MA4255 Numerical Methods in Differential Equations

Chapter 7: FD approximation of elliptic problems
7.1 FD approximation of an elliptic BVP in 2D: Existence and uniqueness, stability, consistency, and convergence
7.2 Nonaxiparallel domains and nonuniform meshes
7.3 The discrete maximum principle
7.4 Stability in the discrete maximum norm
7.1 FD approximation of an elliptic BVP in 2D:

Existence and uniqueness, stability, consistency, and convergence

The BVP and the mesh

Let $\Omega:=(0,1)^{2}$. We consider the BVP

$$
\begin{aligned}
-\Delta u+c u:=-\left(\partial_{x x}^{2} u+\partial_{y y}^{2} u\right)+c u & =f & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

where $f, c \in C(\bar{\Omega})$ and $c(x, y) \geq 0 \forall(x, y) \in \bar{\Omega}$. This problem has a unique weak soln $u \in H_{0}^{1}(\Omega)$. We make the assumption that $u \in C^{4}(\bar{\Omega})$.

First, define the mesh: Let $N \in \mathbb{N}_{\geq 2}$ and set $h:=\frac{1}{N}$.
The mesh-points are $\left(x_{i}, y_{j}\right):=(i h, j h)$ for $i, j \in\{0, \ldots, N\}$.
Define the set of interior mesh-points

$$
\Omega_{h}:=\left\{\left(x_{i}, y_{j}\right) \mid i, j \in\{1, \ldots, N-1\}\right\}
$$

the set of boundary mesh-points

$$
\Gamma_{h}:=\left\{\left(x_{i}, y_{j}\right) \mid i \in\{0, N\} \text { or } j \in\{0, N\}\right\},
$$

and the mesh, i.e., the set of all-mesh points,

$$
\bar{\Omega}_{h}:=\Omega_{h} \cup \Gamma_{h}=\left\{\left(x_{i}, y_{j}\right) \mid i, j \in\{0, \ldots, N\}\right\} .
$$

The five-point FD scheme

We use the second divided difference operator to approximate $\partial_{x x}^{2} u$ and $\partial_{y y}^{2} u$ in the mesh points. This yields the FD scheme

$$
\begin{aligned}
-\left(D_{x}^{+} D_{x}^{-} U_{i, j}+D_{y}^{+} D_{y}^{-} U_{i, j}\right)+c\left(x_{i}, y_{j}\right) U_{i, j} & =f\left(x_{i}, y_{j}\right) & & \text { for }\left(x_{i}, y_{j}\right) \in \Omega_{h}, \\
U & =0 & & \text { on } \Gamma_{h},
\end{aligned}
$$

or equivalently,
$-\left[\frac{U_{i+1, j}-2 U_{i, j}+U_{i-1, j}}{h^{2}}+\frac{U_{i, j+1}-2 U_{i, j}+U_{i, j-1}}{h^{2}}\right]+c\left(x_{i}, y_{j}\right) U_{i, j}=f\left(x_{i}, y_{j}\right)$ for $i, j \in\{1, \ldots, N-1\}$, and

$$
\begin{aligned}
U_{0, j} & =U_{N, j}=0 \quad \forall i \in\{0, \ldots, N\}, \\
U_{i, 0} & =U_{i, N}=0 \quad \forall j \in\{0, \ldots, N\} .
\end{aligned}
$$

For each i and j with $i, j \in\{1, \ldots, N-1\}$, the FD scheme involves five values of the approximate solution $U: U_{i, j}, U_{i-1, j}, U_{i+1, j}, U_{i, j-1}, U_{i, j+1}$, and is therefore called the five-point FD scheme.

The mesh $\Omega_{h}(\cdot)$, the boundary mesh $\Gamma_{h}(\times)$, and a typical five-point difference stencil.

The FD scheme as linear system $A U=F$

Writing $c_{i, j}:=c\left(x_{i}, y_{j}\right)$ and $F_{i, j}:=f\left(x_{i}, y_{j}\right)$, the five-point FD scheme

$$
-\left[\frac{U_{i+1, j}-2 U_{i, j}+U_{i-1, j}}{h^{2}}+\frac{U_{i, j+1}-2 U_{i, j}+U_{i, j-1}}{h^{2}}\right]+c_{i, j} U_{i, j}=F_{i, j}, \quad i, j \in\{1, \ldots, N-1\}
$$

with $U_{0, j}=U_{N, j}=U_{i, 0}=U_{i, N}=0 \forall i, j \in\{0, \ldots, N\}$, can be written as

$$
A U=\underbrace{\left[\begin{array}{ccccc}
T_{1} & -D & & & \\
-D & T_{2} & -D & & \\
& \ddots & \ddots & \ddots & \\
& & -D & T_{N-2} & -D \\
& & & -D & T_{N-1}
\end{array}\right]\left[\begin{array}{c}
U_{1,:} \\
U_{2,:} \\
\vdots \\
U_{N-2,:} \\
U_{N-1,:}
\end{array}\right]}_{=: A \in \mathbb{R}^{(N-1)^{2} \times(N-1)^{2}}}=\underbrace{\left[\begin{array}{c}
F_{1,:} \\
F_{2,:} \\
\vdots \\
F_{N-2,:} \\
F_{N-1,:}
\end{array}\right]}_{=: U \in \mathbb{R}^{(N-1)^{2}}}=F,
$$

where $U_{k,:}:=\left[\begin{array}{c}U_{k, 1} \\ \vdots \\ U_{k, N-1}\end{array}\right] \in \mathbb{R}^{N-1}, F_{k,:}:=\left[\begin{array}{c}F_{k, 1} \\ \vdots \\ F_{k, N-1}\end{array}\right] \in \mathbb{R}^{N-1}, D:=\frac{1}{h^{2}} I_{N-1}$, and

$$
T_{k}:=\left[\begin{array}{ccccc}
\frac{4}{h^{2}}+c_{k, 1} & -\frac{1}{h^{2}} & & & \\
-\frac{1}{h^{2}} & \frac{4}{h^{2}}+c_{k, 2} & -\frac{1}{h^{2}} & & \\
& \ddots & \ddots & \ddots & \\
& & -\frac{1}{h^{2}} & \frac{4}{h^{2}}+c_{k, N-2} & -\frac{1}{h^{2}} \\
& & & -\frac{1}{h^{2}} & \frac{4}{h^{2}}+c_{k, N-1}
\end{array}\right] \in \mathbb{R}^{(N-1) \times(N-1)} .
$$

The sparsity structure of the matrix $A \in \mathbb{R}^{(N-1)^{2} \times(N-1)^{2}}$ (illustration for $N=5$)
Rk: If $c>0$ in $\bar{\Omega}$, then A is strictly diagonally dominant (as then $a_{i i}>\frac{4}{h^{2}} \geq \sum_{j \neq i}\left|a_{i j}\right|$ for all i). Therefore, in this case A is invertible and the FD scheme has the unique soln $U=A^{-1} F$.

Next: Show invertibility of A under the weaker assumption $c \geq 0$ in $\bar{\Omega}$.

1. (ExUn) Proof of invertibility of A : the idea

Observe: A invertible iff the only soln to $A V=0$ is $V=0 \in \mathbb{R}^{(N-1)^{2}}$.
The argument which we develop is based on mimicking, at the discrete level, the following procedure based on integration-by-parts: (recall that $u=0$ on $\partial \Omega$, and $c(x, y) \geq 0$ for all $(x, y) \in \bar{\Omega})$

$$
\begin{aligned}
\int_{\Omega} & (-\Delta u(x, y)+c(x, y) u(x, y)) u(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{\Omega} \nabla u(x, y) \cdot \nabla u(x, y) \mathrm{d} x \mathrm{~d} y+\int_{\Omega} c(x, y)|u(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y \\
& \geq \int_{\Omega}\left(\left|\partial_{x} u(x, y)\right|^{2}+\left|\partial_{y} u(x, y)\right|^{2}\right) \mathrm{d} x \mathrm{~d} y .
\end{aligned}
$$

\Longrightarrow If $-\Delta u+c u=0$, then $\partial_{x} u=0, \partial_{y} u=0$, giving $u=0$ (by b.c.).
For two functions V and W defined on Ω_{h}, we define the inner product

$$
(V, W)_{h}:=\sum_{i=1}^{N-1} \sum_{j=1}^{N-1} h^{2} V_{i, j} W_{i, j},
$$

resembling the L^{2}-inner product $(v, w)_{L^{2}(\Omega)}:=\int_{\Omega} v(x, y) w(x, y) \mathrm{d} x \mathrm{~d} \nu$

1. (ExUn) Proof of invertibility of A : the key tool

Our key technical tool is the following summation-by-parts identity, which is the discrete counterpart of the integration-by-parts identity
$(-\Delta u, u)_{L^{2}(\Omega)}=\left(\partial_{x} u, \partial_{x} u\right)_{L^{2}(\Omega)}+\left(\partial_{y} u, \partial_{y} u\right)_{L^{2}(\Omega)}=$
$\left\|\partial_{x} u\right\|_{L^{2}(\Omega)}^{2}+\left\|\partial_{y} u\right\|_{L^{2}(\Omega)}^{2}$ satisfied by the fct u, obeying b.c. $u=0$ on $\partial \Omega$.

Lemma (summation-by-parts (2D version))

Suppose that V is a function defined on $\bar{\Omega}_{h}$ and that $V=0$ on Γ_{h}. Then, there holds

$$
\begin{aligned}
& \left(-D_{x}^{+} D_{x}^{-} V, V\right)_{h}+\left(-D_{y}^{+} D_{y}^{-} V, V\right)_{h} \\
& =\sum_{i=1}^{N} \sum_{j=1}^{N-1} h^{2}\left|D_{x}^{-} V_{i, j}\right|^{2}+\sum_{i=1}^{N-1} \sum_{j=1}^{N} h^{2}\left|D_{y}^{-} V_{i, j}\right|^{2} .
\end{aligned}
$$

(Recall $\left.(V, W)_{h}:=\sum_{i=1}^{N-1} \sum_{j=1}^{N-1} h^{2} V_{i, j} W_{i, j}.\right)$
This follows immediately from the summation-by-parts identity from Ch.6.

1. (ExUn) Proof of invertibility of A

Let $V \in \mathbb{R}^{(N-1)^{2}}$ be s.t. $A V=0$. We prove that $V=0$.
We set $\left.V\right|_{\Gamma_{h}}:=0$. Then, by summation-by-parts, and using that $c(x, y) \geq 0 \forall(x, y) \in \bar{\Omega}$, we have

$$
\begin{aligned}
0 & =\left(-D_{x}^{+} D_{x}^{-} V-D_{y}^{+} D_{y}^{-} V+c V, V\right)_{h} \\
& =\left(-D_{x}^{+} D_{x}^{-} V, V\right)_{h}+\left(-D_{y}^{+} D_{y}^{-} V, V\right)_{h}+(c V, V)_{h} \\
& =\sum_{i=1}^{N} \sum_{j=1}^{N-1} h^{2}\left|D_{x}^{-} V_{i, j}\right|^{2}+\sum_{i=1}^{N-1} \sum_{j=1}^{N} h^{2}\left|D_{y}^{-} V_{i, j}\right|^{2}+\sum_{i=1}^{N-1} \sum_{j=1}^{N-1} h^{2} c\left(x_{i}, y_{j}\right)\left|V_{i, j}\right|^{2} \\
& \geq \sum_{i=1}^{N} \sum_{j=1}^{N-1} h^{2}\left|D_{x}^{-} V_{i, j}\right|^{2}+\sum_{i=1}^{N-1} \sum_{j=1}^{N} h^{2}\left|D_{y}^{-} V_{i, j}\right|^{2} .
\end{aligned}
$$

$$
\Longrightarrow D_{x}^{-} V_{i, j}=\frac{V_{i, j}-V_{i-1, j}}{h}=0 \forall i \in\{1, \ldots, N\}, j \in\{1, \ldots, N-1\} \text { and }
$$

$$
D_{y}^{-} V_{i, j}=\frac{V_{i, j}-V_{i, j-1}}{h}=0 \forall i \in\{1, \ldots, N-1\}, j \in\{1, \ldots, N\} .
$$

$\Longrightarrow V=0$ (as $V=0$ on Γ_{h}) and hence, A is invertible.
Thus, the FD scheme has a unique solution: $U=A^{-1} F$.

2. (Stab) Stability of the FD scheme

Goal: Prove a discrete version of the stability bound

$$
\|u\|_{H^{1}(\Omega)} \leq \frac{1}{c_{0}}\|f\|_{L^{2}(\Omega)} .
$$

Recall pf:
$c_{0}\|u\|_{H^{1}(\Omega)}^{2} \leq a(u, u)=(f, u)_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)}\|u\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)}\|u\|_{H^{1}(\Omega)}$.
Define the discrete L^{2}-norm $\|\cdot\|_{h}$ and the discrete H^{1}-norm $\|\cdot\|_{1, h}$ by

$$
\begin{aligned}
\|V\|_{h} & :=\sqrt{(V, V)_{h}}=\sqrt{\sum_{i=1}^{N-1} \sum_{j=1}^{N-1} h^{2}\left|V_{i, j}\right|^{2}} \\
\|V\|_{1, h} & :=\sqrt{\left.\left.\|V\|_{h}^{2}+\| D_{x}^{-} V\right]\left.\right|_{x} ^{2}+\| D_{y}^{-} V\right]\left.\right|_{y} ^{2}}
\end{aligned}
$$

where $\| V]\left.\right|_{x}:=\sqrt{(V, V]_{x}}$ with $(V, W]_{x}:=\sum_{i=1}^{N} \sum_{j=1}^{N-1} h^{2} V_{i, j} W_{i, j}$, and $\| V]\left.\right|_{y}:=\sqrt{(V, V]_{y}}$ with $(V, W]_{y}:=\sum_{i=1}^{N-1} \sum_{j=1}^{N} h^{2} V_{i, j} W_{i, j}$.
Using this notation, we have shown on the previous slide that

$$
\left.\left.(f, U)_{h}=\left(-D_{x}^{+} D_{x}^{-} U-D_{y}^{+} D_{y}^{-} U+c U, U\right)_{h} \geq \| D_{x}^{-} U\right]\left.\right|_{x} ^{2}+\| D_{y}^{-} U\right]\left.\right|_{y} ^{2} .
$$

2. (Stab) Proof of stability of the FD scheme

Lemma (Discrete Poincaré-Friedrichs inequality (2D version))

Let V be a fct defined on $\bar{\Omega}_{h}$, and such that $V=0$ on Γ_{h}. Then, \exists a constant $c_{\star}>0$, independent of V and h, s.t., for all such V,

$$
\left.\left.\|V\|_{h}^{2} \leq\left. c_{*}\left(\| D_{x}^{-} V\right]\right|_{x} ^{2}+\| D_{y}^{-} V\right]\left.\right|_{y} ^{2}\right) .
$$

$R k$: The constant c_{\star} can be take to be $c_{\star}=\frac{1}{4}$.
$\left.\left.\Longrightarrow\|U\|_{h}^{2} \leq\left.\frac{1}{4}\left(\| D_{x}^{-} U\right]\right|_{x} ^{2}+\| D_{y}^{-} U\right]\left.\right|_{y} ^{2}\right)$. Using $\left.\left.(f, U)_{h} \geq \| D_{x}^{-} U\right]\left.\right|_{x} ^{2}+\| D_{y}^{-} U\right]\left.\right|_{y} ^{2}$, we find

$$
\begin{aligned}
\frac{4}{5}\|U\|_{1, h}^{2} & \left.\left.=\frac{4}{5}\|U\|_{h}^{2}+\left.\frac{4}{5}\left(\| D_{x}^{-} U\right]\right|_{x} ^{2}+\| D_{y}^{-} U\right]\left.\right|_{y} ^{2}\right) \\
& \left.\left.\leq \| D_{x}^{-} U\right]\left.\right|_{x} ^{2}+\| D_{y}^{-} U\right]\left.\right|_{y} ^{2} \leq(f, U)_{h}
\end{aligned}
$$

Noting that $(f, U)_{h} \leq\|f\|_{h}\|U\|_{h} \leq\|f\|_{h}\|U\|_{1, h}$, we proved that the FD scheme is stable with stability bound

$$
\|U\|_{1, h} \leq \frac{5}{4}\|f\|_{h}
$$

3. (Conv) Convergence of the FD scheme

Define the global error e by $e_{i, j}:=u\left(x_{i}, y_{j}\right)-U_{i, j}$ for $i, j \in\{0, \ldots, N\}$. Note $e=0$ on Γ_{h}. For $i, j \in\{1, \ldots, N-1\}$, we have

$$
\begin{aligned}
- & D_{x}^{+} D_{x}^{-} e_{i, j}-D_{y}^{+} D_{y}^{-} e_{i, j}+c\left(x_{i}, y_{j}\right) e_{i, j} \\
& =-D_{x}^{+} D_{x}^{-} u\left(x_{i}, y_{j}\right)-D_{y}^{+} D_{y}^{-} u\left(x_{i}, y_{j}\right)+c\left(x_{i}, y_{j}\right) u\left(x_{i}, y_{j}\right)-f\left(x_{i}, y_{j}\right) \\
& =-D_{x}^{+} D_{x}^{-} u\left(x_{i}, y_{j}\right)-D_{y}^{+} D_{y}^{-} u\left(x_{i}, y_{j}\right)+\Delta u\left(x_{i}, y_{j}\right) \\
& =\left[\partial_{x x}^{2} u\left(x_{i}, y_{j}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}, y_{j}\right)\right]+\left[\partial_{y y}^{2} u\left(x_{i}, y_{j}\right)-D_{y}^{+} D_{y}^{-} u\left(x_{i}, y_{j}\right)\right],
\end{aligned}
$$

where we have used that $f=-\Delta u+c u$. Thus,

$$
-D_{x}^{+} D_{x}^{-} e_{i, j}-D_{y}^{+} D_{y}^{-} e_{i, j}+c\left(x_{i}, y_{j}\right) e_{i, j}=\varphi_{i, j}, \quad i, j \in\{1, \ldots, N-1\}
$$

and $e=0$ on Γ_{h}, where

$$
\begin{aligned}
\varphi_{i, j} & :=-D_{x}^{+} D_{x}^{-} u\left(x_{i}, y_{j}\right)-D_{y}^{+} D_{y}^{-} u\left(x_{i}, y_{j}\right)+c\left(x_{i}, y_{j}\right) u\left(x_{i}, y_{j}\right)-f\left(x_{i}, y_{j}\right) \\
& =\left[\partial_{x x}^{2} u\left(x_{i}, y_{j}\right)-D_{x}^{+} D_{x}^{-} u\left(x_{i}, y_{j}\right)\right]+\left[\partial_{y y}^{2} u\left(x_{i}, y_{j}\right)-D_{y}^{+} D_{y}^{-} u\left(x_{i}, y_{j}\right)\right]
\end{aligned}
$$

is the consistency error (or truncation error). By the stability bound,

$$
\|u-U\|_{1, h}=\|e\|_{1, h} \leq \frac{5}{4}\|\varphi\|_{h} .
$$

\Longrightarrow It remains to estimate the term $\|\varphi\|_{h}$.

3. (Conv) Convergence of FD scheme: Pf of error bound

 Taylor expansion yields$$
\begin{aligned}
\varphi_{i, j} & =\partial_{x x}^{2} u\left(x_{i}, y_{j}\right)-\frac{u\left(x_{i+1}, y_{j}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i-1}, y_{j}\right)}{h^{2}}+\partial_{y y}^{2} u\left(x_{i}, y_{j}\right)-\frac{u\left(x_{i}, y_{j+1}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i}, y_{j-1}\right)}{h^{2}} \\
& =-\frac{h^{2}}{12}\left(\partial_{x x x x}^{4} u\left(\xi_{i}, y_{j}\right)+\partial_{y y y y}^{4} u\left(x_{i}, \eta_{j}\right)\right)
\end{aligned}
$$

for some $\xi_{i} \in\left(x_{i-1}, x_{i+1}\right), \eta_{j} \in\left(y_{j-1}, y_{j+1}\right)$. Thus,

$$
\left|\varphi_{i, j}\right| \leq \frac{h^{2}}{12}\left(\left\|\partial_{x x x x}^{4} u\right\|_{C(\bar{\Omega})}+\left\|\partial_{y y y y}^{4} u\right\|_{C(\bar{\Omega})}\right)
$$

and hence,

$$
\begin{aligned}
\|\varphi\|_{h}=\sqrt{\sum_{i=1}^{N-1} \sum_{j=1}^{N-1} h^{2}\left|\varphi_{i, j}\right|^{2}} & \leq \frac{h^{2}}{12}\left(\left\|\partial_{x x x x}^{4} u\right\|_{C(\bar{\Omega})}+\left\|\partial_{y y y y}^{4} u\right\|_{C(\bar{\Omega})}\right) \sqrt{\sum_{i=1}^{N-1} \sum_{j=1}^{N-1} h^{2}} \\
& \leq \frac{h^{2}}{12}\left(\left\|\partial_{x x x x}^{4} u\right\|_{C(\bar{\Omega})}+\left\|\partial_{y y y y}^{4} u\right\|_{C(\bar{\Omega})}\right) .
\end{aligned}
$$

(Note $(N-1) h \leq N h=1$.) Combining with $\|u-U\|_{1, h} \leq \frac{5}{4}\|\varphi\|_{h}$, we have proved the following convergence theorem/error bound:

Theorem (Convergence of the soln U of the FD scheme to the true soln u) Let $f, c \in C(\bar{\Omega})$ with $c(x, y) \geq 0 \forall(x, y) \in \bar{\Omega}$, and suppose that the unique weak soln $u \in H_{0}^{1}(\Omega)$ to the BVP satisfies $u \in C^{4}(\bar{\Omega})$. Then,

$$
\|u-U\|_{1, h} \leq \frac{5 h^{2}}{48}\left(\left\|\partial_{x x x x}^{4} u\right\|_{C(\bar{\Omega})}+\left\|\partial_{y y y y}^{4} u\right\|_{C(\bar{\Omega})}\right)=\mathcal{O}\left(h^{2}\right) .
$$

7.2 Nonaxiparallel domains and nonuniform meshes

FD approximation of more general elliptic PDE

We have carried out an error analysis of FD schemes for the PDE $-\Delta u+c u=f$ on a square domain Ω. The error analysis of FD schemes for more general elliptic equations would proceed similarly. Consider, e.g.,

$$
-\left[\partial_{x}\left(a_{1} \partial_{x} u\right)+\partial_{y}\left(a_{2} \partial_{y} u\right)\right]+b_{1} \partial_{x} u+b_{2} \partial_{y} u+c u=f
$$

on $\Omega:=(0,1)^{2}$, which we can approximate in the mesh point $\left(x_{i}, y_{j}\right)$ by

$$
\begin{aligned}
f\left(x_{i}, y_{j}\right)= & -\frac{a_{1}\left(x_{i+1 / 2}, y_{j}\right) \frac{U_{i+1, j}-U_{i, j}}{h}-a_{1}\left(x_{i-1 / 2}, y_{j}\right) \frac{U_{i, j}-U_{i-1, j}}{h}}{h} \\
& -\frac{a_{2}\left(x_{i}, y_{j+1 / 2}\right) \frac{U_{i, j+1}-U_{i, j}}{h}-a_{2}\left(x_{i}, y_{j-1 / 2}\right) \frac{U_{i, j}-U_{i, j-1}}{h}}{h} \\
& +b_{1}\left(x_{i}, y_{j}\right) \frac{U_{i+1, j}-U_{i-1, j}}{2 h}+b_{2}\left(x_{i}, y_{j}\right) \frac{U_{i, j+1}-U_{i, j-1}}{2 h} \\
& +c\left(x_{i}, y_{j}\right) U_{i, j} .
\end{aligned}
$$

This is still a five point difference scheme that is second-order consistent.

How to deal with nonaxiparallel domains?

When Ω has a curved boundary, a nonuniform mesh has to be used near $\partial \Omega$ to avoid a loss of accuracy. Let us introduce the following notation: let $h_{i+1}:=x_{i+1}-x_{i}, h_{i}:=x_{i}-x_{i-1}$, and let $\hbar_{i}:=\frac{h_{i+1}+h_{i}}{2}$. We define
$D_{x}^{+} U_{i}:=\frac{U_{i+1}-U_{i}}{\hbar_{i}}, \quad D_{x}^{-} U_{i}:=\frac{U_{i}-U_{i-1}}{h_{i}}, \quad D_{x}^{+} D_{x}^{-} U_{i}:=\frac{1}{\hbar_{i}}\left(\frac{U_{i+1}-U_{i}}{h_{i+1}}-\frac{U_{i}-U_{i-1}}{h_{i}}\right)$.
Similarly, let $k_{j+1}:=y_{j+1}-y_{j}, k_{j}:=y_{j}-y_{j-1}, k:=\frac{k_{j+1}+k_{j}}{2}$, and
$D_{y}^{+} U_{j}:=\frac{U_{j+1}-U_{j}}{\hbar_{j}}, \quad D_{y}^{-} U_{j}:=\frac{U_{j}-U_{j-1}}{k_{j}}, \quad D_{y}^{+} D_{y}^{-} U_{j}:=\frac{1}{\hbar_{j}}\left(\frac{U_{j+1}-U_{j}}{k_{j+1}}-\frac{U_{j}-U_{j-1}}{k_{j}}\right)$
Note that, whereas on a uniform mesh $D_{x}^{-} U_{i+1}=D_{x}^{+} U_{i}$ and $D_{y}^{-} U_{j+1}=D_{y}^{+} U_{j}$, on nonuniform meshes this is no longer the case. For the same reason, on a nonuniform mesh $D_{x}^{+} D_{x}^{-} U_{i} \neq D_{x}^{-} D_{x}^{+} U_{i}$ and $D_{y}^{+} D_{y}^{-} U_{j} \neq D_{y}^{-} D_{y}^{+} U_{j}$. On a general nonuniform mesh

$$
\bar{\Omega}_{h}:=\left\{\left(x_{i}, y_{j}\right) \in \bar{\Omega}: x_{i+1}-x_{i}=h_{i+1}, y_{j+1}-y_{j}=k_{j+1}\right\},
$$

the Laplace operator Δ can be approximated by $D_{x}^{+} D_{x}^{-}+D_{y}^{+} D_{y}^{-}$.

Consider, e.g., the Dirichlet problem

$$
-\Delta u=f \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega,
$$

where Ω and the nonuniform mesh $\bar{\Omega}_{h}$ are depicted below:

- $\Omega_{h} ; \odot \Gamma_{h}, \quad \bar{\Omega}_{h}=\Omega_{h} \cup \Gamma_{h}$.

The FD approximation of this BVP is

$$
\begin{aligned}
-\left(D_{x}^{+} D_{x}^{-} U_{i, j}+D_{y}^{+} D_{y}^{-} U_{i, j}\right) & =f\left(x_{i}, y_{j}\right) & & \text { in } \Omega_{h}, \\
U_{i, j} & =0 & & \text { on } \Gamma_{h},
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
-\frac{1}{\hbar_{i}}\left(\frac{U_{i+1, j}-U_{i, j}}{h_{i+1}}-\frac{U_{i, j}-U_{i-1, j}}{h_{i}}\right)-\frac{1}{k_{j}}\left(\frac{U_{i, j+1}-U_{i, j}}{k_{j+1}}-\frac{U_{i, j}-U_{i, j-1}}{k_{j}}\right) & =f\left(x_{i}, y_{j}\right) & \text { in } \Omega_{h}, \\
U_{i, j} & =0 & \text { on } \Gamma_{h} .
\end{aligned}
$$

Figure: Five-point stencil on a nonuniform mesh.
7.3 The discrete maximum principle

The BVP and the FD scheme

For given $f \in C(\Omega), g \in C(\partial \Omega)$, we consider the BVP

$$
-\Delta u=f \quad \text { in } \Omega, \quad u=g \quad \text { on } \partial \Omega,
$$

on a general nonaxiparallel domain $\Omega \subset \mathbb{R}^{2}$, and the FD scheme

$$
\begin{aligned}
-\left(D_{x}^{+} D_{x}^{-} U_{i, j}+D_{y}^{+} D_{y}^{-} U_{i, j}\right) & =f\left(x_{i}, y_{j}\right) & & \text { in } \Omega_{h}, \\
U_{i, j} & =g\left(x_{i}, y_{j}\right) & & \text { on } \Gamma_{h},
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
&-\frac{1}{\hbar_{i}}\left(\frac{U_{i+1, j}-U_{i, j}}{h_{i+1}}-\frac{U_{i, j}-U_{i-1, j}}{h_{i}}\right)-\frac{1}{k_{j}}\left(\frac{U_{i, j+1}-U_{i, j}}{k_{j+1}}-\frac{U_{i, j}-U_{i, j-1}}{k_{j}}\right)=f\left(x_{i}, y_{j}\right) \\
& \text { in } \Omega_{h}, \\
& U_{i, j}=g\left(x_{i}, y_{j}\right) \quad \text { on } \Gamma_{h},
\end{aligned}
$$

where we consider a general nonuniform mesh

$$
\bar{\Omega}_{h}=\left\{\left(x_{i}, y_{j}\right) \in \bar{\Omega}: x_{i+1}-x_{i}=h_{i+1}, y_{j+1}-y_{j}=k_{j+1}\right\} .
$$

Goal: show U satisfies a discrete counterpart of the max./min. principle.

Discrete maximum principle: Case $f<0$ in Ω_{h}

Assume $f\left(x_{i}, y_{j}\right)<0 \forall\left(x_{i}, y_{j}\right) \in \Omega_{h}$. Suppose that the maximum value of U is attained at an interior mesh point $\left(x_{i_{0}}, y_{j_{0}}\right) \in \Omega_{h}$. Rewriting the FD scheme, we see that for any $\left(x_{i}, y_{j}\right) \in \Omega_{h}$ we have
$\left(\frac{1}{h_{i}}\left(\frac{1}{h_{i+1}}+\frac{1}{h_{i}}\right)+\frac{1}{k_{j}}\left(\frac{1}{k_{j+1}}+\frac{1}{k_{j}}\right)\right) U_{i, j}=\frac{U_{i+1, j}}{h_{i} h_{i+1}}+\frac{U_{i-1, j}}{h_{i} h_{i}}+\frac{U_{i, j+1}}{k_{j} k_{j+1}}+\frac{U_{i, j-1}}{k_{j} k_{j}}+f\left(x_{i}, y_{j}\right)$.
Therefore, as $U_{i_{0} \pm 1, j_{0}} \leq U_{i_{0}, j_{0}}, U_{i_{0}, j_{0} \pm 1} \leq U_{i_{0}, j_{0}}$, and $f\left(x_{i_{0}}, y_{j_{0}}\right)<0$, $\left(\frac{1}{\hbar_{i_{0}}}\left(\frac{1}{h_{i_{0}+1}}+\frac{1}{h_{i_{0}}}\right)+\frac{1}{\kappa_{j_{0}}}\left(\frac{1}{k_{j_{0}+1}}+\frac{1}{k_{j_{0}}}\right)\right) U_{i_{0}, j_{0}}<\frac{U_{i_{0}, j_{0}}}{\hbar_{i_{0}} h_{i_{0}+1}}+\frac{U_{i_{0}, j_{0}}}{\hbar_{i_{0}} h_{i_{0}}}+\frac{U_{i_{0}, j_{0}}}{k_{j_{0}} k_{j_{0}+1}}+\frac{U_{i_{0}, j_{0}}}{\hbar_{j_{0}} k_{j_{0}}}$, a contradiction $(L H S=R H S)$.
\Longrightarrow If $f<0$ in Ω_{h}, then the maximum value of U is attained on the boundary Γ_{h} of Ω_{h}, or equivalently,

$$
\max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} U_{i, j}=\max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} U_{i, j},
$$

which is called the discrete maximum principle.

Discrete maximum principle: Case $f \leq 0$ in Ω_{h}

Now assume only $f\left(x_{i}, y_{j}\right) \leq 0 \forall\left(x_{i}, y_{j}\right) \in \Omega_{h}$. We claim that the discrete maximum principle still holds in this case.
For $\varepsilon>0$, define $V_{i, j}:=U_{i, j}+\frac{\varepsilon}{4}\left(x_{i}^{2}+y_{j}^{2}\right)$ for $\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}$. Then, $-\left(D_{x}^{+} D_{x}^{-} V_{i, j}+D_{y}^{+} D_{y}^{-} V_{i, j}\right)=-\left(D_{x}^{+} D_{x}^{-} U_{i, j}+D_{y}^{+} D_{y}^{-} U_{i, j}\right)-\varepsilon=f\left(x_{i}, y_{j}\right)-\varepsilon<0$ $\forall\left(x_{i}, y_{j}\right) \in \Omega_{h}$. Hence, $\max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} V_{i, j}=\max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} V_{i, j}$. Then,

$$
\max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} U_{i, j}=\max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}}\left[V_{i, j}-\frac{\varepsilon}{4}\left(x_{i}^{2}+y_{j}^{2}\right)\right]
$$

$$
\geq \max _{(x, y) \in \Gamma_{h}} V_{i, j}-\frac{\varepsilon}{4} \max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}}\left(x_{i}^{2}+y_{j}^{2}\right)=\max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} V_{i, j}-\frac{\varepsilon}{4} \max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}}\left(x_{i}^{2}+y_{j}^{2}\right)
$$

$$
\geq \max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} U_{i, j}-\frac{\varepsilon}{4} \max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}}\left(x_{i}^{2}+y_{j}^{2}\right) .
$$

$\varepsilon \searrow 0: \max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} U_{i, j} \geq \max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} U_{i, j}$. (Note also \leq trivially.) \Longrightarrow If $f \leq 0$ in Ω_{h}, then the discrete maximum principle holds:

$$
\max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} U_{i, j}=\max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} U_{i, j} .
$$

Discrete minimum principle when $f \geq 0$ in Ω_{h}

Assuming $f\left(x_{i}, y_{j}\right) \geq 0 \forall\left(x_{i}, y_{j}\right) \in \Omega_{h}$, we can apply the discrete maximum principle to $-U$, which yields the discrete minimum principle:

$$
\min _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} U_{i, j}=\min _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} U_{i, j} .
$$

7.4 Stability in the discrete maximum norm

Same set-up as before: The BVP and the FD scheme

 For given $f \in C(\Omega), g \in C(\partial \Omega)$, we consider the BVP$$
-\Delta u=f \quad \text { in } \Omega, \quad u=g \quad \text { on } \partial \Omega,
$$

on a general nonaxiparallel domain $\Omega \subset \mathbb{R}^{2}$, and the FD scheme

$$
\begin{aligned}
-\left(D_{x}^{+} D_{x}^{-} U_{i, j}+D_{y}^{+} D_{y}^{-} U_{i, j}\right) & =f\left(x_{i}, y_{j}\right) & & \text { in } \Omega_{h}, \\
U_{i, j} & =g\left(x_{i}, y_{j}\right) & & \text { on } \Gamma_{h},
\end{aligned}
$$

or equivalently,

where we consider a general nonuniform mesh

$$
\bar{\Omega}_{h}=\left\{\left(x_{i}, y_{j}\right) \in \bar{\Omega}: x_{i+1}-x_{i}=h_{i+1}, y_{j+1}-y_{j}=k_{j+1}\right\} .
$$

We have seen that U satisfies the discrete maximum principle (DMP):

$$
f \leq 0 \quad \text { in } \Omega_{h} \quad \Longrightarrow \quad \max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} U_{i, j}=\max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} U_{i, j}
$$

Existence \& uniqueness of solns to FD scheme via DMP

Claim: The FD scheme has a unique solution U.
Proof: We denote the total number of mesh-points in Ω_{h} by M_{h}. Then,

- the FD scheme can be written as a linear system $A U=F$ where $U \in \mathbb{R}^{M_{h}}$ (containing the values $U_{i, j}$ such that $\left.\left(x_{i}, y_{j}\right) \in \Omega_{h}\right)$, $F \in \mathbb{R}^{M_{h}}$, and $A \in \mathbb{R}^{M_{h} \times M_{h}}$.
- the FD scheme has a unique soln iff A is invertible, i.e., iff the only solution to $A V=0$ is $V=0 \in \mathbb{R}^{M_{h}}$.

Equivalently, the FD scheme has a unique soln iff

$$
\begin{align*}
-\left(D_{x}^{+} D_{x}^{-} U_{i, j}+D_{y}^{+} D_{y}^{-} U_{i, j}\right) & =0 & & \text { in } \Omega_{h} \tag{1}\\
U_{i, j} & =0 & & \text { on } \Gamma_{h}
\end{align*}
$$

only has the solution $U=0$ (i.e., $U_{i, j}=0 \forall\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}$).
By discrete max. principle \& discrete min. principle, for any soln U of (1), we have $\max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} U_{i, j}=0$ and $\min _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} U_{i, j}=0$, i.e., $U=0$.

Stability of FD scheme w.r.t. perturbation in bdry data

Consider mesh functions $U^{(1)}$ and $U^{(2)}$ satisfying

$$
\begin{array}{ll}
-\left(D_{x}^{+} D_{x}^{-} U_{i, j}^{(1)}+D_{y}^{+} D_{y}^{-} U_{i, j}^{(1)}\right)=f\left(x_{i}, y_{j}\right) \text { in } \Omega_{h}, & U_{i, j}^{(1)}=g^{(1)}\left(x_{i}, y_{j}\right) \text { on } \Gamma_{h}, \\
-\left(D_{x}^{+} D_{x}^{-} U_{i, j}^{(2)}+D_{y}^{+} D_{y}^{-} U_{i, j}^{(2)}\right)=f\left(x_{i}, y_{j}\right) \text { in } \Omega_{h}, & U_{i, j}^{(2)}=g^{(2)}\left(x_{i}, y_{j}\right) \text { on } \Gamma_{h}
\end{array}
$$

$$
\text { for given } f, g^{(1)}, g^{(2)} \text {. Let } U:=U^{(1)}-U^{(2)} \text { and } g:=g^{(1)}-g^{(2)} \text {. Then, }
$$

$$
-\left(D_{x}^{+} D_{x}^{-} U_{i, j}+D_{y}^{+} D_{y}^{-} U_{i, j}\right)=0 \text { in } \Omega_{h}, \quad U_{i, j}=g\left(x_{i}, y_{j}\right) \text { on } \Gamma_{h} .
$$

By the discrete maximum principle, we have that
$\max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} U_{i, j}=\max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} U_{i, j}=\max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} g\left(x_{i}, y_{j}\right) \leq \max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}}\left|g\left(x_{i}, y_{j}\right)\right|=: M$.
By the discrete minimum principle, we have that
$\min _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}} U_{i, j}=\min _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} U_{i, j}=\min _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}} g\left(x_{i}, y_{j}\right) \geq \min _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}}\left(-\left|g\left(x_{i}, y_{j}\right)\right|\right)=-M$.
Together: $\left|U_{i, j}\right| \leq M \forall\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}$ and thus $\max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}}\left|U_{i, j}\right| \leq M$.
Therefore, we have proved the following stability result:

$$
\max _{\left(x_{i}, y_{j}\right) \in \bar{\Omega}_{h}}\left|U_{i, j}^{(1)}-U_{i, j}^{(2)}\right| \leq \max _{\left(x_{i}, y_{j}\right) \in \Gamma_{h}}\left|g^{(1)}\left(x_{i}, y_{j}\right)-g^{(2)}\left(x_{i}, y_{j}\right)\right| .
$$

End of "Chapter 7: FD approximation of elliptic problems".

