MA4255 Numerical Methods in Differential Equations

Chapter 5: Function Spaces

5.1 Spaces of continuous functions
5.2 Spaces of integrable functions
5.3 Sobolev spaces

5.1 Spaces of continuous functions

Multi-index notation

An n-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$ is called a multi-index.

- $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$ is called the length of the multi-index α.
- We define

$$
\begin{aligned}
D^{\alpha}:=\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}} & =\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}} \\
& =: \underbrace{\partial_{x_{1} \mid \ldots x_{1}}^{|\alpha|} \ldots}_{\alpha_{1} \text { times }} \underbrace{x_{n} \ldots x_{n}}_{\alpha_{n} \text { times }} .
\end{aligned}
$$

Example. Let $u: \mathbb{R}^{3} \rightarrow \mathbb{R}, u(x):=u\left(x_{1}, x_{2}, x_{3}\right):=x_{1}^{3} x_{2}^{3} x_{3}^{3}$. Then,

- For $\alpha:=(1,2,3)$ have $D^{\alpha} u(x)=\partial_{x_{1} x_{2} x_{2} x_{3} x_{3} x_{3}}^{6} u(x)=108 x_{1}^{2} x_{2}$.
- For $\alpha:=(0,1,0)$ have $D^{\alpha} u(x)=\partial_{x_{2}} u(x) \quad=3 x_{1}^{3} x_{2}^{2} x_{3}^{3}$.
- For $\alpha:=(2,0,0)$ have $D^{\alpha} u(x)=\partial_{x_{1} x_{1}}^{2} u(x) \quad=6 x_{1} x_{2}^{3} x_{3}^{3}$.
- We have $\sum_{\alpha \in \mathbb{N}_{0}^{3},} D^{\alpha} u=\partial_{x_{1} x_{1} x_{1}}^{3} u+\partial_{x_{1} x_{1} x_{2}}^{3} u+\partial_{x_{1} x_{1} x_{3}}^{3} u+\partial_{x_{1} x_{2} x_{2}}^{3} u+$ $\partial_{x_{1} x_{3} x_{3}}^{3} u+\partial_{x_{2} x_{2} x_{2}}^{3} u+\partial_{x_{1} x_{2} x_{3}}^{3} u+\partial_{x_{2} x_{2} x_{3}}^{3} u+\partial_{x_{2} x_{3} x_{3}}^{3} u+\partial_{x_{3} x_{3} x_{3}}^{3} u$.

The spaces $C^{k}(\Omega)$ and $C^{k}(\bar{\Omega})$

- Let $\Omega \subseteq \mathbb{R}^{n}$ be open, $k \in \mathbb{N}_{0}$. We define ("cts":="continuous") $C^{k}(\Omega):=\left\{u: \Omega \rightarrow \mathbb{R} \mid D^{\alpha} u\right.$ is cts on Ω for any $\alpha \in \mathbb{N}_{0}^{n}$ with $\left.|\alpha| \leq k\right\}$.
- Let $\Omega \subseteq \mathbb{R}^{n}$ be open and bounded, $k \in \mathbb{N}_{0}$. We define $C^{k}(\bar{\Omega})$ to be the set of all fcts u in $C^{k}(\Omega)$ for which $D^{\alpha} u$ can be extended from Ω to a cts fct on $\bar{\Omega}$ (the closure of Ω) for all $\alpha \in \mathbb{N}_{0}^{n}$ with $|\alpha| \leq k$.
- We write $C(\Omega):=C^{0}(\Omega)$ and $C(\bar{\Omega}):=C^{0}(\bar{\Omega})$.
- We write $C^{\infty}(\Omega):=\bigcap_{k=0}^{\infty} C^{k}(\Omega)$ and $C^{\infty}(\bar{\Omega}):=\bigcap_{k=0}^{\infty} C^{k}(\bar{\Omega})$.
- The space $C^{k}(\bar{\Omega})$ is equipped with the norm
$\|u\|_{C^{k}(\bar{\Omega})}:=\sum_{|\alpha| \leq k} \sup _{x \in \Omega}\left|D^{\alpha} u(x)\right|=\sum_{|\alpha| \leq k} \max _{x \in \bar{\Omega}}\left|D^{\alpha} u(x)\right| \quad$ for $u \in C^{k}(\bar{\Omega})$.
- $\|u\|_{C(\bar{\Omega})}=\sup _{x \in \Omega}|u(x)|$,
- $\|u\|_{C^{1}(\bar{\Omega})}=\sup _{x \in \Omega}|u(x)|+\sum_{j=1}^{n} \sup _{x \in \Omega}\left|\partial_{x_{j}} u(x)\right|$,
- $\|u\|_{C^{2}(\bar{\Omega})}=\sup _{x \in \Omega}|u(x)|+\sum_{j=1}^{n} \sup _{x \in \Omega}\left|\partial_{x_{j}} u(x)\right|+\sum_{i, j=1}^{n} \sup _{x \in \Omega}\left|\partial_{x_{i} x_{j}}^{2} u(x)\right|$.

Examples

- Let $\Omega:=(0,1)$. Define $u: \Omega \rightarrow \mathbb{R}, u(x):=\frac{1}{x}$. Then,

$$
u \in C^{k}(\Omega) \backslash C^{k}(\bar{\Omega}) \quad \forall k \in \mathbb{N}_{0}
$$

- Let $\Omega:=(-1,1)$. Define $u: \Omega \rightarrow \mathbb{R}$,

$$
u(x):= \begin{cases}0 & , \text { if } x \in(-1,0) \\ x^{2} & , \text { if } x \in[0,1)\end{cases}
$$

Then, $u \in C^{1}(\bar{\Omega})$ (in particular also $u \in C(\bar{\Omega}), u \in C^{1}(\Omega), u \in C(\Omega)$), but $u \notin C^{k}(\Omega) \forall k \geq 2$ (in particular also $u \notin C^{k}(\bar{\Omega}) \forall k \geq 2$). We have

$$
\begin{aligned}
\|u\|_{C(\bar{\Omega})} & =\sup _{x \in \Omega}|u(x)|=1 \\
\|u\|_{C^{1}(\bar{\Omega})} & =\sup _{x \in \Omega}|u(x)|+\sup _{x \in \Omega}\left|u^{\prime}(x)\right|=1+2=3 .
\end{aligned}
$$

The spaces $C_{c}^{k}(\Omega)$

The support of a function $u \in C(\Omega)$, denoted $\operatorname{supp}(u)$, is defined as the closure in Ω of the set $\{x \in \Omega: u(x) \neq 0\}$, i.e.,

$$
\operatorname{supp}(u):=\overline{\{x \in \Omega: u(x) \neq 0\}} .
$$

Rk: $\operatorname{supp}(u)$ is smallest closed subset of Ω s.t. $u(x)=0 \forall x \in \Omega \backslash \operatorname{supp}(u)$.
For $\Omega \subseteq \mathbb{R}^{n}$ open, and $k \in \mathbb{N}_{0}$, we define

$$
\begin{aligned}
C_{c}^{k}(\Omega) & :=\left\{u \in C^{k}(\Omega) \mid \operatorname{supp}(u) \subset \Omega \text { and } \operatorname{supp}(u) \text { is compact }\right\} \\
& =\left\{u \in C^{k}(\Omega) \mid \operatorname{supp}(u) \subset \Omega \text { and } \operatorname{supp}(u) \text { is bounded }\right\}
\end{aligned}
$$

and write $C_{c}(\Omega):=C_{c}^{0}(\Omega)$ and $C_{c}^{\infty}(\Omega):=\bigcap_{k=0}^{\infty} C_{c}^{k}(\Omega)$.
Ex: Consider the fct $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
u(x):=\left\{\begin{aligned}
e^{-\frac{1}{1-|x|^{2}}}, & \text { if }|x|<1, \\
0, & \text { if }|x| \geq 1,
\end{aligned} \quad\left[\text { here, }|x|:=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}} .\right]\right.
$$

Then, $\operatorname{supp}(u)=\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$. There holds $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.

5.2 Spaces of integrable functions

The spaces $L^{p}(\Omega)$

- Let $\Omega \subseteq \mathbb{R}^{n}$ be open, $p \in[1, \infty)$. We define $L^{p}(\Omega)$ to be the set of all (measurable) fcts $u: \Omega \rightarrow \mathbb{R}$ for which

$$
\int_{\Omega}|u(x)|^{p} \mathrm{~d} x<\infty
$$

Functions which are equal almost everywhere (a.e.) on Ω (i.e., equal, except on a set of measure zero) are identified with each other.

- The space $L^{p}(\Omega)$ is equipped with the norm

$$
\|u\|_{L^{p}(\Omega)}:=\left(\int_{\Omega}|u(x)|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \quad \text { for } u \in L^{p}(\Omega)
$$

- Case $p=2$: then, $\|u\|_{L^{2}(\Omega)}=\sqrt{\int_{\Omega}|u(x)|^{2} \mathrm{~d} x}$. The space $L^{2}(\Omega)$ is equipped with the inner product

$$
(u, v)_{L^{2}(\Omega)}:=\int_{\Omega} u(x) v(x) \mathrm{d} x \quad \text { for } u, v \in L^{2}(\Omega)
$$

Then, $\|u\|_{L^{2}(\Omega)}=\sqrt{(u, u)_{L^{2}(\Omega)}}$.

Cauchy-Schwarz and triangle inequalities

Lemma (Cauchy-Schwarz inequality)

Let $u, v \in L^{2}(\Omega)$. Then, $\left|(u, v)_{L^{2}(\Omega)}\right| \leq\|u\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)}$.
Proof: We have that

$$
\begin{aligned}
& 0 \leq\|t v+u\|_{L^{2}(\Omega)}^{2}=\|v\|_{L^{2}(\Omega)}^{2} t^{2}+2(u, v)_{L^{2}(\Omega)} t+\|u\|_{L^{2}(\Omega)}^{2} \quad \forall t \in \mathbb{R} . \\
\Longrightarrow & \left|2(u, v)_{L^{2}(\Omega)}\right|^{2}-4\|u\|_{L^{2}(\Omega)}^{2}\|v\|_{L^{2}(\Omega)}^{2} \leq 0 .
\end{aligned}
$$

Corollary (Triangle inequality)
Let $u, v \in L^{2}(\Omega)$. Then, $\|u+v\|_{L^{2}(\Omega)} \leq\|u\|_{L^{2}(\Omega)}+\|v\|_{L^{2}(\Omega)}$.
Proof: Using the Cauchy-Schwarz inequality, we have that

$$
\begin{aligned}
& \|u+v\|_{L^{2}(\Omega)}^{2}=\|u\|_{L^{2}(\Omega)}^{2}+2(u, v)_{L^{2}(\Omega)}+\|v\|_{L^{2}(\Omega)}^{2} \\
& \leq\|u\|_{L^{2}(\Omega)}^{2}+2\|u\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)}+\|v\|_{L^{2}(\Omega)}^{2}=\left(\|u\|_{L^{2}(\Omega)}+\|v\|_{L^{2}(\Omega)}\right)^{2} .
\end{aligned}
$$

The space $L^{2}(\Omega)$ is a Hilbert space

The space $L^{2}(\Omega)$ equipped with the inner product

$$
(u, v)_{L^{2}(\Omega)}:=\int_{\Omega} u(x) v(x) \mathrm{d} x \quad \text { for } u, v \in L^{2}(\Omega)
$$

and the associated norm $\|u\|_{L^{2}(\Omega)}=\sqrt{(u, u)_{L^{2}(\Omega)}}$ is a Hilbert space.
Recall: a vector space X equipped with an inner product $(\cdot, \cdot)_{X}$ and associated norm $\|u\|_{X}:=\sqrt{(u, u)_{X}}$ is called a Hilbert space iff for any Cauchy sequence $\left(u_{m}\right)_{m \in \mathbb{N}} \subset X\left(\lim _{n, m \rightarrow \infty}\left\|u_{n}-u_{m}\right\|_{X}=0\right)$, there exists $u \in X$ s.t. $\lim _{m \rightarrow \infty}\left\|u_{m}-u\right\|_{X}=0$.

5.3 Sobolev spaces

Motivation: An integration-by-parts formula

Observe: Let $u \in C^{k}(\Omega)$. Then, for any $v \in C_{c}^{\infty}(\Omega)$ we have that

$$
\int_{\Omega} D^{\alpha} u(x) v(x) \mathrm{d} x=(-1)^{|\alpha|} \int_{\Omega} u(x) D^{\alpha} v(x) \mathrm{d} x \quad \forall \alpha:|\alpha| \leq k
$$

This follows from the fact that by the divergence theorem,

$$
\begin{aligned}
\int_{\Omega}\left(\partial_{x_{i}} u(x)\right) v(x) \mathrm{d} x & =-\int_{\Omega} u(x) \partial_{x_{i}} v(x) \mathrm{d} x+\int_{\Omega} \partial_{x_{i}}(u(x) v(x)) \mathrm{d} x \\
& =-\int_{\Omega} u(x) \partial_{x_{i}} v(x) \mathrm{d} x+\int_{\Omega} \operatorname{div}\left(u(x) v(x) e_{i}\right) \mathrm{d} x \\
& =-\int_{\Omega} u(x) \partial_{x_{i}} v(x) \mathrm{d} x+\int_{\partial \Omega} u(x) v(x) e_{i} \cdot \nu \mathrm{~d} s(x) \\
& =-\int_{\Omega} u(x) \partial_{x_{i}} v(x) \mathrm{d} x+\int_{\partial \Omega} u(x) v(x) \nu_{i} \mathrm{~d} s(x)
\end{aligned}
$$

where ν is the unit outward normal vector to the boundary $\partial \Omega$ of Ω. Note that the boundary integral vanishes for $v \in C_{c}^{\infty}(\Omega)$, i.e.,

$$
\int_{\Omega}\left(\partial_{x_{i}} u(x)\right) v(x) \mathrm{d} x=-\int_{\Omega} u(x) \partial_{x_{i}} v(x) \mathrm{d} x \quad \forall v \in C_{c}^{\infty}(\Omega) .
$$

Weak derivatives

Suppose that $u \in L_{\mathrm{loc}}^{1}(\Omega)$, that is, $u \in L^{1}(\omega)$ for each bounded open set ω with $\bar{\omega} \subset \Omega$. Suppose also that there exists a fct $w_{\alpha} \in L_{\mathrm{loc}}^{1}(\Omega)$ s.t.

$$
\int_{\Omega} w_{\alpha}(x) v(x) \mathrm{d} x=(-1)^{|\alpha|} \int_{\Omega} u(x) D^{\alpha} v(x) \mathrm{d} x \quad \forall v \in C_{c}^{\infty}(\Omega) .
$$

Then we call w_{α} a weak derivative of u of order $|\alpha|$ and write

$$
w_{\alpha}=D^{\alpha} u
$$

If u is a smooth function then its weak derivatives coincide with those in the classical (pointwise) sense. To simplify the notation, we use the letter D to denote both a classical and a weak derivative.

Example

Let $\Omega:=\mathbb{R}$, and consider the function

$$
u: \Omega \rightarrow \mathbb{R}, \quad u(x):=\max \{1-|x|, 0\}
$$

Note that u is not differentiable in the classical sense. However, we will show that it has a weak derivative. Indeed, for any $v \in C_{c}^{\infty}(\Omega)$ we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty} u(x) v^{\prime}(x) \mathrm{d} x=\int_{-1}^{0}(1+x) v^{\prime}(x) \mathrm{d} x+\int_{0}^{1}(1-x) v^{\prime}(x) \mathrm{d} x \\
& =-\int_{-1}^{0} v(x) \mathrm{d} x+[(1+x) v(x)]_{x=-1}^{x=0}+\int_{0}^{1} v(x) \mathrm{d} x+[(1-x) v(x)]_{x=0}^{x=1} \\
& =-\left(\int_{-1}^{0} v(x) \mathrm{d} x-\int_{0}^{1} v(x) \mathrm{d} x\right)=-\int_{-\infty}^{\infty} w(x) v(x) \mathrm{d} x,
\end{aligned}
$$

where

$$
w(x)=\left\{\begin{aligned}
0, & x<-1, \\
1, & x \in(-1,0), \\
-1, & x \in(0,1), \\
0, & x>1
\end{aligned}\right.
$$

The fct w is the first weak derivative of u, and we write $u^{\prime}=w$.

The Sobolev spaces $H^{k}(\Omega)$
Let $\Omega \subseteq \mathbb{R}^{n}$ be open, $k \in \mathbb{N}_{0}$. We define the Sobolev space

$$
H^{k}(\Omega):=\left\{u \in L^{2}(\Omega)\left|D^{\alpha} u \in L^{2}(\Omega) \forall \alpha:|\alpha| \leq k\right\}\right.
$$

where derivatives are understood in the weak sense. It is equipped with the norm $\|\cdot\|_{H^{k}(\Omega)}$ and inner product $(\cdot, \cdot)_{H^{k}(\Omega)}$ given by

$$
\|u\|_{H^{k}(\Omega)}:=\sqrt{\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{2}(\Omega)}^{2}}, \quad(u, v)_{H^{k}(\Omega)}:=\sum_{|\alpha| \leq k}\left(D^{\alpha} u, D^{\alpha} v\right)_{L^{2}(\Omega)}
$$

for $u, v \in H^{k}(\Omega)$. The space $H^{k}(\Omega)$ is a Hilbert space. Note that

$$
\|u\|_{H^{k}(\Omega)}=\sqrt{\sum_{j=0}^{k}|u|_{H^{j}(\Omega)}^{2}}, \quad \text { where } \quad|u|_{H^{j}(\Omega)}:=\sqrt{\sum_{|\alpha|=j}\left\|D^{\alpha} u\right\|_{L^{2}(\Omega)}^{2}}
$$

for $u \in H^{k}(\Omega)$. The map $u \mapsto|u|_{H^{j}(\Omega)}$ is called the $H^{j}(\Omega)$-seminorm.

Most frequently used Sobolev spaces: $H^{1}(\Omega)$ and $H^{2}(\Omega)$
Of particular importance are the Sobolev spaces

$$
\begin{aligned}
H^{1}(\Omega) & :=\left\{u \in L^{2}(\Omega) \mid \partial_{x_{j}} u \in L^{2}(\Omega) \forall j \in\{1, \ldots, n\}\right\}, \\
H^{2}(\Omega) & :=\left\{u \in L^{2}(\Omega) \mid \partial_{x_{j}} u \in L^{2}(\Omega), \partial_{x_{i} x_{j}}^{2} u \in L^{2}(\Omega) \forall i, j \in\{1, \ldots, n\}\right\} .
\end{aligned}
$$

The $H^{1}(\Omega)$-norm $\|\cdot\|_{H^{1}(\Omega)}$ and the $H^{1}(\Omega)$-seminorm $|\cdot|_{H^{1}(\Omega)}$ are given by
$\|u\|_{H^{1}(\Omega)}:=\sqrt{\|u\|_{L^{2}(\Omega)}^{2}+\sum_{j=1}^{n}\left\|\partial_{x_{j}} u\right\|_{L^{2}(\Omega)}^{2}}, \quad|u|_{H^{1}(\Omega)}:=\sqrt{\sum_{j=1}^{n}\left\|\partial_{x_{j}} u\right\|_{L^{2}(\Omega)}^{2}}$
The $H^{2}(\Omega)$-norm $\|\cdot\|_{H^{2}(\Omega)}$ and the $H^{2}(\Omega)$-seminorm $|\cdot|_{H^{2}(\Omega)}$ are given by

$$
\begin{aligned}
\|u\|_{H^{2}(\Omega)} & :=\sqrt{\|u\|_{L^{2}(\Omega)}^{2}+\sum_{j=1}^{n}\left\|\partial_{x_{j}} u\right\|_{L^{2}(\Omega)}^{2}+\sum_{i, j=1}^{n}\left\|\partial_{x_{i} x_{j}}^{2} u\right\|_{L^{2}(\Omega)}^{2},} \\
|u|_{H^{2}(\Omega)} & :=\sqrt{\sum_{i, j=1}^{n}\left\|\partial_{x_{i} x_{j}}^{2} u\right\|_{L^{2}(\Omega)}^{2}} .
\end{aligned}
$$

The Sobolev space $H_{0}^{1}(\Omega)$ \& Poincaré-Friedrichs inequality

Finally, we define a special Sobolev space:

$$
H_{0}^{1}(\Omega):=\left\{u \in H^{1}(\Omega) \mid u=0 \text { on } \partial \Omega\right\} .
$$

We will use this space when considering a PDE that is coupled with the boundary condition $u=0$ on $\partial \Omega$. The space $H_{0}^{1}(\Omega)$ is a Hilbert space, with the same norm and inner product as $H^{1}(\Omega)$.

Lemma (Poincaré-Friedrichs inequality)

Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded (and assume $\partial \Omega$ is sufficiently smooth). Then, there exists a constant $c_{\star}>0$, depending only on Ω, s.t.

$$
\|u\|_{L^{2}(\Omega)}^{2} \leq c_{\star} \sum_{i=1}^{n}\left\|\partial_{x_{i}} u\right\|_{L^{2}(\Omega)}^{2} \quad \forall u \in H_{0}^{1}(\Omega)
$$

End of "Chapter 5: Function Spaces".

