MA4230: Problem Sheet 4

AY 2023/24

Q1 Bauer-Fike theorem

Let $A \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix with an eigenvalue decomposition $A=X D X^{-1}$, where $X \in \mathbb{C}^{n \times n}$ is invertible and $D=\operatorname{diag}_{n \times n}\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{C}^{n \times n}$ is diagonal with $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}=\Lambda(A)$. Let $\Delta A \in \mathbb{C}^{n \times n}$. Show that for any $\mu \in \Lambda(A+\Delta A)$ there holds

$$
\left.\min _{i \in\{1, \ldots, n\}}\left|\mu-\lambda_{i}\right| \leq \kappa_{p}(X)\|\Delta A\|_{p} \quad \text { (here, } \kappa_{p}(X):=\|X\|_{p}\left\|X^{-1}\right\|_{p}\right)
$$

for any $p \geq 1$. [Instructions: 1) Show the claim for $\mu \in \Lambda(A+\Delta A) \cap \Lambda(A)$. 2) Now consider $\mu \in \Lambda(A+\Delta A) \backslash \Lambda(A)$ and define $M:=-\left(D-\mu I_{n}\right)^{-1} X^{-1}(\Delta A) X$. Show that $\|M\|_{p} \geq 1$ by proving that $I_{n}-M$ is singular. 3) Conclude the proof.]

Q 2 Perturbed linear systems

(i) Let $\|\cdot\|$ be a norm on \mathbb{R}^{n} and let $\|\cdot\| \|$ be the matrix norm on $\mathbb{R}^{n \times n}$ induced by $\|\cdot\|$. Let $A \in \mathbb{R}^{n \times n}$ be invertible, let $\Delta A \in \mathbb{R}^{n \times n}$ with $\|\Delta A\|<\left\|A^{-1}\right\|^{-1}$, let $b \in \mathbb{R}^{n} \backslash\{0\}$, and let $\Delta b \in \mathbb{R}^{n}$. Let $x:=A^{-1} b$ and $\hat{x}:=(A+\Delta A)^{-1}(b+\Delta b)$. Show that there holds

$$
\frac{\|\hat{x}-x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\frac{\|\Delta A\| \|}{\|A\|} \kappa(A)}\left(\frac{\|\Delta A\|}{\|A\| \|}+\frac{\|\Delta b\|}{\|b\|}\right) \quad\left(\text { here, } \kappa(A):=\|A\|\| \| A^{-1} \|\right) .
$$

(ii) For fixed $A \in \mathbb{R}^{n \times n} \backslash\{0\}, b \in \mathbb{R}^{n}, c \in \mathbb{R}$, consider the problem of computing $\frac{1}{2} x^{\mathrm{T}} A A^{\dagger} x+b^{\mathrm{T}} x+c$ from $x \in \mathbb{R}^{n}$. Write this problem as a mathematical problem $f: X \rightarrow Y$ with normed vector spaces X, Y, which you should equip with Euclidean norms. Compute the absolute condition number $\hat{\kappa}=\hat{\kappa}(x)$ and show that $\hat{\kappa}(x) \leq\|x\|_{2}+\|b\|_{2}$ for any $x \in \mathbb{R}^{n}$.
(iii) Let

$$
A:=\left(\begin{array}{ccc}
6 & 4 & 3 \\
1 & -3 & -2 \\
8 & 5 & 1
\end{array}\right), \quad b:=\left(\begin{array}{l}
5 \\
2 \\
4
\end{array}\right) .
$$

- Show that for any $\Delta A \in \mathbb{R}^{3 \times 3}$ with $\frac{\|\Delta A\|_{1}}{\|A\|_{1}} \leq \frac{1}{150}$ and $\Delta b \in \mathbb{R}^{3}$ with $\frac{\|\Delta b\|_{1}}{\|b\|_{1}} \leq \frac{1}{110}$, the linear system $(A+\Delta A) \hat{x}=b+\Delta b$ has a unique solution $\hat{x}=\hat{x}(\Delta A, \Delta b) \in \mathbb{R}^{3}$ and that $\frac{\|\hat{x}-x\|_{1}}{\|x\|_{1}}<\frac{1}{4}$, where $x \in \mathbb{R}^{3}$ denotes the unique solution to $A x=b$.
- Find the value of

$$
s:=\sup _{\substack{\Delta A \in \mathbb{R}^{3 \times 3}, \Delta b \in \mathbb{R}^{3} \\ \frac{\|\Delta A\|_{1}}{\|A\|_{1}} \leq \frac{1}{150},}}\left\|\hat{\|b b\|_{1}} \leq \frac{1}{110} 0(\Delta A, \Delta b)-x\right\|_{1}
$$

and prove your claim.

Q 3 Application of Gerschgorin's theorem

Let $A \in \mathbb{R}^{5 \times 5}$ be defined as

$$
A:=\left(\begin{array}{ccccc}
-10 & \frac{1}{2} & \frac{1}{2} & 1 & 2 \\
-\frac{1}{2} & 5 & 1 & \frac{3}{2} & \frac{1}{2} \\
1 & -\frac{1}{2} & 10 & 5 & 0 \\
1 & 1 & 5 & 20 & 5 \\
2 & \frac{1}{2} & 0 & 5 & 40
\end{array}\right)
$$

and write $\Lambda(A)=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}\right\} \subseteq \mathbb{C}$ with $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq\left|\lambda_{4}\right| \geq\left|\lambda_{5}\right|$. Using Gerschgorin's theorem, show that $\frac{\left|\lambda_{1}\right|}{\left|\lambda_{5}\right|} \leq 19$.

Q4 MATLAB: QR algorithm and simultaneous iteration

Implement the QR algorithm and simultaneous iteration in MATLAB. In Example 6.3, add a few more iterations produced by the QR algorithm, perform simultaneous iteration and verify the results from Theorem 6.13.

Q 5 Power iteration, inverse iteration
Let $A \in \mathbb{R}^{3 \times 3}$ be defined as

$$
A:=\left(\begin{array}{ccc}
5 & -1 & 1 \\
-1 & 2 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

and write $\Lambda(A)=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\} \subseteq \mathbb{R}$ with $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right|$. Consider the condition number $\kappa_{2}(A):=$ $\|A\|_{2}\left\|A^{-1}\right\|_{2}$ of A.
(i) Show that $\kappa_{2}(A)=\frac{\left|\lambda_{1}\right|}{\left|\lambda_{3}\right|}$.
(ii) Find an approximation to $\kappa_{2}(A)$ by performing power iteration and inverse iteration to approximate λ_{1} and λ_{3}. Perform three steps each with $v^{(0)}:=(1,0,0)^{\mathrm{T}} \in \mathbb{R}^{3}$.

Q6 Hessenberg decomposition, $Q R$ algorithm, Rayleigh quotient shift
Let $A \in \mathbb{R}^{4 \times 4}$ be defined as

$$
A:=\left(\begin{array}{cccc}
2 & 1 & 2 & 2 \\
1 & 4 & -1 & 1 \\
2 & -1 & 2 & 1 \\
2 & 1 & 1 & 4
\end{array}\right)
$$

(i) Compute a Hessenberg decomposition $A=Q H Q^{\mathrm{T}}$ of A.
(ii) Perform three steps of the QR algorithm applied to H. What are the approximations to the eigenvalues of A ?
(iii) Perform three steps of the QR algorithm with Rayleigh quotient shift applied to H. What are the approximations to the eigenvalues of A ?

For parts (ii) and (iii), you may perform the respective algorithms in floating point arithmetic using MATLAB.

Q 7 Special matrices

For $n \in \mathbb{N}$, we define $C(n):=\left\{M \in \mathbb{R}^{n \times n}: M\right.$ is special $\}$ and $\mathcal{S}^{n}:=\left\{M \in \mathbb{R}^{n \times n}: M^{\mathrm{T}}=M\right\}$, where we call a matrix $M \in \mathbb{R}^{n \times n}$ special iff

$$
\exists \delta \in(0,1]: \quad\|M\|_{F} \leq \frac{\operatorname{tr}(M)}{\sqrt{n-1+\delta}}
$$

Further, we define the map $\gamma: \mathbb{R}^{n \times n} \backslash\{0\} \rightarrow \mathbb{R}, M \mapsto \gamma(M):=\|M\|_{F}^{-2} \operatorname{tr}(M)$. Let $A \in \mathcal{S}^{n}$ and suppose that there exist $\alpha, \beta>0$ such that $\alpha\|\xi\|_{2}^{2} \leq \xi^{\mathrm{T}} A \xi \leq \beta\|\xi\|_{2}^{2}$ for any $\xi \in \mathbb{R}^{n}$.
(i) Show that $\frac{\alpha}{\beta^{2}} \leq \gamma(A) \leq \frac{\beta}{\alpha^{2}}$.
(ii) If $n=2$, show that $A \in C(2)$ and $\alpha\|B\|_{F}^{2} \leq \beta\left(\|B\|_{F}^{2}-\left|\gamma(A)\langle A, B\rangle_{F}-\operatorname{tr}(B)\right|^{2}\right)$ for any $B \in \mathcal{S}^{2}$.

