MA4230: Problem Sheet 3

AY 2023/24

Q1 Schur complement: A block-version of Gaussian elimination
Let $d, n \in \mathbb{N}$ with $d>n$. Let $M:=\left(\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right) \in \mathbb{R}^{d \times d}$ be a block-matrix with blocks $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times(d-n)}, C \in \mathbb{R}^{(d-n) \times n}, D \in \mathbb{R}^{(d-n) \times(d-n)}$, and suppose that $\operatorname{det}\left(M_{1: i, 1: i}\right) \neq 0$ for all $i \in$ $\{1, \ldots, d\}$. Let $S:=D-C A^{-1} B \in \mathbb{R}^{(d-n) \times(d-n)}$ denote the so-called Schur complement of A in M (check S is well-defined).
(i) Find $L_{1}=\left(\begin{array}{c|c}I_{n} & 0_{n \times(d-n)} \\ \hline X & I_{(d-n)}\end{array}\right) \in \mathbb{R}^{d \times d}$ such that $L_{1} M=\left(\begin{array}{c|c}A & B \\ \hline 0_{(d-n) \times n} & S\end{array}\right)$. (Find X.)
(ii) Using the previous part, find a $L U$ factorization of $M:=\left(\begin{array}{cccc}1 & 2 & -1 & 1 \\ 0 & -2 & 0 & 3 \\ 5 & -1 & -1 & -1 \\ 0 & 1 & 0 & 1\end{array}\right)$.

Q 2 Surrounding $L U / P A=L U$ factorization

Let $f: \mathbb{R}^{n \times n} \rightarrow[0, \infty)$ be given by $f(M):=\max _{i, j \in\{1, \ldots, n\}}\left|m_{i j}\right|$ for $M=\left(m_{i j}\right)_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}$. Let

$$
\begin{aligned}
& \mathcal{L}_{n}:=\left\{M \in \mathbb{R}^{n \times n} \mid f(M)=1 \text { and } M \text { is unit lower-triangular }\right\} \\
& \mathcal{U}_{n}:=\left\{M \in \mathbb{R}^{n \times n} \mid f(M)>0 \text { and } M \text { is upper-triangular }\right\}
\end{aligned}
$$

and $\mathcal{X}_{n}:=\mathcal{L}_{n} \times \mathcal{U}_{n}$.
(i) Show that

$$
\sup _{(L, U) \in \mathcal{X}_{n}} \frac{\|U\|_{\infty}}{\|L U\|_{\infty}}=2^{n-1}
$$

(ii) Suppose $P A=L U$ is a $\mathrm{PA}=\mathrm{LU}$ factorization obtained via Gaussian elimination with partial pivoting applied to $A \in \mathbb{R}^{n \times n}$. Show that $f(U) \leq 2^{n-1} f(A)$ and show that the matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ with $a_{i i}=1=a_{i n}$ for all $1 \leq i \leq n, a_{i j}=-1$ for all $1 \leq j<i \leq n$, and $a_{i j}=0$ otherwise satisfies the inequality with equality.

Q 3 MATLAB

Write a MATLAB function $[\mathrm{P}, \mathrm{L}, \mathrm{U}]=$ Gauss(A) performing Gaussian elimination with partial pivoting (Algorithm 4.2). Input: $A \in \mathbb{R}^{n \times n}$. Output: $P, L, U \in \mathbb{R}^{n \times n}$ such that $P A=L U$ is a $\mathrm{PA}=\mathrm{LU}$ factorization of A.

Q 4 Results surrounding positive definite matrices and Cholesky factorization

(i) Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Show that $A \succ 0$ if, and only if, $\Lambda(A) \subseteq(0, \infty)$.
(ii) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix and let $X \in \mathbb{R}^{n \times r}$ with $r \leq n$ and $\operatorname{rk}(X)=r$. Show that $X^{\mathrm{T}} A X \in \mathbb{R}^{r \times r}$ is symmetric positive definite.
(iii) Let $A \in \mathbb{R}^{n \times n}$ be invertible and let $M:=A^{\mathrm{T}} A$. Suppose that $A=Q \tilde{R}$ is a QR factorization of A, that $M=R^{\mathrm{T}} R$ is a Cholesky factorization of M, and that the diagonal entries of \tilde{R} and R are positive. Show that $\tilde{R}=R$.
(iv) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix with Cholesky factorization $A=R^{\mathrm{T}} R$. Show that $\|A\|_{2}=\|R\|_{2}^{2}$.
Q5 Computation of $L U, P A=L U, A Q=L U, P A Q=L U$, and Cholesky factorizations
Consider the matrix

$$
A:=\left(\begin{array}{cccc}
2 & -1 & 3 & 1 \\
-1 & 1 & -2 & 1 \\
2 & 8 & -6 & 0 \\
1 & 0 & -1 & -1
\end{array}\right)
$$

(i) Does A have a LU factorization? Compute a LU factorization of the submatrix $A_{1: 3,1: 3}$.
(ii) Apply Gaussian elimination with partial pivoting to A to obtain a $\mathrm{PA}=\mathrm{LU}$ factorization.
(iii) Compute a permutation matrix $Q \in \mathbb{R}^{4 \times 4}$, a lower-triangular matrix L, and an uppertriangular matrix $U \in \mathbb{R}^{4 \times 4}$ such that $A Q=L U$.
(iv) Apply Gaussian elimination with full pivoting to A to obtain a $\mathrm{PAQ}=\mathrm{LU}$ factorization.
(v) Compute the Cholesky factorization of $A^{\mathrm{T}} A$.

Q 6 Moore-Penrose inverse

For $A \in \mathbb{R}^{m \times n}$, we call $A^{\dagger} \in \mathbb{R}^{n \times m}$ the Moore-Penrose inverse of A if, and only if, all of the following holds: $\quad A A^{\dagger} A=A, \quad A^{\dagger} A A^{\dagger}=A^{\dagger}, \quad\left(A A^{\dagger}\right)^{\mathrm{T}}=A A^{\dagger}, \quad\left(A^{\dagger} A\right)^{\mathrm{T}}=A^{\dagger} A$.
(i) 1) First, show that any square diagonal matrix $D=\operatorname{diag}_{d \times d}\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{R}^{d \times d}$ has a MoorePenrose inverse.
(Hint: Set $D^{\dagger}:=\operatorname{diag}_{d \times d}\left(\alpha_{1}^{\dagger}, \ldots, \alpha_{d}^{\dagger}\right)$ where $\alpha_{i}^{\dagger}:=\alpha_{i}^{-1}$ if $\alpha_{i} \neq 0$ and $\alpha_{i}^{\dagger}=0$ if $\alpha_{i}=0$.)
2) Next, show that any diagonal matrix $M=\operatorname{diag}_{m \times n}\left(\alpha_{1}, \ldots, \alpha_{p}\right) \in \mathbb{R}^{m \times n}$ (here, $p:=$ $\min (m, n))$ has a Moore-Penrose inverse.
3) Now, show that any matrix $A \in \mathbb{R}^{m \times n}$ has a unique Moore-Penrose inverse A^{\dagger}, and that A^{\dagger} is given by $A^{\dagger}:=V \Sigma^{\dagger} U^{\mathrm{T}}$ when $A=U \Sigma V^{\mathrm{T}}$ is a SVD of A.
(Hint: for uniqueness, show that if $A_{1}^{\dagger}, A_{2}^{\dagger} \in \mathbb{R}^{n \times m}$ are Moore-Penrose inverses of A, then $A A_{1}^{\dagger}=A A_{2}^{\dagger}$ and $A_{1}^{\dagger} A=A_{2}^{\dagger} A$.)
(ii) Let $A \in \mathbb{R}^{m \times n}$ and $\alpha \in \mathbb{R} \backslash\{0\}$. Show that $\left(A^{\dagger}\right)^{\dagger}=A$, $\left(A^{\mathrm{T}}\right)^{\dagger}=\left(A^{\dagger}\right)^{\mathrm{T}},(\alpha A)^{\dagger}=\alpha^{-1} A^{\dagger}$, and the relations $A^{\dagger}=\left(A^{\mathrm{T}} A\right)^{\dagger} A^{\mathrm{T}}=A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{\dagger}$.
(Hint: For the last claim, you may use that $\forall M \in \mathbb{R}^{n \times n}: A^{\mathrm{T}} A M=0 \Rightarrow A M=0$, and that $\forall M \in \mathbb{R}^{m \times m}: M A A^{\mathrm{T}}=0 \Rightarrow M A=0$. Optional: show these facts.)
Further, show that if $m=n$ and A is invertible, then $A^{\dagger}=A^{-1}$.
(iii) For $A \in \mathbb{R}^{m \times n}, m \geq n$, and $\operatorname{rk}(A)=n$, show that $A^{\dagger}=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ and $A^{\dagger} A=I_{n}$.

For $A \in \mathbb{R}^{m \times n}, m \leq n$, and $\operatorname{rk}(A)=m$, show that $A^{\dagger}=A^{\mathrm{T}}\left(A A^{\mathrm{T}}\right)^{-1}$ and $A A^{\dagger}=I_{m}$.
(iv) Let $A \in \mathbb{R}^{m \times n}, m>n$, and write $A=\left(\frac{B}{C}\right) \in \mathbb{R}^{m \times n}$ with $B \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{(m-n) \times n}$. Suppose that B is invertible. Show that $\left\|A^{\dagger}\right\|_{2} \leq\left\|B^{-1}\right\|_{2}$.

Q 7 Least squares problems

(i) Let $A \in \mathbb{R}^{m \times n}$. Consider the matrices $P:=A A^{\dagger} \in \mathbb{R}^{m \times m}$ and $\tilde{P}:=A^{\dagger} A \in \mathbb{R}^{n \times n}$. Show that P and \tilde{P} are orthogonal projectors, and that

$$
\text { 1) } \mathcal{R}(P)=\mathcal{R}(A), \quad \text { 2) } \mathcal{N}(P)=\mathcal{N}\left(A^{\mathrm{T}}\right), \quad \text { 3) } \mathcal{R}(\tilde{P})=\mathcal{R}\left(A^{\mathrm{T}}\right), \quad \text { 4) } \mathcal{N}(\tilde{P})=\mathcal{N}(A)
$$

(Hint: Show $A^{\dagger} A=A^{\mathrm{T}}\left(A^{\mathrm{T}}\right)^{\dagger}$.) This proves the following important result:
Theorem (orthogonal projector onto range of matrix): For any $A \in \mathbb{R}^{m \times n}$, the orthogonal projector $P_{\mathcal{R}(A)} \in \mathbb{R}^{m \times m}$ onto $\mathcal{R}(A)$ is given by $P_{\mathcal{R}(A)}=A A^{\dagger}$, and this projector $P_{\mathcal{R}(A)}$ is the projector onto $\mathcal{R}(A)$ along $\mathcal{N}\left(A^{\mathrm{T}}\right)$.
(ii) Let $A:=\left(\begin{array}{cc}1 & -2 \\ 2 & 2 \\ -1 & 1 \\ 2 & 1\end{array}\right)$ and $b:=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$. Compute A^{\dagger} and the orthogonal projector onto $\mathcal{N}\left(A^{\mathrm{T}}\right)$, and find all solutions $x \in \mathbb{R}^{2}$ to the least squares problem $\|A x-b\|_{2}=\inf _{v \in \mathbb{R}^{2}}\|A v-b\|_{2}$.
(iii) Let $A:=\left(\begin{array}{cccccccccc}-1 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & 0 & 0 & 0 & 1 & 2 & -2\end{array}\right)^{\mathrm{T}} \in \mathbb{R}^{10 \times 2}$ and $b:=\left(b_{i}\right) \in \mathbb{R}^{10}$ with $b_{i}:=1$ for all $i \in\{1, \ldots, 10\}$. Show that the least squares problem $\|A x-b\|_{2}=\inf _{v \in \mathbb{R}^{2}}\|A v-b\|_{2}$ has a unique solution $x \in \mathbb{R}^{2}$, and compute x.

