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5.1 Spaces of continuous functions
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Multi-index notation

An n-tuple α = (α1, . . . , αn) ∈ Nn0 is called a multi-index.

|α| := α1 + · · ·+ αn is called the length of the multi-index α.

We define

Dα :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
=

∂|α|

∂xα1
1 · · · ∂x

αn
n

=: ∂
|α|
x1 . . . x1︸ ︷︷ ︸
α1 times

......xn . . . xn︸ ︷︷ ︸
αn times

.

Example. Let u : R3 → R, u(x) := u(x1, x2, x3) := x3
1x

3
2x

3
3. Then,

For α := (1, 2, 3) have Dαu(x) = ∂6
x1x2x2x3x3x3

u(x) = 108x2
1x2.

For α := (0, 1, 0) have Dαu(x) = ∂x2u(x) = 3x3
1x

2
2x

3
3.

For α := (2, 0, 0) have Dαu(x) = ∂2
x1x1

u(x) = 6x1x
3
2x

3
3.

We have
∑

α∈N3
0,

|α|=3

Dαu = ∂3
x1x1x1

u+ ∂3
x1x1x2

u+ ∂3
x1x1x3

u+ ∂3
x1x2x2

u+

∂3
x1x3x3

u+ ∂3
x2x2x2

u+ ∂3
x1x2x3

u+ ∂3
x2x2x3

u+ ∂3
x2x3x3

u+ ∂3
x3x3x3

u.
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The spaces Ck(Ω) and Ck(Ω)

• Let Ω ⊆ Rn be open, k ∈ N0. We define (“cts”:=“continuous”)

Ck(Ω) := {u : Ω→ R|Dαu is cts on Ω for any α ∈ Nn0 with |α| ≤ k}.

• Let Ω ⊆ Rn be open and bounded, k ∈ N0. We define Ck(Ω) to be the
set of all fcts u in Ck(Ω) for which Dαu can be extended from Ω to a cts
fct on Ω (the closure of Ω) for all α ∈ Nn0 with |α| ≤ k.

• We write C(Ω) := C0(Ω) and C(Ω) := C0(Ω).

• We write C∞(Ω) :=
⋂∞
k=0C

k(Ω) and C∞(Ω) :=
⋂∞
k=0C

k(Ω).

• The space Ck(Ω) is equipped with the norm

‖u‖Ck(Ω) :=
∑
|α|≤k

sup
x∈Ω
|Dαu(x)| =

∑
|α|≤k

max
x∈Ω
|Dαu(x)| for u ∈ Ck(Ω).

‖u‖C(Ω) = supx∈Ω|u(x)|,

‖u‖C1(Ω) = supx∈Ω|u(x)|+
∑n

j=1 supx∈Ω|∂xju(x)|,
‖u‖C2(Ω) = supx∈Ω|u(x)|+

∑n
j=1 supx∈Ω|∂xju(x)|+

∑n
i,j=1 supx∈Ω|∂2

xixj
u(x)|.
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Examples

• Let Ω := (0, 1). Define u : Ω→ R, u(x) := 1
x . Then,

u ∈ Ck(Ω)\Ck(Ω) ∀k ∈ N0.

• Let Ω := (−1, 1). Define u : Ω→ R,

u(x) :=

{
0 , if x ∈ (−1, 0)

x2 , if x ∈ [0, 1).

Then, u ∈ C1(Ω) (in particular also u ∈ C(Ω), u ∈ C1(Ω), u ∈ C(Ω)),
but u 6∈ Ck(Ω) ∀k ≥ 2 (in particular also u 6∈ Ck(Ω) ∀k ≥ 2). We have

‖u‖C(Ω̄) = sup
x∈Ω
|u(x)| = 1,

‖u‖C1(Ω) = sup
x∈Ω
|u(x)|+ sup

x∈Ω
|u′(x)| = 1 + 2 = 3.
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The spaces Ck
c (Ω)

The support of a function u ∈ C(Ω), denoted supp(u), is defined as the
closure in Ω of the set {x ∈ Ω : u(x) 6= 0}, i.e.,

supp(u) := {x ∈ Ω : u(x) 6= 0}.

Rk: supp(u) is smallest closed subset of Ω s.t. u(x) = 0 ∀x ∈ Ω\supp(u).

For Ω ⊆ Rn open, and k ∈ N0, we define

Ckc (Ω) := {u ∈ Ck(Ω)
∣∣∣ supp(u) ⊂ Ω and supp(u) is compact}

= {u ∈ Ck(Ω)
∣∣∣ supp(u) ⊂ Ω and supp(u) is bounded},

and write Cc(Ω) := C0
c (Ω) and C∞c (Ω) :=

⋂∞
k=0C

k
c (Ω).

Ex: Consider the fct u : Rn → R given by

u(x) :=

{
e
− 1

1−|x|2 , if |x| < 1,

0, if |x| ≥ 1,

[
here, |x| :=

√
x2

1 + · · ·+ x2
n.

]
Then, supp(u) = {x ∈ Rn : |x| ≤ 1}. There holds u ∈ C∞c (Rn).
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5.2 Spaces of integrable functions
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The spaces Lp(Ω)

• Let Ω ⊆ Rn be open, p ∈ [1,∞). We define Lp(Ω) to be the set of all
(measurable) fcts u : Ω→ R for which∫

Ω
|u(x)|p dx <∞.

Functions which are equal almost everywhere (a.e.) on Ω (i.e., equal,
except on a set of measure zero) are identified with each other.

• The space Lp(Ω) is equipped with the norm

‖u‖Lp(Ω) :=

(∫
Ω
|u(x)|p dx

) 1
p

for u ∈ Lp(Ω).

• Case p = 2: then, ‖u‖L2(Ω) =
√∫

Ω|u(x)|2 dx. The space L2(Ω) is

equipped with the inner product

(u, v)L2(Ω) :=

∫
Ω
u(x)v(x) dx for u, v ∈ L2(Ω).

Then, ‖u‖L2(Ω) =
√

(u, u)L2(Ω).
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Cauchy–Schwarz and triangle inequalities

Lemma (Cauchy–Schwarz inequality)

Let u, v ∈ L2(Ω). Then,
∣∣(u, v)L2(Ω)

∣∣ ≤ ‖u‖L2(Ω)‖v‖L2(Ω).

Proof: We have that

0 ≤ ‖tv + u‖2L2(Ω) = ‖v‖2L2(Ω)t
2 + 2(u, v)L2(Ω)t+ ‖u‖2L2(Ω) ∀t ∈ R.

=⇒ |2(u, v)L2(Ω)|2 − 4‖u‖2L2(Ω)‖v‖
2
L2(Ω) ≤ 0. 2

Corollary (Triangle inequality)

Let u, v ∈ L2(Ω). Then, ‖u+ v‖L2(Ω) ≤ ‖u‖L2(Ω) + ‖v‖L2(Ω).

Proof: Using the Cauchy–Schwarz inequality, we have that

‖u+ v‖2L2(Ω) = ‖u‖2L2(Ω) + 2(u, v)L2(Ω) + ‖v‖2L2(Ω)

≤ ‖u‖2L2(Ω) + 2‖u‖L2(Ω)‖v‖L2(Ω) + ‖v‖2L2(Ω) = (‖u‖L2(Ω) + ‖v‖L2(Ω))
2. 2
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The space L2(Ω) is a Hilbert space

The space L2(Ω) equipped with the inner product

(u, v)L2(Ω) :=

∫
Ω
u(x)v(x) dx for u, v ∈ L2(Ω),

and the associated norm ‖u‖L2(Ω) =
√

(u, u)L2(Ω) is a Hilbert space.

Recall: a vector space X equipped with an inner product (·, ·)X and
associated norm ‖u‖X :=

√
(u, u)X is called a Hilbert space iff for any

Cauchy sequence (um)m∈N ⊂ X (limn,m→∞ ‖un − um‖X = 0), there
exists u ∈ X s.t. limm→∞ ‖um − u‖X = 0.
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5.3 Sobolev spaces
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Motivation: An integration-by-parts formula

Observe: Let u ∈ Ck(Ω). Then, for any v ∈ C∞c (Ω) we have that∫
Ω
Dαu(x) v(x) dx = (−1)|α|

∫
Ω
u(x)Dαv(x) dx ∀α : |α| ≤ k.

This follows from the fact that by the divergence theorem,∫
Ω

(∂xiu(x)) v(x) dx = −
∫

Ω
u(x) ∂xiv(x) dx+

∫
Ω
∂xi(u(x)v(x)) dx

= −
∫

Ω
u(x) ∂xiv(x) dx+

∫
Ω

div(u(x)v(x)ei) dx

= −
∫

Ω
u(x) ∂xiv(x) dx+

∫
∂Ω
u(x)v(x)ei · ν ds(x)

= −
∫

Ω
u(x) ∂xiv(x) dx+

∫
∂Ω
u(x)v(x)νi ds(x),

where ν is the unit outward normal vector to the boundary ∂Ω of Ω. Note
that the boundary integral vanishes for v ∈ C∞c (Ω), i.e.,∫

Ω
(∂xiu(x)) v(x) dx = −

∫
Ω
u(x) ∂xiv(x) dx ∀v ∈ C∞c (Ω).

12 / 18



Weak derivatives

Suppose that u ∈ L1
loc(Ω), that is, u ∈ L1(ω) for each bounded open set

ω with ω ⊂ Ω. Suppose also that there exists a fct wα ∈ L1
loc(Ω) s.t.∫

Ω
wα(x) v(x) dx = (−1)|α|

∫
Ω
u(x)Dαv(x) dx ∀ v ∈ C∞c (Ω).

Then we call wα a weak derivative of u of order |α| and write

wα = Dαu.

If u is a smooth function then its weak derivatives coincide with those in
the classical (pointwise) sense. To simplify the notation, we use the letter
D to denote both a classical and a weak derivative.
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Example

Let Ω := R, and consider the function

u : Ω→ R, u(x) := max{1− |x|, 0}.
Note that u is not differentiable in the classical sense. However, we will
show that it has a weak derivative. Indeed, for any v ∈ C∞c (Ω) we have∫ ∞

−∞
u(x) v′(x) dx =

∫ 0

−1
(1 + x) v′(x) dx+

∫ 1

0

(1− x) v′(x) dx

= −
∫ 0

−1
v(x) dx+ [(1 + x)v(x)]

x=0
x=−1 +

∫ 1

0

v(x) dx+ [(1− x)v(x)]
x=1
x=0

= −
(∫ 0

−1
v(x) dx−

∫ 1

0

v(x) dx

)
= −

∫ ∞
−∞

w(x) v(x) dx,

where

w(x) =


0, x < −1,
1, x ∈ (−1, 0),
−1, x ∈ (0, 1),

0, x > 1.

The fct w is the first weak derivative of u, and we write u′ = w.
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The Sobolev spaces Hk(Ω)

Let Ω ⊆ Rn be open, k ∈ N0. We define the Sobolev space

Hk(Ω) := {u ∈ L2(Ω)
∣∣Dαu ∈ L2(Ω) ∀α : |α| ≤ k},

where derivatives are understood in the weak sense. It is equipped with
the norm ‖ · ‖Hk(Ω) and inner product (·, ·)Hk(Ω) given by

‖u‖Hk(Ω) :=

√∑
|α|≤k

‖Dαu‖2
L2(Ω)

, (u, v)Hk(Ω) :=
∑
|α|≤k

(Dαu,Dαv)L2(Ω)

for u, v ∈ Hk(Ω). The space Hk(Ω) is a Hilbert space. Note that

‖u‖Hk(Ω) =

√√√√ k∑
j=0

|u|2
Hj(Ω)

, where |u|Hj(Ω) :=

√∑
|α|=j

‖Dαu‖2
L2(Ω)

for u ∈ Hk(Ω). The map u 7→ |u|Hj(Ω) is called the Hj(Ω)-seminorm.

15 / 18



Most frequently used Sobolev spaces: H1(Ω) and H2(Ω)

Of particular importance are the Sobolev spaces

H1(Ω) :=
{
u ∈ L2(Ω)

∣∣ ∂xju ∈ L2(Ω) ∀j ∈ {1, . . . , n}
}
,

H2(Ω) :=
{
u ∈ L2(Ω)

∣∣ ∂xju ∈ L2(Ω), ∂2
xixju ∈ L

2(Ω) ∀i, j ∈ {1, . . . , n}
}
.

The H1(Ω)-norm ‖ · ‖H1(Ω) and the H1(Ω)-seminorm | · |H1(Ω) are given by

‖u‖H1(Ω) :=

√√√√‖u‖2
L2(Ω)

+

n∑
j=1

‖∂xju‖2L2(Ω)
, |u|H1(Ω) :=

√√√√ n∑
j=1

‖∂xju‖2L2(Ω)
.

The H2(Ω)-norm ‖ · ‖H2(Ω) and the H2(Ω)-seminorm | · |H2(Ω) are given by

‖u‖H2(Ω) :=

√√√√‖u‖2
L2(Ω)

+

n∑
j=1

‖∂xju‖2L2(Ω)
+

n∑
i,j=1

‖∂2
xixju‖

2
L2(Ω)

,

|u|H2(Ω) :=

√√√√ n∑
i,j=1

‖∂2
xixju‖

2
L2(Ω)

.
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The Sobolev space H1
0(Ω) & Poincaré–Friedrichs inequality

Finally, we define a special Sobolev space:

H1
0 (Ω) := {u ∈ H1(Ω)

∣∣u = 0 on ∂Ω}.

We will use this space when considering a PDE that is coupled with the
boundary condition u = 0 on ∂Ω. The space H1

0 (Ω) is a Hilbert space,
with the same norm and inner product as H1(Ω).

Lemma (Poincaré–Friedrichs inequality)

Let Ω ⊂ Rn be open and bounded (and assume ∂Ω is sufficiently smooth).
Then, there exists a constant c? > 0, depending only on Ω, s.t.

‖u‖2L2(Ω) ≤ c?
n∑
i=1

‖∂xiu‖2L2(Ω) ∀u ∈ H1
0 (Ω).
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End of “Chapter 5: Function Spaces”.
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