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Chapter 7: FD approximation of elliptic problems

7.1 FD approximation of an elliptic BVP in 2D: Existence and
uniqueness, stability, consistency, and convergence

7.2 Nonaxiparallel domains and nonuniform meshes

7.3 The discrete maximum principle

7.4 Stability in the discrete maximum norm
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7.1 FD approximation of an elliptic BVP in 2D:
Existence and uniqueness, stability, consistency, and convergence
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The BVP and the mesh

Let Ω := (0, 1)2. We consider the BVP

−∆u+ cu := −(∂2
xxu+ ∂2

yyu) + cu = f in Ω,

u = 0 on ∂Ω,

where f, c ∈ C(Ω) and c(x, y) ≥ 0 ∀(x, y) ∈ Ω. This problem has a
unique weak soln u ∈ H1

0 (Ω). We make the assumption that u ∈ C4(Ω).

First, define the mesh: Let N ∈ N≥2 and set h := 1
N .

The mesh-points are (xi, yj) := (ih, jh) for i, j ∈ {0, . . . , N}.

Define the set of interior mesh-points

Ωh := {(xi, yj) | i, j ∈ {1, . . . , N − 1}},
the set of boundary mesh-points

Γh := {(xi, yj) | i ∈ {0, N} or j ∈ {0, N}},
and the mesh, i.e., the set of all-mesh points,

Ωh := Ωh ∪ Γh = {(xi, yj) | i, j ∈ {0, . . . , N}}.
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The five-point FD scheme

We use the second divided difference operator to approximate ∂2
xxu and

∂2
yyu in the mesh points. This yields the FD scheme

−(D+
xD
−
x Ui,j +D+

y D
−
y Ui,j) + c(xi, yj)Ui,j = f(xi, yj) for (xi, yj) ∈ Ωh,

U = 0 on Γh,

or equivalently,

−
[
Ui+1,j − 2Ui,j + Ui−1,j

h2
+
Ui,j+1 − 2Ui,j + Ui,j−1

h2

]
+ c(xi, yj)Ui,j = f(xi, yj)

for i, j ∈ {1, . . . , N − 1}, and

U0,j = UN,j = 0 ∀i ∈ {0, . . . , N},
Ui,0 = Ui,N = 0 ∀j ∈ {0, . . . , N}.

For each i and j with i, j ∈ {1, . . . , N − 1}, the FD scheme involves five
values of the approximate solution U : Ui,j , Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1,
and is therefore called the five-point FD scheme.
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The FD scheme as linear system AU = F
Writing ci,j := c(xi, yj) and Fi,j := f(xi, yj), the five-point FD scheme

−
[
Ui+1,j − 2Ui,j + Ui−1,j

h2
+

Ui,j+1 − 2Ui,j + Ui,j−1

h2

]
+ ci,jUi,j = Fi,j , i, j ∈ {1, . . . , N − 1}

with U0,j = UN,j = Ui,0 = Ui,N = 0 ∀i, j ∈ {0, . . . , N}, can be written as

AU =


T1 −D
−D T2 −D

. . .
. . .

. . .

−D TN−2 −D
−D TN−1


︸ ︷︷ ︸

=:A∈R(N−1)2×(N−1)2


U1,:

U2,:

...
UN−2,:

UN−1,:


︸ ︷︷ ︸
=:U∈R(N−1)2

=


F1,:

F2,:

...
FN−2,:

FN−1,:


︸ ︷︷ ︸
=:F∈R(N−1)2

= F,

where Uk,: :=

 Uk,1
...

Uk,N−1

 ∈ RN−1, Fk,: :=

 Fk,1
...

Fk,N−1

 ∈ RN−1, D := 1
h2 IN−1, and

Tk :=



4
h2 + ck,1 − 1

h2

− 1
h2

4
h2 + ck,2 − 1

h2

. . .
. . .

. . .

− 1
h2

4
h2 + ck,N−2 − 1

h2

− 1
h2

4
h2

+ ck,N−1

 ∈ R(N−1)×(N−1).
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Rk: If c > 0 in Ω, then A is strictly diagonally dominant (as then
aii >

4
h2 ≥

∑
j 6=i|aij | for all i). Therefore, in this case A is invertible and

the FD scheme has the unique soln U = A−1F .

Next: Show invertibility of A under the weaker assumption c ≥ 0 in Ω.
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1. (ExUn) Proof of invertibility of A: the idea

Observe: A invertible iff the only soln to AV = 0 is V = 0 ∈ R(N−1)2
.

The argument which we develop is based on mimicking, at the discrete
level, the following procedure based on integration-by-parts: (recall that
u = 0 on ∂Ω, and c(x, y) ≥ 0 for all (x, y) ∈ Ω)∫

Ω

(−∆u(x, y) + c(x, y)u(x, y))u(x, y) dxdy

=

∫
Ω

∇u(x, y) · ∇u(x, y) dx dy +

∫
Ω

c(x, y)|u(x, y)|2 dx dy

≥
∫

Ω

(
|∂xu(x, y)|2 + |∂yu(x, y)|2

)
dxdy.

=⇒ If −∆u+ cu = 0, then ∂xu = 0, ∂yu = 0, giving u = 0 (by b.c.).

For two functions V and W defined on Ωh, we define the inner product

(V,W )h :=
N−1∑
i=1

N−1∑
j=1

h2Vi,jWi,j ,

resembling the L2-inner product (v, w)L2(Ω) :=
∫

Ω v(x, y)w(x, y) dx dy.
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1. (ExUn) Proof of invertibility of A: the key tool

Our key technical tool is the following summation-by-parts identity, which
is the discrete counterpart of the integration-by-parts identity
(−∆u, u)L2(Ω) = (∂xu, ∂xu)L2(Ω) + (∂yu, ∂yu)L2(Ω) =
‖∂xu‖2L2(Ω) + ‖∂yu‖2L2(Ω) satisfied by the fct u, obeying b.c. u = 0 on ∂Ω.

Lemma (summation-by-parts (2D version))

Suppose that V is a function defined on Ωh and that V = 0 on Γh. Then,
there holds

(−D+
xD
−
x V, V )h + (−D+

y D
−
y V, V )h

=

N∑
i=1

N−1∑
j=1

h2|D−x Vi,j |2 +

N−1∑
i=1

N∑
j=1

h2|D−y Vi,j |2.

(Recall (V,W )h :=
∑N−1

i=1

∑N−1
j=1 h2Vi,jWi,j .)

This follows immediately from the summation-by-parts identity from Ch.6.
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1. (ExUn) Proof of invertibility of A

Let V ∈ R(N−1)2
be s.t. AV = 0. We prove that V = 0.

We set V |Γh := 0. Then, by summation-by-parts, and using that

c(x, y) ≥ 0 ∀(x, y) ∈ Ω, we have

0 = (−D+
xD
−
x V −D+

y D
−
y V + cV, V )h

= (−D+
xD
−
x V, V )h + (−D+

y D
−
y V, V )h + (cV, V )h

=

N∑
i=1

N−1∑
j=1

h2|D−x Vi,j |2 +

N−1∑
i=1

N∑
j=1

h2|D−y Vi,j |2 +

N−1∑
i=1

N−1∑
j=1

h2c(xi, yj)|Vi,j |2

≥
N∑
i=1

N−1∑
j=1

h2|D−x Vi,j |2 +

N−1∑
i=1

N∑
j=1

h2|D−y Vi,j |2.

=⇒ D−x Vi,j =
Vi,j−Vi−1,j

h = 0 ∀i ∈ {1, . . . , N}, j ∈ {1, . . . , N − 1} and

D−y Vi,j =
Vi,j−Vi,j−1

h = 0 ∀i ∈ {1, . . . , N − 1}, j ∈ {1, . . . , N}.
=⇒ V = 0 (as V = 0 on Γh) and hence, A is invertible.

Thus, the FD scheme has a unique solution: U = A−1F .
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2. (Stab) Stability of the FD scheme

Goal: Prove a discrete version of the stability bound

‖u‖H1(Ω) ≤
1

c0
‖f‖L2(Ω).

Recall pf:

c0‖u‖2H1(Ω) ≤ a(u, u) = (f, u)L2(Ω) ≤ ‖f‖L2(Ω)‖u‖L2(Ω) ≤ ‖f‖L2(Ω)‖u‖H1(Ω).

Define the discrete L2-norm ‖ · ‖h and the discrete H1-norm ‖ · ‖1,h by

‖V ‖h :=
√

(V, V )h =

√√√√N−1∑
i=1

N−1∑
j=1

h2|Vi,j |2,

‖V ‖1,h :=
√
‖V ‖2h + ‖D−x V ]|2x + ‖D−y V ]|2y,

where ‖V ]|x :=
√

(V, V ]x with (V,W ]x :=
∑N

i=1

∑N−1
j=1 h2Vi,jWi,j , and

‖V ]|y :=
√

(V, V ]y with (V,W ]y :=
∑N−1

i=1

∑N
j=1 h

2Vi,jWi,j .
Using this notation, we have shown on the previous slide that

(f, U)h = (−D+
xD
−
x U −D+

y D
−
y U + cU, U)h ≥ ‖D−x U ]|2x + ‖D−y U ]|2y.
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2. (Stab) Proof of stability of the FD scheme

Lemma (Discrete Poincaré–Friedrichs inequality (2D version))

Let V be a fct defined on Ωh, and such that V = 0 on Γh. Then, ∃ a
constant c? > 0, independent of V and h, s.t., for all such V ,

‖V ‖2h ≤ c∗
(
‖D−x V ]|2x + ‖D−y V ]|2y

)
.

Rk: The constant c? can be take to be c? = 1
4 .

=⇒ ‖U‖2h ≤ 1
4

(
‖D−x U ]|2x + ‖D−y U ]|2y

)
. Using (f, U)h ≥ ‖D−x U ]|2x + ‖D−y U ]|2y,

we find
4

5
‖U‖21,h =

4

5
‖U‖2h +

4

5

(
‖D−x U ]|2x + ‖D−y U ]|2y

)
≤ ‖D−x U ]|2x + ‖D−y U ]|2y ≤ (f, U)h.

Noting that (f, U)h ≤ ‖f‖h‖U‖h ≤ ‖f‖h‖U‖1,h, we proved that the FD
scheme is stable with stability bound

‖U‖1,h ≤
5

4
‖f‖h.
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3. (Conv) Convergence of the FD scheme

Define the global error e by ei,j := u(xi, yj)− Ui,j for i, j ∈ {0, . . . , N}.
Note e = 0 on Γh. For i, j ∈ {1, . . . , N − 1}, we have

−D+
xD
−
x ei,j −D+

y D
−
y ei,j + c(xi, yj)ei,j

= −D+
xD
−
x u(xi, yj)−D+

y D
−
y u(xi, yj) + c(xi, yj)u(xi, yj)− f(xi, yj)

= −D+
xD
−
x u(xi, yj)−D+

y D
−
y u(xi, yj) + ∆u(xi, yj)

=
[
∂2
xxu(xi, yj)−D+

xD
−
x u(xi, yj)

]
+
[
∂2
yyu(xi, yj)−D+

y D
−
y u(xi, yj)

]
,

where we have used that f = −∆u+ cu. Thus,

−D+
xD
−
x ei,j −D+

y D
−
y ei,j + c(xi, yj)ei,j = ϕi,j , i, j ∈ {1, . . . , N − 1}

and e = 0 on Γh, where

ϕi,j := −D+
xD
−
x u(xi, yj)−D+

y D
−
y u(xi, yj) + c(xi, yj)u(xi, yj)− f(xi, yj)

=
[
∂2
xxu(xi, yj)−D+

xD
−
x u(xi, yj)

]
+
[
∂2
yyu(xi, yj)−D+

y D
−
y u(xi, yj)

]
is the consistency error (or truncation error). By the stability bound,

‖u− U‖1,h = ‖e‖1,h ≤
5

4
‖ϕ‖h.

=⇒ It remains to estimate the term ‖ϕ‖h. 13 / 30



3. (Conv) Convergence of FD scheme: Pf of error bound
Taylor expansion yields

ϕi,j = ∂
2
xxu(xi, yj)−

u(xi+1, yj)−2u(xi, yj)+u(xi−1, yj)

h2
+∂

2
yyu(xi, yj)−

u(xi, yj+1)−2u(xi, yj)+u(xi, yj−1)

h2

= −
h2

12

(
∂
4
xxxxu(ξi, yj) + ∂

4
yyyyu(xi, ηj)

)

for some ξi ∈ (xi−1, xi+1), ηj ∈ (yj−1, yj+1). Thus,

|ϕi,j | ≤
h2

12

(∥∥∂4
xxxxu

∥∥
C(Ω)

+
∥∥∂4

yyyyu
∥∥
C(Ω)

)
,

and hence,

‖ϕ‖h =

√√√√N−1∑
i=1

N−1∑
j=1

h2|ϕi,j |2 ≤
h2

12

(∥∥∂4
xxxxu

∥∥
C(Ω)

+
∥∥∂4

yyyyu
∥∥
C(Ω)

)√√√√N−1∑
i=1

N−1∑
j=1

h2

≤ h2

12

(∥∥∂4
xxxxu

∥∥
C(Ω)

+
∥∥∂4

yyyyu
∥∥
C(Ω)

)
.

(Note (N − 1)h ≤ Nh = 1.) Combining with ‖u− U‖1,h ≤ 5
4‖ϕ‖h, we

have proved the following convergence theorem/error bound:
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Theorem (Convergence of the soln U of the FD scheme to the true soln u)

Let f, c ∈ C(Ω) with c(x, y) ≥ 0 ∀(x, y) ∈ Ω, and suppose that the unique
weak soln u ∈ H1

0 (Ω) to the BVP satisfies u ∈ C4(Ω). Then,

‖u− U‖1,h ≤
5h2

48

(∥∥∂4
xxxxu

∥∥
C(Ω)

+
∥∥∂4

yyyyu
∥∥
C(Ω)

)
= O(h2).
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7.2 Nonaxiparallel domains and nonuniform meshes
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FD approximation of more general elliptic PDE

We have carried out an error analysis of FD schemes for the PDE
−∆u+ cu = f on a square domain Ω. The error analysis of FD schemes
for more general elliptic equations would proceed similarly. Consider, e.g.,

− [∂x(a1∂xu) + ∂y(a2∂yu)]+b1∂xu+ b2∂yu+cu = f

on Ω := (0, 1)2, which we can approximate in the mesh point (xi, yj) by

f(xi, yj) = −
a1(xi+1/2, yj)

Ui+1,j−Ui,j
h − a1(xi−1/2, yj)

Ui,j−Ui−1,j

h

h

−
a2(xi, yj+1/2)

Ui,j+1−Ui,j
h − a2(xi, yj−1/2)

Ui,j−Ui,j−1

h

h

+b1(xi, yj)
Ui+1,j − Ui−1,j

2h
+ b2(xi, yj)

Ui,j+1 − Ui,j−1

2h
+c(xi, yj)Ui,j .

This is still a five point difference scheme that is second-order consistent.
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How to deal with nonaxiparallel domains?
When Ω has a curved boundary, a nonuniform mesh has to be used near
∂Ω to avoid a loss of accuracy. Let us introduce the following notation:

let hi+1 := xi+1 − xi, hi := xi − xi−1, and let ~i := hi+1+hi
2 . We define

D+
x Ui :=

Ui+1 − Ui

~i
, D−x Ui :=

Ui − Ui−1

hi
, D+

x D−x Ui :=
1

~i

(
Ui+1 − Ui

hi+1
−

Ui − Ui−1

hi

)
.

Similarly, let kj+1 := yj+1 − yj , kj := yj − yj−1, k :=
kj+1+kj

2 , and

D+
y Uj :=

Uj+1 − Uj

kj
, D−y Uj :=

Uj − Uj−1

kj
, D+

y D−y Uj :=
1

kj

(
Uj+1 − Uj

kj+1
−

Uj − Uj−1

kj

)
.

Note that, whereas on a uniform mesh D−x Ui+1 = D+
x Ui and

D−y Uj+1 = D+
y Uj , on nonuniform meshes this is no longer the case. For

the same reason, on a nonuniform mesh D+
xD
−
x Ui 6= D−xD

+
x Ui and

D+
y D
−
y Uj 6= D−y D

+
y Uj . On a general nonuniform mesh

Ωh := {(xi, yj) ∈ Ω : xi+1 − xi = hi+1, yj+1 − yj = kj+1},

the Laplace operator ∆ can be approximated by D+
xD
−
x +D+

y D
−
y .
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Consider, e.g., the Dirichlet problem

−∆u = f in Ω, u = 0 on ∂Ω,

where Ω and the nonuniform mesh Ωh are depicted below:

The FD approximation of this BVP is

−(D+
xD
−
x Ui,j +D+

y D
−
y Ui,j) = f(xi, yj) in Ωh,

Ui,j = 0 on Γh,

or equivalently,

−
1

~i

(
Ui+1,j − Ui,j

hi+1

−
Ui,j − Ui−1,j

hi

)
−

1

kj

(
Ui,j+1 − Ui,j

kj+1

−
Ui,j − Ui,j−1

kj

)
= f(xi, yj) in Ωh,

Ui,j = 0 on Γh.
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Figure: Five-point stencil on a nonuniform mesh.
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7.3 The discrete maximum principle
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The BVP and the FD scheme

For given f ∈ C(Ω), g ∈ C(∂Ω), we consider the BVP

−∆u = f in Ω, u = g on ∂Ω,

on a general nonaxiparallel domain Ω ⊂ R2, and the FD scheme

−(D+
xD
−
x Ui,j +D+

y D
−
y Ui,j) = f(xi, yj) in Ωh,

Ui,j = g(xi, yj) on Γh,

or equivalently,

−
1

~i

(
Ui+1,j − Ui,j

hi+1

−
Ui,j − Ui−1,j

hi

)
−

1

kj

(
Ui,j+1 − Ui,j

kj+1

−
Ui,j − Ui,j−1

kj

)
= f(xi, yj) in Ωh,

Ui,j = g(xi, yj) on Γh,

where we consider a general nonuniform mesh

Ωh = {(xi, yj) ∈ Ω : xi+1 − xi = hi+1, yj+1 − yj = kj+1}.

Goal: show U satisfies a discrete counterpart of the max./min. principle.
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Discrete maximum principle: Case f < 0 in Ωh

Assume f(xi, yj) < 0 ∀(xi, yj) ∈ Ωh. Suppose that the maximum value of
U is attained at an interior mesh point (xi0 , yj0) ∈ Ωh. Rewriting the FD
scheme, we see that for any (xi, yj) ∈ Ωh we have(

1

~i

(
1

hi+1
+

1

hi

)
+

1

kj

(
1

kj+1
+

1

kj

))
Ui,j =

Ui+1,j

~i hi+1
+

Ui−1,j

~i hi
+

Ui,j+1

kj kj+1
+

Ui,j−1

kj kj
+f(xi, yj).

Therefore, as Ui0±1,j0 ≤ Ui0,j0 , Ui0,j0±1 ≤ Ui0,j0 , and f(xi0 , yj0) < 0,(
1

~i0

(
1

hi0+1
+

1

hi0

)
+

1

kj0

(
1

kj0+1
+

1

kj0

))
Ui0,j0 <

Ui0,j0
~i0 hi0+1

+
Ui0,j0
~i0 hi0

+
Ui0,j0

kj0 kj0+1
+

Ui0,j0
kj0 kj0

,

a contradiction (LHS = RHS).

=⇒ If f < 0 in Ωh, then the maximum value of U is attained on the
boundary Γh of Ωh, or equivalently,

max
(xi,yj)∈Ωh

Ui,j = max
(xi,yj)∈Γh

Ui,j ,

which is called the discrete maximum principle.
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Discrete maximum principle: Case f ≤ 0 in Ωh

Now assume only f(xi, yj) ≤ 0 ∀(xi, yj) ∈ Ωh. We claim that the discrete
maximum principle still holds in this case.

For ε > 0, define Vi,j := Ui,j + ε
4(x2

i + y2
j ) for (xi, yj) ∈ Ωh. Then,

−(D+
xD
−
x Vi,j+D+

y D
−
y Vi,j) = −(D+

xD
−
x Ui,j+D+

y D
−
y Ui,j)−ε = f(xi, yj)−ε < 0

∀(xi, yj) ∈ Ωh. Hence, max(xi,yj)∈Ωh
Vi,j = max(xi,yj)∈Γh Vi,j . Then,

max
(xi,yj)∈Γh

Ui,j = max
(xi,yj)∈Γh

[
Vi,j −

ε

4
(x2

i + y2
j )
]

≥ max
(x,y)∈Γh

Vi,j −
ε

4
max

(xi,yj)∈Γh

(x2
i + y2

j ) = max
(xi,yj)∈Ωh

Vi,j −
ε

4
max

(xi,yj)∈Γh

(x2
i + y2

j )

≥ max
(xi,yj)∈Ωh

Ui,j −
ε

4
max

(xi,yj)∈Γh

(x2
i + y2

j ).

ε↘ 0: max(xi,yj)∈Γh Ui,j ≥ max(xi,yj)∈Ωh
Ui,j . (Note also ≤ trivially.)

=⇒ If f ≤ 0 in Ωh, then the discrete maximum principle holds:

max
(xi,yj)∈Ωh

Ui,j = max
(xi,yj)∈Γh

Ui,j .
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Discrete minimum principle when f ≥ 0 in Ωh

Assuming f(xi, yj) ≥ 0 ∀(xi, yj) ∈ Ωh, we can apply the discrete
maximum principle to −U , which yields the discrete minimum principle:

min
(xi,yj)∈Ωh

Ui,j = min
(xi,yj)∈Γh

Ui,j .
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7.4 Stability in the discrete maximum norm
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Same set-up as before: The BVP and the FD scheme

For given f ∈ C(Ω), g ∈ C(∂Ω), we consider the BVP

−∆u = f in Ω, u = g on ∂Ω,

on a general nonaxiparallel domain Ω ⊂ R2, and the FD scheme

−(D+
xD
−
x Ui,j +D+

y D
−
y Ui,j) = f(xi, yj) in Ωh,

Ui,j = g(xi, yj) on Γh,

or equivalently,

−
1

~i

(
Ui+1,j − Ui,j

hi+1

−
Ui,j − Ui−1,j

hi

)
−

1

kj

(
Ui,j+1 − Ui,j

kj+1

−
Ui,j − Ui,j−1

kj

)
= f(xi, yj) in Ωh,

Ui,j = g(xi, yj) on Γh,

where we consider a general nonuniform mesh

Ωh = {(xi, yj) ∈ Ω : xi+1 − xi = hi+1, yj+1 − yj = kj+1}.

We have seen that U satisfies the discrete maximum principle (DMP):

f ≤ 0 in Ωh =⇒ max
(xi,yj)∈Ωh

Ui,j = max
(xi,yj)∈Γh

Ui,j .
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Existence & uniqueness of solns to FD scheme via DMP

Claim: The FD scheme has a unique solution U .

Proof: We denote the total number of mesh-points in Ωh by Mh. Then,

the FD scheme can be written as a linear system AU = F where
U ∈ RMh (containing the values Ui,j such that (xi, yj) ∈ Ωh),
F ∈ RMh , and A ∈ RMh×Mh .

the FD scheme has a unique soln iff A is invertible, i.e., iff the only
solution to AV = 0 is V = 0 ∈ RMh .

Equivalently, the FD scheme has a unique soln iff

−(D+
xD
−
x Ui,j +D+

y D
−
y Ui,j) = 0 in Ωh,

Ui,j = 0 on Γh

(1)

only has the solution U = 0 (i.e., Ui,j = 0 ∀(xi, yj) ∈ Ωh).

By discrete max. principle & discrete min. principle, for any soln U of (1),
we have max(xi,yj)∈Ωh

Ui,j = 0 and min(xi,yj)∈Ωh
Ui,j = 0, i.e., U = 0.
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Stability of FD scheme w.r.t. perturbation in bdry data

Consider mesh functions U (1) and U (2) satisfying

−(D+
xD
−
x U

(1)
i,j +D+

y D
−
y U

(1)
i,j ) = f(xi, yj) in Ωh, U

(1)
i,j = g(1)(xi, yj) on Γh,

−(D+
xD
−
x U

(2)
i,j +D+

y D
−
y U

(2)
i,j ) = f(xi, yj) in Ωh, U

(2)
i,j = g(2)(xi, yj) on Γh

for given f, g(1), g(2). Let U := U (1) − U (2) and g := g(1) − g(2). Then,

−(D+
xD
−
x Ui,j +D+

y D
−
y Ui,j) = 0 in Ωh, Ui,j = g(xi, yj) on Γh.

By the discrete maximum principle, we have that

max
(xi,yj)∈Ωh

Ui,j = max
(xi,yj)∈Γh

Ui,j = max
(xi,yj)∈Γh

g(xi, yj) ≤ max
(xi,yj)∈Γh

|g(xi, yj)| =: M.

By the discrete minimum principle, we have that

min
(xi,yj)∈Ωh

Ui,j = min
(xi,yj)∈Γh

Ui,j = min
(xi,yj)∈Γh

g(xi, yj)≥ min
(xi,yj)∈Γh

(−|g(xi, yj)|)=−M.

Together: |Ui,j | ≤M ∀(xi, yj) ∈ Ωh and thus max(xi,yj)∈Ωh
|Ui,j | ≤M .

Therefore, we have proved the following stability result:

max
(xi,yj)∈Ωh

|U (1)
i,j − U

(2)
i,j | ≤ max

(xi,yj)∈Γh
|g(1)(xi, yj)− g(2)(xi, yj)|.
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End of “Chapter 7: FD approximation of elliptic problems”.
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