MA4255 Numerical Methods in Differential Equations

Chapter 3: Linear multi-step methods (LMMs)
3.0 Introduction and definition
3.1 Construction of LMMs
3.2 Zero-stability
3.3 Consistency
3.4 Convergence
3.5 Maximum order of accuracy of a zero-stable LMM
3.6 Absolute stability of LMMs
3.0 Introduction and definition

Introduction

Explicit RK methods are superior to, e.g., explicit Euler in terms of accuracy, but ...
...they are computationally more costly; RK methods require more evaluations of f than would seem necessary. E.g., the 4th-order accurate 4-stage explicit RK method from Ch. 2 needs four evaluations of f per step.

For comparison, noting that

$$
y\left(x_{n+1}\right)=y\left(x_{n-1}\right)+\int_{x_{n-1}}^{x_{n+1}} f(x, y(x)) \mathrm{d} x
$$

and using Simpson's rule $\int_{a}^{b} g(x) \mathrm{d} x \approx \frac{b-a}{6}\left(g(a)+4 g\left(\frac{a+b}{2}\right)+g(b)\right)$:
$y\left(x_{n+1}\right) \approx y\left(x_{n-1}\right)+\frac{1}{3} h\left[f\left(x_{n-1}, y\left(x_{n-1}\right)\right)+4 f\left(x_{n}, y\left(x_{n}\right)\right)+f\left(x_{n+1}, y\left(x_{n+1}\right)\right)\right]$,
leads to the Simpson rule method

$$
y_{n+1}=y_{n-1}+\frac{1}{3} h\left[f\left(x_{n-1}, y_{n-1}\right)+4 f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}\right)\right] .
$$

Note: we need two preceding values, y_{n} and y_{n-1} to calculate y_{n+1}.

Linear multi-step methods (LMMs)

Given a sequence of equally spaced mesh points $\left(x_{n}\right)$ with step size h, we consider the general linear k-step method

$$
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f\left(x_{n+j}, y_{n+j}\right)
$$

where $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}, \beta_{0}, \beta_{1}, \ldots, \beta_{k} \in \mathbb{R}$ and we assume that $\alpha_{k} \neq 0$ and $\alpha_{0}^{2}+\beta_{0}^{2} \neq 0$ (i.e., α_{0} and β_{0} are not both equal to zero).

If $\beta_{k}=0$, then y_{n+k} can be computed from the values of y_{n+j} and $f\left(x_{n+j}, y_{n+j}\right)$ for $j \in\{0, \ldots, k-1\}$, and the method is called explicit. If $\beta_{k} \neq 0$, then the method is called implicit.

The linear k-step method is called linear because it involves only linear combinations of the $\left\{y_{n}\right\}$ and the $\left\{f\left(x_{n}, y_{n}\right)\right\}$.
Notation: $f_{n}:=f\left(x_{n}, y_{n}\right)$. The general linear k-step method then reads

$$
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}
$$

Examples of LMMs

- The method which we have derived from Simpson's rule,

$$
y_{n+1}=y_{n-1}+\frac{1}{3} h\left[f_{n-1}+4 f_{n}+f_{n+1}\right],
$$

is an example of an implicit linear 2-step method.

- Explicit Euler: $y_{n+1}=y_{n}+h f_{n}$ is an explicit linear 1-step method.
- Implicit Euler: $y_{n+1}=y_{n}+h f_{n+1}$ is an implicit linear 1-step method.
- Trapezium rule method: $y_{n+1}=y_{n}+\frac{h}{2}\left(f_{n+1}+f_{n}\right)$ is an implicit linear 1-step method.
- The four-step Adams-Bashforth method

$$
y_{n+4}=y_{n+3}+\frac{h}{24}\left(55 f_{n+3}-59 f_{n+2}+37 f_{n+1}-9 f_{n}\right)
$$

is an explicit linear 4-step method.

- The four-step Adams-Moulton method
$y_{n+4}=y_{n+3}+\frac{h}{720}\left(251 f_{n+4}+646 f_{n+3}-264 f_{n+2}+106 f_{n+1}-19 f_{n}\right)$ is an implicit linear 4-step method.
3.1 Construction of linear multi-step methods

Shift operator and forward/backward difference operator

 Introduce the shift operator E, the inverse shift operator E^{-1}, the forward difference operator Δ_{+}, and the backward difference operator Δ_{-}, which map a sequence of real numbers to another sequence of real numbers, by$$
\begin{aligned}
& E:\left(u_{n}\right)_{n \in \mathbb{N}_{0}}=\left(u_{0}, u_{1}, u_{2}, \ldots\right) \mapsto\left(u_{n+1}\right)_{n \in \mathbb{N}_{0}}=\left(u_{1}, u_{2}, \ldots\right) \text {, } \\
& E^{-1}:\left(u_{n}\right)_{n \in \mathbb{N}_{0}}=\left(u_{0}, u_{1}, u_{2}, \ldots\right) \mapsto\left(u_{n-1}\right)_{n \in \mathbb{N}_{0}}=\left(0, u_{0}, u_{1}, \ldots\right) \text {, } \\
& \Delta_{+}:\left(u_{n}\right)_{n \in \mathbb{N}_{0}}=\left(u_{0}, u_{1}, u_{2}, \ldots\right) \mapsto\left(u_{n+1}-u_{n}\right)_{n \in \mathbb{N}_{0}}=\left(u_{1}-u_{0}, u_{2}-u_{1}, \ldots\right) \text {, } \\
& \Delta_{-}:\left(u_{n}\right)_{n \in \mathbb{N}_{0}}=\left(u_{0}, u_{1}, u_{2}, \ldots\right) \mapsto\left(u_{n}-u_{n-1}\right)_{n \in \mathbb{N}_{0}}=\left(u_{0}, u_{1}-u_{0}, u_{2}-u_{1}\right. \text {, } \\
& \left(u_{-1}:=0 \text {.) Example: For } u:=\left(u_{n}\right)_{n \in \mathbb{N}_{0}}:=(1,3,5,7, \ldots)\right. \text {, we have } \\
& E u=(3,5,7, \ldots), \quad \Delta_{+} u=(3-1,5-3,7-5, \ldots)=(2,2,2, \ldots), \\
& E^{-1} u=(0,1,3, \ldots), \quad \Delta_{-} u=(\quad 1,3-1,5-3, \ldots)=(1,2,2, \ldots) .
\end{aligned}
$$

Note for any $u=\left(u_{n}\right)_{n \in \mathbb{N}_{0}} \subset \mathbb{R}$, we have $E\left(E^{-1} u\right)=u$, and
$\Delta_{+} u=E u-u=E\left(\Delta_{-} u\right), \quad \Delta_{-} u=u-E^{-1} u, \quad E\left(u-\Delta_{-} u\right)=u$.
Writing $I: u \mapsto u$ for the identity operator, we find $E \circ E^{-1}=I$ and

$$
\Delta_{+}=E-I=E \Delta_{-}, \quad \Delta_{-}=I-E^{-1}, \quad E \circ\left(I-\Delta_{-}\right)=I .
$$

Notation: For a fct $u: \mathbb{R} \rightarrow \mathbb{R}$ whose derivative exists and is integrable on $\left[x_{0}, x_{n}\right]$ for each $n \in \mathbb{N}_{0}$, we define $u_{n}:=u\left(x_{n}\right)$ where $x_{n}=x_{0}+n h$ for $n \in \mathbb{N}_{0}$, and call the resulting sequence

$$
\left(u_{n}\right)_{n \in \mathbb{N}_{0}}=\left(u_{0}, u_{1}, u_{2}, \ldots\right)=\left(u\left(x_{0}\right), u\left(x_{1}\right), u\left(x_{2}\right), \ldots\right)
$$

again u. (will be clear from context if we mean the fct or the sequence.)
For $s \in \mathbb{N}_{0}$, note that $E^{s} u=\left(u\left(x_{s}\right), u\left(x_{s+1}\right), \ldots\right)$. Letting $D:=\frac{\mathrm{d}}{\mathrm{d} x}$, we have using Taylor expansion that

$$
\left[E^{s} u\right]_{n}=u\left(x_{s+n}\right)=u\left(x_{n}+s h\right)=\sum_{k=0}^{\infty} \frac{(s h)^{k}}{k!} D^{k} u\left(x_{n}\right)=\left[e^{s h D} u\right]_{n}
$$

\Longrightarrow Formally, $E^{s}=e^{s h D}$ and thus, $h D=\ln (E)=-\ln \left(I-\Delta_{-}\right)$(recall that $\left.\Delta_{-}=I-E^{-1}\right)$. Using Taylor expansion,

$$
h u^{\prime}\left(x_{n}\right)=\left[\left(\Delta_{-}+\frac{1}{2} \Delta_{-}^{2}+\frac{1}{3} \Delta_{-}^{3}+\cdots\right) u\right]_{n}
$$

The BDF methods

Recall: We have obtained

$$
\left[\left(\Delta_{-}+\frac{1}{2} \Delta_{-}^{2}+\frac{1}{3} \Delta_{-}^{3}+\cdots\right) u\right]_{n}=h u^{\prime}\left(x_{n}\right)
$$

Now let $u(x)=y(x)$ where y is the solution of the IVP. Then,

$$
\left[\left(\Delta_{-}+\frac{1}{2} \Delta_{-}^{2}+\frac{1}{3} \Delta_{-}^{3}+\cdots\right) y\right]_{n}=h f\left(x_{n}, y\left(x_{n}\right)\right)
$$

By truncating the series on the left, we find

$$
\begin{aligned}
y\left(x_{n}\right)-y\left(x_{n-1}\right) & \approx h f\left(x_{n}, y\left(x_{n}\right)\right), & (n \geq 1) \\
\frac{3}{2} y\left(x_{n}\right)-2 y\left(x_{n-1}\right)+\frac{1}{2} y\left(x_{n-2}\right) & \approx h f\left(x_{n}, y\left(x_{n}\right)\right), & (n \geq 2) \\
\frac{11}{6} y\left(x_{n}\right)-3 y\left(x_{n-1}\right)+\frac{3}{2} y\left(x_{n-2}\right)-\frac{1}{3} y\left(x_{n-3}\right) & \approx h f\left(x_{n}, y\left(x_{n}\right)\right), & (n \geq 3)
\end{aligned}
$$

etc. This leads to the backward differentiation formulae (BDF)

$$
\begin{aligned}
y_{n}-y_{n-1} & =h f_{n}, & & (n \geq 1) \\
\frac{3}{2} y_{n}-2 y_{n-1}+\frac{1}{2} y_{n-2} & =h f_{n}, & & (n \geq 2) \\
\frac{11}{6} y_{n}-3 y_{n-1}+\frac{3}{2} y_{n-2}-\frac{1}{3} y_{n-3} & =h f_{n} . & & (n \geq 3)
\end{aligned}
$$

Constructing further methods via same idea

Similarly, using $E^{-1}=I-\Delta_{-}$and $h D=-\ln \left(I-\Delta_{-}\right)$, we find

$$
-\left(I-\Delta_{-}\right) \ln \left(I-\Delta_{-}\right)=E^{-1}(h D),
$$

and therefore

$$
\left[\left(\Delta_{-}-\frac{1}{2} \Delta_{-}^{2}-\frac{1}{6} \Delta_{-}^{3}+\cdots\right) u\right]_{n+1}=h u^{\prime}\left(x_{n}\right)
$$

Letting $u(x)=y(x)$ where y is the soln of the IVP, and noting $y^{\prime}(x)=f(x, y(x))$, truncations of the infinite series yield

$$
\begin{aligned}
y\left(x_{n+1}\right)-y\left(x_{n}\right) & \approx h f\left(x_{n}, y\left(x_{n}\right)\right), \\
\frac{1}{2} y\left(x_{n+1}\right)-\frac{1}{2} y\left(x_{n-1}\right) & \approx h f\left(x_{n}, y\left(x_{n}\right)\right), \quad(n \geq 1) \\
\frac{1}{3} y\left(x_{n+1}\right)+\frac{1}{2} y\left(x_{n}\right)-y\left(x_{n-1}\right)+\frac{1}{6} y\left(x_{n-2}\right) & \approx h f\left(x_{n}, y\left(x_{n}\right)\right), \quad(n \geq 2)
\end{aligned}
$$

etc. Replacing $y\left(x_{n}\right)$ by $y_{n}, f\left(x_{n}, y\left(x_{n}\right)\right)$ by f_{n}, and \approx by $=$ leads to LMMs. The first is explicit Euler, the 2nd is called explicit midpoint rule.

Adams-Moulton and Adams-Bashforth methods

Further methods can be created using a similar methodology. Without going into detail, one can show that

$$
\begin{equation*}
y\left(x_{n+1}\right)-y\left(x_{n}\right) \approx h\left[\left(I-\frac{1}{2} \Delta_{-}-\frac{1}{12} \Delta_{-}^{2}-\frac{1}{24} \Delta_{-}^{3}-\frac{19}{720} \Delta_{-}^{4}-\cdots\right) y^{\prime}\right]_{n+1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y\left(x_{n+1}\right)-y\left(x_{n}\right) \approx h\left[\left(I+\frac{1}{2} \Delta_{-}+\frac{5}{12} \Delta_{-}^{2}+\frac{3}{8} \Delta_{-}^{3}+\frac{251}{720} \Delta_{-}^{4}+\cdots\right) y^{\prime}\right]_{n} . \tag{2}
\end{equation*}
$$

Using $y^{\prime}(x)=f(x, y(x))$, truncations of (1) yield the family of Adams-Moulton methods, while truncations of (2) yield the family of Adams-Bashforth methods.

3.2 Zero-stability

Zero-stability

Recall: General linear k-step method:

$$
\alpha_{k} y_{n+k}+\alpha_{k-1} y_{n+k-1}+\cdots+\alpha_{0} y_{n}=h\left(\beta_{k} f_{n+k}+\beta_{k-1} f_{n+k-1}+\cdots+\beta_{0} f_{n}\right) .
$$

Observe: need k starting values y_{0}, \ldots, y_{k-1} to apply this method. We get $y_{0}=y\left(x_{0}\right)$ from i.c., but how to get y_{1}, \ldots, y_{k-1} ?
\Longrightarrow have to be computed by other means: e.g., by using a RK method.
The starting values contain numerical errors which will affect y_{n} for $n \geq k$. Q: Is the method stable w.r.t. small perturbations in starting conditions?

Definition (Zero-stability)

A linear k-step method for the ODE $y^{\prime}(x)=f(x, y(x))$ is called zero-stable if $\exists K>0$ s.t., for any two sequences $\left(y_{n}\right)$ and $\left(\hat{y}_{n}\right)$, which have been generated by the same formulae but with different initial data y_{0}, \ldots, y_{k-1} and $\hat{y}_{0}, \ldots, \hat{y}_{k-1}$, respectively, we have

$$
\left|y_{n}-\hat{y}_{n}\right| \leq K \max \left\{\left|y_{0}-\hat{y}_{0}\right|, \ldots,\left|y_{k-1}-\hat{y}_{k-1}\right|\right\}
$$

for $n \in\{0, \ldots, N\}$, and as h tends to 0 .

Definition (Zero-stability)

A linear k-step method for the ODE $y^{\prime}(x)=f(x, y(x))$ is called zero-stable if $\exists K>0$ s.t., for any two sequences $\left(y_{n}\right)$ and $\left(\hat{y}_{n}\right)$, which have been generated by the same formulae but with different initial data y_{0}, \ldots, y_{k-1} and $\hat{y}_{0}, \ldots, \hat{y}_{k-1}$, respectively, we have

$$
\left|y_{n}-\hat{y}_{n}\right| \leq K \max \left\{\left|y_{0}-\hat{y}_{0}\right|, \ldots,\left|y_{k-1}-\hat{y}_{k-1}\right|\right\}
$$

for $n \in\{0, \ldots, N\}$, and as h tends to 0 .
Some comments:

- Why is it called zero-stability? \Longrightarrow whether or not a method is zero-stable can be determined from its behavior when applied to the ODE $y^{\prime}(x)=0$ (here, $f \equiv 0$).
- This definition seems difficult to check... \Longrightarrow there is an algebraic equivalent of zero-stability, known as the root condition, which will simplify this task.

The root condition

Given the linear k-step method $\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}$, define

- its first characteristic polynomial

$$
\rho: \mathbb{C} \rightarrow \mathbb{C}, \quad \rho(z):=\sum_{j=0}^{k} \alpha_{j} z^{j}
$$

- and its second characteristic polynomial

$$
\sigma: \mathbb{C} \rightarrow \mathbb{C}, \quad \sigma(z):=\sum_{j=0}^{k} \beta_{j} z^{j}
$$

Theorem (Equivalence of zero-stability and root condition)
A LMM is zero-stable for any ODE of the form $y^{\prime}(x)=f(x, y(x))$ where f satisfies the Lipschitz condition, iff the root condition is satisfied, i.e., all zeros of ρ lie inside $\bar{D}_{1}(0)$, with any which lie on $\partial D_{1}(0)$ being simple.

Notation: For $r \in(0, \infty), a \in \mathbb{C}$, we write $D_{r}(a):=\{z \in \mathbb{C}:|z-a|<r\}$, $\bar{D}_{r}(a):=\{z \in \mathbb{C}:|z-a| \leq r\}$, and $\partial D_{r}(a):=\{z \in \mathbb{C}:|z-a|=r\}$.

Proof that root condition is necessary for zero-stability

Suppose root condition is violated. Goal: show method is not zero-stable. Apply the linear k-step method to the $\operatorname{ODE} y^{\prime}(x)=0$ (i.e., $f \equiv 0$):

$$
\alpha_{k} y_{n+k}+\alpha_{k-1} y_{n+k-1}+\cdots+\alpha_{0} y_{n}=0 .
$$

Denote distinct zeros of ρ by z_{1}, \ldots, z_{S} with multiplicities m_{1}, \ldots, m_{S}.
The general soln of this k-th order linear difference equation has the form

$$
y_{n}=\sum_{s=1}^{S} p_{s}(n) z_{s}^{n},
$$

where $p_{s}(\cdot)$ is a polynomial of degree $m_{s}-1$.
If $\left|z_{s}\right|>1$, then \exists starting values for which the corresponding solns grow like $\left|z_{s}\right|^{n}$. If $\left|z_{s}\right|=1$ and $m_{s}>1$, then \exists solns growing like $n^{m_{s}-1}$. $\Longrightarrow \exists$ solns that grow unbounded as $n \rightarrow \infty$, i.e. as $h \rightarrow 0$ with $n h$ fixed.

Considering starting data y_{0}, \ldots, y_{k-1} which give rise to such an unbounded solution (y_{n}), and starting data $\hat{y}_{0}=\hat{y}_{1}=\cdots=\hat{y}_{k-1}=0$ for which $\hat{y}_{n}=0$ for all n, we see that zero-stability cannot hold.

Some examples

- Explicit Euler: $y_{n+1}-y_{n}=h f_{n}$. Here, $\rho(z)=z-1$ which has a simple root at $z=1 . \Longrightarrow$ zero-stable.
- Implicit Euler: $y_{n+1}-y_{n}=h f_{n+1}$.

Again, $\rho(z)=z-1 \Longrightarrow$ zero-stable.

- Trapezium rule method: $y_{n+1}-y_{n}=h\left(\frac{1}{2} f_{n+1}+\frac{1}{2} f_{n}\right)$.

Again, $\rho(z)=z-1 \Longrightarrow$ zero-stable.

- 4-step Adams-Bashforth method:
$y_{n+4}-y_{n+3}=h\left(\frac{55}{24} f_{n+3}-\frac{59}{24} f_{n+2}+\frac{37}{24} f_{n+1}-\frac{9}{24} f_{n}\right)$. Here, $\rho(z)=z^{4}-z^{3}=z^{3}(z-1)$ which has the root $z_{1}=0$ with multiplicity 3 , and the root $z_{2}=1$ with multiplicity $1 . \Longrightarrow$ zero-stable.
- Consider the three-step (sixth-order accurate) LMM $11 y_{n+3}+27 y_{n+2}-27 y_{n+1}-11 y_{n}=h\left(3 f_{n+3}+27 f_{n+2}+27 f_{n+1}+3 f_{n}\right)$. Here, $\rho(z)=11 z^{3}+27 z^{2}-27 z-11$ with roots $z_{1}=1, z_{2}=-\frac{19-4 \sqrt{15}}{11}$, $z_{3}=-\frac{19+4 \sqrt{15}}{11}$. Note $\left|z_{3}\right|=\frac{19+4 \sqrt{15}}{11}>1 \Longrightarrow$ not zero-stable.

3.3 Consistency

Consistency error of a LMM

Consider a LMM $\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}$ with $\alpha_{k} \neq 0 \neq \alpha_{0}^{2}+\beta_{0}^{2}$. Suppose $\sigma(1)=\sum_{j=0}^{k} \beta_{j} \neq 0$ (we see later that this holds for any convergent LMM). Introduce the consistency error

$$
T_{n}:=\frac{\sum_{j=0}^{k}\left[\alpha_{j} y\left(x_{n+j}\right)-h \beta_{j} y^{\prime}\left(x_{n+j}\right)\right]}{h \sum_{j=0}^{k} \beta_{j}},
$$

where y is a soln to the ODE $y^{\prime}(x)=f(x, y(x))$.
As for one-step methods, the consistency error can be thought of as the residual obtained by inserting the true soln, and scaling this appropriately.

Definition (Consistent LMM)

The numerical scheme is said to be consistent with the ODE if the consistency error is such that $\forall \varepsilon>0 \exists h_{\varepsilon}>0$ s.t. $\left|T_{n}\right|<\varepsilon$ for all $h \in\left(0, h_{\varepsilon}\right)$ and for any $(k+1)$ points $\left(x_{n}, y\left(x_{n}\right)\right), \ldots,\left(x_{n+k}, y\left(x_{n+k}\right)\right)$ on any solution curve in R of the IVP.

Order of accuracy of a LMM

Definition (Order of accuracy)

The LMM is said to have order of accuracy p (or order of consistency p) if $p \in \mathbb{N}$ is the largest natural number s.t. for any sufficiently smooth solution curve in R of the $\operatorname{IVP} y^{\prime}(x)=f(x, y(x)), y\left(x_{0}\right)=y_{0}$, we have

$$
\left|T_{n}\right|=\mathcal{O}\left(h^{p}\right),
$$

i.e., $\exists h_{0}, K>0$ s.t. $\left|T_{n}\right| \leq K h^{p}$ for all $h \in\left(0, h_{0}\right)$, for any $(k+1)$ points $\left(x_{n}, y\left(x_{n}\right)\right), \ldots,\left(x_{n+k}, y\left(x_{n+k}\right)\right)$ on the solution curve.

Goal: Find conditions on the coefficients α_{j}, β_{j} of the LMM from which we can easily see the order of accuracy.

Taylor expansion for the consistency error

Let us expand the consistency error in powers of h :

$$
\begin{aligned}
\sigma(1) T_{n} & =\frac{1}{h} \sum_{j=0}^{k}\left[\alpha_{j} y\left(x_{n}+j h\right)-h \beta_{j} y^{\prime}\left(x_{n}+j h\right)\right] \\
& =\frac{1}{h} \sum_{j=0}^{k}\left[\alpha_{j} \sum_{i=0}^{\infty} \frac{j^{i} h^{i}}{i!} y^{(i)}\left(x_{n}\right)-h \beta_{j} \sum_{i=0}^{\infty} \frac{j^{i} h^{i}}{i!} y^{(i+1)}\left(x_{n}\right)\right] \\
& =\sum_{j=0}^{k}\left[\frac{1}{h} \alpha_{j} y\left(x_{n}\right)+\alpha_{j} \sum_{i=0}^{\infty} \frac{j^{i+1} h^{i}}{(i+1)!} y^{(i+1)}\left(x_{n}\right)-\beta_{j} \sum_{i=0}^{\infty} \frac{j^{i} h^{i}}{i!} y^{(i+1)}\left(x_{n}\right)\right] \\
& =\frac{1}{h} \sum_{j=0}^{k} \alpha_{j} y\left(x_{n}\right)+\sum_{i=0}^{\infty} h^{i}\left(\sum_{j=0}^{k} \frac{j^{i+1}}{(i+1)!} \alpha_{j}-\sum_{j=0}^{k} \frac{j^{i}}{i!} \beta_{j}\right) y^{(i+1)}\left(x_{n}\right) \\
& =\frac{1}{h} C_{0} y\left(x_{n}\right)+\sum_{i=0}^{\infty} h^{i} C_{i+1} y^{(i+1)}\left(x_{n}\right)
\end{aligned}
$$

where $C_{0}:=\sum_{j=0}^{k} \alpha_{j}$ and $C_{q}:=\sum_{j=0}^{k} \frac{j^{q}}{q!} \alpha_{j}-\sum_{j=0}^{k} \frac{j^{q-1}}{(q-1)!} \beta_{j}$ for $q \in \mathbb{N}$.

Order conditions

We have obtained that

$$
T_{n}=\frac{1}{h} \frac{C_{0}}{\sigma(1)} y\left(x_{n}\right)+\sum_{i=0}^{\infty} h^{i} \frac{C_{i+1}}{\sigma(1)} y^{(i+1)}\left(x_{n}\right)
$$

where $C_{0}:=\sum_{j=0}^{k} \alpha_{j}$ and $C_{q}:=\sum_{j=0}^{k} \frac{j^{q}}{q!} \alpha_{j}-\sum_{j=0}^{k} \frac{j^{q-1}}{(q-1)!} \beta_{j}$ for $q \in \mathbb{N}$.

- The method is consistent iff $C_{0}=C_{1}=0$, i.e.,

$$
\rho(1)=0 \quad \text { and } \quad \rho^{\prime}(1)=\sigma(1) \neq 0 .
$$

- The method is of order of accuracy p iff

$$
C_{0}=C_{1}=\cdots=C_{p}=0 \quad \text { and } \quad C_{p+1} \neq 0
$$

In this case,

$$
T_{n}=h^{p} \frac{C_{p+1}}{\sigma(1)} y^{(p+1)}\left(x_{n}\right)+\mathcal{O}\left(h^{p+1}\right)
$$

the number $C_{p+1} \neq 0$ is then called the error constant of the method.

Equivalent formulas for the constants C_{j}

The constants $C_{0}, C_{1}, \cdots \in \mathbb{R}$ given by

$$
C_{0}:=\sum_{j=0}^{k} \alpha_{j}, \quad C_{q}:=\sum_{j=0}^{k} \frac{j^{q}}{q!} \alpha_{j}-\sum_{j=0}^{k} \frac{j^{q-1}}{(q-1)!} \beta_{j} \quad \text { for } \quad q \in \mathbb{N}
$$

can alternatively be computed as follows:

$$
\begin{aligned}
& C_{0}=\rho(1), \\
& C_{1}=\rho^{\prime}(1)-\sigma(1), \\
& 2 C_{2}=\rho^{\prime}(1)-2 \sigma^{\prime}(1)+\rho^{\prime \prime}(1), \\
& 6 C_{3}=\rho^{\prime}(1)-3 \sigma^{\prime}(1)+3 \rho^{\prime \prime}(1)-3 \sigma^{\prime \prime}(1)+\rho^{\prime \prime \prime}(1), \\
& 24 C_{4}=\rho^{\prime}(1)-4 \sigma^{\prime}(1)+7 \rho^{\prime \prime}(1)-12 \sigma^{\prime \prime}(1)+6 \rho^{\prime \prime \prime}(1)-4 \sigma^{\prime \prime \prime}(1)+\rho^{(4)}(1), \\
& 120 C_{5}=\rho^{\prime}(1)-5 \sigma^{\prime}(1)+15 \rho^{\prime \prime}(1)-35 \sigma^{\prime \prime}(1)+25 \rho^{\prime \prime \prime}(1)-30 \sigma^{\prime \prime \prime}(1)+10 \rho^{(4)}(1)-5 \sigma^{(4)}(1)+\rho^{(5)}(1), \\
& \vdots \\
& q!C_{q}=\sum_{j=1}^{q-1}\left(S(q, j) \rho^{(j)}(1)-q S(q-1, j) \sigma^{(j)}(1)\right)+\rho^{(q)}(1), \quad q \in \mathbb{N}_{\geq 2},
\end{aligned}
$$

where $S(q, j):=\frac{1}{j!} \sum_{i=0}^{j}(-1)^{i}\binom{j}{i}(j-i)^{q}$ (Stirling numbers of 2nd kind).

Example

Task: Construct an implicit linear two-step method of maximum order of accuracy. Determine the order of accuracy and the error constant of the method.

Taking $\alpha_{0}=a$ as parameter, the method has the form

$$
y_{n+2}+\alpha_{1} y_{n+1}+a y_{n}=h\left(\beta_{2} f_{n+2}+\beta_{1} f_{n+1}+\beta_{0} f_{n}\right),
$$

with $\beta_{2} \neq 0$ and $a^{2}+\beta_{0}^{2} \neq 0$. Here, $\alpha_{2}=1, \alpha_{0}=a$. We have

$$
\rho(z)=z^{2}+\alpha_{1} z+a, \quad \sigma(z)=\beta_{2} z^{2}+\beta_{1} z+\beta_{0} .
$$

Assume $\sigma(1)=\beta_{0}+\beta_{1}+\beta_{2} \neq 0$. We have to determine four unknowns: $\alpha_{1}, \beta_{2}, \beta_{1}, \beta_{0}$, so we require four equations; demanding that

$$
\begin{array}{rlr}
C_{0}=\rho(1) & =1+a+\alpha_{1} & =0, \\
C_{1} & =\rho^{\prime}(1)-\sigma(1) & =2+\alpha_{1}-\beta_{0}-\beta_{1}-\beta_{2}=0, \\
2 C_{2} & =\rho^{\prime}(1)-2 \sigma^{\prime}(1)+\rho^{\prime \prime}(1) & \\
6 C_{3} & =\rho^{\prime}(1)-3 \sigma^{\prime}(1)+3 \rho^{\prime \prime}(1)-3 \sigma^{\prime \prime}(1)+\rho_{1}-4 \beta_{2} & =0, \\
\Longrightarrow \alpha_{1}=-(1) & =8+\alpha_{1}-3 \beta_{1}-12 \beta_{2} & =0 . \\
\Longrightarrow \alpha_{1}= & (1+a), \beta_{0}=-\frac{1}{12}(1+5 a), \beta_{1}= & \frac{2}{3}(1-a), \beta_{2}=\frac{1}{12}(5+a) .
\end{array}
$$

We have obtained $\alpha_{1}=-1-a, \beta_{0}=-\frac{1}{12}(1+5 a), \beta_{1}=\frac{2}{3}(1-a)$, $\beta_{2}=\frac{1}{12}(5+a)$, and the resulting method is
$y_{n+2}-(1+a) y_{n+1}+a y_{n}=\frac{h}{12}\left((5+a) f_{n+2}+8(1-a) f_{n+1}-(1+5 a) f_{n}\right)$.
Note $\sigma(1)=\beta_{0}+\beta_{1}+\beta_{2}=1-a \neq 0$ iff $a \neq 1$.
Now compute C_{4} and C_{5} which gives

$$
C_{4}=-\frac{1+a}{24}, \quad C_{5}=-\frac{17+13 a}{360}
$$

- If $a \notin\{-1,1\}$, then $C_{4} \neq 0$, and the method is third-order accurate and the error constant is $C_{4}=-\frac{1}{24}(1+a)$.
- If $a=-1$, then $C_{4}=0$ and $C_{5} \neq 0$, and the method is fourth-order accurate and the error constant is $C_{5}=-\frac{1}{90}$. The method in this case is the Simpson rule method

$$
y_{n+2}-y_{n}=\frac{h}{3}\left(f_{n+2}+4 f_{n+1}+f_{n}\right)
$$

3.4 Convergence

What is a convergent LMM?

Motivation: Zero-stability and consistency are of great theoretical importance, but what matters most from the practical point of view is that the computed approximations y_{n} are close to the values of the true solution $y\left(x_{n}\right)$, and that the global error $e_{n}=y\left(x_{n}\right)-y_{n}$ decays when the step size h is reduced.

Definition (Convergent LMM)

The LMM $\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}$ is said to be convergent if, for all IVPs $y^{\prime}(x)=f(x, y(x)), y\left(x_{0}\right)=y_{0}$ subject to the hypotheses of
Picard's thm, we have

$$
\lim _{\substack{h \rightarrow 0 \\ n h=x-x_{0}}} y_{n}=y(x)
$$

for all $x \in\left[x_{0}, X_{M}\right]$ and for all solutions $\left\{y_{n}\right\}_{n=0}^{N}$ of the difference equation (from the LMM) with consistent starting conditions, i.e. with starting conds $y_{0}=\eta_{0}(h), y_{1}=\eta_{1}(h), \ldots, y_{k-1}=\eta_{k-1}(h)$, for which $\lim _{h \rightarrow 0} \eta_{s}(h)=y_{0}$ for $s \in\{0, \ldots, k-1\}$.

The main result on convergence: Dahlquist's theorem

 We are going to prove the following result:
Theorem (Necessary conditions for convergence)

A convergent LMM must be consistent and zero-stable.
It can actually be shown that for a consistent LMM, zero-stability is necessary and sufficient for the convergence of the LMM. This is the famous Dahlquist Theorem:

Theorem (Dahlquist)

For a LMM that is consistent with the ODE $y^{\prime}(x)=f(x, y(x))$ where f is assumed to satisfy a Lipschitz condition, and starting with consistent initial data, zero-stability is necessary and sufficient for convergence. Moreover if the solution y has continuous derivatives of order $(p+1)$ and consistency error $\mathcal{O}\left(h^{p}\right)$, then the global error $e_{n}=y\left(x_{n}\right)-y_{n}$ is also $\mathcal{O}\left(h^{p}\right)$, i.e. the method is p-th order convergent.

Proof that Convergence \Longrightarrow Zero-stability

Suppose the LMM $\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}$ is convergent. Apply to IVP $y^{\prime}(x)=0, y(0)=0$, on $\left[0, X_{M}\right], X_{M}>0$ (note true soln: $y \equiv 0$):

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=0 \tag{3}
\end{equation*}
$$

Since method is convergent, have $\lim _{h \rightarrow 0} y_{n}=0 \forall x \in\left[0, X_{M}\right]$, for all solns of (3) with $y_{s}=\eta_{s}(h), \lim _{h \rightarrow 0} \eta_{s} \eta_{s}(h)=0, s \in\{0, \ldots, k-1\}(*)$.
Let $z=r \mathrm{e}^{i \phi}$ with $r \geq 0, \phi \in[0,2 \pi)$ be a root of ρ. Then,

$$
y_{n}=h r^{n} \cos (n \phi)
$$

defines a solution to (3) satisfying $(*)$. Observe that if $\phi \notin\{0, \pi\}$, then
$\frac{y_{n}^{2}-y_{n+1} y_{n-1}}{\sin ^{2}(\phi)}=h^{2} r^{2 n} \frac{\cos ^{2}(n \phi)-\cos ((n+1) \phi) \cos ((n-1) \phi)}{\sin ^{2}(\phi)}=h^{2} r^{2 n}$.
Since the left-hand side converges to 0 as $h \rightarrow 0, n \rightarrow \infty, n h=x$, find $\lim _{n \rightarrow \infty}\left(\frac{x}{n}\right)^{2} r^{2 n}=0 \forall x \in\left[0, X_{M}\right] . \Longrightarrow r \in[0,1]$, i.e., $z \in \bar{D}_{1}(0)$.

Remains to prove that any root of ρ that lies on $\partial D_{1}(0)$ is simple.
Assume, instead, that $z=r \mathrm{e}^{i \phi}$, is a multiple root of ρ, with $|z|=r=1$ and $\phi \in[0,2 \pi)$. Then,

$$
y_{n}=\sqrt{h} n \cos (n \phi)
$$

defines a solution to (3). This satisfies $(*)$ as for any $s \in\{0, \ldots, k-1\}$,

$$
\left|\eta_{s}(h)\right|=\left|y_{s}\right| \leq \sqrt{h} s \leq \sqrt{h}(k-1) \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

If $\phi \in\{0, \pi\}$, using $n h=x$ find $\left|y_{n}\right|=\sqrt{x} \sqrt{n}$ and hence, $\lim _{n \rightarrow \infty, n h=x}\left|y_{n}\right|=\infty$ when $x \neq 0$, contradicting convergence (recall $y \equiv 0$). If $\phi \notin\{0, \pi\}$, then

$$
\frac{z_{n}^{2}-z_{n+1} z_{n-1}}{\sin ^{2}(\phi)}=1
$$

where $z_{n}=\frac{1}{n \sqrt{h}} y_{n}=\frac{\sqrt{h}}{x} y_{n}$. As z_{n} converges to 0 as $h \rightarrow 0, n \rightarrow \infty$, $n h=x$, it follows that the left-hand side converges to 0 as $h \rightarrow 0$, $n \rightarrow \infty, n h=x$, a contradiction.

Proof that Convergence \Longrightarrow Consistency

Suppose the LMM $\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}$ is convergent.

- First show that $C_{0}=0$: Consider the IVP

$$
y^{\prime}(x)=0, \quad x \in\left[0, X_{M}\right], \quad y(0)=1
$$

with true soln $y \equiv 1$. Applying the LMM to this IVP gives

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=0 \tag{4}
\end{equation*}
$$

Take "exact" starting values $y_{s}=1, s \in\{0, \ldots, k-1\}$. As method is convergent, have $\lim _{\substack{h \rightarrow 0 \\ n h=x}} y_{n}=1$. Since here, y_{n} is indep. of h, we find

$$
\lim _{n \rightarrow \infty} y_{n}=1
$$

Taking $n \rightarrow \infty$ in (4), we find $C_{0}=\rho(1)=\sum_{j=0}^{k} \alpha_{j}=0$.

- Now show that $C_{1}=0$: Apply LMM to IVP $y^{\prime}(x)=1, y(0)=0$, on $\left[0, X_{M}\right], X_{M}>0$ (note true soln $y(x)=x$):

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} \tag{5}
\end{equation*}
$$

where $X_{M}=N h$ and $n \in\{0, \ldots, N-k\}$.
For a convergent method any soln of (5) satisfying $\lim _{h \rightarrow 0} \eta_{s}(h)=0(*)$, where $y_{s}=\eta_{s}(h), s \in\{0, \ldots k-1\}$, must also satisfy $\lim _{\substack{h \rightarrow 0 \\ n h=x}} y_{n}=x$.
Since zero-stability is necessary for convergence, we know ρ does not have a multiple root on $\partial D_{1}(0)$; therefore $\rho^{\prime}(1)=\sum_{j=1}^{k} j \alpha_{j} \neq 0$.
Let $\left\{y_{n}\right\}_{n=0}^{N}$ defined by $y_{n}=K n h$, where $K=\frac{\sigma(1)}{\rho^{\prime}(1)}$ (note $C_{1}=0 \Leftrightarrow K=1$). This satisfies $(*)$ for $s \in\{0, \ldots, k-1\}$, and is a soln of (5) as

$$
\begin{aligned}
& \sum_{j=0}^{k} \alpha_{j} y_{n+j}=h K \sum_{j=0}^{k} \alpha_{j}(n+j)=K n h C_{0}+K h \rho^{\prime}(1)=h \sigma(1) . \\
\Longrightarrow & x=\lim _{\substack{h \rightarrow 0 \\
n h=x}} y_{n}=\lim _{\substack{h \rightarrow 0 \\
n h=x}} K n h=K x \forall x \in\left[0, X_{M}\right] \Longrightarrow K=1 .
\end{aligned}
$$

3.5 Maximum order of accuracy of a zero-stable linear multi-step method

Highest achievable order of a linear k-step method Recall: Linear k-step method: $\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}$. For consistency, need $C_{0}=\rho(1)=0, C_{1}=\rho^{\prime}(1)-\sigma(1)=0, \sigma(1) \neq 0$.

Method has $2 k+2$ coefficients: $\alpha_{j}, \beta_{j}, j \in\{0, \ldots, k\}$, of which α_{k} is set to 1 by normalization.

- $2 k+1$ free parameters if method is implicit,
- $2 k$ free parameters if the method is explicit $\left(\beta_{k}=0\right)$.

We find that we can achieve

- $C_{0}=0, C_{1}=0, \ldots, C_{2 k}=0(2 k+1$ eqns $)$ if method is implicit,
- $C_{0}=0, C_{1}=0, \ldots, C_{2 k-1}=0$ ($2 k$ eqns) if method is explicit, and we cannot impose more constraints.
\Longrightarrow Maximum order: $p=2 k$ if implicit, and $p=2 k-1$ if explicit.

Highest achievable order of a zero-stable LMM
Bad news: For $k \geq 3, k$-step LMMs of maximum order ($2 k$ if implicit, $2 k-1$ if explicit) are not zero-stable \Longrightarrow should not be used in practice.

Theorem (Upper bound on order of accuracy of zero-stable LMMs)
There is no zero-stable linear k-step method whose order of accuracy exceeds $k+1$ if k is odd or $k+2$ if k is even.

Definition (Optimal method)

A zero-stable linear k-step method of order of accuracy $k+2$ is called an optimal method.

Rk: For an optimal LMM, all roots of ρ lie on $\partial D_{1}(0)$.
Ex.: Task: Find a zero-stable LMM which is of max. order and optimal.
Note k must be even (as otherwise, order $\leq k+1$ and thus, not optimal).
\Longrightarrow Want zero-stable method with k even, order $p=2 k=k+2$.
\Longrightarrow Want fourth-order accurate zero-stable 2 -step method.
\Longrightarrow Only such method is the Simpson rule method.
3.6 Absolute stability of linear multi-step methods

Motivation

Up to now: discussed stability and accuracy properties of LMMs in limit $h \rightarrow 0, n \rightarrow \infty$, $n h$ fixed.

However, it is of practical significance to investigate the performance of methods in the case of $h>0$ fixed and $n \rightarrow \infty$.

Specifically, we would like to ensure that when applied to an IVP whose soln decays to 0 as $x \rightarrow \infty$, the LMM has a similar behaviour, for $h>0$ fixed and $x_{n}=x_{0}+n h \rightarrow \infty$. Model problem:

$$
y^{\prime}(x)=\lambda y(x), \quad y(0)=y_{0}
$$

where $\lambda<0, y_{0} \neq 0$. True soln is $y(x)=y_{0} e^{\lambda x}$ and hence,

$$
\lim _{x \rightarrow \infty} y(x)=0
$$

Apply LMM to model problem

Now consider the linear k-step method $\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}$ and apply it to the model problem

$$
y^{\prime}(x)=\lambda y(x), \quad y(0)=y_{0}
$$

where $\lambda<0, y_{0} \neq 0$. Noting that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, z)=\lambda z$, this yields

$$
0=\sum_{j=0}^{k}\left(\alpha_{j} y_{n+j}-h \beta_{j} f\left(x_{n+j}, y_{n+j}\right)\right)=\sum_{j=0}^{k}\left(\alpha_{j}-h \lambda \beta_{j}\right) y_{n+j}
$$

Since the general soln y_{n} to this homogeneous difference equation can be expressed as a linear combination of powers of roots of the associated characteristic polynomial

$$
\pi(z ; \bar{h}):=\sum_{j=0}^{k}\left(\alpha_{j}-\bar{h} \beta_{j}\right) z^{j}=\rho(z)-\bar{h} \sigma(z), \quad z \in \mathbb{C}, \quad(\bar{h}:=\lambda h)
$$

it follows that y_{n} will converge to zero for $h>0$ fixed and $n \rightarrow \infty$ iff all roots of $\pi(z ; \bar{h})$ have modulus less than 1, i.e., iff all roots lie in $D_{1}(0)$.

Absolute stability of LMMs

Definition (Absolute stability of LMMs)

The LMM $\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{j} f_{n+j}$ is called absolutely stable for a given \bar{h} iff for that \bar{h} all the roots $r_{s}=r_{s}(\bar{h})$ of the stability polynomial

$$
\mathbb{C} \ni z \mapsto \pi(z ; \bar{h}):=\rho(z)-\bar{h} \sigma(z)
$$

satisfy $\left|r_{s}\right|<1, s \in\{1, \ldots, k\}$. Otherwise, the method is called absolutely unstable.
An interval $(\alpha, \beta) \subset \mathbb{R}$ is called the interval of absolute stability if it is the largest open interval with the property that the method is absolutely stable for all $\bar{h} \in(\alpha, \beta)$. If the method is absolutely unstable for all \bar{h}, it is said to have no interval of absolute stability.

Rk: It can be shown that an optimal k-step method, i.e., a zero-stable linear k-step method of order $k+2$, has no interval of absolute stability.

Convergent LMMs are absolutely unstable for $\bar{h}>0$ small

 Since for $\lambda>0$ the solution $y(x)=y_{0} e^{\lambda x}$ of the model problem has exponential growth, we expect that a consistent and zero-stable (and, therefore, convergent) LMM has a similar behaviour for $h>0$ sufficiently small, and will therefore be absolutely unstable for small $\bar{h}>0$.
Theorem

Every consistent zero-stable LMM is absolutely unstable for $\bar{h}>0$ small.
Proof: Consistency $\Longrightarrow \exists p \in \mathbb{N}: C_{0}=C_{1}=\cdots=C_{p}=0 \neq C_{p+1}$. PS $2 \Longrightarrow \pi\left(\mathrm{e}^{\bar{h}} ; \bar{h}\right)=\mathcal{O}\left(\bar{h}^{p+1}\right)$. Note $\pi(z ; \bar{h})=\left(\alpha_{k}-\bar{h} \beta_{k}\right) \prod_{s=1}^{k}\left(z-r_{s}\right)$, where $r_{s}=r_{s}(\bar{h}), s \in\{1, \ldots, k\}$, denote the roots of $z \mapsto \pi(z ; \bar{h})$. Thus,

$$
\begin{equation*}
\left(\alpha_{k}-\bar{h} \beta_{k}\right)\left(e^{\bar{h}}-r_{1}(\bar{h})\right) \cdots\left(e^{\bar{h}}-r_{k}(\bar{h})\right)=\pi\left(\mathrm{e}^{\bar{h}} ; \bar{h}\right)=\mathcal{O}\left(\bar{h}^{p+1}\right) . \tag{6}
\end{equation*}
$$

As $\bar{h} \rightarrow 0, \alpha_{k}-\bar{h} \beta_{k} \rightarrow \alpha_{k} \neq 0$ and $r_{s}(\bar{h}) \rightarrow \zeta_{s}, s \in\{1, \ldots, k\}$, where ζ_{s}, $s \in\{1, \ldots, k\}$, are the roots of ρ. By consistency, 1 is a root of ρ; by zero-stability, 1 is simple root of ρ. WLOG $\zeta_{1}=1$. As $\zeta_{s} \neq 1$ for $s \neq 1$, only factor converging to 0 in (6) is $e^{\bar{h}}-r_{1}(\bar{h}) . \Longrightarrow e^{\bar{h}}-r_{1}(\bar{h})=\mathcal{O}\left(\bar{h}^{p+1}\right)$ $\Longrightarrow r_{1}(\bar{h})=e^{\bar{h}}+\mathcal{O}\left(\bar{h}^{p+1}\right)>1+\frac{1}{2} \bar{h}$ for $\bar{h}>0$ sufficiently small.

Locating the interval of absolute stability: Schur criterion
Consider the polynomial

$$
\phi: \mathbb{C} \rightarrow \mathbb{C}, \quad \phi(z)=c_{k} z^{k}+c_{k-1} z^{k-1}+\cdots+c_{1} z+c_{0}
$$

with $c_{0}, c_{1}, \ldots, c_{k} \in \mathbb{C}$ and $c_{k} \neq 0, c_{0} \neq 0$. The polynomial ϕ is called a Schur polynomial if all of its roots lie in $D_{1}(0)$.
Define the polynomial

$$
\hat{\phi}: \mathbb{C} \rightarrow \mathbb{C}, \quad \hat{\phi}(z)=\bar{c}_{0} z^{k}+\bar{c}_{1} z^{k-1}+\cdots+\bar{c}_{k-1} z+\bar{c}_{k},
$$

where \bar{c}_{j} denotes the complex conjugate of c_{j}, and define the polynomial

$$
\phi_{1}: \mathbb{C} \rightarrow \mathbb{C}, \quad \phi_{1}(z)=\frac{\hat{\phi}(0) \phi(z)-\phi(0) \hat{\phi}(z)}{z}
$$

Theorem (Schur's criterion)
The polynomial ϕ is a Schur polynomial iff

$$
|\hat{\phi}(0)|>|\phi(0)| \quad \text { and } \quad \phi_{1} \text { is a Schur polynomial. }
$$

Example: Interval of absolute stability via Schur criterion

 Task: Find interval of abs. stab. of the LMM $y_{n+2}-y_{n}=\frac{h}{2}\left(f_{n+1}+3 f_{n}\right)$. We have $\rho(z)=z^{2}-1$ and $\sigma(z)=\frac{1}{2}(z+3)$. Therefore,$$
\pi(z ; \bar{h})=\rho(z)-\bar{h} \sigma(z)=z^{2}-\frac{1}{2} \bar{h} z-\left(1+\frac{3}{2} \bar{h}\right) .
$$

Suppose $1+\frac{3}{2} \bar{h} \neq 0$, i.e., $\bar{h} \neq-\frac{2}{3}$ s.t. we can apply Schur crit. We have

$$
\hat{\pi}(z ; \bar{h})=-\left(1+\frac{3}{2} \bar{h}\right) z^{2}-\frac{1}{2} \bar{h} z+1
$$

Note $|\hat{\pi}(0 ; \bar{h})|>|\pi(0 ; \bar{h})|$ iff $1>\left|1+\frac{3}{2} \bar{h}\right|$ iff $\bar{h} \in\left(-\frac{4}{3}, 0\right)$. For such \bar{h},

$$
\pi_{1}(z ; \bar{h})=\frac{\hat{\pi}(0 ; \bar{h}) \pi(z ; \bar{h})-\pi(0 ; \bar{h}) \hat{\pi}(z ; \bar{h})}{z}=-\frac{1}{2} \bar{h}\left(2+\frac{3}{2} \bar{h}\right)(3 z+1)
$$

has unique root $-\frac{1}{3} \in D_{1}(0) . \Longrightarrow z \mapsto \pi_{1}(z ; \bar{h})$ is Schur polynomial By Schur crit., $z \mapsto \pi(z ; \bar{h}), \bar{h} \neq-\frac{2}{3}$, is Schur polynomial iff $\bar{h} \in\left(-\frac{4}{3}, 0\right)$. Finally, for $\bar{h}=-\frac{2}{3}, \pi\left(z ;-\frac{2}{3}\right)=z\left(z+\frac{1}{3}\right)$ is Schur polynomial.
\Longrightarrow interval of absolute stability is $\left(-\frac{4}{3}, 0\right)$.

Locating interval of abs. stab.: Routh-Hurwitz criterion

Consider the bijections $m_{1}: D_{1}(0) \rightarrow \mathbb{C}^{-}$and $m_{2}=m_{1}^{-1}: \mathbb{C}^{-} \rightarrow D_{1}(0)$,

$$
m_{1}(z):=\frac{z-1}{z+1}, \quad m_{2}(z):=\frac{1+z}{1-z},
$$

where $\mathbb{C}^{-}:=\{z \in \mathbb{C}: \operatorname{Re}(z)<0\}$. Consider the polynomial

$$
\begin{equation*}
(1-z)^{k}\left[\pi\left(\frac{1+z}{1-z} ; \bar{h}\right)\right]=a_{0} z^{k}+a_{1} z^{k-1}+\cdots+a_{k} . \tag{7}
\end{equation*}
$$

The roots of $z \mapsto \pi(z ; \bar{h})$ lie inside $D_{1}(0)$ iff $a_{0} \neq 0$ and the roots of (7) lie in \mathbb{C}^{-}. (Note $a_{0}=(-1)^{k} \pi(-1 ; \bar{h})$ and thus, $a_{0}=0$ iff $\pi(-1 ; \bar{h})=0$.)

Theorem (Routh-Hurwitz criterion)

The roots of a polynomial $P: \mathbb{C} \rightarrow \mathbb{C}, P(z):=a_{0} z^{k}+a_{1} z^{k-1}+\cdots+a_{k}$ with $a_{0}, \ldots, a_{k} \in \mathbb{R}$ and $a_{0}>0$ lie in \mathbb{C}^{-}iff all leading principal minors of

$$
H:=\left[\begin{array}{ccccc}
a_{1} & a_{3} & a_{5} & \cdots & a_{2 k-1} \\
a_{0} & a_{2} & a_{4} & \cdots & a_{2 k-2} \\
0 & a_{1} & a_{3} & \cdots & a_{2 k-3} \\
0 & a_{0} & a_{2} & \cdots & a_{2 k-4} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & a_{k}
\end{array}\right] \in \mathbb{R}^{k \times k}
$$

are positive, where we set $a_{j}:=0$ if $j>k$.

Theorem (Routh-Hurwitz criterion)

The roots of a polynomial $P: \mathbb{C} \rightarrow \mathbb{C}, P(z):=a_{0} z^{k}+a_{1} z^{k-1}+\cdots+a_{k}$ with $a_{0}, \ldots, a_{k} \in \mathbb{R}$ and $a_{0}>0$ lie in \mathbb{C}^{-}iff all leading principal minors of

$$
H:=\left[\begin{array}{ccccc}
a_{1} & a_{3} & a_{5} & \cdots & a_{2 k-1} \\
a_{0} & a_{2} & a_{4} & \cdots & a_{2 k-2} \\
0 & a_{1} & a_{3} & \cdots & a_{2 k-3} \\
0 & a_{0} & a_{2} & \cdots & a_{2 k-4} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & a_{k}
\end{array}\right] \in \mathbb{R}^{k \times k}
$$

are positive, where we set $a_{j}:=0$ if $j>k$.
The necessary and sufficient conditions for $k \in\{1,2,3,4\}$ for ensuring that all roots of $P: \mathbb{C} \rightarrow \mathbb{C}, p(z):=a_{0} z^{k}+a_{1} z^{k-1}+\cdots+a_{k}$ with $a_{0}, \ldots, a_{k} \in \mathbb{R}$ and $a_{0}>0$ lie in \mathbb{C}^{-}are the following:

$$
\begin{array}{ll}
k=1 & a_{1}>0 . \\
k=2 & a_{1}>0, a_{2}>0 . \\
k=3 & a_{1}>0, a_{2}>0, a_{3}>0, a_{1} a_{2}-a_{3} a_{0}>0 . \\
k=4 & a_{1}>0, a_{2}>0, a_{3}>0, a_{4}>0, a_{1} a_{2} a_{3}-a_{0} a_{3}^{2}-a_{1}^{2} a_{4}>0 .
\end{array}
$$

Example: Interval of absolute stability via RH criterion

 Task: Find interval of abs. stab. of the LMM $y_{n+2}-y_{n}=\frac{h}{2}\left(f_{n+1}+3 f_{n}\right)$.We have $\rho(z)=z^{2}-1$ and $\sigma(z)=\frac{1}{2}(z+3)$. Therefore,

$$
\pi(z ; \bar{h})=\rho(z)-\bar{h} \sigma(z)=z^{2}-\frac{1}{2} \bar{h} z-\left(1+\frac{3}{2} \bar{h}\right) .
$$

We compute
$P(z):=(1-z)^{2}\left[\pi\left(\frac{1+z}{1-z} ; \bar{h}\right)\right]=-\bar{h} z^{2}+(4+3 \bar{h}) z-2 \bar{h}=: a_{0} z^{2}+a_{1} z+a_{2}$.
All roots of $z \mapsto \pi(z ; \bar{h})$ lie inside $D_{1}(0)$ iff $a_{0}=-\bar{h} \neq 0$ and all roots of P lie in \mathbb{C}^{-}. So, for $\bar{h}=0$ we are unstable. For $\bar{h} \neq 0$, we use RH crit.:

- Case $\bar{h}<0$: all roots of P lie in \mathbb{C}^{-}iff (RH) $4+3 \bar{h}>0$ and $-2 \bar{h}>0$, i.e., iff $\bar{h} \in\left(-\frac{4}{3}, 0\right)$.
- Case $\bar{h}>0$: all roots of P lie in \mathbb{C}^{-}iff all roots of $-P$ lie in \mathbb{C}^{-}iff $(\mathrm{RH})-(4+3 \bar{h})>0$ and $2 \bar{h}>0$; impossible.
\Longrightarrow interval of absolute stability is $\left(-\frac{4}{3}, 0\right)$.

k-step Adams-Bashforth methods

p : order of accuracy, C_{p+1} : error const., $I_{a s}$ interval of absolute stability. $\mathrm{k}=1 \quad p=1, C_{p+1}=\frac{1}{2}, I_{a s}=(-2,0)$,

$$
y_{n+1}-y_{n}=h f_{n}
$$

$\mathrm{k}=2 p=2, C_{p+1}=\frac{5}{12}, I_{a s}=(-1,0)$,

$$
y_{n+2}-y_{n+1}=\frac{h}{2}\left(3 f_{n+1}-f_{n}\right) ;
$$

$$
\mathrm{k}=3 p=3, C_{p+1}=\frac{3}{8}, I_{a s}=\left(-\frac{6}{11}, 0\right),
$$

$$
y_{n+3}-y_{n+2}=\frac{h}{12}\left(23 f_{n+2}-16 f_{n+1}+5 f_{n}\right)
$$

$$
\mathrm{k}=4 \quad p=4, C_{p+1}=\frac{251}{720}, I_{a s}=\left(-\frac{3}{10}, 0\right),
$$

$$
y_{n+4}-y_{n+3}=\frac{h}{24}\left(55 f_{n+3}-59 f_{n+2}+37 f_{n+1}-9 f_{n}\right) .
$$

k-step Adams-Moulton methods

p : order of accuracy, C_{p+1} : error const., $I_{a s}$ interval of absolute stability.
$\mathrm{k}=1 \quad p=2, C_{p+1}=-\frac{1}{12}, I_{a s}=(-\infty, 0)$,

$$
y_{n+1}-y_{n}=\frac{h}{2}\left(f_{n+1}+f_{n}\right) ;
$$

$\mathrm{k}=2 p=3, C_{p+1}=-\frac{1}{24}, I_{a s}=(-6,0)$,

$$
y_{n+2}-y_{n+1}=\frac{h}{12}\left(5 f_{n+2}+8 f_{n+1}-f_{n}\right)
$$

$$
\mathrm{k}=3 p=4, C_{p+1}=-\frac{19}{720}, I_{a s}=(-3,0)
$$

$$
y_{n+3}-y_{n+2}=\frac{h}{24}\left(9 f_{n+3}+19 f_{n+2}-5 f_{n+1}+f_{n}\right)
$$

$$
\mathrm{k}=4 p=5, C_{p+1}=-\frac{27}{1440}, I_{a s}=\left(-\frac{90}{49}, 0\right)
$$

$$
y_{n+4}-y_{n+3}=\frac{h}{720}\left(251 f_{n+4}+646 f_{n+3}-264 f_{n+2}+106 f_{n+1}-19 f_{n}\right)
$$

End of "Chapter 3: Linear multi-step methods".

