MA4230: Problem Sheet 1

AY 2023/24

Q1 Matrix manipulation

Let $A \in \mathbb{R}^{4 \times 4}$. Let $B \in \mathbb{R}^{4 \times 3}$ be the matrix obtained from A as follows: Double column 1, halve row 3, add row 3 to row 1, interchange columns 1 and 4, subtract row 2 from each of the other rows, replace column 4 by column 3, delete column 1. Find $M_1 \in \mathbb{R}^{4 \times 4}$ and $M_2 \in \mathbb{R}^{4 \times 3}$ such that $B = M_1 A M_2$.

Q2 Estimate for matrix ∞ -norm and spectral norm

Show that for any $A \in \mathbb{R}^{m \times n}$ there holds $\frac{1}{\sqrt{m}} \|A\|_2 \le \|A\|_{\infty} \le \sqrt{n} \|A\|_2$. (Hint: First, show that there holds $\frac{1}{\sqrt{d}} \|x\|_2 \le \|x\|_{\infty} \le \|x\|_2$ for all $x \in \mathbb{R}^d$.)

Q3 SVD: computation, matrix properties, and low-rank approximation

Let
$$A := \begin{pmatrix} 2 & 11 \\ 10 & -5 \end{pmatrix}$$
 and $B := \begin{pmatrix} 3 & 2 \\ 2 & -2 \\ 2 & 3 \end{pmatrix}$.

- (i) Compute a SVD of A and compute a SVD of B.
- (ii) Using (i), find $\operatorname{rk}(B)$, $\mathcal{R}(B)$, $\mathcal{N}(B)$, $||B||_2$, and $||B||_F$.
- (iii) Let $Q \in \mathbb{R}^{2 \times 2}$ be a given orthogonal matrix. Find a matrix $C \in \mathbb{R}^{3 \times 2}$ with $\operatorname{rk}(C) \leq 1$ such that $\|BQ C\|_F \leq \|BQ M\|_F$ for any $M \in \mathbb{R}^{3 \times 2}$ with $\operatorname{rk}(M) \leq 1$, and compute $\|BQ C\|_F$.
- (iv) List all SVDs of A. For the SVD $A = U\Sigma V^{\mathrm{T}}$ with $u_{11} \ge 0 \ge u_{12}$, sketch $S := \{x \in \mathbb{R}^2 : \|x\|_2 = 1\}, V^{\mathrm{T}}S, \Sigma V^{\mathrm{T}}S, U\Sigma V^{\mathrm{T}}S$, and include the right singular vectors $v_1, v_2 \in S$ and their images $V^{\mathrm{T}}v_i, \Sigma V^{\mathrm{T}}v_i, U\Sigma V^{\mathrm{T}}v_i$ in the respective diagrams (as in Figure 1 from lecture notes). Compute the area enclosed by the ellipse AS.

Q4 Some results surrounding SVD

Let $A \in \mathbb{R}^{n \times n}$, let $A = U \Sigma V^{\mathrm{T}}$ be a SVD of A, and write $\Sigma = \mathrm{diag}_{n \times n}(\sigma_1, \ldots, \sigma_n)$. We define

$$f: \mathbb{R}^{n \times n} \to [0, \infty), \qquad M \mapsto f(M) := \inf_{Z \in \mathbb{R}^{n \times n}, Z^{\mathrm{T}}Z = I_n} \|M - Z\|_2.$$

Let $k \in \{1, \ldots, n\}$ be such that $|\sigma_k - 1| \ge |\sigma_i - 1|$ for all $i \in \{1, \ldots, n\}$.

- (i) Find an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and a symmetric positive semidefinite matrix $P \in \mathbb{R}^{n \times n}$ (i.e., $P^{\mathrm{T}} = P$ and $\Lambda(P) \subset [0, \infty)$) such that A = QP.
- (ii) Show that if $A = Q_1 P_1$ and $A = Q_2 P_2$ for some orthogonal matrices $Q_1, Q_2 \in \mathbb{R}^{n \times n}$ and symmetric positive semidefinite matrices $P_1, P_2 \in \mathbb{R}^{n \times n}$, then $P_1^2 = P_2^2$.
- (iii) Show that $f(A) = f(\Sigma) = |\sigma_k 1|$. (Hint: Prove $f(A) \ge f(\Sigma) \ge |\sigma_k 1| \ge f(A)$.)
- (iv) Assuming that $det(A) \neq 0$, find a SVD of A^{-1} .

Q5 An alternative way for computing SVDs of square matrices

- (i) Let $A \in \mathbb{R}^{n \times n}$ and let $A = U\Sigma V^{\mathrm{T}}$ be a SVD of A. Show $AV = U\Sigma$ and $A^{\mathrm{T}}U = V\Sigma$.
- (ii) Let $A \in \mathbb{R}^{n \times n}$ and let $A = U\Sigma V^{\mathrm{T}}$ be a SVD of A. Define $H := \begin{pmatrix} 0_{n \times n} & A^{\mathrm{T}} \\ \hline A & 0_{n \times n} \end{pmatrix} \in \mathbb{R}^{2n \times 2n}$ and $X := \begin{pmatrix} V & V \\ \hline U & -U \end{pmatrix} \in \mathbb{R}^{2n \times 2n}$. First, find a diagonal matrix $D \in \mathbb{R}^{2n \times 2n}$ such that HX = XD. Next, find an orthogonal matrix $\tilde{X} \in \mathbb{R}^{2n \times 2n}$ such that $H = \tilde{X}D\tilde{X}^{\mathrm{T}}$. What are the eigenvalues and corresponding normalized eigenvectors of H?
- (iii) Let $A := \begin{pmatrix} -2 & 11 \\ -10 & 5 \end{pmatrix}$. Compute a SVD of A via an eigenvalue decomposition of H.

Q6 MATLAB: geometric interpretation of SVD

Write a MATLAB program for the following task (you may use the svd command, i.e., [U,Sigma,V] = svd(A)). Input: $A \in \mathbb{R}^{2 \times 2}$. Output:

- Figure 1: unit circle $S := \{x \in \mathbb{R}^2 : ||x||_2 = 1\}$ and right singular vectors v_1, v_2 ,
- Figure 2: ellipse AS and scaled left singular vectors $\sigma_1 u_1, \sigma_2 u_2$.

The vectors $v_1, v_2, \sigma_1 u_1, \sigma_2 u_2$ are to be represented as straight lines starting from the origin.

Q7 Fill in the gaps from lectures

- (i) Let $m, n \in \mathbb{N}$ and let $\|\cdot\|_{(n)} : \mathbb{R}^n \to [0, \infty)$ be a norm on \mathbb{R}^n and $\|\cdot\|_{(m)} : \mathbb{R}^m \to [0, \infty)$ a norm on \mathbb{R}^m . Show that the induced norm $\|\cdot\|_{(m,n)}$ is indeed a norm on $\mathbb{R}^{m \times n}$.
- (ii) Let $A \in \mathbb{R}^{m \times n}$. Writing $A^{\mathrm{T}} = (b_1 | \cdots | b_m) \in \mathbb{R}^{n \times m}$, prove $||A||_{\infty} = \max_{i \in \{1, \dots, m\}} ||b_i||_1$. Suppose $A \in \mathbb{R}^{3 \times 2}$ satisfies $||A||_{\infty} = 1$. What is the largest possible value of $||A||_1$?
- (iii) Show that the Frobenius norm is submultiplicative. Find a non-submultiplicative norm $\|\cdot\|$ on $\mathbb{R}^{2\times 2}$. (Hint: define $\|M\| := \max_{i,j \in \{1,2\}} |m_{ij}|$.) Let $n \in \mathbb{N}$ with $n \geq 2$. Prove that there is no norm $\|\cdot\| : \mathbb{R}^n \to [0,\infty)$ on \mathbb{R}^n for which $\|A\|_F = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{\|Ax\|}{\|x\|}$ holds for all $A \in \mathbb{R}^{n \times n}$. (Hint: consider I_n .)
- (iv) Let $A \in \mathbb{R}^{m \times n}$ and define $\alpha := \sup_{x \in S} ||Ax||_2$, where $S := \{x \in \mathbb{R}^n : ||x||_2 = 1\}$. Show that the supremum is attained, i.e., that there exists $v \in S$ such that $||Av||_2 = \alpha$. (Hint: First, note $\alpha = ||A||_2 < \infty$ by Q2 and Q7(ii). Next, show that $f : \mathbb{R}^n \to \mathbb{R}, x \mapsto ||Ax||_2$ is continuous.)
- (v) Let $A \in \mathbb{R}^{m \times n}$. Show that for any invertible matrices $M_m \in \mathbb{R}^{m \times m}$ and $M_n \in \mathbb{R}^{n \times n}$ there holds $\operatorname{rk}(M_m A) = \operatorname{rk}(A)$ (hint: use rank-nullity theorem) and $\operatorname{rk}(AM_n) = \operatorname{rk}(A)$.
- (vi) Let $A \in \mathbb{R}^{m \times n} \setminus \{0\}$. Write A as a sum of rank-one matrices without using a SVD.