
MA4255 Numerical Methods in Differential Equations

Chapter 4: Stiff problems

4.1 Stability of numerical methods for stiff systems

4.2 Backward differentiation methods for stiff systems

4.3 Adaptivity for stiff problems

1 / 23

4.1 Stability of numerical methods for stiff systems

2 / 23

Motivation

For A ∈ Cm×m, consider the IVP (system of m ODEs)

y′(x) = Ay(x), y(x0) = y0, [y(x) = (y1(x), . . . , ym(x))T]

Apply linear k-step method
∑k

j=0 αjyn+j = h
∑k

j=0 βjfn+j to this IVP:

k∑
j=0

(αjIm − hβjA)yn+j = 0.

Suppose the eig.vals λ1, . . . , λm ∈ C of A are distinct. Then,
∃H ∈ Cm×m invertible s.t. H−1AH = diag(λ1, . . . , λm) =: Λ. Define
zn+j := H−1yn+j for j ∈ {0, . . . , k}. Then,

k∑
j=0

(αjIm − hβjΛ)zn+j = H−1
k∑

j=0

(αjIm − hβjA)yn+j = 0.

=⇒
∑k

j=0(αj − λihβj)zn+j,i = 0 for i ∈ {1, . . . ,m}. Each of these m
eqns completely decoupled from others. Thus, we are in framework of
Ch.3 (LMMs for a single ODE). New feature: h̄ := λih ∈ C.

3 / 23

Region of absolute stability

Definition (Region of absolute stability)

A linear k-step method is said to be absolutely stable in an open set
RA ⊆ C if, for all h̄ ∈ RA, all roots rs, s ∈ {1, . . . , k}, of the stability
polynomial z 7→ π(z; h̄) associated with the method satisfy |rs| < 1. The
largest such RA is called the region of absolute stability of the method.

Rk: interval of absolute stability ⊆ region of absolute stability.

Example: explicit Euler yn+1 − yn = hfn. We have

π(z; h̄) = ρ(z)− h̄σ(z) = (z − 1)− h̄ = z − (1 + h̄).

This has the unique root r1 := 1 + h̄. Note |r1| < 1 iff dist(h̄,−1) < 1 iff
h̄ ∈ D1(−1). Hence, the region of absolute stability of explicit Euler is

RA = D1(−1).

Rk: What to do if π(z; h̄) is more complicated? =⇒ Schur criterion.
4 / 23

Example of a stiff problem

For λ ∈ C− with |λ| ≫ 1, consider the problem

y′′(x) + (1− λ)y′(x)− λy(x) = 0, y(0) = 1, y′(0) = −λ− 2.

Writing y(x) = (y(x), y′(x))T, we can rewrite the problem as

y′(x) =

(
0 1
λ λ− 1

)
y(x) =: Ay(x), y(0) =

(
1

−λ− 2

)
=: y0.

Note that the true solution satisfies

y(x) =

(
2e−x − eλx

−2e−x − λeλx

)
−→

(
0
0

)
as x → ∞.

Consider explicit Euler: yn+1 = yn + hAyn, i.e.,

yn = (I2 + hA)ny0.

Note limn→∞ yn = 0 iff eigvals of I2 + hA are in D1(0), i.e., iff

|1− h| < 1, |1 + λh| < 1,

i.e., iff h ∈ (0, 2) and h̄ = λh ∈ D1(−1). =⇒ h must be very small!
5 / 23

y(x) = 2e−x − eλx and y′(x) = −2e−x − λeλx for λ = −45.

=⇒ The y′ component of the soln y = (y, y′) varies rapidly near x = 0
(we say that the fct has a thin layer at x = 0).

In order to ensure the stability of explicit Euler, h is forced to be
exceedingly small, h < −2Re (λ)

|λ|2 (since |1 + λh| < 1), smaller than an

accurate approximation of the solution for x ≫ 1/|λ| would necessitate.

Systems of ODEs which exhibit this behaviour are called stiff systems.

Rk: Stiffness lacks a rigorous definition. Here is a historic “definition”: stiff
eqns are eqns where implicit Euler works much better than explicit Euler.
(For stiff systems, stability of eE requires h very small, much smaller than required by accuracy.)

6 / 23

A-stability

Definition (A-stability of LMMs)

A LMM is called A-stable if its region of absolute stability RA is s.t.

C− ⊆ RA.

Ex.: implicit Euler is A-stable.
Pf: π(z; h̄) = ρ(z)− h̄σ(z) = (1− h̄)z − 1. If h̄ ̸= 1, there is a unique
root at r1 :=

1
1−h̄

. Note |r1| < 1 iff |1− h̄| > 1, i.e., iff h̄ ∈ C\D̄1(1). We

find that RA = C\D̄1(1) ⊇ C−.

Unfortunately, A-stability is very restrictive:

Theorem

(i) No explicit LMM is A-stable.

(ii) The order of accuracy of an A-stable implicit LMM cannot exceed 2.

(iii) The second-order accurate A-stable LMM with smallest error
constant is the trapezium rule method.

7 / 23

Relaxing A-stability: A(α)-stability

Definition (A(α)-stability of LMMs)

For α ∈ (0, π2), a LMM is called A(α)-stable, if its region of absolute
stability RA is s.t.

Wα := {h̄ ∈ C : arg(h̄) ∈ (π − α, π + α)} ⊆ RA.

A LMM is called A(0)-stable if it is A(α)-stable for some α ∈ (0, π2).
A LMM is called A0-stable if RA includes the negative real axis.

Rk: for given λ ∈ C−, h̄ = λh either lies inside the wedge Wα or outside
Wα for all h > 0.

Consequently, for the IVP y′(x) = Ay(x), y(x0) = y0, if all eigenvalues λ
of A belong to Wα then an A(α)-stable method can be used for the
numerical solution of the IVP without any restrictions on h.

In particular, if all eigenvalues of A are real and negative, then an
A(0)-stable method can be used.

8 / 23

Definition (A(α)-stability of LMMs)

For α ∈ (0, π2), a LMM is called A(α)-stable, if its region of absolute
stability RA is s.t.

Wα := {h̄ ∈ C : arg(h̄) ∈ (π − α, π + α)} ⊆ RA.

A LMM is called A(0)-stable if it is A(α)-stable for some α ∈ (0, π2). A
LMM is called A0 stable if RA includes the negative real axis.

Theorem

(i) No explicit LMM is A(0)-stable.

(ii) The only A(0)-stable linear k-step method whose order exceeds k is
the trapezium rule method.

(iii) For each α ∈ [0, π2) there exist A(α)-stable linear k-step methods of
order p for which k = p = 3 and k = p = 4.

9 / 23

A further stability concept: Stiff-stability

Motivation: for a typical stiff problem, the eigvals of A which produce the
fast transition all lie to the left of a line {h̄ ∈ C : Re (h̄) = −a}, a > 0,
and those responsible for the slow transitions are clustered around 0.

Definition (Stiffly stable LMMs)

A LMM is called stiffly stable if ∃a, c > 0 s.t. its region of absolute
stability RA is such that R1 ∪R2 ⊆ RA where

R1 = {h̄ ∈ C : Re (h̄) ∈ (−∞,−a)},
R2 = {h̄ ∈ C : Re (h̄) ∈ [−a, 0), Im (h̄) ∈ [−c, c]}.

We have the following chain of implications:

A-stab. ⇒ stiff-stab. ⇒ A(α)-stab. ⇒ A(0)-stab. ⇒ A0-stab.

10 / 23

4.2 Backward differentiation methods for stiff systems

11 / 23

BDF methods for stiff systems

Consider a LMM with stability polynomial π(z; h̄) = ρ(z)− h̄σ(z). If the
method is A(α)-stable or stiffly stable, the roots r(h̄) of z 7→ π(z; h̄) lie in
D1(0) when h̄ is real and h̄ → −∞. Then,

0 = lim
h̄→−∞

ρ(r(h̄))

h̄
= lim

h̄→−∞
σ(r(h̄)) = σ

(
lim

h̄→−∞
r(h̄)

)
.

=⇒ the roots of z 7→ π(z; h̄) approach those of σ. Thus, it is natural to
choose σ in such a way that its roots lie within D1(0).

A particularly simple choice would be to take σ(z) = βkz
k; the resulting

class of backward differentiation formulae (BDF) has the general form:

k∑
j=0

αjyn+j = hβkfn+k,

where α0, . . . , αk, βk are given in the following table for k ∈ {1, . . . , 6}
(also displaying a from the defn of stiff-stability, α from the defn of
A(α)-stability, the order p, and the error constant Cp+1).
Rk: BDF methods with k > 6 are not zero-stable. 12 / 23

List of BDF methods

k∑
j=0

αjyn+j = hβkfn+k

k α6 α5 α4 α3 α2 α1 α0 βk p Cp+1 amin αmax

1 1 −1 1 1 − 1
2

0 90o

2 1 − 4
3

1
3

2
3

2 − 2
9

0 90o

3 1 − 18
11

9
11

− 2
11

6
11

3 − 3
22

0.1 88o

4 1 − 48
25

36
25

− 16
25

3
25

12
25

4 − 12
125

0.7 73o

5 1 − 300
137

300
137

− 200
137

75
137

− 12
137

60
137

5 − 10
137

2.4 52o

6 1 − 360
147

450
147

− 400
147

225
147

− 72
147

10
147

60
147

6 − 20
343

6.1 19o

13 / 23

4.3 Adaptivity for stiff problems

14 / 23

Motivation

Ideally, we would like to compute an approximate solution of the following
IVP for a system of first-order ODEs:

y′(x) = f(x,y(x)), y(x0) = y0,

for x ∈ [x0, XM], and make sure that this approximation is accurate up to
a certain (absolute/relative) precision.

In addition, we would like to achieve such a precision in the
fastest/cheapest way possible. How should this be done?

=⇒ We present two attempts; the first being conceptually simpler, the
second being the preferred one in practice.

15 / 23

Attempt 1

A simple strategy could be to:

1 choose a one-step method of order p;

2 choose N ∈ N and compute approx. soln {yn}Nn=0 with h = XM−x0
N ;

3 choose a large natural number Ñ ∈ N with Ñ > N and compute
approx. soln {ỹn}Ñn=0 with h̃ = XM−x0

Ñ
.

Idea: use ∥ỹÑ − yN∥ to estimate the error ∥y(XM)− yN∥.
=⇒ If ∥ỹÑ − yN∥ < TOL, stop. Otherwise,

1 increase N so that N > Ñ ;

2 compute the approximate solution {yn}Nn=0 using h = XM−x0
N ;

3 check whether ∥ỹÑ − yN∥ < TOL.

If ∥ỹÑ − yN∥ < TOL, then stop. Otherwise, select Ñ > N , compute

{ỹn}Ñn=0 using h̃ = XM−x0

Ñ
, and check whether ∥ỹÑ − yN∥ < TOL.

Repeat until convergence . . .

16 / 23

Why is this a sensible strategy?

Why can we use ∥ỹÑ − yN∥ to estimate ∥y(XM)− yN∥?

Assume Ñ > N , and set α := h̃
h = N

Ñ
< 1. For h sufficiently small, have

∥ỹÑ−yN∥ ≤ ∥ỹÑ−y(XM)∥+∥y(XM)−yN∥ ≤ C(h̃p+hp) = (1+αp)Chp

for some constant C > 0, and thus,

∥y(XM)− yN∥ ≤ ∥y(XM)− ỹÑ∥+ ∥ỹÑ − yN∥
≤ Ch̃p + (1 + αp)Chp

= αpChp + (1 + αp)Chp.

For α < 1, αp ≪ 1 + αp (in relative terms).
=⇒ ∥y(XM)− ỹÑ∥ has a minor contribution.
=⇒ ∥ỹÑ − yN∥ may be used to estimate ∥y(XM)− yN∥.

17 / 23

Drawbacks of this strategy

This strategy could deliver an accurate solution, but it is computationally
inefficient, because whenever the target tolerance is not met, we need to
compute another solution from scratch on a finer computational mesh over
the entire interval [x0, XM].

(I.e., a global mesh-refinement needs to be performed – a new numerical
approximation has to be computed on a globally refined mesh).

18 / 23

Attempt 2

Idea: Control consistency error (c.e.) for each mesh point. Recall: global
error bounded by the maximum of the c.e. up to constant factor.

=⇒ We hope we can compute a sufficiently accurate soln by choosing a
suitable h or, even better, by adapting the step size locally, i.e., selecting a
suitable hn for every xn to control the c.e. locally. To estimate the c.e. at
x = xn, in addition to the 1-step (for simplicity) method

yn+1 = yn + hΦ(xn,yn;h) =: Ψ(xn,yn;h)

of order p being used, consider an additional 1-step method

ỹn+1 = ỹn + hΦ̃(xn, ỹn;h) =: Ψ̃(xn, ỹn;h)

of order p̃, with p̃ > p, and compute

ERR(xn;h) := ∥Ψ̃(xn,yn;h)−Ψ(xn,yn;h)∥.

19 / 23

Recall:
ERR(xn;h) := ∥Ψ̃(xn,yn;h)−Ψ(xn,yn;h)∥.

The idea behind using this to estimate the c.e. Tn is that, if the error has
been controlled from x0 up until xn, for some n ≥ 1, then the difference
between y(xn) and yn is “negligible”, and therefore yn can be assumed to
be equal to ỹn (both being “equal” to y(xn)). Hence,

hTn = y(xn+1)−Ψ(xn,y(xn);h)

= y(xn+1)− Ψ̃(xn,y(xn);h) + Ψ̃(xn,y(xn);h)−Ψ(xn,y(xn);h)

≈ y(xn+1)− Ψ̃(xn,y(xn);h) + Ψ̃(xn,yn;h)−Ψ(xn,yn;h)

≈ Chp̃+1 + Ψ̃(xn,yn;h)−Ψ(xn,yn;h).

Since hTn = O(hp+1) and p̃ > p, it follows that the term ≈ Chp̃+1 on the
right-hand side is “negligible”:

hTn ≈ Ψ̃(xn,yn;h)−Ψ(xn,yn;h).

20 / 23

Locally adaptive strategy

The strategy is as follows: at every xn,

1 select an initial local step size hn;

2 compute ERR(xn;hn) = ∥Ψ̃(xn,yn;hn)−Ψ(xn,yn;hn)∥;
3 if ERR(xn;hn) < TOL, set yn+1 = Ψ(xn,yn;hn); otherwise, choose

a smaller hn and go to step 2.

For more efficiency: increase the step hn every time this step has been
accepted, that is, to select βhn for a suitable β > 1.

Rk: Let TOL > 0 be an absolute error tolerance and ERR(xn;hn) < TOL.
Then, the “optimal” β is

β = βn =

(
TOL

ERR(xn;hn)

) 1
p+1

.

Why? Let βn s.t. ERR(xn, βnhn) = TOL, i.e., βnhn ideal step size. Then,

TOL = ERR(xn;βnhn) ≈ C(βnhn)
p+1 = βp+1

n Chp+1
n ≈ βp+1

n ERR(xn;hn).

21 / 23

Embedded RK methods

Improve efficiency of adaptive algorithm by using embedded RK methods:

Definition (Embedded RK methods)

Two RK methods are embedded if they use the same stages. The
Butcher tableau of two embedded RK methods can be written as

a B[
cT2[
cT1

, where
a B[

cT2
and

a B[
cT1

are the Butcher tableaus of the two RK methods, respectively.

Ex.: The Heun–Euler method has the Butcher tableau
0 0 0
1 1 0

1/2 1/2
1 0

, where
0 0 0
1 1 0

1/2 1/2
and

0 0 0
1 1 0

1 0

are the Butcher tableaus of Heun’s method and explicit Euler, respectively.
22 / 23

End of “Chapter 4: Stiff problems”.

23 / 23

	4 Stiff problems
	4.1 Stability of numerical methods for stiff systems
	4.2 Backward differentiation methods for stiff systems
	4.3 Adaptivity for stiff problems

