MA4255 Numerical Methods in Differential Equations

Chapter 5: Function Spaces

- 5.1 Spaces of continuous functions
- 5.2 Spaces of integrable functions
- 5.3 Sobolev spaces

5.1 Spaces of continuous functions

Multi-index notation

An *n*-tuple $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$ is called a **multi-index**.

- $|\alpha| := \alpha_1 + \cdots + \alpha_n$ is called the **length** of the multi-index α .
- We define

$$D^{\alpha} := \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} \\ =: \partial_{\underbrace{x_1 \cdots x_1}_{\alpha_1 \text{ times}} \cdots \underbrace{x_n \cdots x_n}_{\alpha_n \text{ times}}}.$$

Example. Let $u : \mathbb{R}^3 \to \mathbb{R}$, $u(x) := u(x_1, x_2, x_3) := x_1^3 x_2^3 x_3^3$. Then,

- For $\alpha := (1,2,3)$ have $D^{\alpha}u(x) = \partial^6_{x_1x_2x_2x_3x_3x_3}u(x) = 108x_1^2x_2.$
- For $\alpha := (0, 1, 0)$ have $D^{\alpha}u(x) = \partial_{x_2}u(x) = 3x_1^3x_2^2x_3^3$.

• For
$$\alpha := (2,0,0)$$
 have $D^{\alpha}u(x) = \partial_{x_1x_1}^2 u(x) = 6x_1 x_2^3 x_3^3$.

The spaces $C^k(\Omega)$ and $C^k(\overline{\Omega})$

- Let $\Omega \subseteq \mathbb{R}^n$ be open, $k \in \mathbb{N}_0$. We define ("cts":="continuous") $C^k(\Omega) := \{ u : \Omega \to \mathbb{R} | D^{\alpha}u \text{ is cts on } \Omega \text{ for any } \alpha \in \mathbb{N}_0^n \text{ with } |\alpha| \le k \}.$
- Let $\Omega \subseteq \mathbb{R}^n$ be open and bounded, $k \in \mathbb{N}_0$. We define $C^k(\overline{\Omega})$ to be the set of all fcts u in $C^k(\Omega)$ for which $D^{\alpha}u$ can be extended from Ω to a cts fct on $\overline{\Omega}$ (the closure of Ω) for all $\alpha \in \mathbb{N}_0^n$ with $|\alpha| \leq k$.
- We write $C(\Omega) := C^0(\Omega)$ and $C(\overline{\Omega}) := C^0(\overline{\Omega})$.
- We write $C^{\infty}(\Omega) := \bigcap_{k=0}^{\infty} C^k(\Omega)$ and $C^{\infty}(\overline{\Omega}) := \bigcap_{k=0}^{\infty} C^k(\overline{\Omega})$.
- The space $C^k(\overline{\Omega})$ is equipped with the norm

 $\|u\|_{C^k(\overline{\Omega})}:=\sum_{|\alpha|\leq k}\sup_{x\in\Omega}|D^\alpha u(x)|=\sum_{|\alpha|\leq k}\max_{x\in\overline{\Omega}}|D^\alpha u(x)|\quad\text{for }u\in C^k(\overline{\Omega}).$

•
$$||u||_{C(\overline{\Omega})} = \sup_{x \in \Omega} |u(x)|,$$

- $||u||_{C^1(\overline{\Omega})} = \sup_{x \in \Omega} |u(x)| + \sum_{j=1}^n \sup_{x \in \Omega} |\partial_{x_j} u(x)|,$
- $\|u\|_{C^2(\overline{\Omega})} = \sup_{x \in \Omega} |u(x)| + \sum_{j=1}^n \sup_{x \in \Omega} |\partial_{x_j} u(x)| + \sum_{i,j=1}^n \sup_{x \in \Omega} |\partial_{x_i x_j}^2 u(x)|.$

Examples

• Let $\Omega:=(0,1).$ Define $u:\Omega\to\mathbb{R}$, $u(x):=\frac{1}{x}.$ Then,

 $u \in C^k(\Omega) \setminus C^k(\overline{\Omega}) \qquad \forall k \in \mathbb{N}_0.$

• Let $\Omega := (-1, 1)$. Define $u : \Omega \to \mathbb{R}$,

$$u(x) := \begin{cases} 0 & \text{, if } x \in (-1, 0) \\ x^2 & \text{, if } x \in [0, 1). \end{cases}$$

Then, $u \in C^1(\overline{\Omega})$ (in particular also $u \in C(\overline{\Omega})$, $u \in C^1(\Omega)$, $u \in C(\Omega)$), but $u \notin C^k(\Omega) \ \forall k \ge 2$ (in particular also $u \notin C^k(\overline{\Omega}) \ \forall k \ge 2$). We have

$$||u||_{C(\bar{\Omega})} = \sup_{x \in \Omega} |u(x)| = 1,$$

$$||u||_{C^{1}(\bar{\Omega})} = \sup_{x \in \Omega} |u(x)| + \sup_{x \in \Omega} |u'(x)| = 1 + 2 = 3.$$

The spaces $C_c^k(\Omega)$

The **support** of a function $u \in C(\Omega)$, denoted supp(u), is defined as the closure in Ω of the set $\{x \in \Omega : u(x) \neq 0\}$, i.e.,

 $\mathrm{supp}(u):=\overline{\{x\in\Omega:u(x)\neq 0\}}.$

Rk: $\operatorname{supp}(u)$ is smallest closed subset of Ω s.t. $u(x) = 0 \ \forall x \in \Omega \setminus \operatorname{supp}(u)$. For $\Omega \subseteq \mathbb{R}^n$ open, and $k \in \mathbb{N}_0$, we define

$$\begin{split} C^k_c(\Omega) &:= \{ u \in C^k(\Omega) \middle| \operatorname{supp}(u) \subset \Omega \text{ and } \operatorname{supp}(u) \text{ is compact} \} \\ &= \{ u \in C^k(\Omega) \middle| \operatorname{supp}(u) \subset \Omega \text{ and } \operatorname{supp}(u) \text{ is bounded} \}, \end{split}$$

and write $C_c(\Omega) := C_c^0(\Omega)$ and $C_c^{\infty}(\Omega) := \bigcap_{k=0}^{\infty} C_c^k(\Omega)$.

Ex: Consider the fct $u: \mathbb{R}^n \to \mathbb{R}$ given by

$$u(x) := \begin{cases} e^{-\frac{1}{1-|x|^2}}, \text{ if } |x| < 1, \\ 0, \text{ if } |x| \ge 1, \end{cases} \quad \left[\text{here, } |x| := \sqrt{x_1^2 + \dots + x_n^2}. \right]$$

Then, $\operatorname{supp}(u) = \{x \in \mathbb{R}^n : |x| \le 1\}$. There holds $u \in C_c^{\infty}(\mathbb{R}^n)$.

5.2 Spaces of integrable functions

The spaces $L^p(\Omega)$

Then,

• Let $\Omega \subseteq \mathbb{R}^n$ be open, $p \in [1, \infty)$. We define $L^p(\Omega)$ to be the set of all (measurable) fcts $u : \Omega \to \mathbb{R}$ for which

$$\int_{\Omega} |u(x)|^p \, \mathrm{d}x < \infty.$$

Functions which are equal almost everywhere (a.e.) on Ω (i.e., equal, except on a set of measure zero) are identified with each other.

• The space $L^p(\Omega)$ is equipped with the norm

$$\|u\|_{L^p(\Omega)} := \left(\int_{\Omega} |u(x)|^p \,\mathrm{d}x\right)^{rac{1}{p}} \qquad ext{for } u \in L^p(\Omega).$$

• Case p=2: then, $||u||_{L^2(\Omega)} = \sqrt{\int_{\Omega} |u(x)|^2} \, \mathrm{d}x$. The space $L^2(\Omega)$ is equipped with the inner product

$$(u,v)_{L^2(\Omega)} := \int_{\Omega} u(x)v(x) \,\mathrm{d}x \qquad \text{for } u, v \in L^2(\Omega).$$
$$\|u\|_{L^2(\Omega)} = \sqrt{(u,u)_{L^2(\Omega)}}.$$

Cauchy–Schwarz and triangle inequalities

Lemma (Cauchy–Schwarz inequality) Let $u, v \in L^2(\Omega)$. Then, $|(u, v)_{L^2(\Omega)}| \le ||u||_{L^2(\Omega)} ||v||_{L^2(\Omega)}$.

Proof: We have that

$$0 \le \|tv+u\|_{L^{2}(\Omega)}^{2} = \|v\|_{L^{2}(\Omega)}^{2}t^{2} + 2(u,v)_{L^{2}(\Omega)}t + \|u\|_{L^{2}(\Omega)}^{2} \quad \forall t \in \mathbb{R}.$$

$$\implies |2(u,v)_{L^{2}(\Omega)}|^{2} - 4||u||_{L^{2}(\Omega)}^{2}||v||_{L^{2}(\Omega)}^{2} \le 0.$$

Corollary (Triangle inequality)

Let $u, v \in L^2(\Omega)$. Then, $\|u + v\|_{L^2(\Omega)} \le \|u\|_{L^2(\Omega)} + \|v\|_{L^2(\Omega)}$.

Proof: Using the Cauchy-Schwarz inequality, we have that

$$\begin{aligned} \|u+v\|_{L^{2}(\Omega)}^{2} &= \|u\|_{L^{2}(\Omega)}^{2} + 2(u,v)_{L^{2}(\Omega)} + \|v\|_{L^{2}(\Omega)}^{2} \\ &\leq \|u\|_{L^{2}(\Omega)}^{2} + 2\|u\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)} + \|v\|_{L^{2}(\Omega)}^{2} = (\|u\|_{L^{2}(\Omega)} + \|v\|_{L^{2}(\Omega)})^{2}. \quad \Box \end{aligned}$$

The space $L^2(\Omega)$ is a Hilbert space

The space $L^2(\Omega)$ equipped with the inner product

$$(u,v)_{L^2(\Omega)} := \int_{\Omega} u(x)v(x) \,\mathrm{d}x \qquad \text{for } u, v \in L^2(\Omega).$$

and the associated norm $||u||_{L^2(\Omega)} = \sqrt{(u, u)_{L^2(\Omega)}}$ is a Hilbert space.

Recall: a vector space X equipped with an inner product $(\cdot, \cdot)_X$ and associated norm $||u||_X := \sqrt{(u, u)_X}$ is called a **Hilbert space** iff for any Cauchy sequence $(u_m)_{m \in \mathbb{N}} \subset X$ ($\lim_{n, m \to \infty} ||u_n - u_m||_X = 0$), there exists $u \in X$ s.t. $\lim_{m \to \infty} ||u_m - u||_X = 0$. 5.3 Sobolev spaces

Motivation: An integration-by-parts formula

Observe: Let $u \in C^k(\Omega)$. Then, for any $v \in C^\infty_c(\Omega)$ we have that

$$\int_{\Omega} D^{\alpha} u(x) v(x) \, \mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} u(x) \, D^{\alpha} v(x) \, \mathrm{d}x \qquad \forall \, \alpha \, : \, |\alpha| \leq k.$$

This follows from the fact that by the divergence theorem,

$$\begin{split} \int_{\Omega} \left(\partial_{x_i} u(x)\right) v(x) \, \mathrm{d}x &= -\int_{\Omega} u(x) \, \partial_{x_i} v(x) \, \mathrm{d}x + \int_{\Omega} \partial_{x_i} (u(x)v(x)) \, \mathrm{d}x \\ &= -\int_{\Omega} u(x) \, \partial_{x_i} v(x) \, \mathrm{d}x + \int_{\Omega} \operatorname{div}(u(x)v(x)e_i) \, \mathrm{d}x \\ &= -\int_{\Omega} u(x) \, \partial_{x_i} v(x) \, \mathrm{d}x + \int_{\partial\Omega} u(x)v(x)e_i \cdot \nu \, \mathrm{d}s(x) \\ &= -\int_{\Omega} u(x) \, \partial_{x_i} v(x) \, \mathrm{d}x + \int_{\partial\Omega} u(x)v(x)\nu_i \, \mathrm{d}s(x), \end{split}$$

where ν is the unit outward normal vector to the boundary $\partial\Omega$ of Ω . Note that the boundary integral vanishes for $v \in C_c^{\infty}(\Omega)$, i.e.,

$$\int_{\Omega} \left(\partial_{x_i} u(x)\right) v(x) \, \mathrm{d}x = -\int_{\Omega} u(x) \, \partial_{x_i} v(x) \, \mathrm{d}x \quad \forall v \in C_c^{\infty}(\Omega).$$

Weak derivatives

Suppose that $u \in L^1_{loc}(\Omega)$, that is, $u \in L^1(\omega)$ for each bounded open set ω with $\overline{\omega} \subset \Omega$. Suppose also that there exists a fct $w_{\alpha} \in L^1_{loc}(\Omega)$ s.t.

$$\int_{\Omega} w_{\alpha}(x) v(x) \, \mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} u(x) \, D^{\alpha} v(x) \, \mathrm{d}x \quad \forall \, v \in C^{\infty}_{c}(\Omega).$$

Then we call w_{α} a **weak derivative** of u of order $|\alpha|$ and write

 $w_{\alpha} = D^{\alpha}u.$

If u is a smooth function then its weak derivatives coincide with those in the classical (pointwise) sense. To simplify the notation, we use the letter D to denote both a classical and a weak derivative.

Example

Let $\Omega:=\mathbb{R},$ and consider the function

$$u: \Omega \to \mathbb{R}, \quad u(x) := \max\{1 - |x|, 0\}.$$

Note that u is not differentiable in the classical sense. However, we will show that it has a weak derivative. Indeed, for any $v \in C_c^{\infty}(\Omega)$ we have

$$\int_{-\infty}^{\infty} u(x) v'(x) dx = \int_{-1}^{0} (1+x) v'(x) dx + \int_{0}^{1} (1-x) v'(x) dx$$
$$= -\int_{-1}^{0} v(x) dx + [(1+x)v(x)]_{x=-1}^{x=0} + \int_{0}^{1} v(x) dx + [(1-x)v(x)]_{x=0}^{x=1}$$
$$= -\left(\int_{-1}^{0} v(x) dx - \int_{0}^{1} v(x) dx\right) = -\int_{-\infty}^{\infty} w(x) v(x) dx,$$

where

$$w(x) = \begin{cases} 0, & x < -1, \\ 1, & x \in (-1,0), \\ -1, & x \in (0,1), \\ 0, & x > 1. \end{cases}$$

The fct w is the first weak derivative of u, and we write u' = w.

The Sobolev spaces $H^k(\Omega)$

Let $\Omega \subseteq \mathbb{R}^n$ be open, $k \in \mathbb{N}_0$. We define the **Sobolev space**

 $H^k(\Omega) := \{ u \in L^2(\Omega) \mid D^{\alpha}u \in L^2(\Omega) \ \forall \alpha : |\alpha| \le k \},\$

where derivatives are understood in the weak sense. It is equipped with the norm $\|\cdot\|_{H^k(\Omega)}$ and inner product $(\cdot,\cdot)_{H^k(\Omega)}$ given by

$$\|u\|_{H^{k}(\Omega)} := \sqrt{\sum_{|\alpha| \le k} \|D^{\alpha}u\|_{L^{2}(\Omega)}^{2}}, \quad (u, v)_{H^{k}(\Omega)} := \sum_{|\alpha| \le k} (D^{\alpha}u, D^{\alpha}v)_{L^{2}(\Omega)}$$

for $u,v\in H^k(\Omega).$ The space $H^k(\Omega)$ is a Hilbert space. Note that

$$\|u\|_{H^{k}(\Omega)} = \sqrt{\sum_{j=0}^{k} |u|^{2}_{H^{j}(\Omega)}}, \quad \text{where} \quad |u|_{H^{j}(\Omega)} := \sqrt{\sum_{|\alpha|=j} \|D^{\alpha}u\|^{2}_{L^{2}(\Omega)}}$$

for $u \in H^k(\Omega)$. The map $u \mapsto |u|_{H^j(\Omega)}$ is called the $H^j(\Omega)$ -seminorm.

Most frequently used Sobolev spaces: $H^1(\Omega)$ and $H^2(\Omega)$

Of particular importance are the Sobolev spaces

 $H^{1}(\Omega) := \left\{ u \in L^{2}(\Omega) \mid \partial_{x_{j}} u \in L^{2}(\Omega) \quad \forall j \in \{1, \dots, n\} \right\},$

$$H^{2}(\Omega) := \left\{ u \in L^{2}(\Omega) \mid \partial_{x_{j}} u \in L^{2}(\Omega), \ \partial^{2}_{x_{i}x_{j}} u \in L^{2}(\Omega) \ \forall i, j \in \{1, \dots, n\} \right\}.$$

The $H^1(\Omega)$ -norm $\|\cdot\|_{H^1(\Omega)}$ and the $H^1(\Omega)$ -seminorm $|\cdot|_{H^1(\Omega)}$ are given by

$$\|u\|_{H^{1}(\Omega)} := \sqrt{\|u\|_{L^{2}(\Omega)}^{2} + \sum_{j=1}^{n} \|\partial_{x_{j}}u\|_{L^{2}(\Omega)}^{2}}, \quad |u|_{H^{1}(\Omega)} := \sqrt{\sum_{j=1}^{n} \|\partial_{x_{j}}u\|_{L^{2}(\Omega)}^{2}}$$

The $H^2(\Omega)\text{-norm}~\|\cdot\|_{H^2(\Omega)}$ and the $H^2(\Omega)\text{-seminorm}~|\cdot|_{H^2(\Omega)}$ are given by

$$\begin{aligned} \|u\|_{H^{2}(\Omega)} &:= \sqrt{\|u\|_{L^{2}(\Omega)}^{2} + \sum_{j=1}^{n} \|\partial_{x_{j}}u\|_{L^{2}(\Omega)}^{2} + \sum_{i,j=1}^{n} \|\partial_{x_{i}x_{j}}^{2}u\|_{L^{2}(\Omega)}^{2}}, \\ \|u\|_{H^{2}(\Omega)} &:= \sqrt{\sum_{i,j=1}^{n} \|\partial_{x_{i}x_{j}}^{2}u\|_{L^{2}(\Omega)}^{2}}. \end{aligned}$$

2

The Sobolev space $H_0^1(\Omega)$ & Poincaré–Friedrichs inequality

Finally, we define a special Sobolev space:

 $H_0^1(\Omega) := \{ u \in H^1(\Omega) \mid u = 0 \text{ on } \partial\Omega \}.$

We will use this space when considering a PDE that is coupled with the boundary condition u = 0 on $\partial\Omega$. The space $H_0^1(\Omega)$ is a Hilbert space, with the same norm and inner product as $H^1(\Omega)$.

Lemma (Poincaré–Friedrichs inequality)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded (and assume $\partial \Omega$ is sufficiently smooth). Then, there exists a constant $c_* > 0$, depending only on Ω , s.t.

$$||u||_{L^{2}(\Omega)}^{2} \leq c_{\star} \sum_{i=1}^{n} ||\partial_{x_{i}}u||_{L^{2}(\Omega)}^{2} \quad \forall u \in H_{0}^{1}(\Omega).$$

End of "Chapter 5: Function Spaces".