# MA4230: Problem Sheet 2 

AY 2023/24

## Q1 Hadamard's inequality

Let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n} \backslash\{0\}$. Set $S:=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{R}^{n} \backslash\{0\}$ and $A:=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{n \times n}$.
(i) Show that $|\operatorname{det}(A)| \leq \prod_{i=1}^{n}\left\|a_{i}\right\|_{2}$. (Hint: Take a QR factorization $A=Q R=Q\left(r_{1}|\cdots| r_{n}\right)$.)
(ii) Show that $|\operatorname{det}(A)|=\prod_{i=1}^{n}\left\|a_{i}\right\|_{2}$ if, and only if, the set $S$ is orthogonal.
(iii) Show that $|\operatorname{det}(A)|=n^{\frac{n}{2}}$ if $A$ is a Hadamard matrix of order $n$, that is, $A A^{\mathrm{T}}=n I_{n}$ and all entries of $A$ belong to $\{-1,1\}$.

## Q 2 Projectors

Let $P \in \mathbb{R}^{n \times n} \backslash\{0\}$ be a projector. We denote its singular values by $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$, and denote its rank by $r:=\operatorname{rk}(P)$.
(i) First, show that $\sigma_{1} \geq 1$. (Hint: show $\|P\|_{2} \leq\|P\|_{2}^{2}$.) Now, show that $\sigma_{i} \geq 1$ for all $i \in$ $\{1, \ldots, r\}$. (Hint: take a SVD $P=U \Sigma V^{\mathrm{T}}$ of $P$, prove $\Sigma=\Sigma W \Sigma$ for some orthogonal matrix $W$, and deduce that $\sigma_{i} \leq \sigma_{i}^{2} \forall i \in\{1, \ldots, n\}$.)
(ii) Show that $\Lambda(P) \subseteq\{0,1\}$. Find an eigenvalue decomposition $P=X D X^{-1}$ of $P$. (Hint: use Remark 3.8(i) and Theorem 2.3(ii) to find eigenvectors.) Prove $\operatorname{tr}(P)=r$.
(iii) Show that $\operatorname{det}(P)=0$ if $P \neq I_{n}$.
(iv) Show that $I_{n}-2 P$ is an orthogonal matrix if $P$ is an orthogonal projector.
(v) Suppose $P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$ for some $A \in \mathbb{R}^{n \times m}$ with $m \leq n$ and $\operatorname{rk}(A)=m$. $\operatorname{Prove} \operatorname{rk}(P)=m$ (hint: $\operatorname{rk}(P)=\operatorname{tr}(P)$; see (ii)). What are the singular values of $P$ ? (Hint: use Theorem 3.6.)

## Q 3 Computing $Q R$ factorizations and orthogonal projectors

(i) Compute a reduced QR factorization and a (full) QR factorization for each of the following matrices:

$$
A_{1}:=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
2 & 0
\end{array}\right), \quad A_{2}:=\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 1 & 1 \\
2 & -1 & -1
\end{array}\right), \quad A_{3}:=\left(\begin{array}{cccc}
4 & 0 & 2 & 1 \\
2 & -6 & -2 & 0 \\
4 & 2 & 3 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Use Householder for $A_{2}$, and Gram-Schmidt for $A_{3}$. (No constraints for $A_{1}$.)
(ii) Find all QR factorizations of $A_{2}$. Using the QR factorization $A_{2}=Q R$ with $R$ having positive diagonal entries, find $x \in \mathbb{R}^{3}$ such that $A_{2} x=(2,-3,4)^{\mathrm{T}}=: b$ by reducing to an uppertriangular system $R x=\tilde{b}$ which you should solve by backward substitution.
(iii) Compute the orthogonal projector onto $\mathcal{R}\left(A_{1}^{\mathrm{T}}\right)$, the orthogonal projector onto $\mathcal{N}\left(A_{2}\right)$, and the orthogonal projector onto $\mathcal{R}\left(A_{3}\right)$.

## Q4 $Q R$ factorization of a wide matrix

A QR factorization of a "wide" matrix $A \in \mathbb{R}^{m \times n}$ with $m<n$ is defined as a factorization $A=Q R$ where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper-triangular, i.e., $R=(\hat{R} \mid \tilde{R})$ for some upper-triangular $\hat{R} \in \mathbb{R}^{m \times m}$ and some matrix $\tilde{R} \in \mathbb{R}^{m \times(n-m)}$. State a procedure for computing a QR factorization of a given matrix $A \in \mathbb{R}^{m \times n}$ with $m<n$. (Hint: One step should be to compute a QR factorization of some square matrix.)

Optional: Compute a QR factorization of $A:=A_{3}^{\mathrm{T}} \in \mathbb{R}^{4 \times 5}$ with $A_{3}$ from Q3.

## Q $5 L Q, R Q, Q L$ factorizations

Having the QR factorization at hand, we can find similar factorizations. Let $A \in \mathbb{R}^{n \times n}$.
(i) LQ factorization: Show that there exist $L \in \mathbb{R}^{n \times n}$ lower-triangular and $Q \in \mathbb{R}^{n \times n}$ orthogonal such that $A=L Q$. (Hint: take a QR factorization of a certain matrix.)
(ii) RQ factorization: Show that there exist $R \in \mathbb{R}^{n \times n}$ upper-triangular and $Q \in \mathbb{R}^{n \times n}$ orthogonal such that $A=R Q$. (Hint: QR factorize $(P A)^{\mathrm{T}}$, where $P:=\left(e_{n}|\cdots| e_{2} \mid e_{1}\right) \in \mathbb{R}^{n \times n}$.)
(iii) QL factorization: Show that there exist $L \in \mathbb{R}^{n \times n}$ lower-triangular and $Q \in \mathbb{R}^{n \times n}$ orthogonal such that $A=Q L$. (Hint: take a RQ factorization of a certain matrix.)
(iv) Compute $Q, M \in \mathbb{R}^{3 \times 3}$ such that $Q^{\mathrm{T}} Q=I_{3}, m_{12}=m_{22}=m_{13}=0$, and $Q M=\left(\begin{array}{ccc}3 & 4 & 2 \\ 0 & 2 & -2 \\ -3 & 4 & -1\end{array}\right)$.

## Q6 Householder reflectors

Let $v \in \mathbb{R}^{n}$ with $\|v\|_{2}=1$, and let $F:=I_{n}-2 v v^{\mathrm{T}} \in \mathbb{R}^{n \times n}$. Show that $F^{\mathrm{T}}=F=F^{-1}$, and compute the eigenvalues, the determinant, and the singular values of $F$.

Q 7 MATLAB: Gram-Schmidt
Write a MATLAB function [Qhat,Rhat] $=\operatorname{mgs}(\mathrm{A})$ performing Algorithm 3.3. Input: $A \in \mathbb{R}^{m \times n}$ with $m \geq n, \operatorname{rk}(A)=n$. Output: Qhat $\in \mathbb{R}^{m \times n}$, Rhat $\in \mathbb{R}^{n \times n}$ such that $A=$ Qhat Rhat is a reduced QR factorization of $A$.

Q 8 Properties of triangular matrices, uniqueness result for $L U$ factorization
Let $U, \tilde{U} \in \mathbb{R}^{n \times n}$ be upper-triangular and $L, \tilde{L} \in \mathbb{R}^{n \times n}$ lower-triangular matrices.
(i) Show that $U \tilde{U}$ is upper-triangular and $L \tilde{L}$ is lower-triangular.
(ii) If $U$ and $L$ are invertible, prove $U^{-1}$ is upper-triangular and $L^{-1}$ is lower-triangular.
(iii) Show that if $A \in\{U, L\}$ is an orthogonal matrix, then $A$ is diagonal.
(iv) Suppose that $L, \tilde{L}$ are unit lower-triangular, $A:=L U=\tilde{L} \tilde{U}$ and that $A$ is invertible. Show that $L=\tilde{L}$ and $U=\tilde{U}$.

## Q 9 LU factorization of a tridiagonal matrix

Let $A=\left(a_{i j}\right) \in \mathbb{R}^{5 \times 5}$ be an invertible matrix with $\operatorname{det}\left(A_{1: i, 1: i}\right) \neq 0$ for all $i \in\{1, \ldots, 5\}$. We then know (Theorem 4.2 and Q8(iv)) that $A$ can be uniquely factorized as $A=L U$ with $L$ unit lowertriangular and $U$ upper-triangular. Suppose $A$ is a tridiagonal matrix, that is, $a_{i j}=0$ whenever $|i-j|>1$. Show that $L$ and $U$ are bidiagonal (i.e., except for the main diagonal and one adjacent diagonal, there are no non-zero entries).

