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Q1 Schur complement: A block-version of Gaussian elimination

A B
C D
B e R(d=n) ¢ ¢ RA-m)xn 1 ¢ RE-)*x(d=n)  and suppose that det(Miy.;,14) # 0 for all ¢ €
{1,...,d}. Let S := D — CA~'B € R(@=)x(d=") denote the so-called Schur complement of A in M
(check S is well-defined).

Let d,n € N with d > n. Let M := € R%*? be a block-matrix with blocks A € R"*",

. . I ‘ 0y, d—n)\ dxd A ‘ B\ :
(i) Find Ly = (L x( € R**% such that L1 M = . (Find X.)
\X | law / \O(g-nyxn | S/
1 2 -1 1
(ii) Using the previous part, find a LU factorization of M := (5) :? _01 _31
0o 1 0 1

Q2 Surrounding LU/PA=LU factorization
Let f:R"*™ —[0,00) be given by f(M) := max; jeq1,... n}|mij| for M = (myj)1<ij<n € R™*™. Let

Ly :={M eR"™"|f(M)=1and M is unit lower-triangular},
Uy :={M € R"™™| f(M) > 0 and M is upper-triangular},

and X, := L, X U,.
(i) Show that

Wl _
e, 10

__on—1

(ii) Suppose PA = LU is a PA=LU factorization obtained via Gaussian elimination with partial
pivoting applied to A € R™*". Show that f(U) < 2""!f(A) and show that the matrix
A = (ay;) € R with a;; =1 =a;p forall 1 <i<n,q;=—-1foralll <j<i<n,and
ai; = 0 otherwise satisfies the inequality with equality.

Q3 MATLAB

Write a MATLAB function [P,L,U]=Gauss(A) performing Gaussian elimination with partial pivoting
(Algorithm 4.2). Input: A € R™*™. Output: P,L,U € R"*™ such that PA = LU is a PA=LU
factorization of A.



Q4  Results surrounding positive definite matrices and Cholesky factorization

(i) Let A € R™*™ be symmetric. Show that A > 0 if, and only if, A(A4) C (0, c0).

(ii) Let A € R™ ™ be a symmetric positive definite matrix and let X € R"*" with r < n and
tk(X) = r. Show that XTAX € R"™*" is symmetric positive definite.

(iii) Let A € R™™ be invertible and let M := ATA. Suppose that A = QR is a QR factorization
of A, that M = RTR is a Cholesky factorization of M, and that the diagonal entries of R and
R are positive. Show that R = R.

(iv) Let A € R™*" be a symmetric positive definite matrix with Cholesky factorization A = RTR.
Show that || A2 = || R||3.

Q5 Computation of LU, PA=LU, AQ=LU, PAQ=LU, and Cholesky factorizations

Consider the matrix

2 -1 3 1
-1 1 -2 1
A= 2 8 —6 0
1 0 -1 -1

(i) Does A have a LU factorization? Compute a LU factorization of the submatrix Aj.31.3.
(ii) Apply Gaussian elimination with partial pivoting to A to obtain a PA=LU factorization.

(iii) Compute a permutation matrix @ € R*** a lower-triangular matrix L, and an upper-
triangular matrix U € R**4 such that AQ = LU.

(iv) Apply Gaussian elimination with full pivoting to A to obtain a PAQ=LU factorization.
(v) Compute the Cholesky factorization of AT A.

Q6 Moore—Penrose inverse

For A € R™*" we call AT € R"*™ the Moore-Penrose inverse of A if, and only if, all of the following
holds: AATA=A, ATAAT = AT, (AANT = AAT, (ATA)T = ATA.
(i) 1) First, show that any square diagonal matrix D = diag,, 4(a1,. .., aq) € R4*? has a Moore—
Penrose inverse.
(Hint: Set DT := diagdxd(aL . ,a:;) where o 1= a; b if a; # 0 and a:»r =0ifa; =0.)
2) Next, show that any diagonal matrix M = diag,, ., (a1,...,0p) € R™*" (here, p :=
min(m, n)) has a Moore-Penrose inverse.

3) Now, show that any matrix A € R™*" has a unique Moore-Penrose inverse A', and that
At is given by At := VETUT when A = USVT is a SVD of A.
(Hint: for uniqueness, show that if AI,AE € R™ ™ are Moore-Penrose inverses of A, then
AAT = AAT and ATA = Al A)

(i) Let A € R™*" and a € R\{0}. Show that (A")T = A, (AT) = (ANT, (ed)l = a7 1AT, and
the relations AT = (ATA)TAT = AT(AAT)T.
(Hint: For the last claim, you may use that VM € R™*" : ATAM = 0 = AM = 0, and that
VM € R™*™ : MAAT = 0= MA = 0. Optional: show these facts.)
Further, show that if m = n and A is invertible, then AT = A1,

(iii) For A € R™*" m >n, and 1k(A) = n, show that AT = (ATA)"1AT and ATA = I,,.
For A € R™*™ m < n, and 1k(A) = m, show that AT = AT(AAT)~! and AAT = I,,.

(iv) Let A € R™*"™ m > n, and write A = c € R™*" with B € R™*", C' € R(™=)*"_ Suppose

that B is invertible. Show that ||Af|ly < | B7!2.
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Q7
(i)

(i)

(iii)

Least squares problems

Let A € R™*". Consider the matrices P := AAT € Rm*™ and P := ATA € R, Show that
P and P are orthogonal projectors, and that

1) R(P) =R(A4), 2)N(P)=N(AT), 3)R(P)=TR(AT), 4)N(P)=N(A).

(Hint: Show ATA = AT(AT)T.) This proves the following important result:

Theorem (orthogonal projector onto range of matrix): For any A € R™*" the orthog-
onal projector Pr(4y € R™*™ onto R(A) is given by Pr(a) = AAT, and this projector Pra)
is the projector onto R(A) along N(AT).

1 -2 0
Let A := _21 ? and b := 8 . Compute A and the orthogonal projector onto N'(AT),
2 1 1

and find all solutions 2 € R? to the least squares problem ||Az — b||o = inf,cg2 || Av — b||2.

T
(-1 0 1 -1 0 0 0 1 1 1 10x2 o 10 s L
LetA.<0 1 -1 1 000 1 2 _2> eR and b := (b;) € R with b; :=1
for all ¢ € {1,...,10}. Show that the least squares problem || Az — b||2 = inf, g2 ||Av — b||2 has

a unique solution z € R?, and compute x.
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