MA4230: Problem Sheet 1

AY 2023/24

Q 1 Matrix manipulation

Let $A \in \mathbb{R}^{4 \times 4}$. Let $B \in \mathbb{R}^{4 \times 3}$ be the matrix obtained from A as follows: Double column 1 , halve row 3 , add row 3 to row 1, interchange columns 1 and 4 , subtract row 2 from each of the other rows, replace column 4 by column 3 , delete column 1 . Find $M_{1} \in \mathbb{R}^{4 \times 4}$ and $M_{2} \in \mathbb{R}^{4 \times 3}$ such that $B=M_{1} A M_{2}$.

Q 2 Estimate for matrix ∞-norm and spectral norm

Show that for any $A \in \mathbb{R}^{m \times n}$ there holds $\frac{1}{\sqrt{m}}\|A\|_{2} \leq\|A\|_{\infty} \leq \sqrt{n}\|A\|_{2}$.
(Hint: First, show that there holds $\frac{1}{\sqrt{d}}\|x\|_{2} \leq\|x\|_{\infty} \leq\|x\|_{2}$ for all $x \in \mathbb{R}^{d}$.)
Q 3 SVD: computation, matrix properties, and low-rank approximation
Let $A:=\left(\begin{array}{cc}2 & 11 \\ 10 & -5\end{array}\right)$ and $B:=\left(\begin{array}{cc}3 & 2 \\ 2 & -2 \\ 2 & 3\end{array}\right)$.
(i) Compute a SVD of A and compute a SVD of B.
(ii) Using (i), find $\operatorname{rk}(B), \mathcal{R}(B), \mathcal{N}(B),\|B\|_{2}$, and $\|B\|_{F}$.
(iii) Let $Q \in \mathbb{R}^{2 \times 2}$ be a given orthogonal matrix. Find a matrix $C \in \mathbb{R}^{3 \times 2}$ with $\operatorname{rk}(C) \leq 1$ such that $\|B Q-C\|_{F} \leq\|B Q-M\|_{F}$ for any $M \in \mathbb{R}^{3 \times 2}$ with $\operatorname{rk}(M) \leq 1$, and compute $\|B Q-C\|_{F}$.
(iv) List all SVDs of A. For the SVD $A=U \Sigma V^{\mathrm{T}}$ with $u_{11} \geq 0 \geq u_{12}$, sketch $S:=\left\{x \in \mathbb{R}^{2}\right.$: $\left.\|x\|_{2}=1\right\}, V^{\mathrm{T}} S, \Sigma V^{\mathrm{T}} S, U \Sigma V^{\mathrm{T}} S$, and include the right singular vectors $v_{1}, v_{2} \in S$ and their images $V^{\mathrm{T}} v_{i}, \Sigma V^{\mathrm{T}} v_{i}, U \Sigma V^{\mathrm{T}} v_{i}$ in the respective diagrams (as in Figure 1 from lecture notes). Compute the area enclosed by the ellipse $A S$.

Q4 Some results surrounding SVD

Let $A \in \mathbb{R}^{n \times n}$, let $A=U \Sigma V^{\mathrm{T}}$ be a SVD of A, and write $\Sigma=\operatorname{diag}_{n \times n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$. We define

$$
f: \mathbb{R}^{n \times n} \rightarrow[0, \infty), \quad M \mapsto f(M):=\inf _{Z \in \mathbb{R}^{n \times n}, Z^{\mathrm{T}} Z=I_{n}}\|M-Z\|_{2}
$$

Let $k \in\{1, \ldots, n\}$ be such that $\left|\sigma_{k}-1\right| \geq\left|\sigma_{i}-1\right|$ for all $i \in\{1, \ldots, n\}$.
(i) Find an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and a symmetric positive semidefinite matrix $P \in \mathbb{R}^{n \times n}$ (i.e., $P^{\mathrm{T}}=P$ and $\Lambda(P) \subset[0, \infty)$) such that $A=Q P$.
(ii) Show that if $A=Q_{1} P_{1}$ and $A=Q_{2} P_{2}$ for some orthogonal matrices $Q_{1}, Q_{2} \in \mathbb{R}^{n \times n}$ and symmetric positive semidefinite matrices $P_{1}, P_{2} \in \mathbb{R}^{n \times n}$, then $P_{1}^{2}=P_{2}^{2}$.
(iii) Show that $f(A)=f(\Sigma)=\left|\sigma_{k}-1\right|$. (Hint: Prove $f(A) \geq f(\Sigma) \geq\left|\sigma_{k}-1\right| \geq f(A)$.)
(iv) Assuming that $\operatorname{det}(A) \neq 0$, find a SVD of A^{-1}.

Q5 An alternative way for computing SVDs of square matrices
(i) Let $A \in \mathbb{R}^{n \times n}$ and let $A=U \Sigma V^{\mathrm{T}}$ be a SVD of A. Show $A V=U \Sigma$ and $A^{\mathrm{T}} U=V \Sigma$.
(ii) Let $A \in \mathbb{R}^{n \times n}$ and let $A=U \Sigma V^{\mathrm{T}}$ be a SVD of A. Define $H:=\left(\begin{array}{c|c}0_{n \times n} & A^{\mathrm{T}} \\ \hline A & 0_{n \times n}\end{array}\right) \in \mathbb{R}^{2 n \times 2 n}$ and $X:=\left(\begin{array}{c|c}V & V \\ \hline U & -U\end{array}\right) \in \mathbb{R}^{2 n \times 2 n}$. First, find a diagonal matrix $D \in \mathbb{R}^{2 n \times 2 n}$ such that $H X=X D$. Next, find an orthogonal matrix $\tilde{X} \in \mathbb{R}^{2 n \times 2 n}$ such that $H=\tilde{X} D \tilde{X}^{\mathrm{T}}$. What are the eigenvalues and corresponding normalized eigenvectors of H ?
(iii) Let $A:=\left(\begin{array}{cc}-2 & 11 \\ -10 & 5\end{array}\right)$. Compute a SVD of A via an eigenvalue decomposition of H.

Q6 MATLAB: geometric interpretation of SVD

Write a MATLAB program for the following task (you may use the svd command, i.e., [U,Sigma,V] $=\operatorname{svd}(\mathrm{A}))$. Input: $A \in \mathbb{R}^{2 \times 2}$. Output:

- Figure 1: unit circle $S:=\left\{x \in \mathbb{R}^{2}:\|x\|_{2}=1\right\}$ and right singular vectors v_{1}, v_{2},
- Figure 2: ellipse $A S$ and scaled left singular vectors $\sigma_{1} u_{1}, \sigma_{2} u_{2}$.

The vectors $v_{1}, v_{2}, \sigma_{1} u_{1}, \sigma_{2} u_{2}$ are to be represented as straight lines starting from the origin.
Q 7 Fill in the gaps from lectures
(i) Let $m, n \in \mathbb{N}$ and let $\|\cdot\|_{(n)}: \mathbb{R}^{n} \rightarrow[0, \infty)$ be a norm on \mathbb{R}^{n} and $\|\cdot\|_{(m)}: \mathbb{R}^{m} \rightarrow[0, \infty)$ a norm on \mathbb{R}^{m}. Show that the induced norm $\|\cdot\|_{(m, n)}$ is indeed a norm on $\mathbb{R}^{m \times n}$.
(ii) Let $A \in \mathbb{R}^{m \times n}$. Writing $A^{\mathrm{T}}=\left(b_{1}|\cdots| b_{m}\right) \in \mathbb{R}^{n \times m}$, prove $\|A\|_{\infty}=\max _{i \in\{1, \ldots, m\}}\left\|b_{i}\right\|_{1}$. Suppose $A \in \mathbb{R}^{3 \times 2}$ satisfies $\|A\|_{\infty}=1$. What is the largest possible value of $\|A\|_{1}$?
(iii) Show that the Frobenius norm is submultiplicative. Find a non-submultiplicative norm $\|\cdot\|$ on $\mathbb{R}^{2 \times 2}$. (Hint: define $\|M\|:=\max _{i, j \in\{1,2\}}\left|m_{i j}\right|$.)
Let $n \in \mathbb{N}$ with $n \geq 2$. Prove that there is no norm $\|\cdot\|: \mathbb{R}^{n} \rightarrow[0, \infty)$ on \mathbb{R}^{n} for which $\|A\|_{F}=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A x\|}{\|x\|}$ holds for all $A \in \mathbb{R}^{n \times n}$. (Hint: consider I_{n}.)
(iv) Let $A \in \mathbb{R}^{m \times n}$ and define $\alpha:=\sup _{x \in S}\|A x\|_{2}$, where $S:=\left\{x \in \mathbb{R}^{n}:\|x\|_{2}=1\right\}$. Show that the supremum is attained, i.e., that there exists $v \in S$ such that $\|A v\|_{2}=\alpha$. (Hint: First, note $\alpha=\|A\|_{2}<\infty$ by Q2 and Q7(ii). Next, show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, x \mapsto\|A x\|_{2}$ is continuous.)
(v) Let $A \in \mathbb{R}^{m \times n}$. Show that for any invertible matrices $M_{m} \in \mathbb{R}^{m \times m}$ and $M_{n} \in \mathbb{R}^{n \times n}$ there holds $\operatorname{rk}\left(M_{m} A\right)=\operatorname{rk}(A)$ (hint: use rank-nullity theorem) and $\operatorname{rk}\left(A M_{n}\right)=\operatorname{rk}(A)$.
(vi) Let $A \in \mathbb{R}^{m \times n} \backslash\{0\}$. Write A as a sum of rank-one matrices without using a SVD.

