MA4255 Numerical Methods in Differential Equations

Chapter 8: FD approximation of parabolic problems
8.1 The heat equation
8.2 FD approximation of the heat equation
8.3 Practical stability of FD schemes
8.4 Von Neumann stability
8.5 Initial-boundary-value problems for parabolic problems
8.6 FD approximation of parabolic equations in two space-dimensions
8.1 The heat equation

Parabolic PDEs

Parabolic PDEs: For some given open set $\Omega \subseteq \mathbb{R}^{n}$, seek a function $u=u(x, t)=u\left(x_{1}, \ldots, x_{n}, t\right)$ s.t.

$$
\begin{equation*}
\partial_{t} u=-\mathscr{L}_{x} u, \quad(x, t) \in \Omega \times(0, \infty), \tag{1}
\end{equation*}
$$

where \mathscr{L}_{x} is an elliptic differential operator acting on the x-variable, e.g.,

$$
\mathscr{L}_{x} u=-\operatorname{div}_{x}\left(A \nabla_{x} u\right)+b \cdot \nabla_{x} u+c u
$$

with A satisfying the uniform ellipticity condition. We call x the space variable and t the time variable.

- If $\Omega=\mathbb{R}^{n}$, the PDE is considered together with an initial condition (i.c.)

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \quad \text { for } x \in \Omega \tag{2}
\end{equation*}
$$

where $u_{0}: \Omega \rightarrow \mathbb{R}$ is a given function, called an initial datum. The PDE (1) together with the i.c. (2) is called an initial-value problem (IVP).

- If $\Omega \subset \mathbb{R}^{n}$ is a bounded open set, the PDE is considered together with an i.c. (2) and a boundary condition (b.c.)

$$
\begin{equation*}
u=g \quad \text { on } \partial \Omega \times(0, \infty), \tag{3}
\end{equation*}
$$

where $g: \partial \Omega \times(0, \infty) \rightarrow \mathbb{R}$ is a given function. The PDE (1) together with the i.c. (2) and the b.c. (3) is called an initial-boundary-value problem (IB) $3 / 57$

The heat equation

The heat equation (or diffusion equation) is the parabolic PDE

$$
\partial_{t} u=-\mathscr{L}_{x} u \quad \text { in } \Omega \times(0, \infty), \quad \text { where } \quad \mathscr{L}_{x} u:=-\Delta_{x} u
$$

We will simply write Δ instead of Δ_{x}, but keep in mind that it only acts on the space variable $x=\left(x_{1}, \ldots, x_{n}\right)$, i.e., $\Delta u(x, t)=\sum_{i=1}^{n} \partial_{x_{i} x_{i}}^{2} u(x, t)$.

First, we focus on the IVP for the heat equation in one space dimension $(n=1, \Omega=\mathbb{R})$: Seek a fct $u=u(x, t): \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ s.t.

$$
\begin{aligned}
\partial_{t} u(x, t) & =\partial_{x x}^{2} u(x, t), & (x, t) & \in \mathbb{R} \times(0, \infty), \\
u(x, 0) & =u_{0}(x), & x & \in \mathbb{R},
\end{aligned}
$$

where $u_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is some given initial datum.

Solving the IVP for the heat eqn in one space dimension

 Let us discuss how to find the true soln to the IVP$$
\left.\begin{array}{rlrl}
\partial_{t} u(x, t) & =\partial_{x x}^{2} u(x, t), & & (x, t)
\end{array}\right) \in \mathbb{R} \times(0, \infty), ~ 子 \begin{aligned}
u(x, 0) & =u_{0}(x),
\end{aligned}
$$

Key tool: Fourier transform (FT) of a fct $v: \mathbb{R} \rightarrow \mathbb{C}$ is given by

$$
[\mathscr{F} v](\xi):=\hat{v}(\xi):=\int_{-\infty}^{\infty} v(x) e^{-i x \xi} \mathrm{~d} x, \quad \xi \in \mathbb{R} .
$$

We can recover a fct v from its Fourier transform \hat{v} using the inverse Fourier transform (IFT):

$$
v(x)=\left[\mathscr{F}^{-1} \hat{v}\right](x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{v}(\xi) e^{i x \xi} \mathrm{~d} \xi, \quad x \in \mathbb{R} .
$$

We shall assume henceforth that the functions under consideration are sufficiently smooth and that they decay to 0 as $x \rightarrow \pm \infty$ sufficiently quickly in order to ensure that our formal manipulations make sense.

Problem:

$$
\begin{aligned}
\partial_{t} u(x, t) & =\partial_{x x}^{2} u(x, t), & (x, t) \in \mathbb{R} \times(0, \infty), \\
u(x, 0) & =u_{0}(x), & x \in \mathbb{R} .
\end{aligned}
$$

- FT: $[\mathscr{F} v](\xi):=\hat{v}(\xi):=\int_{-\infty}^{\infty} v(x) e^{-i x \xi} \mathrm{~d} x$ for $\xi \in \mathbb{R}$.
- IFT: $v(x)=\left[\mathscr{F}^{-1} \hat{v}\right](x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{v}(\xi) e^{i x \xi} \mathrm{~d} \xi$ for $x \in \mathbb{R}$.

Let $\hat{u}(\xi, t):=\int_{-\infty}^{\infty} u(x, t) e^{-i x \xi} \mathrm{~d} x$ FT of u w.r.t. x-variable. Then,

$$
\begin{aligned}
\partial_{t} \hat{u}(\xi, t) & =\frac{\partial}{\partial t} \int_{-\infty}^{\infty} u(x, t) e^{-i x \xi} \mathrm{~d} x=\int_{-\infty}^{\infty} \partial_{t} u(x, t) e^{-i x \xi} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} \partial_{x x}^{2} u(x, t) e^{-i x \xi} \mathrm{~d} x=(-i \xi)^{2} \int_{-\infty}^{\infty} u(x, t) e^{-i x \xi} \mathrm{~d} x=-\xi^{2} \hat{u}(\xi, t) .
\end{aligned}
$$

We see that $y_{\xi}(t):=\hat{u}(\xi, t)$ satisfies

$$
y_{\xi}^{\prime}(t)=-\xi^{2} y_{\xi}(t), \quad y_{\xi}(0)=\hat{u}_{0}(\xi)
$$

Thus, $\hat{u}(\xi, t)=y_{\xi}(t)=e^{-t \xi^{2}} \hat{u}_{0}(\xi)$. Recover u via IFT:

$$
u(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-t \xi^{2}} \hat{u}_{0}(\xi) e^{i x \xi} \mathrm{~d} \xi=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 t}} u_{0}(y) \mathrm{d} y
$$

(The last equality is not trivial: use defn of $\hat{u}_{0}(\xi)$, then interchange order of integration, then do some calculation)
\Longrightarrow We have found that the true solution to the IVP for the heat equation in one space dimension, i.e., to the problem

$$
\begin{aligned}
\partial_{t} u(x, t) & =\partial_{x x}^{2} u(x, t), & (x, t) & \in \mathbb{R} \times(0, \infty) \\
u(x, 0) & =u_{0}(x), & x & \in \mathbb{R},
\end{aligned}
$$

is given by

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 t}} u_{0}(y) \mathrm{d} y=\int_{-\infty}^{\infty} w(x-y, t) u_{0}(y) \mathrm{d} y
$$

where w is the so-called heat kernel defined as

$$
w: \mathbb{R} \times(0, \infty) \rightarrow \mathbb{R}, \quad w(x, t):=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}
$$

Rk: $w(x, t)>0 \forall(x, t) \in \mathbb{R} \times(0, \infty)$ and $\int_{-\infty}^{\infty} w(x, t) \mathrm{d} x=1 \forall t \in(0, \infty)$. \Longrightarrow If u_{0} is a bounded continuous function, then

$$
\sup _{x \in \mathbb{R}}|u(x, t)| \leq \sup _{x \in \mathbb{R}}\left|u_{0}(x)\right| \quad \forall t \in(0, \infty)
$$

In other words, the 'largest' and 'smallest' values of $x \mapsto u(x, t)$ at $t>0$ cannot exceed those of u_{0}.
Next: Derive similar bound in L^{2}-norm, i.e., $\|u(\cdot, t)\|_{L^{2}(\mathbb{R})} \leq\left\|u_{0}\right\|_{L^{2}(\mathbb{R})}$.

Stability bound $\|u(\cdot, t)\|_{L^{2}(\mathbb{R})} \leq\left\|u_{0}\right\|_{L^{2}(\mathbb{R})}$ for heat eqn

 For $\Omega \subseteq \mathbb{R}^{n}$ open and $v: \Omega \rightarrow \mathbb{C}$, the $L^{2}(\Omega)$-norm of v is defined as$$
\|v\|_{L^{2}(\Omega)}:=\left(\int_{\Omega}|v(x)|^{2} \mathrm{~d} x\right)^{\frac{1}{2}}=\left(\int_{\Omega} v(x) \overline{v(x)} \mathrm{d} x\right)^{\frac{1}{2}}
$$

We write $v \in L^{2}(\Omega)$ iff $\|v\|_{L^{2}(\Omega)}<\infty$.

Lemma (Parseval's identity)

 Let $v \in L^{2}(\mathbb{R})$. Then, $\hat{v} \in L^{2}(\mathbb{R})$ and we have $\|\hat{v}\|_{L^{2}(\mathbb{R})}^{2}=2 \pi\|v\|_{L^{2}(\mathbb{R})}^{2}$.For soln of heat eqn $\partial_{t} u=\partial_{x x}^{2} u$ in $\mathbb{R} \times(0, \infty)$ with $u(\cdot, 0)=u_{0}$, we have

$$
\begin{aligned}
2 \pi \int_{-\infty}^{\infty}|u(x, t)|^{2} \mathrm{~d} x=\int_{-\infty}^{\infty}|\hat{u}(\xi, t)|^{2} \mathrm{~d} \xi & =\int_{-\infty}^{\infty}\left|e^{-t \xi^{2}} \hat{u}_{0}(\xi)\right|^{2} \mathrm{~d} \xi \\
& \leq \int_{-\infty}^{\infty}\left|\hat{u}_{0}(\xi)\right|^{2} \mathrm{~d} \xi=2 \pi \int_{-\infty}^{\infty}\left|u_{0}(x)\right|^{2} \mathrm{~d} x
\end{aligned}
$$

for any $t>0$. Therefore, we have the stability bound

$$
\|u(\cdot, t)\|_{L^{2}(\mathbb{R})} \leq\left\|u_{0}\right\|_{L^{2}(\mathbb{R})} \quad \forall t \in(0, \infty)
$$

Proof of Parseval's identity

Lemma (Parseval's identity)

Let $v \in L^{2}(\mathbb{R})$. Then, $\hat{v} \in L^{2}(\mathbb{R})$ and we have $\|\hat{v}\|_{L^{2}(\mathbb{R})}^{2}=2 \pi\|v\|_{L^{2}(\mathbb{R})}^{2}$.
Proof: We have that

$$
\begin{aligned}
\|\hat{v}\|_{L^{2}(\mathbb{R})}^{2}=\int_{-\infty}^{\infty} \hat{v}(\xi) \overline{\hat{v}(\xi)} \mathrm{d} \xi & =\int_{-\infty}^{\infty} \overline{\hat{v}(\xi)} \int_{-\infty}^{\infty} v(x) e^{-i x \xi} \mathrm{~d} x \mathrm{~d} \xi \\
& =\int_{-\infty}^{\infty} v(x) \int_{-\infty}^{\infty} \overline{\hat{v}(\xi)} e^{-i x \xi} \mathrm{~d} \xi \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} v(x) \hat{w}(x) \mathrm{d} x
\end{aligned}
$$

where $w(s):=\overline{\hat{v}}(s)$. We compute

$$
\hat{w}(x)=\int_{-\infty}^{\infty} w(s) e^{-i x s} \mathrm{~d} s=2 \pi \overline{\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{v}(s) e^{i x s} \mathrm{~d} s}=2 \pi \overline{\left[\mathscr{F}^{-1} \hat{v}\right](x)}=2 \pi \overline{v(x)}
$$

for any $x \in \mathbb{R}$. Thus, $\|\hat{v}\|_{L^{2}(\mathbb{R})}^{2}=2 \pi \int_{-\infty}^{\infty} v(x) \overline{v(x)} \mathrm{d} x=2 \pi\|v\|_{L^{2}(\mathbb{R})}^{2}$.

Stability of soln to heat eqn w.r.t. perturb. in initial datum

Recall that we have shown the stability bound

$$
\|u(\cdot, t)\|_{L^{2}(\mathbb{R})} \leq\left\|u_{0}\right\|_{L^{2}(\mathbb{R})} \quad \forall t \in(0, \infty)
$$

for the soln u to the IVP $\partial_{t} u=\partial_{x x}^{2} u$ in $\mathbb{R} \times(0, \infty)$ with $u(\cdot, 0)=u_{0}$. This implies stability of the soln w.r.t. perturbation in initial datum:
Let u, \tilde{u} be solutions to

$$
\begin{array}{lll}
\partial_{t} u=\partial_{x x}^{2} u & \text { in } \mathbb{R} \times(0, \infty), & u(\cdot, 0)=u_{0} \\
\partial_{t} \tilde{u}=\partial_{x x}^{2} \tilde{u} & \text { in } \mathbb{R} \times(0, \infty), & \tilde{u}(\cdot, 0)=\tilde{u}_{0}
\end{array}
$$

where $u_{0}, \tilde{u}_{0} \in L^{2}(\mathbb{R})$ are given initial data. Then, $w:=u-\tilde{u}$ solves

$$
\partial_{t} w=\partial_{x x}^{2} w \quad \text { in } \mathbb{R} \times(0, \infty), \quad w(\cdot, 0)=u_{0}-\tilde{u}_{0} .
$$

By the stability bound, we have that

$$
\|u(\cdot, t)-\tilde{u}(\cdot, t)\|_{L^{2}(\mathbb{R})}=\|w(\cdot, t)\|_{L^{2}(\mathbb{R})} \leq\left\|u_{0}-\tilde{u}_{0}\right\|_{L^{2}(\mathbb{R})} \quad \forall t \in(0, \infty)
$$

\Longrightarrow small perturbations in u_{0} in the $L^{2}(\mathbb{R})$-norm result in small perturbations in corresponding soln $u(\cdot, t)$ in the $L^{2}(\mathbb{R})$-norm for all $t>0$. \Longrightarrow Important property which we try to mimic with FD approximation ${ }_{10 / 57}$
8.2 FD approximation of the heat equation

Explicit Euler scheme for heat eqn (IVP)

Goal: approximate the soln u to the IVP

$$
\begin{aligned}
\partial_{t} u(x, t) & =\partial_{x x}^{2} u(x, t), & (x, t) & \in \mathbb{R} \times(0, \infty), \\
u(x, 0) & =u_{0}(x), & x & \in \mathbb{R} .
\end{aligned}
$$

Computational domain: $\mathbb{R} \times[0, T]$, where $T>0$ is a given final time. Step 1: Define the mesh: Choose $\Delta x>0, M \in \mathbb{N}$, and set $\Delta t:=\frac{T}{M}$. Writing $x_{j}:=j \Delta x$ and $t_{m}:=m \Delta t$, we take the mesh

$$
\left\{\left(x_{j}, t_{m}\right) \mid j \in \mathbb{Z}, m \in\{0, \ldots, M\}\right\} \subset \mathbb{R} \times[0, T]
$$

Step 2: Approximate derivatives appearing in the PDE at the mesh pts:
$\partial_{t} u\left(x_{j}, t_{m}\right) \approx \frac{u\left(x_{j}, t_{m+1}\right)-u\left(x_{j}, t_{m}\right)}{\Delta t}, \quad \partial_{x x}^{2} u\left(x_{j}, t_{m}\right) \approx \frac{u\left(x_{j+1}, t_{m}\right)-2 u\left(x_{j}, t_{m}\right)+u\left(x_{j-1}, t_{m}\right)}{(\Delta x)^{2}}$.
\Longrightarrow This gives the explicit Euler scheme:

$$
\begin{aligned}
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t} & =\frac{U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta x)^{2}}, & & j \in \mathbb{Z}, \quad m \in\{0, \ldots, M-1\} \\
U_{j}^{0} & =u_{0}\left(x_{j}\right), & & j \in \mathbb{Z}
\end{aligned}
$$

(The value U_{j}^{m} is our approximation to $u\left(x_{j}, t_{m}\right)$.)

The explicit Euler scheme

$$
\begin{aligned}
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t} & =\frac{U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta x)^{2}}, & & j \in \mathbb{Z}, \quad m \in\{0, \ldots, M-1\}, \\
U_{j}^{0} & =u_{0}\left(x_{j}\right), & & j \in \mathbb{Z}
\end{aligned}
$$

can equivalently be written as

$$
\begin{aligned}
U_{j}^{m+1} & =U_{j}^{m}+\mu\left(U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}\right), & & j \in \mathbb{Z}, \quad m \in\{0, \ldots, M-1\}, \\
U_{j}^{0} & =u_{0}\left(x_{j}\right), & & j \in \mathbb{Z},
\end{aligned}
$$

where $\mu>0$ is the so-called CFL number (Courant-Friedrichs-Lewy)

$$
\mu:=\frac{\Delta t}{(\Delta x)^{2}} .
$$

\Longrightarrow The values U_{j}^{m+1} for time level $m+1$ can be explicitly calculated, for all $j \in \mathbb{Z}$, from the values $U_{j+1}^{m}, U_{j}^{m}, U_{j-1}^{m}$ from time level m.

Implicit Euler scheme for heat eqn (IVP)

Goal: approximate the soln u to the IVP

$$
\begin{aligned}
\partial_{t} u(x, t) & =\partial_{x x}^{2} u(x, t), & (x, t) & \in \mathbb{R} \times(0, \infty), \\
u(x, 0) & =u_{0}(x), & x & \in \mathbb{R} .
\end{aligned}
$$

Computational domain: $\mathbb{R} \times[0, T]$, where $T>0$ is a given final time. Step 1: Define the mesh: Choose $\Delta x>0, M \in \mathbb{N}$, and set $\Delta t:=\frac{T}{M}$. Writing $x_{j}:=j \Delta x$ and $t_{m}:=m \Delta t$, we take the mesh

$$
\left\{\left(x_{j}, t_{m}\right) \mid j \in \mathbb{Z}, m \in\{0, \ldots, M\}\right\} \subset \mathbb{R} \times[0, T]
$$

Step 2: Approximate derivatives appearing in the PDE at the mesh pts:
$\partial_{t} u\left(x_{j}, t_{m}\right) \approx \frac{u\left(x_{j}, t_{m}\right)-u\left(x_{j}, t_{m-1}\right)}{\Delta t}, \quad \partial_{x x}^{2} u\left(x_{j}, t_{m}\right) \approx \frac{u\left(x_{j+1}, t_{m}\right)-2 u\left(x_{j}, t_{m}\right)+u\left(x_{j-1}, t_{m}\right)}{(\Delta x)^{2}}$.
\Longrightarrow This gives the implicit Euler scheme:

$$
\begin{aligned}
\frac{U_{j}^{m}-U_{j}^{m-1}}{\Delta t} & =\frac{U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta x)^{2}}, & & j \in \mathbb{Z}, \quad m \in\{1, \ldots, M\} \\
U_{j}^{0} & =u_{0}\left(x_{j}\right), & & j \in \mathbb{Z}
\end{aligned}
$$

(The value U_{j}^{m} is our approximation to $u\left(x_{j}, t_{m}\right)$.)

θ-scheme for heat eqn (IVP)

The explicit and implicit Euler schemes are special cases of a more general one-parameter family of numerical methods for heat eqn, called θ-scheme:

$$
\begin{aligned}
& \frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t}=(1-\theta) \frac{U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta x)^{2}}+\theta \frac{U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}}{(\Delta x)^{2}}, j \in \mathbb{Z}, m \in\{0, \ldots, M-1\}, \\
& U_{j}^{0}=u_{0}\left(x_{j}\right), \\
& j \in \mathbb{Z},
\end{aligned}
$$

where $\theta \in[0,1]$ is a parameter.
Important special cases:

- $\theta=0$: Explicit Euler scheme
- $\theta=\frac{1}{2}$: Crank-Nicolson scheme
- $\theta=1$: Implicit Euler scheme

Consistency error of the θ-scheme: For $j \in \mathbb{Z}, m \in\{0, \ldots, M-1\}$,

$$
T_{j}^{m}:=\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}-(1-\theta) \frac{u_{j+1}^{m}-2 u_{j}^{m}+u_{j-1}^{m}}{(\Delta x)^{2}}-\theta \frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+u_{j-1}^{m+1}}{(\Delta x)^{2}},
$$

where we write $u_{j}^{m}:=u\left(x_{j}, t_{m}\right)$ with u being the true solution.

Accuracy of the θ-scheme

Let us expand the consistency error

$$
T_{j}^{m}:=\underbrace{\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}}_{=: A_{j}^{m}}-(1-\theta) \underbrace{\frac{u_{j+1}^{m}-2 u_{j}^{m}+u_{j-1}^{m}}{(\Delta x)^{2}}}_{=: B_{j}^{m}}-\theta \underbrace{\frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+u_{j-1}^{m+1}}{(\Delta x)^{2}}}_{=: C_{j}^{m}},
$$

using Taylor, around the point $\left(x_{j}, t_{m+\frac{1}{2}}\right):=\left(x_{j}, t_{m}+\frac{\Delta t}{2}\right)$.

1) Taylor the term A_{j}^{m} : We have that

$$
\begin{aligned}
(\Delta t) A_{j}^{m} & =u\left(x_{j}, t_{m+\frac{1}{2}}+\frac{\Delta t}{2}\right)-u\left(x_{j}, t_{m+\frac{1}{2}}-\frac{\Delta t}{2}\right) \\
& =(\Delta t) u_{t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\frac{(\Delta t)^{3}}{24} u_{t t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\mathcal{O}\left((\Delta t)^{5}\right)
\end{aligned}
$$

Therefore, we have that

$$
A_{j}^{m}=u_{t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\frac{(\Delta t)^{2}}{24} u_{t t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\mathcal{O}\left((\Delta t)^{4}\right)
$$

2) Taylor the term B_{j}^{m} : We have that

$$
\begin{aligned}
B_{j}^{m}= & \frac{u_{j+1}^{m}-2 u_{j}^{m}+u_{j-1}^{m}}{(\Delta x)^{2}} \\
= & \frac{u\left(x_{j+1}, t_{m+\frac{1}{2}}-\frac{\Delta t}{2}\right)-2 u\left(x_{j}, t_{m+\frac{1}{2}}-\frac{\Delta t}{2}\right)+u\left(x_{j-1}, t_{m+\frac{1}{2}}-\frac{\Delta t}{2}\right)}{(\Delta x)^{2}} \\
= & \frac{u\left(x_{j}+\Delta x, t_{m+\frac{1}{2}}\right)-2 u\left(x_{j}, t_{m+\frac{1}{2}}\right)+u\left(x_{j}-\Delta x, t_{m+\frac{1}{2}}\right)}{(\Delta x)^{2}} \\
& -\frac{\Delta t}{2} \frac{u_{t}\left(x_{j}+\Delta x, t_{m+\frac{1}{2}}\right)-2 u_{t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+u_{t}\left(x_{j}-\Delta x, t_{m+\frac{1}{2}}\right)}{(\Delta x)^{2}} \\
& +\frac{(\Delta t)^{2}}{8} \frac{u_{t t}\left(x_{j}+\Delta x, t_{m+\frac{1}{2}}\right)-2 u_{t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+u_{t t}\left(x_{j}-\Delta x, t_{m+\frac{1}{2}}\right)}{(\Delta x)^{2}} \\
& +\cdots \\
= & {\left[u_{x x}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\frac{(\Delta x)^{2}}{12} u_{x x x x}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] } \\
& -\frac{\Delta t}{2}\left[u_{x x t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\frac{(\Delta x)^{2}}{12} u_{x x x x x t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] \\
& +\frac{(\Delta t)^{2}}{8}\left[u_{x x t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\frac{(\Delta x)^{2}}{12} u_{x x x x t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] \\
& +\sigma\left((\Delta t)^{3}\right) .
\end{aligned}
$$

3) Taylor the term C_{j}^{m} : We have that

$$
\begin{aligned}
C_{j}^{m}= & \frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+u_{j-1}^{m+1}}{(\Delta x)^{2}} \\
= & \frac{u\left(x_{j+1}, t_{m+\frac{1}{2}}+\frac{\Delta t}{2}\right)-2 u\left(x_{j}, t_{m+\frac{1}{2}}+\frac{\Delta t}{2}\right)+u\left(x_{j-1}, t_{m+\frac{1}{2}}+\frac{\Delta t}{2}\right)}{(\Delta x)^{2}} \\
= & \frac{u\left(x_{j}+\Delta x, t_{m+\frac{1}{2}}\right)-2 u\left(x_{j}, t_{m+\frac{1}{2}}\right)+u\left(x_{j}-\Delta x, t_{m+\frac{1}{2}}\right)}{(\Delta x)^{2}} \\
& +\frac{\Delta t}{2} \frac{u_{t}\left(x_{j}+\Delta x, t_{m+\frac{1}{2}}\right)-2 u_{t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+u_{t}\left(x_{j}-\Delta x, t_{m+\frac{1}{2}}\right)}{(\Delta x)^{2}} \\
& +\frac{(\Delta t)^{2}}{8} \frac{u_{t t}\left(x_{j}+\Delta x, t_{m+\frac{1}{2}}\right)-2 u_{t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+u_{t t}\left(x_{j}-\Delta x, t_{m+\frac{1}{2}}\right)}{(\Delta x)^{2}} \\
& +\cdots \\
= & {\left[u_{x x}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\frac{(\Delta x)^{2}}{12} u_{x x x x}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] } \\
& +\frac{\Delta t}{2}\left[u_{x x t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\frac{(\Delta x)^{2}}{12} u_{x x x x t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] \\
& +\frac{(\Delta t)^{2}}{8}\left[u_{x x t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\frac{(\Delta x)^{2}}{12} u_{x x x x x t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] \\
& +\sigma\left((\Delta t)^{3}\right) .
\end{aligned}
$$

4) Altogether: We find that

$$
\begin{aligned}
T_{j}^{m}= & A_{j}^{m}-(1-\theta) B_{j}^{m}-\theta C_{j}^{m} \\
= & {\left[u_{t}\left(x_{j}, t_{m+\frac{1}{2}}\right)-u_{x x}\left(x_{j}, t_{m+\frac{1}{2}}\right)-\frac{(\Delta x)^{2}}{12} u_{x x x x x}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] } \\
& +(2 \theta-1) \frac{\Delta t}{2}\left[-u_{x x t}\left(x_{j}, t_{m+\frac{1}{2}}\right)-\frac{(\Delta x)^{2}}{12} u_{x x x x x t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] \\
& +\frac{(\Delta t)^{2}}{8}\left[\frac{1}{3} u_{t t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)-u_{x x t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)-\frac{(\Delta x)^{2}}{12} u_{x x x x t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] \\
& +\sigma\left((\Delta t)^{3}\right) \\
= & {\left[-\frac{(\Delta x)^{2}}{12} u_{t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] } \\
& +(2 \theta-1) \frac{\Delta t}{2}\left[-u_{t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)-\frac{(\Delta x)^{2}}{12} u_{t t t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] \\
& +\frac{(\Delta t)^{2}}{8}\left[-\frac{2}{3} u_{t t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)-\frac{(\Delta x)^{2}}{12} u_{t t t t}\left(x_{j}, t_{m+\frac{1}{2}}\right)+\sigma\left((\Delta x)^{4}\right)\right] \\
& +\sigma\left((\Delta t)^{3}\right),
\end{aligned}
$$

where we have used that $u_{t}=u_{x x}$ (and hence, also $u_{t t}=u_{x x x x}, \ldots$).
We conclude that

$$
T_{j}^{m}= \begin{cases}\mathcal{O}\left((\Delta x)^{2}+(\Delta t)^{2}\right) & \text { if } \theta=\frac{1}{2} \\ \mathcal{O}\left((\Delta x)^{2}+\Delta t\right) & \text { if } \theta \neq \frac{1}{2}\end{cases}
$$

Fully-discrete vs spatially semi-discrete approximation

- Numerical methods such as the θ-scheme are called fully-discrete approximations (we discretize both spatial and time derivatives).
- Alternative: approximate only the spatial partial derivative in the heat eqn, resulting in the following IVP for a system of ODEs:

$$
\begin{aligned}
\frac{\mathrm{d} U_{j}(t)}{\mathrm{d} t} & =\frac{U_{j+1}(t)-2 U_{j}(t)+U_{j-1}(t)}{(\Delta x)^{2}}, & & j \in \mathbb{Z} \\
U_{j}(0) & =u_{0}\left(x_{j}\right), & & j \in \mathbb{Z}
\end{aligned}
$$

Here, the function U_{j} is an approximation to $t \mapsto u\left(x_{j}, t\right)$. This is called a spatially semi-discrete approximation, because no discretization with respect to the time variable has taken place.

Rk: Because no discretization in time was performed in the first place, this approach is usually referred to as the method of lines.

8.3 Practical stability of FD schemes

Practical stability of FD schemes

Recall: the true soln to the IVP for heat eqn satisfies the stability bound

$$
\|u(\cdot, t)\|_{L^{2}(\mathbb{R})} \leq\left\|u_{0}\right\|_{L^{2}(\mathbb{R})} \quad \forall t \in(0, \infty)
$$

In order to be able to replicate this stability property at the discrete level, we require an appropriate notion of stability.

Definition (Practical stability of FD schemes)

We say that a FD scheme for the IVP for the heat eqn is practically stable (in the ℓ^{2} norm) iff for the values $\left\{U_{j}^{m}\right\}_{j \in \mathbb{Z}, m \in\{0, \ldots, M-1\}}$ obtained from the FD scheme there holds

$$
\left\|U^{m}\right\|_{\ell^{2}} \leq\left\|U^{0}\right\|_{\ell^{2}} \quad \forall m \in\{1, \ldots, M\}
$$

where $U^{m}:=\left(\ldots, U_{-2}^{m}, U_{-1}^{m}, U_{0}^{m}, U_{1}^{m}, U_{2}^{m}, \ldots\right)$ and

$$
\left\|U^{m}\right\|_{\ell^{2}}:=\sqrt{\Delta x \sum_{j=-\infty}^{\infty}\left|U_{j}^{m}\right|^{2}}
$$

Key tool for stability analysis: The semidiscrete FT

Definition (SFT and ISFT)

(i) The semidiscrete Fourier transform (SFT) of a function U defined on the infinite mesh with mesh-points $x_{j}=j \Delta x, j \in \mathbb{Z}$, is defined by

$$
\hat{U}(k):=\Delta x \sum_{j=-\infty}^{\infty} U_{j} e^{-i k x_{j}}, \quad k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right],
$$

where U_{j} denotes the value of U at the mesh point x_{j}.
(ii) For a fct $\hat{U}:\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right] \rightarrow \mathbb{C}$, its inverse semidiscrete Fourier transform (ISFT) is the function U defined on the infinite mesh with mesh-points $x_{j}=j \Delta x, j \in \mathbb{Z}$, with the value of U at the mesh point x_{j} given by

$$
U_{j}:=\frac{1}{2 \pi} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}} \hat{U}(k) e^{i k x_{j}} \mathrm{~d} k, \quad j \in \mathbb{Z}
$$

Discrete Parseval's identity

Let us recall Parseval's identity: If $u \in L^{2}(\mathbb{R})$, then its $\mathrm{FT} \hat{u} \in L^{2}(\mathbb{R})$ and we have $\|\hat{u}\|_{L^{2}(\mathbb{R})}^{2}=2 \pi\|u\|_{L^{2}(\mathbb{R})}^{2}$.

We have a discrete analogue of this result for a mesh fct U and its SFT \hat{U} :
Lemma (Discrete Parseval's identity)
Let U be a function defined on the infinite mesh with mesh-points $x_{j}=j \Delta x, j \in \mathbb{Z}$, and let \hat{U} be its SFT. If $\|U\|_{\ell^{2}}<\infty$, then
$\hat{U} \in L^{2}\left(\left(-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right)\right)$ and there holds

$$
\|\hat{U}\|_{L^{2}\left(\left(-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right)\right)}^{2}=2 \pi\|U\|_{\ell^{2}}^{2} .
$$

(Recall: $\|U\|_{R^{2}}^{2}:=\Delta x \sum_{j=-\infty}^{\infty}\left|U_{j}\right|^{2}$ and $\left.\|\hat{U}\|_{L^{2}\left(\left(-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right)\right)}^{2}:=\int \frac{\pi}{-\frac{\pi}{\Delta x}}|\hat{U}(k)|^{2} d k\right)$
Proof: Exercise.

Example: Stability analysis of the explicit Euler scheme

Explicit Euler scheme for IVP for heat eqn:

$$
\begin{aligned}
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t} & =\frac{U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta x)^{2}}, & & j \in \mathbb{Z}, \quad m \in\{0, \ldots, M-1\} \\
U_{j}^{0} & =u_{0}\left(x_{j}\right), & & j \in \mathbb{Z} .
\end{aligned}
$$

By inserting $U_{j}^{m}=\frac{1}{2 \pi} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}} e^{i k j \Delta x} \hat{U}^{m}(k) \mathrm{d} k$, we deduce that $\frac{1}{2 \pi} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}} e^{i k j \Delta x} \frac{\hat{U}^{m+1}(k)-\hat{U}^{m}(k)}{\Delta t} \mathrm{~d} k=\frac{1}{2 \pi} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}} \frac{e^{i k(j+1) \Delta x}-2 e^{i k j \Delta x}+e^{i k(j-1) \Delta x}}{(\Delta x)^{2}} \hat{U}^{m}(k) \mathrm{d} k$ $=\frac{1}{2 \pi} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}} e^{i k j \Delta x} \frac{e^{i k \Delta x}-2+e^{-i k \Delta x}}{(\Delta x)^{2}} \hat{U}^{m}(k) \mathrm{d} k$.
\Longrightarrow the integrands are identically equal (by injectivity of SFT/ISFT).
Thus,

$$
\frac{\hat{U}^{m+1}(k)-\hat{U}^{m}(k)}{\Delta t}=\frac{e^{i k \Delta x}-2+e^{-i k \Delta x}}{(\Delta x)^{2}} \hat{U}^{m}(k) \quad \forall k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]
$$

\Longrightarrow We have that
$\hat{U}^{m+1}(k)=\hat{U}^{m}(k)+\mu\left(e^{i k \Delta x}-2+e^{-i k \Delta x}\right) \hat{U}^{m}(k) \quad \forall k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]$, where $\mu:=\frac{\Delta t}{(\Delta x)^{2}}$ is the CFL number. Equivalently,

$$
\hat{U}^{m+1}(k)=\lambda(k) \hat{U}^{m}(k), \quad \lambda(k):=1+\mu\left(e^{i k \Delta x}-2+e^{-i k \Delta x}\right)
$$

We call the function $\lambda=\lambda(k)$ the amplification factor. Let us define $\Lambda:=\max _{k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]}|\lambda(k)|$. Then, by discrete Parseval's identity,

$$
\begin{aligned}
& 2 \pi\left\|U^{m+1}\right\|_{\ell^{2}}^{2}=\left\|\hat{U}^{m+1}\right\|_{L^{2}\left(\left(-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right)\right)}^{2}=\int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}}\left|\lambda(k) \hat{U}^{m}(k)\right|^{2} \mathrm{~d} k \\
& \quad \leq \Lambda^{2} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}}\left|\hat{U}^{m}(k)\right|^{2} \mathrm{~d} k=\Lambda^{2}\left\|\hat{U}^{m}\right\|_{L^{2}\left(\left(-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right)\right)}^{2}=2 \pi \Lambda^{2}\left\|U^{m}\right\|_{\ell^{2}}^{2}
\end{aligned}
$$

i.e., we find that

$$
\left\|U^{m}\right\|_{\ell^{2}} \leq \Lambda\left\|U^{m-1}\right\|_{\ell^{2}} \leq \cdots \leq \Lambda^{m}\left\|U^{0}\right\|_{\ell^{2}} \quad \forall m \in\{1, \ldots, M\}
$$

\Longrightarrow For practical stability we demand that $\Lambda \leq 1$.
\Longrightarrow For practical stability, we demand that (note $\mu=\frac{\Delta t}{(\Delta x)^{2}}>0$)

$$
\begin{aligned}
& \max _{k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]}\left|1+\mu\left(e^{i k \Delta x}-2+e^{-i k \Delta x}\right)\right| \leq 1 \\
\Longleftrightarrow & \max _{k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]}|1+2 \mu(\cos (k \Delta x)-1)| \leq 1 \\
\Longleftrightarrow & \max _{k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]}\left|1-4 \mu \sin ^{2}\left(\frac{k \Delta x}{2}\right)\right| \leq 1 \\
\Longleftrightarrow & \forall k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]: \quad-1 \leq 1-4 \mu \sin ^{2}\left(\frac{k \Delta x}{2}\right) \leq 1 \\
\Longleftrightarrow & \forall k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]: \quad \sin ^{2}\left(\frac{k \Delta x}{2}\right) \leq \frac{1}{2 \mu} \\
\Longleftrightarrow & \max _{k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]} \sin ^{2}\left(\frac{k \Delta x}{2}\right)=1 \leq \frac{1}{2 \mu} \\
\Longleftrightarrow & \mu \leq \frac{1}{2} .
\end{aligned}
$$

Hence, the explicit Euler scheme is conditionally practically stable, with the condition for stability being that $\mu=\frac{\Delta t}{(\Delta x)^{2}} \leq \frac{1}{2}$.
\Longrightarrow We must choose $\Delta x, \Delta t$ s.t. $\Delta t \leq \frac{1}{2}(\Delta x)^{2}$ to have practical stability.

Example: Stability analysis of the implicit Euler scheme

 Implicit Euler scheme for IVP for heat eqn:$$
\begin{aligned}
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t} & =\frac{U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}}{(\Delta x)^{2}}, & & j \in \mathbb{Z}, \quad m \in\{0, \ldots, M-1\} \\
U_{j}^{0} & =u_{0}\left(x_{j}\right), & & j \in \mathbb{Z}
\end{aligned}
$$

By inserting $U_{j}^{m}=\frac{1}{2 \pi} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}} e^{i k j \Delta x} \hat{U}^{m}(k) \mathrm{d} k$, we deduce that $\frac{1}{2 \pi} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}} e^{i k j \Delta x} \frac{\hat{U}^{m+1}(k)-\hat{U}^{m}(k)}{\Delta t} \mathrm{~d} k=\frac{1}{2 \pi} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}} \frac{e^{i k(j+1) \Delta x}-2 e^{i k j \Delta x}+e^{i k(j-1) \Delta x}}{(\Delta x)^{2}} \hat{U}^{m+1}(k) \mathrm{d} k$

$$
=\frac{1}{2 \pi} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}} e^{i k j \Delta x} \frac{e^{i k \Delta x}-2+e^{-i k \Delta x}}{(\Delta x)^{2}} \hat{U}^{m+1}(k) \mathrm{d} k .
$$

\Longrightarrow the integrands are identically equal (by injectivity of SFT/ISFT).
Thus,

$$
\frac{\hat{U}^{m+1}(k)-\hat{U}^{m}(k)}{\Delta t}=\frac{e^{i k \Delta x}-2+e^{-i k \Delta x}}{(\Delta x)^{2}} \hat{U}^{m+1}(k) \quad \forall k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]
$$

\Longrightarrow We have that
$\hat{U}^{m+1}(k)=\hat{U}^{m}(k)+\mu\left(e^{i k \Delta x}-2+e^{-i k \Delta x}\right) \hat{U}^{m+1}(k) \quad \forall k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]$, where $\mu:=\frac{\Delta t}{(\Delta x)^{2}}$ is the CFL number. Equivalently,

$$
\hat{U}^{m+1}(k)=\lambda(k) \hat{U}^{m}(k), \quad \lambda(k):=\frac{1}{1-\mu\left(e^{i k \Delta x}-2+e^{-i k \Delta x}\right)} .
$$

Note that we have for the amplification factor that

$$
\begin{aligned}
\max _{k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]}|\lambda(k)| & =\max _{k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]}\left|\frac{1}{1+4 \mu \sin ^{2}\left(\frac{k \Delta x}{2}\right)}\right| \\
& =\max _{k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]} \frac{1}{1+4 \mu \sin ^{2}\left(\frac{k \Delta x}{2}\right)} \\
& \leq 1
\end{aligned}
$$

for any $\mu>0$.
\Longrightarrow The implicit Euler scheme is unconditionally practically stable, meaning that $\left\|U^{m}\right\|_{\ell^{2}} \leq\left\|U^{0}\right\|_{\ell^{2}} \forall m \in\{1, \ldots, M\}$ holds without any restrictions on Δx and Δt.

Stability analysis of the θ-scheme

 θ-scheme for IVP for heat eqn:$$
\begin{aligned}
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t} & =(1-\theta) \frac{U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta x)^{2}}+\theta \frac{U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}}{(\Delta x)^{2}}, j \in \mathbb{Z}, m \in\{0, \ldots, M-1\}, \\
U_{j}^{0} & =u_{0}\left(x_{j}\right),
\end{aligned}
$$

On the problem sheets, you are going to discover the following:

- If $\theta \in\left[0, \frac{1}{2}\right)$, then the θ-scheme is conditionally practically stable, with the stability condition being that $\mu=\frac{\Delta t}{(\Delta x)^{2}} \leq \frac{1}{2(1-2 \theta)}$.
- If $\theta \in\left[\frac{1}{2}, 1\right]$, then the θ-scheme is unconditionally practically stable.

Rk: In particular, the Crank-Nicolson scheme $\left(\theta=\frac{1}{2}\right)$ is unconditionally practically stable.

8.4 Von Neumann stability

Von Neumann stability

Let us introduce a less demanding notion of stability:

Definition (von Neumann stability)

We say that a FD scheme for the IVP for the heat eqn on $\mathbb{R} \times[0, T]$ is von Neumann stable in the ℓ^{2}-norm, if \exists a constant $C=C(T)>0$ s.t.

$$
\left\|U^{m}\right\|_{\ell^{2}} \leq C\left\|U^{0}\right\|_{\ell^{2}} \quad \forall m \in\left\{1, \ldots, M=\frac{T}{\Delta t}\right\}
$$

(Recall: $\left.\left\|U^{m}\right\|_{\ell^{2}}^{2}:=\Delta x \sum_{j=-\infty}^{\infty}\left|U_{j}^{m}\right|^{2}.\right)$
Rk: Practical stability implies von Neumann stability with $C=1$.
Rk: When C depends on T, then typically $C(T) \rightarrow \infty$ as $T \rightarrow \infty$.

A simple way for verifying von Neumann stability

Lemma (Verifying von Neumann stability in practice)

Suppose that the SFT of the soln $\left\{U_{j}^{m}\right\}_{j \in \mathbb{Z}, m \in\left\{0, \ldots, M=\frac{T}{\Delta t}\right\}}$ of a FD scheme for the IVP for the heat equation satisfies $\hat{U}^{m+1}=\lambda \hat{U}^{m}$ with some amplification factor $\lambda=\lambda(k)$, and suppose \exists a constant $C_{0} \geq 0$ s.t.

$$
|\lambda(k)| \leq 1+C_{0} \Delta t \quad \forall k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right] .
$$

Then, the scheme is von Neumann stable. In particular, if $C_{0}=0$, then the scheme is practically stable.

Proof: Set $\Lambda:=\max _{k \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right]}|\lambda(k)|$. We have seen before that

$$
\left\|U^{m+1}\right\|_{\ell^{2}} \leq \Lambda\left\|U^{m}\right\|_{\ell^{2}} \quad \forall m \in\{0, \ldots, M-1\} .
$$

Hence, using that $\Lambda \leq 1+C_{0} \Delta t$, we find for any $m \in\{1, \ldots, M\}$ that $\left\|U^{m}\right\|_{\ell^{2}} \leq\left(1+C_{0} \Delta t\right)\left\|U^{m-1}\right\|_{\ell^{2}} \leq \cdots \leq\left(1+C_{0} \Delta t\right)^{m}\left\|U^{0}\right\|_{\ell^{2}} \leq e^{m C_{0} \Delta t}\left\|U^{0}\right\|_{\ell^{2}}$. As $m \Delta t \leq T \forall m \in\{1, \ldots, M\}$, we have v.N. stab. with $C:=e^{C_{0} T}$.
8.5 Initial-boundary-value problems for parabolic problems

The Dirichlet IBVP for the heat equation

For fixed $a, b \in \mathbb{R}$ with $a<b$, and $T>0$, we consider the heat equation

$$
\partial_{t} u(x, t)=\partial_{x x}^{2} u(x, t) \quad \text { for }(x, t) \in(a, b) \times(0, T]
$$

subject to the initial condition

$$
u(x, 0)=u_{0}(x) \quad \text { for } x \in[a, b]
$$

and the Dirichlet boundary condition

$$
\begin{array}{ll}
u(a, t)=A(t) & \text { for } t \in(0, T] \\
u(b, t)=B(t) & \text { for } t \in(0, T]
\end{array}
$$

Here, $u_{0}:[a, b] \rightarrow \mathbb{R}$ and $A, B:[0, T] \rightarrow \mathbb{R}$ are given. We assume that the b.c. is compatible with the i.c., that is, $A(0)=u_{0}(a), B(0)=u_{0}(b)$.
θ-scheme for the Dirichlet IBVP for the heat eqn Recall the IBVP:

$$
\begin{aligned}
\partial_{t} u(x, t) & =\partial_{x x}^{2} u(x, t) \quad \text { for }(x, t) \in(a, b) \times(0, T], \\
u(x, 0) & =u_{0}(x) \quad \text { for } x \in[a, b], \\
u(a, t) & =A(t) \quad \text { for } t \in(0, T], \quad u(b, t)=B(t) \quad \text { for } t \in(0, T] .
\end{aligned}
$$

Mesh: For $J, M \in \mathbb{N}$ fixed, let $\Delta x:=\frac{b-a}{J}$ and $\Delta t:=\frac{T}{M}$. Take the mesh

$$
\left\{\left(x_{j}, t_{m}\right):=(a+j \Delta x, m \Delta t) \mid j \in\{0, \ldots, J\}, m \in\{0, \ldots, M\}\right\}
$$

The FD scheme: The θ-scheme for the IBVP is the following:

$$
\left.\begin{array}{rl}
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t} & =(1-\theta) \frac{\delta^{2} U_{j}^{m}}{(\Delta x)^{2}}+\theta \frac{\delta^{2} U_{j}^{m+1}}{(\Delta x)^{2}}, \\
U_{j}^{0} & =u_{0}\left(x_{j}\right), \quad j \in\{1, \ldots, J-1\}, m \in\{0, \ldots, M-1\} \\
U_{0}^{m+1} & =A\left(t_{m+1}\right), \quad U_{J}^{m+1}=B\left(t_{m+1}\right),
\end{array} \quad m \in\{0, \ldots, J\}, \quad, \quad m, M-1\right\},
$$

where $\theta \in[0,1]$ is a parameter. We have written
$\delta^{2} U_{j}^{m}:=U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}, \quad \delta^{2} U_{j}^{m+1}:=U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}$.

θ-scheme as a linear system (time level $m \rightarrow m+1$)

With $\mu:=\frac{\Delta t}{(\Delta x)^{2}}$, the θ-scheme can be written as

$$
\begin{array}{rlrl}
U_{j}^{m+1}-\theta \mu \delta^{2} U_{j}^{m+1} & =U_{j}^{m}+(1-\theta) \mu \delta^{2} U_{j}^{m}, j \in\{1, \ldots, J-1\}, m \in\{0, \ldots, M-1\}, \\
U_{j}^{0} & =u_{0}\left(x_{j}\right), & j \in\{0, \ldots, J\}, & \\
U_{0}^{m+1} & =A\left(t_{m+1}\right), \quad U_{J}^{m+1}=B\left(t_{m+1}\right), & m \in\{0, \ldots, M-1\} .
\end{array}
$$

Let $I:=I_{J-1}$ be the identity matrix in $\mathbb{R}^{(J-1) \times(J-1)}$, and let

$$
A:=\left[\begin{array}{ccccc}
-2 & 1 & & & 0 \\
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
0 & & 1 & -2 & 1 \\
0 & & & 1 & -2
\end{array}\right] \in \mathbb{R}^{(J-1) \times(J-1)} .
$$

Writing $\mathbf{U}^{m}:=\left(U_{1}^{m}, \ldots, U_{J-1}^{m}\right)^{\mathrm{T}}, \mathbf{F}^{m}:=\left(A\left(t_{m}\right), 0, \ldots, 0, B\left(t_{m}\right)\right)^{\mathrm{T}} \in \mathbb{R}^{J-1}$, the θ-scheme can be written as

$$
\begin{aligned}
(I-\theta \mu \mathscr{A}) \mathbf{U}^{m+1} & =(I+(1-\theta) \mu \mathscr{A}) \mathbf{U}^{m}+\theta \mu \mathbf{F}^{m+1}+(1-\theta) \mu \mathbf{F}^{m}, \quad m \in\{0, \ldots, M-1\} \\
\mathbf{U}^{0} & =\left(u_{0}\left(x_{1}\right), \ldots, u_{0}\left(x_{J-1}\right)\right)^{\mathrm{T}},
\end{aligned}
$$

$$
\text { and } U_{0}^{m+1}=A\left(t_{m+1}\right), U_{J}^{m+1}=B\left(t_{m+1}\right) \text { for } m \in\{0, \ldots, M-1\} .
$$

\Longrightarrow Obtain \mathbf{U}^{m+1} from \mathbf{U}^{m} by solving linear system with matrix $I-\theta \mu \mathscr{A}$.

Discrete maximum/minimum principle for the θ-scheme

Theorem (Discrete maximum/minimum principle for the θ-scheme)
Consider the θ-scheme for the Dirichlet IBVP for the heat eqn, with $\theta \in[0,1]$. Suppose that

$$
(1-\theta) \mu \leq \frac{1}{2}, \quad \text { where } \mu:=\frac{\Delta t}{(\Delta x)^{2}}
$$

Then, for the numerical approximations $\left\{U_{j}^{m}\right\}_{j \in\{0, \ldots, J\} ; m \in\{0, \ldots, M\}}$ we have

$$
\min \left\{U_{\min }^{0}, U_{0}^{\min }, U_{J}^{\min }\right\} \leq U_{j}^{m} \leq \max \left\{U_{\max }^{0}, U_{0}^{\max }, U_{J}^{\max }\right\}
$$

for any $j \in\{0, \ldots, J\}$ and $m \in\{0, \ldots, M\}$, where

$$
\begin{array}{rlrl}
U_{\min }^{0} & :=\min \left\{U_{0}^{0}, U_{1}^{0}, \ldots, U_{J}^{0}\right\}, & & U_{\max }^{0}:=\max \left\{U_{0}^{0}, U_{1}^{0}, \ldots, U_{J}^{0}\right\}, \\
U_{0}^{\min }:=\min \left\{U_{0}^{0}, U_{0}^{1}, \ldots, U_{0}^{M}\right\}, & & U_{0}^{\max }:=\max \left\{U_{0}^{0}, U_{0}^{1}, \ldots, U_{0}^{M}\right\}, \\
U_{J}^{\min }:=\min \left\{U_{J}^{0}, U_{J}^{1}, \ldots, U_{J}^{M}\right\}, & & U_{J}^{\max }:=\max \left\{U_{J}^{0}, U_{J}^{1}, \ldots, U_{J}^{M}\right\} .
\end{array}
$$

Proof of the discrete maximum principle for the θ-scheme We prove $U_{j}^{m} \leq \max \left\{U_{\max }^{0}, U_{0}^{\max }, U_{J}^{\max }\right\} \forall j, m$. (The other inequality is proved similarly.) We rewrite the θ-scheme as $(1+2 \theta \mu) U_{j}^{m+1}=\theta \mu\left(U_{j+1}^{m+1}+U_{j-1}^{m+1}\right)+(1-\theta) \mu\left(U_{j+1}^{m}+U_{j-1}^{m}\right)+(1-2(1-\theta) \mu) U_{j}^{m}$. By hypothesis, $\theta \mu \geq 0,(1-\theta) \mu \geq 0$, and $1-2(1-\theta) \mu \geq 0$. Suppose U attains its maximum value at $\left(x_{j_{0}}, t_{m_{0}+1}\right)$ for some $j_{0} \in\{1, \ldots, J-1\}$, $m_{0} \in\{0, \ldots, M-1\}$.

We define $U^{\star}:=\max \left\{U_{j_{0}+1}^{m_{0}+1}, U_{j_{0}-1}^{m_{0}+1}, U_{j_{0}+1}^{m_{0}}, U_{j_{0}-1}^{m_{0}}, U_{j_{0}}^{m_{0}}\right\}$. Then,

$$
\begin{aligned}
(1+2 \theta \mu) U_{j_{0}}^{m_{0}+1} & \leq 2 \theta \mu U^{\star}+2(1-\theta) \mu U^{\star}+(1-2(1-\theta) \mu) U^{\star} \\
& =(1+2 \theta \mu) U^{\star}
\end{aligned}
$$

$\Longrightarrow U_{j_{0}}^{m_{0}+1} \leq U^{\star}$. Note that also $U^{\star} \leq U_{j_{0}}^{m_{0}+1}$ and hence, $U_{j_{0}}^{m_{0}+1}=U^{\star}$. \Longrightarrow The maximum value is also attained at each of the points neighbouring $\left(x_{j_{0}}, t_{m_{0}+1}\right)$ present in the scheme.
The same argument applies to these neighbouring points, and we can repeat this process until the bdry at $x=a$ or $x=b$ or at $t=0$ is reached. The maximum is therefore attained at a boundary point.

Rk: A classical solution u to the Dirichlet IBVP for the heat eqn attains its maximum and minimum value on the parabolic boundary

$$
\begin{aligned}
\Gamma_{T} & :=\{t=0\} \cup\{x=a\} \cup\{x=b\} \\
& :=([a, b] \times\{0\}) \cup(\{a\} \times[0, T]) \cup(\{b\} \times[0, T]),
\end{aligned}
$$

i.e., there holds the following maximum/minimum principle:

$$
\begin{aligned}
\max _{[a, b] \times[0, T]} u & =\max _{\Gamma_{T}} u \\
\min _{[a, b] \times[0, T]} u & =\min _{\Gamma_{T}} u
\end{aligned}
$$

We have just proved that our numerical approximation obtained from the θ-scheme satisfies a discrete analogue to this result.

Remark on discrete MP and practical stability of θ-scheme

Recall:

- Condition for discrete maximum/minimum principle:

$$
\begin{equation*}
\mu(1-\theta) \leq \frac{1}{2} \tag{4}
\end{equation*}
$$

- Condition for practical stability when $\theta \in\left[0, \frac{1}{2}\right)$:

$$
\begin{equation*}
\mu(1-2 \theta) \leq \frac{1}{2} \tag{5}
\end{equation*}
$$

- When $\theta \in\left[\frac{1}{2}, 1\right]$, unconditionally practically stable.

Some comments:

- When $\theta=0$ (explicit Euler), then (4) \Leftrightarrow (5); both requiring $\mu \leq \frac{1}{2}$.
- When $\theta \in\left(0, \frac{1}{2}\right)$, condition (4) is more demanding than (5).
- Crank-Nicolson $\left(\theta=\frac{1}{2}\right)$ only satisfies the discrete MP when $\mu \leq 1$.
- For $\theta \in\left[\frac{1}{2}, 1\right]$, the θ-scheme only satisfies the discrete MP unconditionally when $\theta=1$ (implicit Euler scheme).

Convergence analysis of the θ-scheme

Suppose $\mu(1-\theta) \leq \frac{1}{2}$. We begin by rewriting the scheme as

$$
(1+2 \theta \mu) U_{j}^{m+1}=\theta \mu\left(U_{j+1}^{m+1}+U_{j-1}^{m+1}\right)+(1-\theta) \mu\left(U_{j+1}^{m}+U_{j-1}^{m}\right)+(1-2(1-\theta) \mu) U_{j}^{m} .
$$

Recall that the consistency error for the θ-scheme is

$$
T_{j}^{m}:=\frac{u_{j}^{m+1}-u_{j}^{m}}{\Delta t}-(1-\theta) \frac{u_{j+1}^{m}-2 u_{j}^{m}+u_{j-1}^{m}}{(\Delta x)^{2}}-\theta \frac{u_{j+1}^{m+1}-2 u_{j}^{m+1}+u_{j-1}^{m+1}}{(\Delta x)^{2}},
$$

where $u_{j}^{m}:=u\left(x_{j}, t_{m}\right)$, and therefore

$$
\begin{aligned}
(1+2 \theta \mu) u_{j}^{m+1}= & \theta \mu\left(u_{j+1}^{m+1}+u_{j-1}^{m+1}\right)+(1-\theta) \mu\left(u_{j+1}^{m}+u_{j-1}^{m}\right)+(1-2(1-\theta) \mu) u_{j}^{m} \\
& +(\Delta t) T_{j}^{m} .
\end{aligned}
$$

Define the global error

$$
e_{j}^{m}:=u\left(x_{j}, t_{m}\right)-U_{j}^{m} .
$$

Note $e_{0}^{m+1}=e_{J}^{m+1}=e_{j}^{0}=0 \forall j \in\{0, \ldots, J\}, m \in\{0, \ldots, M-1\}$, and
$(1+2 \theta \mu) e_{j}^{m+1}=\theta \mu\left(e_{j+1}^{m+1}+e_{j-1}^{m+1}\right)+(1-\theta) \mu\left(e_{j+1}^{m}+e_{j-1}^{m}\right)+(1-2(1-\theta) \mu) e_{j}^{m}+(\Delta t) T_{j}^{m}$
$\leq 2 \theta \mu E^{m+1}+2(1-\theta) \mu E^{m}+(1-2(1-\theta) \mu) E^{m}+(\Delta t) T^{m}=2 \theta \mu E^{m+1}+E^{m}+(\Delta t) T^{m}$,
where $E^{m}:=\max \left\{\left|e_{0}^{m}\right|, \ldots,\left|e_{J}^{m}\right|\right\}$ and $T^{m}:=\max \left\{\left|T_{0}^{m}\right|, \ldots,\left|T_{J}^{m}\right|\right\}$.

\Longrightarrow We find that

$$
(1+2 \theta \mu) E^{m+1} \leq 2 \theta \mu E^{m+1}+E^{m}+(\Delta t) T^{m} \quad \forall m \in\{0, \ldots, M-1\} .
$$

Hence, $E^{m+1} \leq E^{m}+(\Delta t) T^{m} \forall m \in\{0, \ldots, M-1\}$. As $E^{0}=0$, we have

$$
\begin{aligned}
E^{m} & \leq E^{m-1}+(\Delta t) T^{m-1} \\
& \leq E^{m-2}+(\Delta t) T^{m-2}+(\Delta t) T^{m-1} \\
& \vdots \\
& \leq(\Delta t)\left(T^{0}+T^{1}+\cdots+T^{m-1}\right) \leq m(\Delta t) \max _{i \in\{0, \ldots, m-1\}} T^{i} \leq T_{i \in\{0, \ldots, M-1\}} T^{i}
\end{aligned}
$$

for any $m \in\{1, \ldots, M\}$. It follows that

$$
\begin{aligned}
\max _{m \in\{0, \ldots, M\}} \max _{j \in\{0, \ldots, J\}}\left|e_{j}^{m}\right| & \leq T \max _{i \in\{0, \ldots, M-1\}} T^{i} \\
& = \begin{cases}0\left((\Delta x)^{2}+(\Delta t)^{2}\right) & \text { if } \theta=1 / 2, \\
0\left((\Delta x)^{2}+\Delta t\right) & \text { if } \theta \neq 1 / 2,\end{cases}
\end{aligned}
$$

where we have used our results of the expansion of the consistency error.

8.6 FD approximation of parabolic equations in two space-dimensions

The Dirichlet IBVP in two space-dimensions

On an open rectangle $\Omega:=(a, b) \times(c, d)$ in \mathbb{R}^{2}, we consider the heat eqn

$$
\partial_{t} u(x, y, t)=\partial_{x x}^{2} u(x, y, t)+\partial_{y y}^{2} u(x, y, t), \quad(x, y) \in \Omega, t \in(0, T]
$$

subject to the initial condition

$$
u(x, y, 0)=u_{0}(x, y), \quad(x, y) \in \bar{\Omega}
$$

and the Dirichlet boundary condition

$$
u(x, y, t)=B(x, y, t), \quad(x, y) \in \partial \Omega, \quad t \in(0, T]
$$

where $u_{0}: \bar{\Omega} \rightarrow \mathbb{R}$ and $B: \partial \Omega \times[0, T] \rightarrow \mathbb{R}$ are given fcts. We assume the b.c. is compatible with the i.c., i.e., $B(x, y, 0)=u_{0}(x, y) \forall(x, y) \in \partial \Omega$.

Explicit Euler scheme

Let

$$
\delta_{x}^{2} U_{i, j}:=U_{i+1, j}-2 U_{i, j}+U_{i-1, j}, \quad \delta_{y}^{2} U_{i, j}:=U_{i, j+1}-2 U_{i, j}+U_{i, j-1}
$$

For $J_{x}, J_{y}, M \in \mathbb{N}$ fixed, let $\Delta x:=\frac{b-a}{J_{x}}, \Delta y:=\frac{d-c}{J_{y}}, \Delta t:=\frac{T}{M}$, and define

$$
\begin{aligned}
x_{i} & :=a+i \Delta x, & & i \in\left\{0, \ldots, J_{x}\right\}, \\
y_{j} & :=c+j \Delta y, & & j \in\left\{0, \ldots, J_{y}\right\}, \\
t_{m} & :=m \Delta t, & & m \in\{0, \ldots, M\} .
\end{aligned}
$$

The explicit Euler FD approximation is

$$
\frac{U_{i, j}^{m+1}-U_{i, j}^{m}}{\Delta t}=\frac{\delta_{x}^{2} U_{i, j}^{m}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i, j}^{m}}{(\Delta y)^{2}},
$$

for $i \in\left\{1, \ldots, J_{x}-1\right\}, j \in\left\{1, \ldots, J_{y}-1\right\}, m \in\{0, \ldots, M-1\}$, with i.c.

$$
U_{i, j}^{0}=u_{0}\left(x_{i}, y_{j}\right), \quad i \in\left\{0, \ldots, J_{x}\right\}, \quad j \in\left\{0, \ldots, J_{y}\right\}
$$

and b.c.

$$
U_{i, j}^{m+1}:=B\left(x_{i}, y_{j}, t_{m+1}\right), \text { when }\left(x_{i}, y_{j}\right) \in \partial \Omega, m \in\{0, \ldots, M-1\} .
$$

Implicit Euler scheme

Let

$$
\delta_{x}^{2} U_{i, j}:=U_{i+1, j}-2 U_{i, j}+U_{i-1, j}, \quad \delta_{y}^{2} U_{i, j}:=U_{i, j+1}-2 U_{i, j}+U_{i, j-1}
$$

For $J_{x}, J_{y}, M \in \mathbb{N}$ fixed, let $\Delta x:=\frac{b-a}{J_{x}}, \Delta y:=\frac{d-c}{J_{y}}, \Delta t:=\frac{T}{M}$, and define

$$
\begin{aligned}
x_{i} & :=a+i \Delta x, & & i \in\left\{0, \ldots, J_{x}\right\}, \\
y_{j} & :=c+j \Delta y, & & j \in\left\{0, \ldots, J_{y}\right\}, \\
t_{m} & :=m \Delta t, & & m \in\{0, \ldots, M\} .
\end{aligned}
$$

The implicit Euler FD approximation is

$$
\frac{U_{i, j}^{m+1}-U_{i, j}^{m}}{\Delta t}=\frac{\delta_{x}^{2} U_{i, j}^{m+1}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i, j}^{m+1}}{(\Delta y)^{2}}
$$

for $i \in\left\{1, \ldots, J_{x}-1\right\}, j \in\left\{1, \ldots, J_{y}-1\right\}, m \in\{0, \ldots, M-1\}$, with i.c.

$$
U_{i, j}^{0}=u_{0}\left(x_{i}, y_{j}\right), \quad i \in\left\{0, \ldots, J_{x}\right\}, \quad j \in\left\{0, \ldots, J_{y}\right\}
$$

and b.c.

$$
U_{i, j}^{m+1}:=B\left(x_{i}, y_{j}, t_{m+1}\right), \text { when }\left(x_{i}, y_{j}\right) \in \partial \Omega, m \in\{0, \ldots, M-1\} .
$$

θ-scheme

Let

$$
\delta_{x}^{2} U_{i, j}:=U_{i+1, j}-2 U_{i, j}+U_{i-1, j}, \quad \delta_{y}^{2} U_{i, j}:=U_{i, j+1}-2 U_{i, j}+U_{i, j-1}
$$

For $J_{x}, J_{y}, M \in \mathbb{N}$ fixed, let $\Delta x:=\frac{b-a}{J_{x}}, \Delta y:=\frac{d-c}{J_{y}}, \Delta t:=\frac{T}{M}$, and define

$$
\begin{aligned}
x_{i} & :=a+i \Delta x, & & i \in\left\{0, \ldots, J_{x}\right\}, \\
y_{j} & :=c+j \Delta y, & & j \in\left\{0, \ldots, J_{y}\right\}, \\
t_{m} & :=m \Delta t, & & m \in\{0, \ldots, M\} .
\end{aligned}
$$

The θ-scheme, $\theta \in[0,1]$, is

$$
\frac{U_{i, j}^{m+1}-U_{i, j}^{m}}{\Delta t}=(1-\theta)\left(\frac{\delta_{x}^{2} U_{i, j}^{m}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i, j}^{m}}{(\Delta y)^{2}}\right)+\theta\left(\frac{\delta_{x}^{2} U_{i, j}^{m+1}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} U_{i, j}^{m+1}}{(\Delta y)^{2}}\right)
$$

for $i \in\left\{1, \ldots, J_{x}-1\right\}, j \in\left\{1, \ldots, J_{y}-1\right\}, m \in\{0, \ldots, M-1\}$, with i.c.

$$
U_{i, j}^{0}=u_{0}\left(x_{i}, y_{j}\right), \quad i \in\left\{0, \ldots, J_{x}\right\}, \quad j \in\left\{0, \ldots, J_{y}\right\}
$$

and b.c.

$$
U_{i, j}^{m+1}:=B\left(x_{i}, y_{j}, t_{m+1}\right), \text { when }\left(x_{i}, y_{j}\right) \in \partial \Omega, m \in\{0, \ldots, M-1\}_{48}
$$

Practical stability of the θ-scheme

The practical stability of the θ-scheme (in the absence of a b.c. now, i.e., for the pure IVP rather than the IBVP) is assessed by inserting

$$
U_{i, j}^{m}=\frac{1}{(2 \pi)^{2}} \int_{-\frac{\pi}{\Delta x}}^{\frac{\pi}{\Delta x}} \int_{-\frac{\pi}{\Delta y}}^{\frac{\pi}{\Delta y}} e^{\imath\left(k_{x} i \Delta x+k_{y} j \Delta y\right)} \hat{U}^{m}\left(k_{x}, k_{y}\right) \mathrm{d} k_{y} \mathrm{~d} k_{x}
$$

(Here, \imath denotes the complex number, and i the index from $U_{i, j}^{m}$). Writing $\mu_{x}:=\frac{\Delta t}{(\Delta x)^{2}}$ and $\mu_{y}:=\frac{\Delta t}{(\Delta y)^{2}}$, we find that
$\hat{U}^{m+1}\left(k_{x}, k_{y}\right)=\lambda\left(k_{x}, k_{y}\right) \hat{U}^{m}\left(k_{x}, k_{y}\right) \quad \forall\left(k_{x}, k_{y}\right) \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right] \times\left[-\frac{\pi}{\Delta y}, \frac{\pi}{\Delta y}\right]$
where the amplification factor $\lambda=\lambda\left(k_{x}, k_{y}\right)$ is given by

$$
\lambda\left(k_{x}, k_{y}\right):=\frac{1-4(1-\theta)\left[\mu_{x} \sin ^{2}\left(\frac{k_{x} \Delta x}{2}\right)+\mu_{y} \sin ^{2}\left(\frac{k_{y} \Delta y}{2}\right)\right]}{1+4 \theta\left[\mu_{x} \sin ^{2}\left(\frac{k_{x} \Delta x}{2}\right)+\mu_{y} \sin ^{2}\left(\frac{k_{y} \Delta y}{2}\right)\right]}
$$

for $\left(k_{x}, k_{y}\right) \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right] \times\left[-\frac{\pi}{\Delta y}, \frac{\pi}{\Delta y}\right]$.

Recall from previous slide:

$$
\lambda\left(k_{x}, k_{y}\right):=\frac{1-4(1-\theta)\left[\mu_{x} \sin ^{2}\left(\frac{k_{x} \Delta x}{2}\right)+\mu_{y} \sin ^{2}\left(\frac{k_{y} \Delta y}{2}\right)\right]}{1+4 \theta\left[\mu_{x} \sin ^{2}\left(\frac{k_{x} \Delta x}{2}\right)+\mu_{y} \sin ^{2}\left(\frac{k_{y} \Delta y}{2}\right)\right]} .
$$

For practical stability, we require that

$$
\max _{\left(k_{x}, k_{y}\right) \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right] \times\left[-\frac{\pi}{\Delta y}, \frac{\pi}{\Delta y}\right]}\left|\lambda\left(k_{x}, k_{y}\right)\right| \leq 1 .
$$

Note that $\lambda\left(k_{x}, k_{y}\right) \leq 1$ without any restriction on μ_{x}, μ_{y}. Hence, the scheme is practically stable iff

$$
\lambda\left(k_{x}, k_{y}\right) \geq-1
$$

for all $\left(k_{x}, k_{y}\right) \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right] \times\left[-\frac{\pi}{\Delta y}, \frac{\pi}{\Delta y}\right]$, which holds iff

$$
(1-2 \theta)\left[\mu_{x} \sin ^{2}\left(\frac{k_{x} \Delta x}{2}\right)+\mu_{y} \sin ^{2}\left(\frac{k_{y} \Delta y}{2}\right)\right] \leq \frac{1}{2}
$$

for all $\left(k_{x}, k_{y}\right) \in\left[-\frac{\pi}{\Delta x}, \frac{\pi}{\Delta x}\right] \times\left[-\frac{\pi}{\Delta y}, \frac{\pi}{\Delta y}\right]$, i.e., iff

$$
(1-2 \theta)\left(\mu_{x}+\mu_{y}\right) \leq \frac{1}{2}
$$

We have obtained that the condition for practical stability is

$$
(1-2 \theta)\left(\mu_{x}+\mu_{y}\right) \leq \frac{1}{2}
$$

\Longrightarrow In particular, if $\theta \in\left[\frac{1}{2}, 1\right]$, then unconditionally practically stable. If $\theta \in\left[0, \frac{1}{2}\right)$, then only conditionally practically stable.

For example, implicit Euler $(\theta=1)$ and Crank-Nicolson $\left(\theta=\frac{1}{2}\right)$ are unconditionally practically stable, while explicit Euler $(\theta=0)$ is only conditionally practically stable with stability condition $\mu_{x}+\mu_{y} \leq \frac{1}{2}$.

Discrete maximum/minimum principle for the θ-scheme

Theorem (Discrete maximum/minimum principle for the θ-scheme)
Consider the θ-scheme for the Dirichlet IBVP for the heat eqn in two space-dimensions, with $\theta \in[0,1]$. Suppose that

$$
(1-\theta)\left(\mu_{x}+\mu_{y}\right) \leq \frac{1}{2}, \quad \text { where } \mu_{x}:=\frac{\Delta t}{(\Delta x)^{2}}, \quad \mu_{y}:=\frac{\Delta t}{(\Delta y)^{2}}
$$

Then, for the numerical approximations $\left\{U_{i, j}^{m}\right\}_{i \in\left\{0, \ldots, J_{x}\right\} ; j \in\left\{0, \ldots, J_{y}\right\} ; m \in\{0, \ldots, M\}}$ we have that

$$
\min \left\{U_{\min }^{0}, U_{\partial}^{\min }\right\} \leq U_{i, j}^{m} \leq \max \left\{U_{\max }^{0}, U_{\partial}^{\max }\right\}
$$

for any $i \in\left\{0, \ldots, J_{x}\right\}, j \in\left\{0, \ldots, J_{y}\right\}, m \in\{0, \ldots, M\}$, where

$$
\begin{aligned}
U_{\min }^{0} & :=\min \left\{U_{i, j}^{0} \mid i \in\left\{0, \ldots, J_{x}\right\}, j \in\left\{0, \ldots, J_{y}\right\}\right\}, \\
U_{\partial}^{\min } & :=\min \left\{U_{i, j}^{m} \mid\left(x_{i}, y_{j}\right) \in \partial \Omega, m \in\{0, \ldots, M\}\right\} \\
U_{\max }^{0} & :=\max \left\{U_{i, j}^{0} \mid i \in\left\{0, \ldots, J_{x}\right\}, j \in\left\{0, \ldots, J_{y}\right\}\right\}, \\
U_{\partial}^{\max } & :=\max \left\{U_{i, j}^{m} \mid\left(x_{i}, y_{j}\right) \in \partial \Omega, m \in\{0, \ldots, M\}\right\}
\end{aligned}
$$

Convergence analysis of the θ-scheme

Suppose $(1-\theta)\left(\mu_{x}+\mu_{y}\right) \leq \frac{1}{2}$. We begin by rewriting the scheme as

$$
\begin{aligned}
&\left(1+2 \theta\left(\mu_{x}+\mu_{y}\right)\right) U_{i, j}^{m+1}=\left(1-2(1-\theta)\left(\mu_{x}+\mu_{y}\right)\right) U_{i, j}^{m} \\
& \quad+(1-\theta) \mu_{x}\left(U_{i+1, j}^{m}+U_{i-1, j}^{m}\right)+(1-\theta) \mu_{y}\left(U_{i, j+1}^{m}+U_{i, j-1}^{m}\right) \\
& \quad+\theta \mu_{x}\left(U_{i+1, j}^{m+1}+U_{i-1, j}^{m+1}\right)+\theta \mu_{y}\left(U_{i, j+1}^{m+1}+U_{i, j-1}^{m+1}\right) .
\end{aligned}
$$

We have the consistency error

$$
\begin{aligned}
T_{i, j}^{m} & :=\frac{u_{i, j}^{m+1}-u_{i, j}^{m}}{\Delta t}-(1-\theta)\left(\frac{\delta_{x}^{2} u_{i, j}^{m}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} u_{i, j}^{m}}{(\Delta y)^{2}}\right)-\theta\left(\frac{\delta_{x}^{2} u_{i, j}^{m+1}}{(\Delta x)^{2}}+\frac{\delta_{y}^{2} u_{i, j}^{m+1}}{(\Delta y)^{2}}\right) \\
& = \begin{cases}0\left((\Delta x)^{2}+(\Delta y)^{2}+(\Delta t)^{2}\right) & \text { if } \theta=1 / 2, \\
0\left((\Delta x)^{2}+(\Delta y)^{2}+\Delta t\right) & \text { if } \theta \neq 1 / 2 .\end{cases}
\end{aligned}
$$

where $u_{i, j}^{m}:=u\left(x_{i}, y_{j}, t_{m}\right)$. Observe that

$$
\begin{aligned}
\left(1+2 \theta\left(\mu_{x}+\mu_{y}\right)\right) u_{i, j}^{m+1} & =\left(1-2(1-\theta)\left(\mu_{x}+\mu_{y}\right)\right) u_{i, j}^{m} \\
& +(1-\theta) \mu_{x}\left(u_{i+1, j}^{m}+u_{i-1, j}^{m}\right)+(1-\theta) \mu_{y}\left(u_{i, j+1}^{m}+u_{i, j-1}^{m}\right) \\
& +\theta \mu_{x}\left(u_{i+1, j}^{m+1}+u_{i-1, j}^{m+1}\right)+\theta \mu_{y}\left(u_{i, j+1}^{m+1}+u_{i, j-1}^{m+1}\right) \\
& +(\Delta t) T_{i, j}^{m} .
\end{aligned}
$$

Define the global error

$$
e_{i, j}^{m}:=u\left(x_{i}, y_{j}, t_{m}\right)-U_{i, j}^{m} .
$$

Note $e_{i, j}^{0}=0 \forall i, j$, and $e_{i, j}^{m}=0 \forall\left(x_{i}, y_{j}\right) \in \partial \Omega, m \in\{1, \ldots, M\}$. We have

$$
\begin{aligned}
&\left(1+2 \theta\left(\mu_{x}+\mu_{y}\right)\right) e_{i, j}^{m+1}=\left(1-2(1-\theta)\left(\mu_{x}+\mu_{y}\right)\right) e_{i, j}^{m} \\
&+(1-\theta) \mu_{x}\left(e_{i+1, j}^{m}+e_{i-1, j}^{m}\right)+(1-\theta) \mu_{y}\left(e_{i, j+1}^{m}+e_{i, j-1}^{m}\right) \\
&+\theta \mu_{x}\left(e_{i+1, j}^{m+1}+e_{i-1, j}^{m+1}\right)+\theta \mu_{y}\left(e_{i, j+1}^{m+1}+e_{i, j-1}^{m+1}\right) \\
&+(\Delta t) T_{i, j}^{m} \\
& \quad \leq 2 \theta\left(\mu_{x}+\mu_{y}\right) E^{m+1}+E^{m}+(\Delta t) T^{m},
\end{aligned}
$$

where $E^{m}:=\max _{i, j}\left|e_{i, j}^{m}\right|$ and $T^{m}:=\max _{i, j}\left|T_{i, j}^{m}\right|$.
\Longrightarrow We find that for any $m \in\{0, \ldots, M-1\}$ there holds

$$
\left(1+2 \theta\left(\mu_{x}+\mu_{y}\right)\right) E^{m+1} \leq 2 \theta\left(\mu_{x}+\mu_{y}\right) E^{m+1}+E^{m}+(\Delta t) T^{m}
$$

Hence,

$$
E^{m+1} \leq E^{m}+(\Delta t) T^{m} \quad \forall m \in\{0, \ldots, M-1\}
$$

As $E^{0}=0$, we have

$$
\begin{aligned}
E^{m} & \leq E^{m-1}+(\Delta t) T^{m-1} \\
& \leq E^{m-2}+(\Delta t) T^{m-2}+(\Delta t) T^{m-1} \\
& \vdots \\
& \leq(\Delta t)\left(T^{0}+T^{1}+\cdots+T^{m-1}\right) \leq m(\Delta t) \max _{l \in\{0, \ldots, m-1\}} T^{l} \leq T_{l \in\{0, \ldots, M-1\}} T^{l}
\end{aligned}
$$

for any $m \in\{1, \ldots, M\}$. It follows that

$$
\begin{array}{r}
\max _{m \in\{0, \ldots, M\}} \max _{i \in\left\{0, \ldots, J_{x}\right\}, j \in\left\{0, \ldots, J_{y}\right\}}\left|e_{i, j}^{m}\right| \leq T \max _{l \in\{0, \ldots, M-1\}} T^{l} \\
= \begin{cases}0\left((\Delta x)^{2}+(\Delta y)^{2}+(\Delta t)^{2}\right) & \text { if } \theta=1 / 2, \\
0\left((\Delta x)^{2}+(\Delta y)^{2}+\Delta t\right) & \text { if } \theta \neq 1 / 2 .\end{cases}
\end{array}
$$

End of "Chapter 8: FD approximation of parabolic problems".

End of MA4255 (AY 2022/23).

Thank you for your attention! :-)

