MA4230: Problem Sheet 3

AY 2023/24

Q1 Schur complement: A block-version of Gaussian elimination

Let $d, n \in \mathbb{N}$ with d > n. Let $M := \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathbb{R}^{d \times d}$ be a block-matrix with blocks $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times (d-n)}, \ C \in \mathbb{R}^{(d-n) \times n}, \ D \in \mathbb{R}^{(d-n) \times (d-n)}$, and suppose that $\det(M_{1:i,1:i}) \neq 0$ for all $i \in \{1, \ldots, d\}$. Let $S := D - CA^{-1}B \in \mathbb{R}^{(d-n) \times (d-n)}$ denote the so-called Schur complement of A in M (check S is well-defined).

(i) Find
$$L_1 = \begin{pmatrix} I_n & 0_{n \times (d-n)} \\ X & I_{(d-n)} \end{pmatrix} \in \mathbb{R}^{d \times d}$$
 such that $L_1 M = \begin{pmatrix} A & B \\ 0_{(d-n) \times n} & S \end{pmatrix}$. (Find X.)
(ii) Using the previous part, find a LU factorization of $M := \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -2 & 0 & 3 \\ 5 & -1 & -1 & -1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.

Q2 Surrounding LU/PA=LU factorization

Let $f: \mathbb{R}^{n \times n} \to [0, \infty)$ be given by $f(M) := \max_{i,j \in \{1, \dots, n\}} |m_{ij}|$ for $M = (m_{ij})_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$. Let

 $\mathcal{L}_n := \{ M \in \mathbb{R}^{n \times n} | f(M) = 1 \text{ and } M \text{ is unit lower-triangular} \},\$ $\mathcal{U}_n := \{ M \in \mathbb{R}^{n \times n} | f(M) > 0 \text{ and } M \text{ is upper-triangular} \},\$

and $\mathcal{X}_n := \mathcal{L}_n \times \mathcal{U}_n$.

(i) Show that

$$\sup_{(L,U)\in\mathcal{X}_n}\frac{\|U\|_{\infty}}{\|LU\|_{\infty}} = 2^{n-1}$$

(ii) Suppose PA = LU is a PA=LU factorization obtained via Gaussian elimination with partial pivoting applied to $A \in \mathbb{R}^{n \times n}$. Show that $f(U) \leq 2^{n-1}f(A)$ and show that the matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ with $a_{ii} = 1 = a_{in}$ for all $1 \leq i \leq n$, $a_{ij} = -1$ for all $1 \leq j < i \leq n$, and $a_{ij} = 0$ otherwise satisfies the inequality with equality.

Q3 MATLAB

Write a MATLAB function [P,L,U]=Gauss(A) performing Gaussian elimination with partial pivoting (Algorithm 4.2). Input: $A \in \mathbb{R}^{n \times n}$. Output: $P, L, U \in \mathbb{R}^{n \times n}$ such that PA = LU is a PA=LU factorization of A.

$\mathbf{Q4}$ Results surrounding positive definite matrices and Cholesky factorization

- (i) Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Show that $A \succ 0$ if, and only if, $\Lambda(A) \subseteq (0, \infty)$.
- (ii) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix and let $X \in \mathbb{R}^{n \times r}$ with $r \leq n$ and $\operatorname{rk}(X) = r$. Show that $X^{\mathrm{T}}AX \in \mathbb{R}^{r \times r}$ is symmetric positive definite.
- (iii) Let $A \in \mathbb{R}^{n \times n}$ be invertible and let $M := A^{\mathrm{T}}A$. Suppose that $A = Q\tilde{R}$ is a QR factorization of A, that $M = R^{\mathrm{T}}R$ is a Cholesky factorization of M, and that the diagonal entries of \tilde{R} and R are positive. Show that $\tilde{R} = R$.
- (iv) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix with Cholesky factorization $A = R^{\mathrm{T}}R$. Show that $||A||_2 = ||R||_2^2$.
- Computation of LU, PA=LU, AQ=LU, PAQ=LU, and Cholesky factorizations Q5

Consider the matrix

$$A := \begin{pmatrix} 2 & -1 & 3 & 1 \\ -1 & 1 & -2 & 1 \\ 2 & 8 & -6 & 0 \\ 1 & 0 & -1 & -1 \end{pmatrix}$$

- (i) Does A have a LU factorization? Compute a LU factorization of the submatrix $A_{1:3,1:3}$.
- (ii) Apply Gaussian elimination with partial pivoting to A to obtain a PA=LU factorization.
- (iii) Compute a permutation matrix $Q \in \mathbb{R}^{4 \times 4}$, a lower-triangular matrix L, and an uppertriangular matrix $U \in \mathbb{R}^{4 \times 4}$ such that AQ = LU.
- (iv) Apply Gaussian elimination with full pivoting to A to obtain a PAQ=LU factorization.
- (v) Compute the Cholesky factorization of $A^{\mathrm{T}}A$.

Moore–Penrose inverse Q6

For $A \in \mathbb{R}^{m \times n}$, we call $A^{\dagger} \in \mathbb{R}^{n \times m}$ the Moore–Penrose inverse of A if, and only if, all of the following $AA^{\dagger}A = A, \quad A^{\dagger}AA^{\dagger} = A^{\dagger}, \quad (AA^{\dagger})^{\mathrm{T}} = AA^{\dagger}, \quad (A^{\dagger}A)^{\mathrm{T}} = A^{\dagger}A.$ holds:

(i) 1) First, show that any square diagonal matrix $D = \text{diag}_{d \times d}(\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^{d \times d}$ has a Moore-Penrose inverse.

(Hint: Set $D^{\dagger} := \operatorname{diag}_{d \times d}(\alpha_1^{\dagger}, \ldots, \alpha_d^{\dagger})$ where $\alpha_i^{\dagger} := \alpha_i^{-1}$ if $\alpha_i \neq 0$ and $\alpha_i^{\dagger} = 0$ if $\alpha_i = 0$.)

2) Next, show that any diagonal matrix $M = \operatorname{diag}_{m \times n}(\alpha_1, \ldots, \alpha_p) \in \mathbb{R}^{m \times n}$ (here, p := $\min(m, n)$) has a Moore–Penrose inverse.

3) Now, show that any matrix $A \in \mathbb{R}^{m \times n}$ has a unique Moore–Penrose inverse A^{\dagger} , and that A^{\dagger} is given by $A^{\dagger} := V \Sigma^{\dagger} U^{\mathrm{T}}$ when $A = U \Sigma V^{\mathrm{T}}$ is a SVD of A.

(Hint: for uniqueness, show that if $A_1^{\dagger}, A_2^{\dagger} \in \mathbb{R}^{n \times m}$ are Moore–Penrose inverses of A, then $AA_1^{\dagger} = AA_2^{\dagger} \text{ and } A_1^{\dagger}A = A_2^{\dagger}A.)$

- (ii) Let $A \in \mathbb{R}^{m \times n}$ and $\alpha \in \mathbb{R} \setminus \{0\}$. Show that $(A^{\dagger})^{\dagger} = A$, $(A^{\mathrm{T}})^{\dagger} = (A^{\dagger})^{\mathrm{T}}$, $(\alpha A)^{\dagger} = \alpha^{-1}A^{\dagger}$, and the relations $A^{\dagger} = (A^{\mathrm{T}}A)^{\dagger} A^{\mathrm{T}} = A^{\mathrm{T}} (AA^{\mathrm{T}})^{\dagger}$. (Hint: For the last claim, you may use that $\forall M \in \mathbb{R}^{n \times n} : A^{\mathrm{T}}AM = 0 \Rightarrow AM = 0$, and that $\forall M \in \mathbb{R}^{m \times m} : MAA^{\mathrm{T}} = 0 \Rightarrow MA = 0.$ Optional: show these facts.) Further, show that if m = n and A is invertible, then $A^{\dagger} = A^{-1}$.
- (iii) For $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and $\operatorname{rk}(A) = n$, show that $A^{\dagger} = (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}$ and $A^{\dagger}A = I_n$.
- For $A \in \mathbb{R}^{m \times n}$, $m \leq n$, and $\operatorname{rk}(A) = m$, show that $A^{\dagger} = A^{\mathrm{T}}(AA^{\mathrm{T}})^{-1}$ and $AA^{\dagger} = I_m$. (iv) Let $A \in \mathbb{R}^{m \times n}$, m > n, and write $A = \begin{pmatrix} B \\ C \end{pmatrix} \in \mathbb{R}^{m \times n}$ with $B \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{(m-n) \times n}$. Suppose that B is invertible. Show that $||A^{\dagger}||_2 \leq ||B^{-1}||_2$.

Least squares problems $\mathbf{Q7}$

,

(i) Let $A \in \mathbb{R}^{m \times n}$. Consider the matrices $P := AA^{\dagger} \in \mathbb{R}^{m \times m}$ and $\tilde{P} := A^{\dagger}A \in \mathbb{R}^{n \times n}$. Show that P and \tilde{P} are orthogonal projectors, and that

1)
$$\mathcal{R}(P) = \mathcal{R}(A), \quad 2) \mathcal{N}(P) = \mathcal{N}(A^{\mathrm{T}}), \quad 3) \mathcal{R}(\tilde{P}) = \mathcal{R}(A^{\mathrm{T}}), \quad 4) \mathcal{N}(\tilde{P}) = \mathcal{N}(A).$$

(Hint: Show $A^{\dagger}A = A^{\mathrm{T}}(A^{\mathrm{T}})^{\dagger}$.) This proves the following important result:

Theorem (orthogonal projector onto range of matrix): For any $A \in \mathbb{R}^{m \times n}$, the orthogonal projector $P_{\mathcal{R}(A)} \in \mathbb{R}^{m \times m}$ onto $\mathcal{R}(A)$ is given by $P_{\mathcal{R}(A)} = AA^{\dagger}$, and this projector $P_{\mathcal{R}(A)}$ is the projector onto $\mathcal{R}(A)$ along $\mathcal{N}(A^{\mathrm{T}})$.

(ii) Let
$$A := \begin{pmatrix} 1 & -2 \\ 2 & 2 \\ -1 & 1 \\ 2 & 1 \end{pmatrix}$$
 and $b := \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$. Compute A^{\dagger} and the orthogonal projector onto $\mathcal{N}(A^{\mathrm{T}})$,

and find all solutions $x \in \mathbb{R}^2$ to the least squares problem $||Ax - b||_2 = \inf_{v \in \mathbb{R}^2} ||Av - b||_2$.

(iii) Let $A := \begin{pmatrix} -1 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 & 0 & 0 & 0 & 1 & 2 & -2 \end{pmatrix}^{\mathrm{T}} \in \mathbb{R}^{10 \times 2}$ and $b := (b_i) \in \mathbb{R}^{10}$ with $b_i := 1$ for all $i \in \{1, \dots, 10\}$. Show that the least squares problem $||Ax - b||_2 = \inf_{v \in \mathbb{R}^2} ||Av - b||_2$ has a unique solution $x \in \mathbb{R}^2$, and compute x.