norm on Rn×n (i.e., a norm satisfying ∥M1M2∥ ≤ ∥M1∥ ∥M2∥ for any
M1,M2 ∈ Rn×n). Then, for any ∆A ∈ Rn×n with ∥∆A∥ < ∥A−1∥−1, the perturbed matrix
A+∆A ∈ Rn×n is invertible and there holds

∥(A+∆A)−1∥ ≤ ∥A−1∥
1− ∥∆A∥ ∥A−1∥

.

Proof. Lemma 2.1 in “Applied Numerical Linear Algebra” by J.W. Demmel (SIAM, 1997)
shows that for any X ∈ Rn×n with ∥X∥ < 1, we have that In −X is invertible and there
holds (In − X)−1 =

∑∞
i=0X

i (Neumann series) and ∥(In − X)−1∥ ≤ 1
1−∥X∥ (we omit

the proof of this fact). Now let A ∈ Rn×n be invertible and ∆A ∈ Rn×n be such that
∥∆A∥ < ∥A−1∥−1. Observe that we can write

A+∆A = (In −X)A with X := −(∆A)A−1 ∈ Rn×n

and, using submultiplicativity of ∥·∥, that ∥X∥ = ∥(∆A)A−1∥ ≤ ∥∆A∥ ∥A−1∥ < 1. Hence,
we find that In −X is invertible as a product of invertible matrices, and we find that

∥(A+∆A)−1∥ = ∥A−1(In −X)−1∥

≤ ∥A−1∥∥(In −X)−1∥ ≤ ∥A−1∥
1− ∥X∥

≤ ∥A−1∥
1− ∥∆A∥ ∥A−1∥

,
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where we have used submultiplicativity of ∥ · ∥, the bound ∥(In −X)−1∥ ≤ 1
1−∥X∥ and the

bound ∥X∥ = ∥(∆A)A−1∥ ≤ ∥∆A∥ ∥A−1∥.

Recall from Remark 1.11 that the induced norm ∥·∥(n,n) is submultiplicative and hence
the perturbation lemma can be applied. Let A ∈ Rn×n be invertible and let ∆A ∈ Rn×n

be such that ∥∆A∥(n,n) < ∥A−1∥−1
(n,n) (so that the perturbation lemma applies to the

perturbed matrix A+∆A). We are interested in the quantity

q(∆A) :=
∥f(A+∆A)− f(A)∥(n)

∥∆A∥(n,n)
∥A∥(n,n)
∥f(A)∥(n)

=
∥(A+∆A)−1b−A−1b∥(n)

∥∆A∥(n,n)
∥A∥(n,n)
∥A−1b∥(n)

.

Note that writing (A+∆A)−1b = x+∆x for some ∆x ∈ Rn where x := A−1b, the vectors
x and x+∆x are the solutions to

Ax = b, (A+∆A)(x+∆x) = b.

This yields (∆A)x+ (A+∆A)∆x = 0, i.e., ∆x = −(A+∆A)−1(∆A)x and hence,

(A+∆A)−1b−A−1b = ∆x = −(A+∆A)−1(∆A)A−1b.

We find that

q(∆A) =
∥(A+∆A)−1(∆A)A−1b∥(n)∥A∥(n,n)

∥∆A∥(n,n)∥A−1b∥(n)
≤ ∥(A+∆A)−1∥(n,n)∥A∥(n,n)

≤
∥A∥(n,n)∥A−1∥(n,n)

1− ∥∆A∥(n,n)∥A−1∥(n,n)

=
κ∥·∥(n,n)

(A)

1− ∥∆A∥(n,n)

∥A∥(n,n)
κ∥·∥(n,n)

(A)
,

and it follows that the condition number for the problem f at the matrix A is bounded
by the condition number of the matrix A:

κ = lim
δ→0

sup
∆A∈Rn×n

0<∥∆A∥(n,n)≤δ

q(∆A) ≤ κ∥·∥(n,n)
(A). (5.5)

It can actually be shown that there holds equality in the above estimate (we omit the
proof) and we arrive at the following important theorem:

Theorem 5.2. Consider the vector space Rn with a chosen norm ∥ · ∥(n) on Rn, and let
∥ · ∥(n,n) denote the matrix norm on Rn×n induced by the vector norm ∥ · ∥(n). Then, for
a fixed b ∈ Rn, the condition number for the problem of finding the solution x ∈ Rn of
Ax = b from A ∈ {M ∈ Rn×n : M invertible} is given by

κ = κ∥·∥(n,n)
(A).
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Conditioning of least squares problems

Given A ∈ Rm×n, m ≥ n, with rk(A) = n and b ∈ Rm, we consider the least squares
problem

Minimize ∥Av − b∥2 over v ∈ Rn.

Recall that in this situation we have

• x = A†b is the unique solution to the least squares problem, i.e., the unique vector
x ∈ Rn satisfying ∥Ax− b∥2 = infv∈Rn ∥Av − b∥2,

• y = Ax = AA†b = Pb is the unique point in R(A) closest to b in the Euclidean
distance, i.e., the unique vector y ∈ R(A) satisfying ∥y − b∥2 = infw∈R(A) ∥w − b∥2,

where A† = (ATA)−1AT ∈ Rn×m is the Moore–Penrose inverse of the matrix A, and
P = AA† ∈ Rm×m is the orthogonal projector onto R(A) (see Remark 3.11).

We consider the following mathematical problems:

(i) obtain y from b for fixed A, i.e., fb 7→y : Rm → Rm, b 7→ AA†b,

(ii) obtain x from b for fixed A, i.e., fb 7→x : Rm → Rn, b 7→ A†b,

(iii) obtain y from A for fixed b, i.e., fA 7→y : A 7→ AA†b ∈ Rm for A ∈ Rm×n, rk(A) = n,

(iv) obtain x from A for fixed b, i.e., fA 7→x : A 7→ A†b ∈ Rn for A ∈ Rm×n, rk(A) = n,

and we consider the 2-norm on Rm and Rn, and the spectral norm on Rm×n and Rn×m.

Theorem 5.3 (Conditioning of least squares problems). In this situation, there holds

κb 7→y =
1

cos(θ)
, κb 7→x =

κ(A)

η cos(θ)
, κA 7→y ≤ κ(A)

cos(θ)
, κA 7→x ≤ κ(A) +

(κ(A))2 tan(θ)

η
,

where κi 7→j (i ∈ {b, A}, j ∈ {x, y}) denotes the condition number for fi 7→j, and

κ(A) := ∥A∥2∥A†∥2 ≥ 1, θ := cos−1

(
∥AA†b∥2
∥b∥2

)
∈
[
0,

π

2

]
, η :=

∥A∥2∥A†b∥2
∥AA†b∥2

∈ [1, κ(A)].

Before we prove the theorem, let us make some observations.

Remark 5.3. For A ∈ Rm×n, m ≥ n, rk(A) = n, the condition number in the spectral
norm is given by κ(A) = ∥A∥2∥A†∥2 = σ1

σn
∈ [1,∞) with σ1 denoting the largest and σn

the smallest singular value of A.

Remark 5.4. The angle θ is a measure for the closeness of the projection Pb = AA†b to b.

Remark 5.5. If m = n, we have A† = A−1 and hence θ = 0. In particular, we find

κb 7→x = κ(A)
η = ∥A−1∥2∥b∥2

∥A−1b∥2 and κA 7→x ≤ κ(A) = ∥A∥2∥A−1∥2, i.e., we recover the previous

results (5.4) and (5.5) on the conditioning of square linear systems.
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Proof of Theorem 5.3. (i) Let A ∈ Rm×n, m ≥ n, with rk(A) = n be fixed, and consider
the problem fb 7→y : Rm → Rm, b 7→ AA†b. We take a SVD of A: Let U ∈ Rm×m and
V ∈ Rn×n be orthogonal matrices and Σ = diagm×n(σ1, . . . , σn) ∈ Rm×n with σ1 ≥ σ2 ≥
· · · ≥ σn > 0 (all positive as rk(A) = n) be such that A = UΣV T. Then, ΣTΣ ∈ Rn×n is
invertible and we find that

A† = (ATA)−1AT = (V ΣTUTUΣV T)−1V ΣTUT

= (V ΣTΣV T)−1V ΣTUT = V (ΣTΣ)−1ΣTUT = V Σ†UT.

Hence, we have

AA† = UΣV TV Σ†UT = UΣΣ†UT = U

(
In 0n×(m−n)

0(m−n)×n 0(m−n)×(m−n)

)
UT.

Note that this is a SVD of AA† and we see that ∥AA†∥2 = 1. We find that the condition
number κb 7→y = κb 7→y(b) of fb 7→y is given by

κb 7→y =
∥Jfb 7→y

(b)∥2∥b∥2
∥fb 7→y(b)∥2

=
∥AA†∥2∥b∥2
∥AA†b∥2

=
∥b∥2

∥AA†b∥2
=

1

cos(θ)
,

as required.
(ii) Let A ∈ Rm×n, m ≥ n, with rk(A) = n be fixed, and consider the problem

fb 7→x : Rm → Rn, b 7→ A†b. Then, the condition number κb 7→x = κb 7→x(b) of fb 7→x is given
by

κb 7→x =
∥Jfb 7→x

(b)∥2∥b∥2
∥fb 7→x(b)∥2

=
∥A†∥2∥b∥2
∥A†b∥2

= ∥A∥2∥A†∥2
∥AA†b∥2

∥A∥2∥A†b∥2
∥b∥2

∥AA†b∥2
=

κ(A)

η cos(θ)
,

as required.
(iii), (iv) We omit the proof for the two remaining problems fA 7→y and fA 7→x.

5.2 Floating point numbers and floating point arithmetic

Before we start to study stability of numerical algorithms, we need to have an understand-
ing of the representation of real numbers on a computer. As a first observation, we note
that computers use a finite number of bits to represent a real number and hence,

• there must be a largest represented number x+max > 0, a smallest represented number
x−min < 0, a smallest positive represented number x+min > 0, and a largest negative
represented number x−max < 0, i.e., the set of all represented numbers is a finite
subset of [x−min, x

−
max] ∪ {0} ∪ [x+min, x

+
max].

• there must be gaps between represented numbers.

Definition 5.3. Given β ∈ N with β ≥ 2 (the base, usually taken to be 2), t ∈ N (the
precision), and emin, emax ∈ Z (minimal and maximal exponent), we define the floating
point system F = F (β, t, emin, emax) ⊆ R to be the set of real numbers that can be written
as

x = (−1)s · (m1β
−1 + · · ·+mtβ

−t) · βe =: (−1)s · [0.m1 . . .mt]β · βe

for some m1, . . . ,mt ∈ {0, 1, . . . , β − 1}, e ∈ Z ∩ [emin, emax] and s ∈ {0, 1}. We call the
number [0.m1 . . .mt]β ∈ [0, 1) the mantissa of x, and the number e ∈ Z the exponent of x.
By requiring m1 ̸= 0 if x ̸= 0 and setting m1 = 0 if x = 0, the representation is unique.
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Remark 5.6. In a floating point system F = F (β, t, emin, emax), the largest represented
number is

x+max = (β − 1)

(
t∑

i=1

β−i

)
· βemax = (1− β−t)βemax ,

the smallest represented number is x−min = −(1 − β−t)βemax , the smallest positive repre-
sented number is

x+min = β−1 · βemin = βemin−1,

and the largest negative represented number is x−max = −βemin−1. Therefore, we have

F (β, t, emin, emax) ⊆ [−(1− β−t)βemax ,−βemin−1] ∪ {0} ∪ [βemin−1, (1− β−t)βemax ].

Example 5.2. In the widely used IEEE double precision arithmetic, one uses β = 2, t = 53,
and the represented numbers are of the form

x = (−1)s · (m12
−1 + · · ·+m532

−53) · 2(c10210+···+c020)−1022

= (−1)s · [0.m1 . . .m53]2 · 2[c10...c0]2−1022
(5.6)

with s, c0, . . . , c10,m1, . . . ,m53 ∈ {0, 1}, biased exponent [c10 . . . c0]2 ∈ {1, . . . , 2046}, and
m1 = 1 for normalization purposes. The excluded numbers [c10 . . . c0]2 ∈ {0, 2047} are
used for representing 0 and “NaN”. The number x from (5.6) is equivalent to

x = (−1)s · (1 + [0.m2 . . .m53]2) · 2[c10...c0]2−1023 = (−1)s · [1.m2 . . .m53]2 · 2[c10...c0]2−1023

and is stored as the binary number

| s︸︷︷︸
1 bit

| c10|c9|c8| . . . |c2|c1|c0︸ ︷︷ ︸
11 bits

|m2|m3|m4| . . . |m51|m52|m53︸ ︷︷ ︸
52 bits

|.

Note that we have x+max = (1− 2−53)21024 ≈ 1.8 · 10308, x+min = 2−1022 ≈ 2.2 · 10−308, and
x−min = −(1− 2−53)21024 ≈ −1.8 · 10308, x−max = −2−1022 ≈ −2.2 · 10−308.

Observe that, in IEEE double precision arithmetic, the represented numbers

• in the interval [1, 2] are {1 + j · 2−52 | j ∈ {0, 1, . . . , 252}},

• in the interval [2, 4] are {2 + j · 2−51 | j ∈ {0, 1, . . . , 252}},

• in the interval [2k, 2k+1] are {2k + j · 2k−52 | j ∈ {0, 1, . . . , 252}}. Hence, the distance
between adjacent numbers in a relative sense is at most 2−52 ≈ 2.2 · 10−16.

(Note that the represented numbers in [252, 253] are precisely the integers N ∩ [252, 253]).

Remark 5.7. The gaps between adjacent numbers in a floating point system scale in pro-
portion to their size. In contrast, in a fixed point system, one would have that the gaps
between any two adjacent numbers are of the same size.

We proceed with the definition of the machine epsilon corresponding to a floating point
system F , that is, a number measuring the resolution of F .
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Definition 5.4. To a floating point system F = F (β, t, emin, emax), we associate the
number

εmachine =
1

2
β1−t,

called the machine epsilon.

Remark 5.8. For any x ∈ [x−min, x
−
max] ∪ [x+min, x

+
max] there exists a represented number

x′ ∈ F satisfying

|x− x′|
|x|

≤ εmachine, (5.7)

i.e., the distance between x and x′ in a relative sense is at most εmachine. Indeed, if we
define a rounding operator fl : [x−min, x

−
max] ∪ {0} ∪ [x+min, x

+
max] → F with the property

|x − fl(x)| = infy∈F |x − y| for all x ∈ [x−min, x
−
max] ∪ {0} ∪ [x+min, x

+
max], then x′ = fl(x)

satisfies (5.7). In particular,

∀x ∈ [x−min, x
−
max] ∪ {0} ∪ [x+min, x

+
max] ∃ ε ∈ [−εmachine, εmachine] s.t. fl(x) = x(1 + ε).

(5.8)

Remark 5.9. The machine epsilon in IEEE double precision arithmetic is given by

εmachine =
21−53

2
= 2−53 ≈ 1.1 · 10−16.

An example for a rounding operator fl is the natural rounding defined via fl(x) =
sign(x)[0.m1 . . .m53]22

e ifm54 = 0 and fl(x) = sign(x)([0.m1 . . .m53]2+2−53)2e ifm54 = 1.

We can now present the analogue of the elementary operations (addition, subtraction,
multiplication, and division of two real numbers) for two numbers of a floating point
system.

Definition 5.5. Let F be a floating point system. We then define the floating point
operations ⊕,⊖,⊗,⊘ on F by

x ⃝∗ y := fl(x ∗ y), (x, y ∈ F )

for ⃝∗ ∈ {⊕,⊖,⊗,⊘}.

In view of (5.8), we have the following result.

Theorem 5.4 (Fundamental axiom of floating point arithmetic). Let F be a floating
point system and ⃝∗ ∈ {⊕,⊖,⊗,⊘}. Then, for all x, y ∈ F (y ̸= 0 if ⃝∗ = ⊘) there exists
ε ∈ [−εmachine, εmachine] such that there holds

x ⃝∗ y = (x ∗ y)(1 + ε). (5.9)

In particular, there holds |x ⃝∗ y − x ∗ y| ≤ εmachine |x ∗ y| for all x, y ∈ F .
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5.3 Stability of numerical algorithms

Remark 5.10. From now on, for simplicity, we consider an idealized floating point system
F = F (β, t) ignoring overflow and underflow (all integer exponents e ∈ Z allowed).

Let us start by discussing the mathematical definition of an algorithm for “solving” a
mathematical problem f : X → Y (with X,Y normed vector spaces). Suppose we have
a computer with floating point system satisfying (5.9). We regard an algorithm for the
problem as a map

f̃ : X → Y,

where for x ∈ X, f̃(x) is defined as follows: First, round x to a floating point num-
ber fl(x) (with a rounding operator fl satisfying (5.8)), then run the (fixed) implementa-
tion/program of the algorithm with input fl(x), and define f̃(x) to be the output (this is
going to be a collection of floating point numbers in Y ).

As we are going to frequently use the Landau symbol O, let us briefly recall its defini-
tion:

Definition 5.6. For real-valued functions u = u(t) and v = v(t) of a variable t ∈ R>0, we
define

u(t) = O(v(t)) as t ↘ 0 :⇐⇒ ∃t0, C > 0 : |u(t)| ≤ Cv(t) ∀t ∈ (0, t0),

and

u(t) = O(v(t)) as t → ∞ :⇐⇒ ∃t0, C > 0 : |u(t)| ≤ Cv(t) ∀t ∈ (t0,∞).

Let us now define what we mean by an algorithm being accurate and by an algorithm
being stable.

Definition 5.7. Let X and Y be normed vector spaces with norms ∥ · ∥X and ∥ · ∥Y . Let
f : X → Y be a problem and f̃ : X → Y be an algorithm for f . Then, we make the
following definitions.

(i) f̃ is called accurate iff for each x ∈ X there holds

∥f̃(x)− f(x)∥Y
∥f(x)∥Y

= O(εmachine). (5.10)

(ii) f̃ is called stable iff for each x ∈ X there holds

∥f̃(x)− f(x̃)∥Y
∥f(x̃)∥Y

= O(εmachine) for some x̃ ∈ X with
∥x̃− x∥X
∥x∥X

= O(εmachine).

(5.11)

Remark 5.11. The above statements of the form ∥p(x,εmachine)∥
∥q(x,εmachine)∥ = O(εmachine) (note the

quantities inside the norm on the left-hand sides of (5.10) and (5.11) do indeed implicitly
depend on εmachine) are meant in the sense

∥p(x, εmachine)∥
∥q(x, εmachine)∥

= O(εmachine) as εmachine ↘ 0, uniformly in x,
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which is to be understood as

∃ ε0, C > 0 : ∥p(x, εmachine)∥ ≤ Cεmachine∥q(x, εmachine)∥ ∀εmachine ∈ (0, ε0), x ∈ X.

(Note that this makes (5.10) and (5.11) well defined also when the denominator is zero).
The limit process εmachine ↘ 0 can be thought of as running the algorithm on a family of
computers satisfying (5.8) and (5.9) with corresponding values of εmachine tending to zero.

Remark 5.12. If the problem f is ill-conditioned, there is little hope to construct an
accurate algorithm f̃ . Even if the only error would stem from rounding the input data
(and say everything else is performed exactly), this small perturbation can already lead
to large changes in the result if f is ill-conditioned. This is why the appropriate goal in
constructing algorithms is stability, which we think of as follows: if the algorithm f̃ is
stable, it gives the almost right answer to an almost right question.

Often, one encounters algorithms which are backward stable, that is, they satisfy a
stronger condition than stability. Namely, backward stable algorithms give the exact
answer to an almost right question:

Definition 5.8. Let X and Y be normed vector spaces with norms ∥ · ∥X and ∥ · ∥Y .
Let f : X → Y be a problem and f̃ : X → Y be an algorithm for f . Then, f̃ is called
backward stable iff for each x ∈ X there holds

f̃(x) = f(x̃) for some x̃ ∈ X with
∥x̃− x∥X
∥x∥X

= O(εmachine). (5.12)

Remark 5.13. Any backward stable algorithm is stable.

Let us make the following observation:

Theorem 5.5 (Independence of norm). If X,Y are finite-dimensional, the definitions of
accuracy, stability, and backward stability are independent of the choice of norms in X
and Y in the sense that the corresponding conditions either all hold or fail independently
of the choice of norms.

Proof. Exercise.

Theorem 5.6 (Accuracy of backward stable algorithms). Let X and Y be normed vector
spaces with norms ∥ ·∥X and ∥ ·∥Y . Consider a problem f : X → Y with condition number
κ given by (5.1), and a backward stable algorithm f̃ : X → Y for f . Then, there holds

∥f̃(x)− f(x)∥Y
∥f(x)∥Y

= O(κ(x) εmachine).

In particular, if κ(x) = O(1), then f̃ is accurate.

Proof. Using the definition (5.12) of backward stability and the definition (5.1) of κ = κ(x),
we find (with x̃ from (5.12))

∥f̃(x)− f(x)∥Y
∥f(x)∥Y

=
∥f(x̃)− f(x)∥Y

∥f(x)∥Y
≤ (κ(x) + o(1))

∥x̃− x∥X
∥x∥X

= O(κ(x) εmachine).

(Here, the Landau notation o(1) denotes a quantity converging to 0 as εmachine ↘ 0.)
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Let us discuss some examples.

Example 5.3 (Stability of floating point arithmetic). The floating point operations
⊕,⊖,⊗,⊘ are all backward stable. We prove this for ⊕ and leave the remaining op-
erations as an exercise. The key for the stability analysis are (5.8) and (5.9). Let us
consider the problem

f : R2 → R, f(x1, x2) := x1 + x2,

and the algorithm

f̃ : R2 → R, f̃(x1, x2) := fl(x1)⊕ fl(x2).

We choose the 1-norm ∥ · ∥1 on R2 and the absolute value |·| as norm on R (any other
choices are fine as well by Theorem 5.5). Let x = (x1, x2)

T ∈ R2. Then, by (5.8), we have
fl(x1) = x1(1 + ε1) and fl(x2) = x2(1 + ε2) for some ε1, ε2 ∈ [−εmachine, εmachine], and by
(5.9), we have fl(x1)⊕ fl(x2) = (fl(x1) + fl(x2))(1 + ε3) for some ε3 ∈ [−εmachine, εmachine].
Therefore, we find

f̃(x) = fl(x1)⊕ fl(x2) = (fl(x1) + fl(x2))(1 + ε3)

= (x1(1 + ε1) + x2(1 + ε2))(1 + ε3)

= x1(1 + ε1)(1 + ε3) + x2(1 + ε2)(1 + ε3) = x̃1 + x̃2 = f(x̃)

with x̃1 = x1(1 + ε1)(1 + ε3), x̃2 = x2(1 + ε2)(1 + ε3) and x̃ = (x̃1, x̃2)
T. We have

|x̃1 − x1| = |ε1 + ε3 + ε1ε3| |x1| ≤ (|ε1|+ |ε3|+ |ε1| |ε3|)|x1| ≤ C(εmachine)|x1|,
|x̃2 − x2| = |ε2 + ε3 + ε2ε3| |x2| ≤ (|ε2|+ |ε3|+ |ε2| |ε3|)|x2| ≤ C(εmachine)|x2|,

with C(εmachine) := 2εmachine + ε2machine, and hence,

∥x̃− x∥1 = |x̃1 − x1|+ |x̃2 − x2| ≤ C(εmachine)(|x1|+ |x2|) = C(εmachine)∥x∥1.

Since C(εmachine) = 2εmachine+ε2machine = O(εmachine), it follows that f̃ is backward stable.

Example 5.4 (Stability of adding 1). Let us consider the problem f : R → R, f(x) := x+1,
and the algorithm f̃ : R → R, f̃(x) := fl(x)⊕1. Then, f̃ is stable but not backward stable.
Stability can be shown as follows: We choose the absolute value | · | as norm on R. For
x ∈ R set x̃ = fl(x) so that we have |x̃− x| ≤ εmachine|x| and

|f̃(x)− f(x̃)| = |(fl(x)⊕ 1)− (x̃+ 1)| = |(x̃⊕ 1)− (x̃+ 1)|
≤ εmachine|x̃+ 1| = εmachine|f(x̃)|.

It follows that f̃ is stable. We leave it as an exercise to show that f̃ is not backward stable
(hint: note that x⊕ 1 = 1 for all x ∈ F with |x| ≤ 1

β εmachine).

Example 5.5 (Stability of computing inner and outer product). Examples without proof:

(i) Inner product: Consider the problem f : Rn × Rn → R, f(x, y) := xTy. Then, the
algorithm

f̃ : Rn × Rn → R, f̃(x, y) :=

= [[[(fl(x1)⊗ fl(y1))⊕ (fl(x2)⊗ fl(y2))]⊕ (fl(x3)⊗ fl(y3))]⊕ . . . ]⊕ (fl(xn)⊗ fl(yn))

is backward stable.
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(ii) Outer product: Consider the problem f : Rm × Rn → Rm×n, f(x, y) := xyT. Then,
the algorithm

f̃ : Rm × Rn → Rm×n, f̃(x, y) :=

fl(x1)⊗ fl(y1) · · · fl(x1)⊗ fl(yn)
...

...
fl(xm)⊗ fl(y1) · · · fl(xm)⊗ fl(yn)


is stable, but not backward stable.

Example 5.6 (Unstable algorithm for computing eigenvalues). Consider the following al-
gorithm for computing eigenvalues of a matrix A ∈ Rn×n: First, find the coefficients of
the characteristic polynomial (i.e., λ 7→ det(λIn − A)) and then, find its roots. This al-
gorithm is unstable (hence, we do not use this algorithm in practice). Note that for e.g.
A = I2 ∈ R2×2 we have the characteristic polynomial p1 from Example 5.1(iii). When we
compute the characteristic polynomial, we will have errors of order O(εmachine), leading
to errors in the roots of order O(

√
εmachine). In IEEE double precision arithmetic, this

means a loss of eight digits of accuracy.

5.4 Stability of solution algorithms for linear systems

We discuss the stability of several solution algorithms for linear systems.

Solving linear systems via QR obtained from Householder triangularization

Let us analyze the following solution algorithm for linear systems in view of numerical
stability:

Algorithm 5.1 (Solving linear systems via QR factorization). Given an invertible matrix
A ∈ Rn×n and a vector b ∈ Rn, do the following to obtain the solution x ∈ Rn to Ax = b.

Step 1) Use Algorithm 3.4 to obtain the factor R ∈ Rn×n of a QR factorization A = QR,
and the reflection vectors v1, . . . , vn ∈ Rn (the matrix Q is not explicitly formed).

Step 2) Use Algorithm 3.5 to compute y := QTb ∈ Rn from the vectors v1, . . . , vn and b.

Step 3) Solve the upper-triangular system Rx = y by backward substitution.

The main result is the following:

Theorem 5.7 (Backward stability of Algorithm 5.1). Algorithm 5.1 is backward stable in
the sense that

(A+∆A)x̃ = b for some ∆A ∈ Rn×n with
∥∆A∥
∥A∥

= O(εmachine)

for all matrix norms ∥ · ∥ on Rn×n, where x̃ ∈ Rn is the solution computed by Algorithm
5.1. In particular, in view of Theorem 5.6 and Theorem 5.2, we have

∥x̃− x∥(n)
∥x∥(n)

= O(κ∥·∥(n,n)
(A) εmachine)

for any norm ∥ · ∥(n) on Rn with corresponding induced matrix norm ∥ · ∥(n,n) on Rn×n,
where x = A−1b ∈ Rn denotes the exact solution to Ax = b.
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Remark 5.14. The vector b ∈ Rn is considered fixed and the problem is f : A 7→ A−1b
for A ∈ Rn×n invertible, i.e., obtain the solution x to Ax = b from A. The algorithm is
f̃ : A 7→ f̃(A) for A ∈ Rn×n invertible with x̃ = f̃(A) being the output of Algorithm 5.1
with input A.

It can be shown that each step of Algorithm 5.1 is backward stable (we only state the
results and omit the proofs): For Step 1, we have the following result.

Theorem 5.8 (Backward stability of QR via Householder). Suppose we apply Algorithm
3.4 to an invertible matrix A ∈ Rn×n, leading to outputs R̃ ∈ Rn×n and ṽ1, . . . , ṽn ∈ Rn

(the computed factor R and reflection vectors vi in floating point computation). Writing
Q̃ := Q̃1Q̃2 . . . Q̃n with Q̃i denoting the orthogonal matrix from Section 3.5 corresponding
to the reflection vector ṽi, there holds

Q̃R̃ = A+∆A for some ∆A ∈ Rn×n with
∥∆A∥
∥A∥

= O(εmachine) (5.13)

for all matrix norms ∥ · ∥ on Rn×n.

For Step 2, i.e., the computation of y = Q̃Tb = Q̃−1b, we have that the computed
result ỹ satisfies

(Q̃+∆Q)ỹ = b for some ∆Q ∈ Rn×n with ∥∆Q∥ = O(εmachine) (5.14)

for all matrix norms ∥ · ∥ on Rn×n. For Step 3, i.e., the solution of the upper-triangular
system R̃x = ỹ by backward substitution, we have that the computed result x̃ satisfies

(R̃+∆R)x̃ = ỹ for some ∆R ∈ Rn×n with
∥∆R∥
∥R̃∥

= O(εmachine) (5.15)

for all matrix norms ∥ · ∥ on Rn×n. Now, we can prove Theorem 5.7.

Proof of Theorem 5.7. Exercise. Use (5.13), (5.14) and (5.15).

Solving linear systems via Gaussian elimination

Let us first consider the solution of non-singular linear systems Ax = b via LU factoriza-
tion (Gaussian elimination without pivoting; see Algorithm 4.1 and Remark 4.2) and via
PA=LU factorization (Gaussian elimination with partial pivoting; see Algorithm 4.2 and
Remark 4.5).

Theorem 5.9. We have the following results.

(i) Gaussian elimination without pivoting: Suppose a LU factorization A = LU of an
invertible matrix A ∈ Rn×n, for which there exists a LU factorization, is computed
by Algorithm 4.1. Then, for sufficiently small values of εmachine, no zero-pivots arise
and the algorithm completes successfully in floating point arithmetic, and for the
computed L̃ and Ũ there holds

L̃Ũ = A+∆A for some ∆A ∈ Rn×n with
∥∆A∥
∥L∥∥U∥

= O(εmachine) (5.16)

for all matrix norms ∥ · ∥ on Rn×n.

76



(ii) Gaussian elimination with partial pivoting: Suppose a PA=LU factorization PA =
LU of an invertible matrix A ∈ Rn×n is computed by Algorithm 4.2. Then, for the
computed P̃ , L̃, and Ũ there holds

L̃Ũ = P̃A+∆A for some ∆A ∈ Rn×n with
∥∆A∥
∥A∥

= O(ρ εmachine)

for all matrix norms ∥ · ∥ on Rn×n, where ρ denotes the growth factor of A defined
by

ρ :=
maxi,j∈{1,...,n}|uij |
maxi,j∈{1,...,n}|aij |

.

Further, if |lij | < 1 for all i > j, then P̃ = P for εmachine sufficiently small.

We omit the proof, but discuss the implications.

Remark 5.15. Let us discuss the result (i) of Theorem 5.9. Although it looks similar to
other stability results, this is very different in that the quantity ∥L∥∥U∥ appears instead
of ∥A∥ in the denominator of (5.16). Hence, we will have backward stability if ∥L∥∥U∥ =
O(∥A∥). Otherwise, backward instability is to be expected. It is known that both L and U
can be unboundedly large and that Gaussian elimination without pivoting is unstable, and
hence, should not be used in general. We give a simple example illustrating the problem:

Consider A :=

(
10−20 1
1 1

)
, for which Gaussian elimination performed exactly gives

A = LU, L :=

(
1 0

1020 1

)
, U :=

(
10−20 1
0 1− 1020

)
.

In IEEE double precision arithmetic, the computed result would be

L̃ :=

(
1 0

1020 1

)
, Ũ :=

(
10−20 1
0 −1020

)

and we note that L̃Ũ =

(
10−20 1
1 0

)
which is drastically different from LU = A in the

(2,2) entry. Considering Ax = b := (1, 0)T with exact solution x ≈ (−1, 1)T, we find from
L̃Ũ x̃ = b that x̃ = (0, 1)T which is very different from the exact solution.

Remark 5.16. Let us discuss the result (ii) of Theorem 5.9. It can be shown that the
growth factor ρ satisfies the bound ρ ≤ 2n−1 and that this is sharp. It is attained by
the matrix A = (aij) ∈ Rn×n with aii = ain = 1 for all 1 ≤ i ≤ n, aij = −1 for all
i > j, and aij = 0 otherwise (exercise). A growth factor of 2n means a loss of around n
bits of precision, which is a huge problem for high-dimensional problems (as they arise in
practice). Still, according to our definition, Gaussian elimination with partial pivoting is
backward stable (as dependence of the constant on the dimension is allowed). However,
we should rather think of it as stable for most problems, but very unstable for certain
matrices. In practice, for problems with real applications studied in the past centuries,
Gaussian elimination with partial pivoting performed in a stable way.
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Solving linear systems via Cholesky factorization

Cholesky factorization is the method of choice for linear systems with a symmetric positive
definite system matrix as it is always stable. To be precise, let us consider the following
algorithm:

Algorithm 5.2 (Solving linear systems via Cholesky factorization). Given a symmetric
positive definite matrix A ∈ Rn×n and a vector b ∈ Rn, do the following to obtain the
solution x ∈ Rn to Ax = b.

Step 1) Use Algorithm 4.3 to obtain the factor R ∈ Rn×n of the Cholesky factorization
A = RTR.

Step 2) Solve the lower-triangular system RTy = b for y ∈ Rn by forward substitution.

Step 3) Solve the upper-triangular system Rx = y for x ∈ Rn by backward substitution.

The main result is the following: (proof omitted)

Theorem 5.10 (Backward stability of Cholesky factorization and of Algorithm 5.2). We
have the following results:

(i) Backward stability of Cholesky factorization: Suppose we apply Algorithm 4.3 to a
symmetric positive definite matrix A ∈ Rn×n, leading to an output R̃ ∈ Rn×n (the
computed factor R in floating point computation). Then, there holds

R̃TR̃ = A+∆A for some ∆A ∈ Rn×n with
∥∆A∥
∥A∥

= O(εmachine)

for all matrix norms ∥ · ∥ on Rn×n.

(ii) Backward stability of Algorithm 5.2: Algorithm 5.2 is backward stable in the sense
that

(A+∆A)x̃ = b for some ∆A ∈ Rn×n with
∥∆A∥
∥A∥

= O(εmachine)

for all matrix norms ∥ · ∥ on Rn×n, where x̃ ∈ Rn is the solution computed by
Algorithm 5.2.

Remark 5.17. An intuitive reason for the stability of Cholesky factorization, compared
to LU factorization, is that the factor R in the Cholesky factorization A = RTR cannot
become very large compared to A (e.g., we have ∥R∥2 = ∥RT∥2 =

√
∥A∥2 (exercise)).

5.5 Stability of solution algorithms for least squares problems

Omitted. (If you are interested in this, see Trefethen–Bau Chapter 3.)
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6 Eigenvalue Problems

6.1 The eigenvalue problem: the basics

We study the eigenvalue problem corresponding to a square matrix A ∈ Cn×n:

Find x ∈ Cn\{0} and λ ∈ C such that Ax = λx.

We write Cm×n for the set of complex m × n matrices, and Cm := Cm×1 for the set of
complex column m-vectors. For A = (aij) ∈ Cm×n write Ā := (aij) ∈ Cm×n (complex

conjugate each entry), and denote the adjoint (conjugate transpose) by A∗ := AT ∈ Cn×m.
We introduce three important classes of square matrices:

A ∈ Cn×n is called hermitian iff A∗ = A, (if A real: hermitian ⇔ symmetric)

A ∈ Cn×n is called normal iff A∗A = AA∗,

A ∈ Cn×n is called unitary iff A∗A = AA∗ = In. (if A real: unitary ⇔ orthogonal)

We recall the basics for eigenvalue problems: For a square matrix A ∈ Cn×n,

• λ ∈ C is called an eigenvalue of A iff there holds Ax = λx for some x ∈ Cn\{0}.
Then, any x ∈ Cn\{0} with Ax = λx is called an eigenvector of A corresponding to
the eigenvalue λ.

Remark 6.1. If A is hermitian, then all of its eigenvalues are real. (exercise)

• its characteristic polynomial pA is defined as pA : C → C, z 7→ det(zIn −A).

• its spectrum Λ(A) ⊆ C is defined by Λ(A) := {λ ∈ C : λ is an eigenvalue of A}, and
its spectral radius ρ(A) ∈ [0,∞) is defined by ρ(A) := max{|λ| : λ ∈ Λ(A)}.
Remark 6.2. There holds Λ(A) = {λ ∈ C : pA(λ) = 0}. Indeed, λ ∈ C satisfies λ ∈
Λ(A) iff (∃x ∈ Cn\{0} : (λIn−A)x = 0) iff (λIn−A is singular) iff det(λIn−A) = 0.

Remark 6.3. Note that pA(z) =
∑n

k=0 pkz
k for some p0, . . . , pn−1 ∈ C and pn = 1,

i.e., pA is a monic polynomial. Hence, by the fundamental theorem of algebra, there
exist λ1, . . . , λn ∈ C such that pA(z) =

∏n
i=1(z−λi), and thus Λ(A) = {λ1, . . . , λn}.

Note that det(A) = (−1)npA(0) =
∏n

i=1 λi and, comparing the coefficient of zn−1 in
det(zIn −A) =

∏n
i=1(z − λi), that tr(A) =

∑n
i=1 λi.

• the algebraic multiplicity µA(λ) ∈ {1, . . . , n} of an eigenvalue λ ∈ Λ(A) is the mul-
tiplicity of λ as a root of pA. We call λ ∈ Λ(A) with µA(λ) = 1 a simple eigenvalue.

• the eigenspace Eλ ⊆ Cn of an eigenvalue λ ∈ Λ(A) is defined to be Eλ := N (λIn−A).
We call γA(λ) := dim(Eλ) ∈ {1, . . . , n} the geometric multiplicity of λ ∈ Λ(A).

Remark 6.4. There holds γA(λ) ≤ µA(λ) for any λ ∈ Λ(A). We omit the proof; see
undergraduate linear algebra.

• an eigenvalue λ ∈ Λ(A) is called defective iff γA(λ) < µA(λ). A matrix A ∈ Cn×n is
called defective iff it has a defective eigenvalue.

• For an invertible matrix X ∈ Cn×n, the map SX : Cn×n → Cn×n, A 7→ X−1AX is
called a similarity transformation of A. Further, a matrix B ∈ Cn×n is called similar
to A ∈ Cn×n iff ∃X ∈ Cn×n invertible s.t. B = X−1AX.
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Remark 6.5. If B ∈ Cn×n is similar to A ∈ Cn×n, then pA = pB, Λ(A) = Λ(B), and
there holds µA(λ) = µB(λ) and γA(λ) = γB(λ) for all λ ∈ Λ(A) = Λ(B).

A very useful result for estimating the location of eigenvalues in the complex plane is
Gerschgorin’s theorem. We denote the closed disc in the complex plane around a point
a ∈ C with radius r > 0 by D(a, r) := {z ∈ C : |z − a| ≤ r} ⊆ C.

Theorem 6.1 (Gerschgorin’s theorem). Let A = (aij)1≤i,j≤n ∈ Cn×n. Define the numbers
r1, . . . , rn ≥ 0 given by

ri :=
∑

j∈{1,...,n}\{i}

|aij |, i ∈ {1, . . . , n}.

Then, there holds

Λ(A) ⊆
n⋃

i=1

D(aii, ri),

i.e., every eigenvalue of A lies in at least one of the n so-called Gerschgorin discs
D(a11, r1), . . . , D(ann, rn). Moreover, if there are 1 ≤ k ≤ n Gerschgorin discs such
that their union U is a connected set which is disjoint from the union of the remaining
n− k Gerschgorin discs, then U contains exactly k eigenvalues of A.

Proof. Let λ ∈ Λ(A). We can find an eigenvector x = (x1, . . . , xn)
T ∈ Cn\{0} satisfying

Ax = λx and ∥x∥∞ = maxk∈{1,...,n}|xk| = 1. Let i ∈ {1, . . . , n} be such that |xi| = 1.
Then,

|λ− aii| = |(λ− aii)xi| = |(Ax)i − aiixi|

=

∣∣∣∣∣∣
n∑

j=1

aijxj − aiixi

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
j∈{1,...,n}\{i}

aijxj

∣∣∣∣∣∣ ≤ ri∥x∥∞ = ri,

i.e., λ ∈ D(aii, ri). We conclude that every eigenvalue of A lies in at least one of the n
Gerschgorin discs. We omit the proof of the second part of the theorem.

Remark 6.6. Noting that Λ(A) = Λ(AT) for any A ∈ Cn×n (observe pA = pAT), we can
obtain additional information on Λ(A) by applying Gerschgorin’s theorem to AT as well.

6.2 Eigenvalue-revealing factorizations

We start by discussing eigenvalue-revealing factorizations, i.e., factorizations of a given
matrix from which we can directly read off its eigenvalues.

Diagonalization

Let us first discuss the eigenvalue decomposition, which, as the name suggests, is an
eigenvalue-revealing decomposition.

Definition 6.1 (Eigenvalue decomposition). Let A ∈ Cn×n. If there exists an invertible
matrix X ∈ Cn×n and a diagonal matrix D ∈ Cn×n such that

A = XDX−1, (6.1)

then we call (6.1) an eigenvalue decomposition of A.
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Definition 6.2. For a matrix A ∈ Cn×n,

(i) we say A is diagonalizable iff there exists an eigenvalue decomposition of A.

(ii) we say A is unitary diagonalizable iff there exists an eigenvalue decomposition (6.1)
of A with X unitary, i.e., iff ∃X ∈ Cn×n unitary, D ∈ Cn×n diagonal: A = XDX∗.

Remark 6.7. Note that (6.1) is equivalent to AX = XD. Writing X = (x1| . . . |xn) and
D = diagn×n(λ1, . . . , λn), this yields Axi = λixi for i ∈ {1, . . . , n}, i.e., xi is an eigenvec-
tor with corresponding eigenvalue λi. So, the eigenvalue decomposition is a eigenvalue-
revealing decomposition as we can directly read off the eigenvalues from the diagonal of
D.

Theorem 6.2 (Characterization of diagonalizable matrices). A matrix A ∈ Cn×n is di-
agonalizable iff it is non-defective, i.e., iff γA(λ) = µA(λ) for all λ ∈ Λ(A).

Proof. First, suppose A ∈ Cn×n has an eigenvalue decomposition A = XDX−1 with some
invertible matrix X ∈ Cn×n and a diagonal matrix D ∈ Cn×n. Then, A is similar to
D and hence, Λ(A) = Λ(D) =: Λ, and there holds µA(λ) = µD(λ) and γA(λ) = γD(λ)
for all λ ∈ Λ. Since D is diagonal, we have γD(λ) = µD(λ) for all λ ∈ Λ and hence,
γA(λ) = γD(λ) = µD(λ) = µA(λ) for all λ ∈ Λ, i.e., A is non-defective.

Conversely, suppose that A ∈ Cn×n is non-defective. Denote its distinct eigenvalues by
λ1, . . . , λk ∈ Λ(A), k ≤ n. Then, to each λi we can find γA(λi) many linear independent
eigenvectors of A. Noting that eigenvectors to distinct eigenvalues are linearly independent
(exercise), we can find a total of

∑k
i=1 γA(λi) =

∑k
i=1 µA(λi) = n (first equality uses A

non-defective) linearly independent eigenvectors x1, . . . , xn ∈ Cn\{0} for A. Then, the
matrix X := (x1| . . . |xn) ∈ Cn×n is invertible and, setting D := diagn×n(d1, . . . , dn) with
d1, . . . , dn ∈ C satisfying Axi = dixi, there holds AX = XD and hence A = XDX−1.

Theorem 6.3 (Characterization of unitary diagonalizable matrices). A matrix A ∈ Cn×n

is unitary diagonalizable iff it is normal, i.e., iff A∗A = AA∗. In particular, every hermi-
tian matrix is unitary diagonalizable.

Proof. Omitted.

Remark 6.8. If A ∈ Rn×n is symmetric, then there exists a real eigenvalue decomposition
A = XDX−1 = XDXT with X ∈ Rn×n orthogonal and D ∈ Rn×n diagonal. We thus call
real symmetric matrices orthogonally diagonalizable. We omit the proof.

In the sense of the following definition, we thus have that any symmetric matrix is
orthogonally equivalent to a diagonal matrix.

Definition 6.3. Two matrices A,B ∈ Rn×n are called orthogonally equivalent iff there
exists an orthogonal matrix Q ∈ Rn×n such that A = QBQT.

Schur factorization

The drawback of the eigenvalue decomposition is that it only exists for a certain class of
matrices (non-defective matrices). We now introduce the most useful eigenvalue-revealing
decomposition in numerical analysis.
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Definition 6.4 (Schur factorization). Let A ∈ Cn×n. If there exists a unitary matrix
Q ∈ Cn×n and an upper-triangular matrix T ∈ Cn×n such that

A = QTQ∗, (6.2)

then we call (6.2) a Schur factorization of A.

Remark 6.9. Suppose A has a Schur factorization A = QTQ∗. Then, A is similar to T
and hence Λ(A) = Λ(T ). Hence, since the eigenvalues of the upper-triangular matrix T
are its diagonal entries, we can read off the eigenvalues of A from the diagonal of T .

Theorem 6.4 (Existence of Schur factorization). Every matrix A ∈ Cn×n has a Schur
factorization.

Proof. We use induction on n ∈ N. For the case n = 1, i.e., A = (a) ∈ C1×1, we have
that A = (a) = (1)(a)(1) = I1AI

∗
1 is a Schur factorization of A. As induction hypothesis

suppose the claim is true for some n ∈ N.
For the induction step, let A ∈ C(n+1)×(n+1) and our goal is to construct a Schur

factorization of A. Let λ ∈ Λ(A) and x ∈ Cn+1\{0} be a corresponding normal-
ized eigenvector with x∗x = 1 and Ax = λx. We can now find a unitary matrix
U = (u1| . . . |un|un+1) ∈ C(n+1)×(n+1) with first column u1 = x. Then,

U∗AU =

(
λ w∗

0n×1 B

)
∈ C(n+1)×(n+1)

for some w ∈ Cn and B ∈ Cn×n. By the hypothesis there exists a Schur factorization of
B, i.e., a unitary matrix V ∈ Cn×n and an upper-triangular matrix R ∈ Cn×n such that
B = V RV ∗. Then, we compute[
U

(
1 01×n

0n×1 V

)]∗
A

[
U

(
1 01×n

0n×1 V

)]
=

(
1 01×n

0n×1 V ∗

)(
λ w∗

0n×1 B

)(
1 01×n

0n×1 V

)
=

(
λ w∗V

0n×1 R

)
=: T ∈ C(n+1)×(n+1),

and we find that

A = QTQ∗ with Q := U

(
1 01×n

0n×1 V

)
∈ C(n+1)×(n+1).

Noting that Q is unitary and T is upper-triangular, this is a Schur factorization of A.

Remark 6.10. Note that if A ∈ Cn×n is normal and A = QTQ∗ is a Schur factorization of
A, then T must be diagonal. (exercise)

6.3 Transformation into upper-Hessenberg form

We now turn our attention to the construction of algorithms for computing the eigenvalues
of a given matrix. Unfortunately, there does not exist an algorithm which can compute
the eigenvalues of an arbitrary matrix in a finite number of steps and thus, any eigenvalue
solver must be iterative. This can be seen as follows:
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Remark 6.11 (Eigenvalue solvers must be iterative). Let a := (a0, . . . , an−1)
T ∈ Cn and

let e1, . . . , en ∈ Rn denote the canonical basis vectors in Rn. Observe that the problem of
finding the roots of the monic polynomial p : C → C, p(z) = zn +

∑n−1
i=0 aiz

i is equivalent
to finding the eigenvalues of the matrix

A :=
(
B | − a

)
∈ Cn×n, where B := (e2|e3| · · · |en) ∈ Rn×(n−1).

Indeed, denoting the roots of p by z1, . . . , zn ∈ C, the vector (1, zi, z
2
i , . . . , z

n−1
i )T ∈ Cn is

an eigenvector of AT with eigenvalue zi for i ∈ {1, . . . , n}. Hence, since Λ(A) = Λ(AT)
(see Remark 6.6), we find that Λ(A) = {z1, . . . , zn}.

We deduce that, if there were an algorithm which can compute the exact eigenvalues
of an arbitrary matrix in finite steps, we would have a formula for computing the roots
of any arbitrary polynomial. However, this is impossible since it is known that no such
formula exists for polynomials of degree greater than or equal to 5.

In view of this result, we will aim for algorithms that yield sequences converging
to the eigenvalues (desirably as rapidly as possible). Although we cannot find a Schur
factorization in a finite number of steps (i.e., we cannot transform a given matrix into an
upper-triangular matrix via unitary similarity transformations), we can transform a given
matrix into an “almost” triangular matrix (a so-called Hessenberg matrix) via unitary
similarity transformations in a finite number of steps: (illustration for n = 6)

A =



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 =⇒ H = Q∗AQ =



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗

 .

Definition 6.5 (upper-Hessenberg matrix). A square matrix A = (aij) ∈ Cn×n is called
an upper-Hessenberg matrix iff aij = 0 whenever i > j + 1.

Definition 6.6 (Hessenberg decomposition). Let A ∈ Cn×n. If there exist a unitary
matrix Q ∈ Cn×n and an upper-Hessenberg matrix H ∈ Cn×n such that there holds

A = QHQ∗, (6.3)

then we call (6.3) a Hessenberg decomposition of A.

Theorem 6.5 (Existence of Hessenberg decomposition). Any square matrix A ∈ Cn×n has
a Hessenberg decomposition. Moreover, if A ∈ Rn×n is real, then there exists a Hessenberg
decomposition A = QHQT with Q ∈ Rn×n orthogonal and H ∈ Rn×n upper-Hessenberg.

Transformation into upper-Hessenberg form via unitary similarity transformations is
typically the first phase of any eigenvalue algorithm. Let us explain how to obtain such a
Hessenberg decomposition by looking at an explicit example.

Example 6.1. Consider the matrix A :=


1 1 0 −1 0
−2 −1 1 1 0
1 1 −1 1 0
2 1 1 −1 0
0 1 1 1 1

. We explain how to find

an orthogonal matrix Q ∈ R5×5 such that QTAQ is an upper-Hessenberg matrix.
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Step 1 : We want to find an orthogonal matrix Q1 ∈ R5×5 such that A1 := QT
1 AQ1 is of

the form A1 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

. We take QT
1 = Q1 to be a Householder reflector that

leaves the first row unchanged and introduces the desired zeros. Set x1 := (−2, 1, 2, 0)T

and v1 := sign(⟨x1, e1⟩)∥x1∥2e1 + x1 = (−5, 1, 2, 0)T, and take

Q1 :=

(
1 01×4

04×1 I4 − 2
v1vT1
∥v1∥22

)
=


1 0 0 0 0
0 −2

3
1
3

2
3 0

0 1
3

14
15 − 2

15 0
0 2

3 − 2
15

11
15 0

0 0 0 0 1

 .

Then, Q1A = QT
1 A has the desired zero-entries in its first column, and so does QT

1 AQ1

(right-multiplication by Q1 leaves first column unchanged). Indeed, we have

A1 := QT
1 AQ1 =


1 −4

3 ∗ ∗ ∗
3 −17

9 ∗ ∗ ∗
0 17

45 ∗ ∗ ∗
0 19

45 ∗ ∗ ∗
0 1

3 ∗ ∗ ∗

 .

Step 2 : We want to find an orthogonal matrix Q2 ∈ R5×5 such that A2 := QT
2 A1Q2 is of

the form A2 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

. We take QT
2 = Q2 to be a Householder reflector that

leaves the first two rows unchanged and introduces the desired zeros. Set x2 := (1745 ,
19
45 ,

1
3)

T

and v2 := sign(⟨x2, e1⟩)∥x2∥2e1 + x2 =
1
45(17 + 5

√
35, 19, 15)T, and take

Q2 :=

(
I2 02×3

03×2 I3 − 2
v2vT2
∥v2∥22

)
=


1 0 0 0 0
0 1 0 0 0
0 0 − 17

5
√
35

− 19
5
√
35

− 3√
35

0 0 − 19
5
√
35

39375+6137
√
35

102550 −9975−969
√
35

20510

0 0 − 3√
35

−9975−969
√
35

20510
2527+153

√
35

4102

 .

Then, Q2A1 = QT
2 A1 has the desired zero-entries in its second column, and so does

QT
2 A1Q2:

A2 := QT
2 A1Q2 =


1 −4

3 − 4
3
√
35

∗ ∗
3 −17

9 − 26
9
√
35

∗ ∗
0 −

√
35
9

523
315 ∗ ∗

0 0 2565
√
35−8721

20510 ∗ ∗
0 0 −6885+3249

√
35

20510 ∗ ∗

 .
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Step 3 : We want to find an orthogonal matrix Q3 ∈ R5×5 such that A3 := QT
3 A2Q3 is

of the form A3 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

. We take QT
3 = Q3 to be a Householder reflector

that leaves the first three rows unchanged and introduces the desired zeros. Set x3 :=

(2565
√
35−8721

20510 ,−6885+3249
√
35

20510 )T and v3 := sign(⟨x3, e1⟩)∥x3∥2e1 + x3, and take

Q3 :=

(
I3 03×2

02×3 I2 − 2
v3vT3
∥v3∥22

)
=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 −285
√
910−969

√
26

15236
765

√
26+361

√
910

15236

0 0 0 765
√
26+361

√
910

15236
285

√
910−969

√
26

15236

 .

Then, Q3A2 = QT
3 A2 has the desired zero-entry in its third column, and so does QT

3 A2Q3:

QT
3 A2Q3 =


1 −4

3 − 4
3
√
35

− 4√
910

− 2√
26

3 −17
9 − 26

9
√
35

−
√
910
105 0

0 −
√
35
9

523
315

8
√
26

105 0

0 0 −9
√
26

35
8
35 0

0 0 0 0 −2

 =: H.

This is in upper-Hessenberg form. We find that A = QHQT with H as above and

Q := Q1Q2Q3 =


1 0 0 0 0
0 −2

3 − 11
3
√
35

− 11√
910

1√
26

0 1
3 − 8

3
√
35

− 8√
910

− 4√
26

0 2
3 − 7

3
√
35

− 7√
910

3√
26

0 0 − 3√
35

26√
910

0


is a Hessenberg decomposition of A (note Q is orthogonal as a product of orthogonal
matrices).

Using this methodology, any arbitrary square matrix A ∈ Cn×n can be transformed
into upper-Hessenberg form via unitary similarity transformations in (at most) n−2 steps.
We are now able to find a Hessenberg decomposition to any given square matrix.

Remark 6.12 (Non-uniqueness of Hessenberg decomposition). The Hessenberg decompo-
sition is not unique. Consider, e.g., a 2 × 2 matrix A ∈ C2×2. Then, for any unitary
Q ∈ C2×2, we have that A = Q(Q∗AQ)Q∗ is a Hessenberg decomposition of A (note
Q∗AQ ∈ C2×2 is upper-Hessenberg as any 2× 2 matrix is upper-Hessenberg).

Remark 6.13 (Hessenberg decomposition of hermitian matrices). Let A ∈ Cn×n be hermi-
tian, and let A = QHQ∗ be a Hessenberg decomposition of A. Then, H∗ = (Q∗AQ)∗ =
Q∗A∗Q = Q∗AQ = H, i.e., H is a hermitian matrix in upper-Hessenberg form and thus,
H must be tridiagonal. Therefore, we can transform any hermitian matrix via unitary
similarity transformations into a hermitian tridiagonal matrix, and any real symmetric
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matrix via orthogonal similarity transformations into a symmetric tridiagonal matrix: (il-
lustration for n = 6)

A =



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 , A∗ = A =⇒ H = Q∗AQ =



∗ ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0
0 ∗ ∗ ∗ 0 0
0 0 ∗ ∗ ∗ 0
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗

 .

To summarize, we are now able to transform any square matrix A ∈ Cn×n via unitary
similarity transformations into upper-Hessenberg form H = Q∗AQ, and if A is hermitian,
the resulting Hessenberg matrix is actually a hermitian tridiagonal matrix. Recall that
similarity transformations do not change the spectrum of the matrix and hence, Λ(A) =
Λ(H). This “reduction” to upper-Hessenberg form is typically the first step of eigenvalue
algorithms. Let us provide the following algorithm:

Algorithm 6.1 (Transformation into upper-Hessenberg form). Let A ∈ Rn×n. To obtain
the factor H of a Hessenberg decomposition A = QHQT, do as follows:

for i = 1, . . . , n− 2 do
x = Ai+1:n,i

vi = sign(⟨x, e1⟩)∥x∥2e1 + x
vi =

vi
∥vi∥2

Ai+1:n,i:n = Ai+1:n,i:n − 2vi
(
vTi Ai+1:n,i:n

)
A1:n,i+1:n = A1:n,i+1:n − 2 (A1:n,i+1:nvi) v

T
i

end for.

The algorithm stores the result H in place of A. Note that Q is not explicitly formed, but
can be obtained from the vectors v1, . . . , vn−2, if desired, analogously to Section 3.5.

Remark 6.14. The above algorithm works for complex matrices as well. Note sign(z) := z
|z|

for z ∈ C, ⟨x, y⟩ := y∗x for x, y ∈ Cn, and ∥x∥2 :=
√
x∗x for x ∈ Cn.

Theorem 6.6. Algorithm 6.1 requires ∼ 10
3 n

3 flops.

Proof. Omitted.

Remark 6.15. If A ∈ Rn×n is symmetric, clever modifications of Algorithm 6.1 are used in
practice to transform into tridiagonal form (recall Remark 6.13) using only ∼ 4

3n
3 flops.

Theorem 6.7 (Backward stability of Hessenberg via Householder). Suppose we apply
Algorithm 6.1 to a matrix A ∈ Rn×n, leading to outputs H̃ ∈ Rn×n and ṽ1, . . . , ṽn ∈ Rn

(the computed factor H and reflection vectors vi in floating point computation). Writing
Q̃ := Q̃1Q̃2 . . . Q̃n−2 with Q̃i denoting the orthogonal matrix corresponding to the reflection
vector ṽi, there holds

Q̃H̃Q̃T = A+∆A for some ∆A ∈ Rn×n with
∥∆A∥
∥A∥

= O(εmachine)

for all matrix norms ∥ · ∥ on Rn×n.
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6.4 Some classical algorithms

Restriction: For simplicity, we will assume from now on that A = AT ∈ Rn×n, i.e., that
A is a real symmetric matrix. Then, there exist an orthogonal matrix Q ∈ Rn×n and a
diagonal matrix D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A) ⊆ R such
that A = QDQT. (Note the i-th column of Q is an eigenvector to the eigenvalue λi.)

The Rayleigh quotient

The Rayleigh quotient plays an important role in the numerical computation of eigenvalues
and is defined as follows:

Definition 6.7 (Rayleigh quotient). Let A ∈ Rn×n be a symmetric matrix. We define
the map

RA : Rn\{0} → R, x 7→ xTAx

xTx
=

⟨Ax, x⟩
∥x∥22

=

〈
A

x

∥x∥2
,

x

∥x∥2

〉
.

For x ∈ Rn\{0}, we call the value RA(x) ∈ R the Rayleigh quotient of x (corresponding
to the matrix A).

Theorem 6.8 (Properties of the Rayleigh quotient). Let A ∈ Rn×n be a symmetric matrix.
Then, we have the following:

(i) If x ∈ Rn\{0} is an eigenvector of A, then RA(x) is its corresponding eigenvalue.

(ii) RA is differentiable on Rn\{0} with gradient

∇RA : Rn\{0} → Rn, x 7→ 2
Ax− (RA(x))x

∥x∥22
.

For x ∈ Rn\{0}, there holds ∇RA(x) = 0 iff x is an eigenvector of A (i.e., the
stationary points of RA are the eigenvectors of A).

(iii) If q ∈ Rn\{0} is an eigenvector of A, then |RA(x)−RA(q)| = O(∥x− q∥22) as x → q.

Proof. (i) Let x ∈ Rn\{0} be an eigenvector of A and let λ ∈ R be its corresponding

eigenvalue, i.e., Ax = λx. Then, RA(x) =
⟨Ax,x⟩
∥x∥22

= ⟨λx,x⟩
∥x∥22

= λ ⟨x,x⟩
∥x∥22

= λ.

(ii) Let us define the maps f, g : Rn → R given by f(x) := xTAx and g(x) := xTx, i.e.,
writing x = (x1, . . . , xn)

T:

f(x) =

n∑
i,j=1

aijxixj , g(x) =

n∑
i=1

x2i .

Note that RA(x) =
f(x)
g(x) for any x ∈ Rn\{0}. We compute

∇f(x) =

n∑
i,j=1

aij (xjei + xiej) =

n∑
i,j=1

aijxjei +

n∑
i,j=1

aijxiej

= 2

n∑
i,j=1

aijxjei = 2

n∑
i=1

(Ax)iei = 2Ax
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and ∇g(x) = 2x (follows from previous calculation with A = In since g(x) = xTInx).
Therefore, for any x ∈ Rn\{0}, we have

∇RA(x) =

(
g∇f − f ∇g

g2

)
(x) =

2∥x∥22Ax− 2(xTAx)x

∥x∥42
= 2

Ax− (RA(x))x

∥x∥22
.

We now show the second part of (ii). If x ∈ Rn\{0} is such that ∇RA(x) = 0 ∈ Rn, then
Ax = (RA(x))x and thus, x is an eigenvector of A (corresponding to the eigenvalue RA(x)).
Conversely, suppose x ∈ Rn\{0} is an eigenvector of A and denote the corresponding
eigenvalue by λ, i.e., Ax = λx. We know from (i) that λ = RA(x) and hence, Ax =
(RA(x))x. It follows that ∇RA(x) = 0 ∈ Rn.

(iii) Let q ∈ Rn\{0} be an eigenvector of A. Since RA is a smooth function, we have
by Taylor’s theorem that RA(x) = RA(q) + (∇RA(q))

Tx+O(∥x− q∥22) as x → q. In view
of (ii), we have that ∇RA(q) = 0 ∈ Rn and the result follows.

Power iteration (Von Mises iteration): A method for the largest eigenvalue

The following algorithm computes the largest (in absolute value) eigenvalue and a corre-
sponding normalized eigenvector of a given matrix (under suitable assumptions):

Algorithm 6.2 (Power iteration). Let A ∈ Rn×n be a symmetric matrix. Choose a vector
v(0) ∈ Rn with ∥v(0)∥2 = 1, and do the following:

for k = 1, 2, 3, . . . do
w = Av(k−1)

v(k) = w
∥w∥2

λ(k) = ⟨Av(k), v(k)⟩
end for

Remark 6.16. In practice, a suitable stopping criterion is necessary, an issue which we
neglect in this course.

Remark 6.17. The algorithm produces a sequence (v(k))k∈N of vectors in Rn given by the

relation v(k) = Av(k−1)

∥Av(k−1)∥2
∀k ∈ N, i.e., v(k) = Akv(0)

∥Akv(0)∥2
∀k ∈ N, and a sequence (λ(k))k∈N

of real numbers given by λ(k) = RA(v
(k)) (note ∥v(k)∥2 = 1 for all k).

Theorem 6.9 (Convergence of power iteration). Let A ∈ Rn×n be a symmetric matrix
with an eigenvalue decomposition A = QDQT with Q = (q1| · · · |qn) ∈ Rn×n orthogonal and
D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A) and |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.
Let v(0) ∈ Rn with ∥v(0)∥2 = 1, and let (v(k)) ⊆ Rn and (λ(k))k∈N be the sequences produced
by Algorithm 6.2. If |λ1| > |λ2| and ⟨v(0), q1⟩ ≠ 0, then there holds

λ(k) → λ1 with convergence rate |λ(k) − λ1| = O

(∣∣∣∣λ2

λ1

∣∣∣∣2k
)

as k → ∞, (6.4)

and there holds

∥v(k) − skq1∥2 = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

as k → ∞ (6.5)

for some (sk)k∈N ⊆ {−1, 1}. (We may say span(v(k)) converges to span(q1) as k → ∞.)
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Proof. Suppose |λ1| > |λ2| and ⟨v(0), q1⟩ ̸= 0. Let us write v(0) =
∑n

i=1 ciqi with
c1, . . . , cn ∈ R given by ci = ⟨v(0), qi⟩ for i ∈ {1, . . . , n}. Note that c1 ̸= 0. Then, we
have that

v(k) =
Akv(0)

∥Akv(0)∥2
=

QDkQTv(0)

∥Akv(0)∥2
=

∑n
i=1 ciλ

k
i qi∥∥∑n

i=1 ciλ
k
i qi
∥∥
2

=
c1λ

k
1

|c1λk
1|

q1 +
∑n

i=2
ci
c1

(
λi
λ1

)k
qi∥∥∥∥q1 +∑n

i=2
ci
c1

(
λi
λ1

)k
qi

∥∥∥∥
2

.

If λ1 > 0, we find that v(k) → sign(c1)q1 as k → ∞ with the desired rate (i.e., (6.5) holds
with sk := sign(c1) for all k). If λ1 < 0, we find (6.5) holds with sk := (−1)ksign(c1).
Convergence of the sequence (λ(k)) to λ1 as claimed in (6.4) now follows from Theorem
6.8(iii) (recall λ(k) = RA(v

(k)) from Remark 6.17).

Remark 6.18 (Drawbacks of power iteration). The power iteration has the following draw-
backs:

(i) It only computes the normalized eigenvector for the largest eigenvalue (and it com-
putes only this largest eigenvalue).

(ii) The rate of convergence for span(v(k)) to span(q1) is only linear, i.e., the error in
each step is reduced by a constant factor (≈ |λ1

λ2
|).

(iii) If |λ1| > |λ2|, but |λ1| is close to |λ2|, then the convergence is very slow (as |λ2
λ1
| is

only slightly below 1).

Inverse iteration: Power iteration for (A− µIn)
−1

Let us explain how to resolve the drawbacks (i) and (iii) from Remark 6.18 of power
iteration. The key observation is the following:

Remark 6.19. Let A ∈ Rn×n be a symmetric matrix with an eigenvalue decomposition
A = QDQT with Q = (q1| · · · |qn) ∈ Rn×n orthogonal and D = diagn×n(λ1, . . . , λn) ∈
Rn×n with {λ1, . . . , λn} = Λ(A). Let µ ∈ R\Λ(A). Then, the matrix A − µIn ∈ Rn×n is
invertible and we have that

Λ
(
(A− µIn)

−1
)
=
{
(λ1 − µ)−1, . . . , (λn − µ)−1

}
.

Indeed, for i ∈ {1, . . . , n}, we have that (A− µIn)
−1qi = (λi − µ)−1qi since

(A− µIn)
(
(λi − µ)−1qi

)
= (λi − µ)−1 (Aqi − µqi) = (λi − µ)−1(λi − µ)qi = qi,

i.e., qi is an eigenvector to (A− µIn)
−1 corresponding to the eigenvalue (λi − µ)−1. (Note

that the eigenvectors of (A− µIn)
−1 are the same as the eigenvectors of A.)

We observe that the eigenvalue of (A − µIn)
−1 with the largest absolute value is

(λj − µ)−1, where λj is the eigenvalue of A closest to µ.

In view of this observation, we can apply the power iteration to (A − µIn)
−1 to find

the eigenvalue of A which is closest to µ (and a corresponding normalized eigenvector).

Algorithm 6.3 (Inverse iteration). Let A ∈ Rn×n be a symmetric matrix and µ ∈
R\Λ(A). Choose a vector v(0) ∈ Rn with ∥v(0)∥2 = 1, and do the following:
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for k = 1, 2, 3, . . . do
Solve the linear system (A− µIn)w = v(k−1) (⇐⇒ w = (A− µIn)

−1v(k−1))
v(k) = w

∥w∥2
λ(k) = ⟨Av(k), v(k)⟩

end for

Remark 6.20. Without going into detail, let us mention that possible ill-conditioning of
(A− µIn)

−1 when µ is close to an eigenvalue of A does not pose a problem here.

Theorem 6.10 (Convergence of inverse iteration). Let A ∈ Rn×n be a symmetric matrix
with an eigenvalue decomposition A = QDQT with Q = (q1| · · · |qn) ∈ Rn×n orthogonal
and D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A). Let µ ∈ R\Λ(A), let
v(0) ∈ Rn with ∥v(0)∥2 = 1, and let (v(k)) ⊆ Rn and (λ(k))k∈N be the sequences produced
by Algorithm 6.3. Suppose that λj , λk ∈ Λ(A) are such that |µ− λj | < |µ− λk| ≤ |µ− λi|
∀i ∈ {1, . . . , n}\{j} (i.e., λj is the closest and λk the second closest eigenvalue of A to µ)
and that ⟨v(0), qj⟩ ≠ 0. Then, there holds

|λ(k) − λj | = O

(∣∣∣∣λj − µ

λk − µ

∣∣∣∣2k
)
, ∥v(k) − skqj∥2 = O

(∣∣∣∣λj − µ

λk − µ

∣∣∣∣k
)

as k → ∞

for some (sk)k∈N ⊆ {−1, 1}.

Proof. This result follows from Theorem 6.9 applied to the matrix Ã := (A − µIn)
−1

upon noting that λ̃1 := (λj − µ)−1 is the eigenvalue of Ã with the largest absolute value,
λ̃2 := (λk − µ)−1 is the eigenvalue of Ã with the second largest absolute value, and that
q̃1 := qj is the eigenvector of Ã corresponding to the eigenvalue λ̃1.

Remark 6.21. If we have a good estimate for a certain eigenvalue of A, we can now apply
inverse iteration to produce this eigenvalue and a corresponding normalized eigenvector.
In particular, inverse iteration is the go-to method if one wants to find eigenvectors to
eigenvalues which are already known. The drawback of inverse iteration is the slow speed
of convergence (linear convergence, same as for power iteration).

Rayleigh quotient iteration: combining inverse iteration and Rayleigh quotient

The key idea of the Rayleigh quotient iteration is to combine the Rayleigh quotient (a
way to find an eigenvalue from an eigenvector) with inverse iteration (a way to find an
eigenvector from an eigenvalue).

Algorithm 6.4 (Rayleigh quotient iteration). Let A ∈ Rn×n be a symmetric matrix.
Choose a vector v(0) ∈ Rn with ∥v(0)∥2 = 1, set λ(0) := ⟨Av(0), v(0)⟩ and do the following:

for k = 1, 2, 3, . . . do
Solve the linear system (A− λ(k−1)In)w = v(k−1)

v(k) = w
∥w∥2

λ(k) = ⟨Av(k), v(k)⟩
end for

Theorem 6.11 (Convergence of Rayleigh quotient iteration). Let A ∈ Rn×n be a sym-
metric matrix with an eigenvalue decomposition A = QDQT with Q = (q1| · · · |qn) ∈ Rn×n
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orthogonal and D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A). Then, for
almost all (all except for a set of measure zero) v(0) ∈ Rn with ∥v(0)∥2 = 1, the sequences
(v(k)) ⊆ Rn and (λ(k)) ⊆ R produced by Algorithm 6.4 converge to an eigenvector and
eigenvalue of A. Further, in this case and if λj ∈ Λ(A) is such that v(0) is sufficiently
close to qj, then there holds

|λ(k+1) − λj | = O
(
|λ(k) − λj |3

)
, ∥v(k+1) − sk+1qj∥2 = O

(
∥v(k) − skqj∥32

)
as k → ∞

for some (sk)k∈N ⊆ {−1, 1}.

Proof. Omitted.

Remark 6.22. Let us emphasize that we have cubic convergence! (extremely quick)

Example 6.2. Consider the symmetric matrix A =

−1 2 2
2 1 2
2 2 −1

. We perform Rayleigh

quotient iteration with v(0) := 1
3(1,−2, 2)T. To illustrate the speed of convergence, we

have colored the correct digits in red.
Step 0 : Compute

λ(0) := ⟨Av(0), v(0)⟩ = −17

9
= −1.8888 . . .

Step 1 : (k = 1.) Solve (A − λ(0)I3)w
(1) = v(0). We find w(1) = 3

70(191,−265, 184)T.
Compute

v(1) :=
w(1)

∥w(1)∥2
=


191

3
√
15618

−265
3
√
15618
184

3
√
15618

 =

 0.5094 . . .
−0.7068 . . .
0.4907 . . .

 , λ(1) := ⟨Av(1), v(1)⟩ = −128518

70281
= −1.8286 . . .

Step 2 : (k = 2.) Solve (A− λ(1)I3)w
(2) = v(1) and compute

v(2) :=
w(2)

∥w(2)∥2
=

 0.49999838 . . .
−0.70710677 . . .
0.50000162 . . .

 , λ(2) := ⟨Av(2), v(2)⟩ = −1.82842712475 . . .

(Remark: (λ(k)) converges to 1− 2
√
2, and span(v(k)) converges to span((12 ,−

1√
2
, 12)

T).)

Stopping at k = 2, we see that our approximation λ(2) to the exact eigenvalue is already
accurate to 11 digits. If the algorithm would be preformed in exact arithmetic, we would
expect at k = 3 accuracy to around 33 digits and, e.g., at k = 5 accuracy to around 297
digits).

6.5 The QR algorithm

Restriction: As in the previous section, we assume that A = AT ∈ Rn×n, i.e., that A is a
real symmetric matrix. Then, there exist an orthogonal matrix Q ∈ Rn×n and a diagonal
matrix D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A) ⊆ R and A = QDQT.

Let us recall that if A ∈ Rn×n is symmetric, we can transform A into a symmetric
tridiagonal matrix via orthogonal similarity transforms, i.e., we can find a Hessenberg
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decomposition A = QHQT with Q ∈ Rn×n orthogonal and H ∈ Rn×n symmetric and
tridiagonal (see Remark 6.13). This is what we do as the first step of the so-called QR
algorithm: we reduce A to tridiagonal form in the aforementioned way and work with H
instead of A.

QR algorithm

Let us discuss the following algorithm:

Algorithm 6.5 (QR algorithm). Let A ∈ Rn×n be a symmetric tridiagonal matrix. Set
A(0) := A and do the following:

for k = 1, 2, 3, . . . do
Compute a QR factorization A(k−1) = Q(k)R(k) of A(k−1)

A(k) = R(k)Q(k)

end for

Remark 6.23. Note that the iterates in Algorithm 6.5 satisfy A(k) = (Q(k))TA(k−1)Q(k),
i.e., the QR algorithm consists of orthogonal similarity transformations.

We are going to see that the sequence (A(k))k∈N produced by Algorithm 6.5 converges
under suitable assumptions to a Schur form of A (i.e., in view of Remark 6.10, to a
diagonal matrix containing the eigenvalues of A on the diagonal). Let us introduce a
second method, the simultaneous iteration, which will actually turn out to be equivalent
to the QR algorithm.

Simultaneous iteration (block power iteration)

Suppose we are given a symmetric tridiagonal matrix A ∈ Rn×n (i.e., Hessenberg reduc-
tion has already been performed). Consider the following natural approach. Take linearly

independent vectors v
(0)
1 , . . . , v

(0)
n ∈ Rn and apply the power iteration to these vectors

simultaneously in the following sense: Setting V (0) := (v
(0)
1 | · · · |v(0)n ), compute the matrix

V (k) := AkV (0) and write (v
(k)
1 | · · · |v(k)n ) = V (k) = (Akv

(0)
1 | · · · |Akv

(0)
n ), and finally orthog-

onalize V (k) in the sense of computing a QR factorization V (k) = Q(k)R(k). Then, under
suitable assumptions, the span of the first l columns of Q(k) will converge to the span of
the eigenvectors corresponding to the l largest (in absolute value) eigenvalues of A.

In practice, in view of numerical stability, the following normalized version of simulta-
neous iteration is used (orthonormalize at each step):

Algorithm 6.6 (Simultaneous iteration). Let A ∈ Rn×n be a symmetric tridiagonal
matrix. Choose an orthogonal matrix Q(0) ∈ Rn×n. Do the following:

for k = 1, 2, 3, . . . do
Z = AQ(k−1)

Compute a QR factorization Z = Q(k)R(k) of Z
A(k) = (Q(k))TAQ(k)

end for

Theorem 6.12 (Convergence of simultaneous iteration). Let A ∈ Rn×n be a symmetric
tridiagonal matrix with an eigenvalue decomposition A = QDQT with Q = (q1| · · · |qn) ∈
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Rn×n orthogonal and D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A). Suppose

|λ1| > |λ2| > · · · > |λn|.

Then, if Algorithm 6.6 is performed with an initial choice Q(0) ∈ Rn×n satisfying

det(M1:i,1:i) ̸= 0 ∀i ∈ {1, . . . , n}, where M := QTQ(0),

and writing Q(k) = (q
(k)
1 | . . . |q(k)n ), we have for any j ∈ {1, . . . , n} that for some (sk)k∈N ⊆

{−1, 1} there holds

∥q(k)j − skqj∥2 = O

((
max

i∈{1,...,n−1}

∣∣∣∣λi+1

λi

∣∣∣∣)k
)
.

Theorem 6.13 (Equivalence of QR algorithm and simultaneous iteration). Algorithm
6.5 and Algorithm 6.6 with Q(0) := In produce the same sequences (A(k))k∈N. Further, we
have that

Q
(k)
sIt = Q

(1)
QRQ

(2)
QR · · ·Q(k)

QR =: Q̃
(k)
QR,

R̃
(k)
sIt := R

(k)
sIt · · ·R

(2)
sItR

(1)
sIt = R

(k)
QR · · ·R(2)

QRR
(1)
QR =: R̃

(k)
QR

for any k ∈ N, and there holds

A(k) = (Q̃
(k)
QR)

TAQ̃
(k)
QR,

Ak = Q̃
(k)
QRR̃

(k)
QR.

(Here, the subscript sIt refers to the iterates from simultaneous iteration and the subscript
QR refers to the iterates from the QR algorithm.)

Theorem 6.14 (Convergence of QR algorithm). Let A ∈ Rn×n be a symmetric tridiag-
onal matrix with an eigenvalue decomposition A = QDQT with Q = (q1| · · · |qn) ∈ Rn×n

orthogonal and D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A). Suppose

|λ1| > |λ2| > · · · > |λn|

and that

det(Q1:i,1:i) ̸= 0 ∀i ∈ {1, . . . , n}.

Let (A(k))k∈N and (Q(k))k∈N be the sequences produced by Algorithm 6.5 applied to A, and

let (Q̃(k))k∈N be the sequence with Q̃(k) := (q̃
(k)
1 | · · · |q̃(k)n ) := Q(1)Q(2) · · ·Q(k) for k ∈ N.

Then, as k → ∞, there holds A(k) → D, and for any j ∈ {1, . . . , n} we have for some

(sk)k∈N ⊆ {−1, 1} that q̃
(k)
j − skqj → 0. The speed of convergence is linear with constant

maxi∈{1,...,n−1}

∣∣∣λi+1

λi

∣∣∣.
Remark 6.24. Note that the diagonal entries of the iterates A(k) produced by the QR

algorithm are Rayleigh quotients: Writing A(k) = (a
(k)
ij ), we have

a
(k)
ii = ⟨ei, A(k)ei⟩ = ⟨ei, (Q̃(k))TAQ̃(k)ei⟩ = ⟨Q̃(k)ei, AQ̃

(k)ei⟩ = ⟨q̃(k)i , Aq̃
(k)
i ⟩ = RA(q̃

(k)
i )

for any i ∈ {1, . . . , n}.
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Example 6.3 (QR algorithm). Let us consider the matrix A :=

 1 −1 0
−1 1 1
0 1 1

. The

matrix A has the eigenvalue decomposition A = QDQT with

D := diag3×3(λ1, λ2, λ3) :=

1 +
√
2 0 0

0 1 0

0 0 1−
√
2

 =

2.414 . . . 0 0
0 1 0
0 0 −0.414 . . .

 ,

Q := (q1|q2|q3) :=

−1
2

1√
2

−1
2

1√
2

0 − 1√
2

1
2

1√
2

1
2

 =

 −0.5 0.707 . . . −0.5
0.707 . . . 0 −0.707 . . .

0.5 0.707 . . . 0.5

 .

Note that the assumptions of Theorem 6.14 are satisfied. Let us perform the QR algorithm:

k = 1: We need to compute a QR factorization of A(0) := A. We omit the details and take
the QR factorization A(0) = Q(1)R(1) with

Q(1) :=


1√
2

0 1√
2

− 1√
2

0 1√
2

0 1 0

 , R(1) :=


√
2 −

√
2 − 1√

2

0 1 1
0 0 1√

2

 .

We compute

A(1) := R(1)Q(1) =

 2 − 1√
2

0

− 1√
2

1 1√
2

0 1√
2

0

 =

 2 −0.707 . . . 0
−0.707 . . . 1 0.707 . . .

0 0.707 . . . 0

 ,

Q̃(1) := Q(1) =


1√
2

0 1√
2

− 1√
2

0 1√
2

0 1 0

 =

 0.707 . . . 0 0.707 . . .
−0.707 . . . 0 0.707 . . .

0 1 0

 .

k = 2: We need to compute a QR factorization of A(1). We omit the details and take the
QR factorization A(1) = Q(2)R(2) with

Q(2) :=

2
√
2

3
1

3
√
2

1
3
√
2

−1
3

2
3

2
3

0 1√
2

− 1√
2

 , R(2) :=


3√
2

−1 − 1
3
√
2

0 1
√
2
3

0 0
√
2
3

 .

We compute

A(2) := R(2)Q(2) =

 7
3 −1

3 0
−1

3 1 1
3

0 1
3 −1

3

 =

 2.333 . . . −0.333 . . . 0
−0.333 . . . 1 0.333 . . .

0 0.333 . . . −0.333 . . .

 ,

Q̃(2) := Q̃(1)Q(2) =

 2
3

2
3 −1

3
−2

3
1
3 −2

3
−1

3
2
3

2
3

 =

 0.666 . . . 0.666 . . . −0.333 . . .
−0.666 . . . 0.333 . . . −0.666 . . .
−0.333 . . . 0.666 . . . 0.666 . . .

 .
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k = 3: We need to compute a QR factorization of A(2). We omit the details and take the
QR factorization A(2) = Q(3)R(3) with

Q(3) :=


7

5
√
2

2
15

1
15

√
2

− 1
5
√
2

14
15

7
15

√
2

0 1
3 −2

√
2

3

 , R(3) :=

5
√
2

3 −
√
2
3 − 1

15
√
2

0 1 1
5

0 0 3
5
√
2

 .

We compute

A(3) := R(3)Q(3) =


12
5 − 1

5
√
2

0

− 1
5
√
2

1 1
5
√
2

0 1
5
√
2

− 2
5

 =

 2.4 −0.141 . . . 0
−0.141 . . . 1 0.141 . . .

0 0.141 . . . −0.4

 ,

Q̃(3) := Q̃(2)Q(3) =


4

5
√
2

3
5

4
5
√
2

− 1√
2

0 1√
2

− 3
5
√
2

4
5 − 3

5
√
2

 =

 0.565 . . . 0.6 0.565 . . .
−0.707 . . . 0 0.707 . . .
−0.424 . . . 0.8 −0.424 . . .

 .

k = 4: We need to compute a QR factorization of A(3). We omit the details and take the
QR factorization A(3) = Q(4)R(4) with

Q(4) :=

12
√
2

17
7

85
√
2

1
85

√
2

− 1
17

84
85

12
85

0 1
5
√
2

− 7
5
√
2

 , R(4) :=


17
5
√
2

−1
5 − 1

85
√
2

0 1
√
2

17

0 0 5
√
2

17

 .

We compute

A(4) := R(4)Q(4) =

 41
17 − 1

17 0
− 1

17 1 1
17

0 1
17 − 7

17

 =

 2.411 . . . −0.058 . . . 0
−0.058 . . . 1 0.058 . . .

0 0.058 . . . −0.411 . . .

 ,

Q̃(4) := Q̃(3)Q(4) =

 9
17

12
17 − 8

17
−12

17
1
17 −12

17
− 8

17
12
17

9
17

 =

 0.529 . . . 0.705 . . . −0.470 . . .
−0.705 . . . 0.058 . . . −0.705 . . .
−0.470 . . . 0.705 . . . 0.529 . . .

 .

We see that after 4 steps of the QR algorithm, we have obtained the following
approximations to the eigenvalues:

λ1 ≈ 41
17 = 2.411 . . . , (recall λ1 = 1 +

√
2 = 2.414 . . . )

λ2 ≈ 1, (recall λ2 = 1)

λ3 ≈ − 7
17 = −0.411 . . . , (recall λ3 = 1−

√
2 = −0.414 . . . )

and the following approximations to the (subspaces spanned by the) eigenvectors:

span(q1) ≈ span(

 9
17
−12

17
− 8

17

) = span(

 0.529 . . .
−0.705 . . .
−0.470 . . .

), (recall q1 =

−1
2

1√
2
1
2

)

span(q2) ≈ span(

12
17
1
17
12
17

) = span(

0.705 . . .
0.058 . . .
0.705 . . .

), (recall q2 =


1√
2

0
1√
2

)

span(q3) ≈ span(

− 8
17

−12
17
9
17

) = span(

−0.470 . . .
−0.705 . . .
0.529 . . .

) (recall q3 =

 −1
2

− 1√
2

1
2

).
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...

Exercise: do a few more iterations (you may use MATLAB). Further, perform simultaneous
iteration applied to A and verify at this example the results from Theorem 6.13.

QR algorithm with Rayleigh quotient shift

Algorithm 6.7 (QR algorithm with Rayleigh quotient shift). Let A ∈ Rn×n be a sym-
metric tridiagonal matrix. Set A(0) := A and do the following:

for k = 1, 2, 3, . . . do

µ(k) = A
(k−1)
nn [here, A

(k−1)
nn is the (n,n)-entry of A(k−1)]

Compute a QR factorization A(k−1)−µ(k)In = Q(k)R(k) of the matrix A(k−1)−µ(k)In

A(k) = R(k)Q(k) + µ(k)In

end for

Remark 6.25. Let us make some observations.

(i) For k ∈ N define Q̃(k) := Q(1)Q(2) · · ·Q(k) and R̃(k) := R(k) · · ·R(1). Then, for any
k ∈ N we have

A(k) = (Q̃(k))TAQ̃(k), (A− µ(k)In)(A− µ(k−1)In) · · · (A− µ(1)In) = Q̃(k)R̃(k).

The first result follows from the fact that

A(k) = (Q(k))TQ(k)(R(k)Q(k) + µ(k)In) = (Q(k))T
(
(Q(k)R(k))Q(k) + µ(k)Q(k)

)
= (Q(k))T

(
(A(k−1) − µ(k)In)Q

(k) + µ(k)Q(k)
)
= (Q(k))TA(k−1)Q(k)

for any k ∈ N. The proof of the second result is omitted.

(ii) The first column of Q̃(k) is the result of applying k steps of shifted power iteration
to e1 with shifts µ(1), . . . , µ(k), and the last column of Q̃(k) is the result of applying
k steps of shifted inverse iteration to en with shifts µ(1), . . . , µ(k). To see the latter,
define P := (en| · · · |e2|e1) ∈ Rn×n and note that

(A− µ(k)In)
−1(A− µ(k−1)In)

−1 · · · (A− µ(1)In)
−1P = ((Q̃(k)R̃(k))−1)TP

=
(
(R̃(k))−1(Q̃(k))T

)T
P = (Q̃(k)P )(P ((R̃(k))−1)TP )

is a QR factorization of the left-hand side.

(iii) For any k ∈ N, we have

A(k)
nn = ⟨en, A(k)en⟩ = ⟨en, (Q̃(k))TAQ̃(k)en⟩ = ⟨Q̃(k)en, AQ̃

(k)en⟩ = ⟨q̃(k)n , Aq̃(k)n ⟩
= RA(q̃

(k)
n ),

where q̃
(k)
n := Q̃(k)en denotes the last column of Q̃(k).

(iv) The approximation µ(k) to the eigenvalue corresponding to the eigenvector approx-

imated by q̃
(k)
n , and the approximated eigenvector q̃

(k)
n , are the result of Rayleigh

quotient iteration applied to en. It follows that we have cubic convergence for the

convergence of span(q̃
(k)
n ) to the span of an eigenvector.

96



QR algorithm in practice

In practice, a technique called deflation is used:

Algorithm 6.8 (QR algorithm in practice). Let A be a real symmetric tridiagonal square
matrix. Set A(0) := A and do the following:

for k = 1, 2, 3, . . . do

Choose a shift µ(k), e.g., the final diagonal entry of A(k−1)

Compute a QR factorization A(k−1)−µ(k)In = Q(k)R(k) of the matrix A(k−1)−µ(k)In

A(k) = R(k)Q(k) + µ(k)In

If an off-diagonal element A
(k)
i,i+1 is sufficiently close to 0, set A

(k)
i,i+1 := 0, A

(k)
i+1,i := 0

so that A(k) =

(
A1 0

0 A2

)
is block-diagonal and apply the algorithm to A1 and A2.

end for
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