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3.0 Introduction and definition
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Introduction

Explicit RK methods are superior to, e.g., explicit Euler in terms of
accuracy, but . . .

. . . they are computationally more costly; RK methods require more
evaluations of f than would seem necessary. E.g., the 4th-order accurate
4-stage explicit RK method from Ch.2 needs four evaluations of f per step.

For comparison, noting that

y(xn+1) = y(xn−1) +

∫ xn+1

xn−1

f(x, y(x)) dx,

and using Simpson’s rule
∫ b
a g(x)dx ≈ b−a

6 (g(a) + 4g(a+b
2 ) + g(b)):

y(xn+1) ≈ y(xn−1) +
1

3
h [f(xn−1, y(xn−1)) + 4f(xn, y(xn)) + f(xn+1, y(xn+1))] ,

leads to the Simpson rule method

yn+1 = yn−1 +
1

3
h [f(xn−1, yn−1) + 4f(xn, yn) + f(xn+1, yn+1)] .

Note: we need two preceding values, yn and yn−1 to calculate yn+1.
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Linear multi-step methods (LMMs)

Given a sequence of equally spaced mesh points (xn) with step size h, we
consider the general linear k-step method

k∑
j=0

αjyn+j = h

k∑
j=0

βjf(xn+j , yn+j),

where α0, α1, . . . , αk, β0, β1, . . . , βk ∈ R and we assume that αk ̸= 0 and
α2
0 + β2

0 ̸= 0 (i.e., α0 and β0 are not both equal to zero).

If βk = 0, then yn+k can be computed from the values of yn+j and
f(xn+j , yn+j) for j ∈ {0, . . . , k − 1}, and the method is called explicit.
If βk ̸= 0, then the method is called implicit.

The linear k-step method is called linear because it involves only linear
combinations of the {yn} and the {f(xn, yn)}.
Notation: fn := f(xn, yn). The general linear k-step method then reads

k∑
j=0

αjyn+j = h

k∑
j=0

βjfn+j .
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Examples of LMMs

The method which we have derived from Simpson’s rule,

yn+1 = yn−1 +
1
3h [fn−1 + 4fn + fn+1],

is an example of an implicit linear 2-step method.

Explicit Euler: yn+1 = yn + hfn is an explicit linear 1-step method.

Implicit Euler: yn+1 = yn + hfn+1 is an implicit linear 1-step method.

Trapezium rule method: yn+1 = yn + h
2 (fn+1 + fn) is an implicit

linear 1-step method.

The four-step Adams–Bashforth method

yn+4 = yn+3 +
h

24
(55fn+3 − 59fn+2 + 37fn+1 − 9fn)

is an explicit linear 4-step method.

The four-step Adams–Moulton method

yn+4 = yn+3 +
h

720
(251fn+4 + 646fn+3 − 264fn+2 + 106fn+1 − 19fn)

is an implicit linear 4-step method. 5 / 48



3.1 Construction of linear multi-step methods
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Shift operator and forward/backward difference operator

Introduce the shift operator E, the inverse shift operator E−1, the forward
difference operator ∆+, and the backward difference operator ∆−, which
map a sequence of real numbers to another sequence of real numbers, by

E : (un)n∈N0 = (u0, u1, u2, . . . ) 7→ (un+1)n∈N0 = (u1, u2, . . . ),

E−1 : (un)n∈N0
= (u0, u1, u2, . . . ) 7→ (un−1)n∈N0

= (0, u0, u1, . . . ),

∆+ : (un)n∈N0
= (u0, u1, u2, . . . ) 7→ (un+1 − un)n∈N0

= (u1 − u0, u2 − u1, . . . ),

∆− : (un)n∈N0
= (u0, u1, u2, . . . ) 7→ (un − un−1)n∈N0

= (u0, u1 − u0, u2 − u1, . . . ).

(u−1 := 0.) Example: For u := (un)n∈N0 := (1, 3, 5, 7, . . . ), we have

Eu = (3, 5, 7, . . . ), ∆+u = (3− 1, 5− 3, 7− 5, . . . ) = (2, 2, 2, . . . ),

E−1u = (0, 1, 3, . . . ), ∆−u = ( 1, 3− 1, 5− 3, . . . ) = (1, 2, 2, . . . ).

Note for any u = (un)n∈N0 ⊂ R, we have E(E−1u) = u, and

∆+u = Eu− u = E(∆−u), ∆−u = u− E−1u, E(u−∆−u) = u.

Writing I : u 7→ u for the identity operator, we find E ◦ E−1 = I and

∆+ = E − I = E∆−, ∆− = I − E−1, E ◦ (I −∆−) = I.
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Notation: For a fct u : R → R whose derivative exists and is integrable on
[x0, xn] for each n ∈ N0, we define un := u(xn) where xn = x0 + nh for
n ∈ N0, and call the resulting sequence

(un)n∈N0 = (u0, u1, u2, . . . ) = (u(x0), u(x1), u(x2), . . . )

again u. (will be clear from context if we mean the fct or the sequence.)

For s ∈ N0, note that Esu = (u(xs), u(xs+1), . . . ). Letting D := d
dx , we

have using Taylor expansion that

[Esu]n = u(xs+n) = u(xn + sh) =

∞∑
k=0

(sh)k

k!
Dku(xn) = [eshDu]n.

=⇒ Formally, Es = eshD and thus, hD = ln(E) = −ln(I −∆−) (recall
that ∆− = I − E−1). Using Taylor expansion,

hu′(xn) =

[(
∆− +

1

2
∆2

− +
1

3
∆3

− + · · ·
)
u

]
n

.
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The BDF methods

Recall: We have obtained[(
∆− +

1

2
∆2

− +
1

3
∆3

− + · · ·
)
u

]
n

= hu′(xn).

Now let u(x) = y(x) where y is the solution of the IVP. Then,[(
∆− +

1

2
∆2

− +
1

3
∆3

− + · · ·
)
y

]
n

= hf(xn, y(xn)).

By truncating the series on the left, we find

y(xn)− y(xn−1) ≈ hf(xn, y(xn)), (n ≥ 1)

3

2
y(xn)− 2y(xn−1) +

1

2
y(xn−2) ≈ hf(xn, y(xn)), (n ≥ 2)

11

6
y(xn)− 3y(xn−1) +

3

2
y(xn−2)−

1

3
y(xn−3) ≈ hf(xn, y(xn)), (n ≥ 3)

etc. This leads to the backward differentiation formulae (BDF)

yn − yn−1 = hfn, (n ≥ 1)

3

2
yn − 2yn−1 +

1

2
yn−2 = hfn, (n ≥ 2)

11

6
yn − 3yn−1 +

3

2
yn−2 −

1

3
yn−3 = hfn. (n ≥ 3)
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Constructing further methods via same idea

Similarly, using E−1 = I −∆− and hD = −ln(I −∆−), we find

−(I −∆−)ln(I −∆−) = E−1(hD),

and therefore[(
∆− − 1

2
∆2

− − 1

6
∆3

− + · · ·
)
u

]
n+1

= hu′(xn).

Letting u(x) = y(x) where y is the soln of the IVP, and noting
y′(x) = f(x, y(x)), truncations of the infinite series yield

y(xn+1)− y(xn) ≈ hf(xn, y(xn)),

1

2
y(xn+1)−

1

2
y(xn−1) ≈ hf(xn, y(xn)), (n ≥ 1)

1

3
y(xn+1) +

1

2
y(xn)− y(xn−1) +

1

6
y(xn−2) ≈ hf(xn, y(xn)), (n ≥ 2)

etc. Replacing y(xn) by yn, f(xn, y(xn)) by fn, and ≈ by = leads to
LMMs. The first is explicit Euler, the 2nd is called explicit midpoint rule.
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Adams–Moulton and Adams–Bashforth methods

Further methods can be created using a similar methodology. Without
going into detail, one can show that

y(xn+1)− y(xn) ≈ h

[(
I − 1

2
∆− − 1

12
∆2

− − 1

24
∆3

− − 19

720
∆4

− − · · ·
)
y′
]
n+1

(1)
and

y(xn+1)− y(xn) ≈ h

[(
I +

1

2
∆− +

5

12
∆2

− +
3

8
∆3

− +
251

720
∆4

− + · · ·
)
y′
]
n

.

(2)

Using y′(x) = f(x, y(x)), truncations of (1) yield the family of
Adams–Moulton methods, while truncations of (2) yield the family of
Adams–Bashforth methods.
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3.2 Zero-stability
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Zero-stability

Recall: General linear k-step method:

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn = h(βkfn+k + βk−1fn+k−1 + · · ·+ β0fn).

Observe: need k starting values y0, . . . , yk−1 to apply this method. We get
y0 = y(x0) from i.c., but how to get y1, . . . , yk−1?

=⇒ have to be computed by other means: e.g., by using a RK method.

The starting values contain numerical errors which will affect yn for n ≥ k.
Q: Is the method stable w.r.t. small perturbations in starting conditions?

Definition (Zero-stability)

A linear k-step method for the ODE y′(x) = f(x, y(x)) is called
zero-stable if ∃ K > 0 s.t., for any two sequences (yn) and (ŷn), which
have been generated by the same formulae but with different initial data
y0, . . . , yk−1 and ŷ0, . . . , ŷk−1, respectively, we have

|yn − ŷn| ≤ Kmax{|y0 − ŷ0|, . . . , |yk−1 − ŷk−1|}

for n ∈ {0, . . . , N}, and as h tends to 0.
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Definition (Zero-stability)

A linear k-step method for the ODE y′(x) = f(x, y(x)) is called
zero-stable if ∃ K > 0 s.t., for any two sequences (yn) and (ŷn), which
have been generated by the same formulae but with different initial data
y0, . . . , yk−1 and ŷ0, . . . , ŷk−1, respectively, we have

|yn − ŷn| ≤ Kmax{|y0 − ŷ0|, . . . , |yk−1 − ŷk−1|}

for n ∈ {0, . . . , N}, and as h tends to 0.

Some comments:

Why is it called zero-stability?
=⇒ whether or not a method is zero-stable can be determined from
its behavior when applied to the ODE y′(x) = 0 (here, f ≡ 0).

This definition seems difficult to check . . .
=⇒ there is an algebraic equivalent of zero-stability, known as the
root condition, which will simplify this task.
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The root condition

Given the linear k-step method
∑k

j=0 αjyn+j = h
∑k

j=0 βjfn+j , define

its first characteristic polynomial

ρ : C → C, ρ(z) :=

k∑
j=0

αjz
j ,

and its second characteristic polynomial

σ : C → C, σ(z) :=

k∑
j=0

βjz
j .

Theorem (Equivalence of zero-stability and root condition)

A LMM is zero-stable for any ODE of the form y′(x) = f(x, y(x)) where
f satisfies the Lipschitz condition, iff the root condition is satisfied, i.e.,
all zeros of ρ lie inside D̄1(0), with any which lie on ∂D1(0) being simple.

Notation: For r ∈ (0,∞), a ∈ C, we write Dr(a) := {z ∈ C : |z − a| < r},
D̄r(a) := {z ∈ C : |z − a| ≤ r}, and ∂Dr(a) := {z ∈ C : |z − a| = r}.
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Proof that root condition is necessary for zero-stability

Suppose root condition is violated. Goal: show method is not zero-stable.
Apply the linear k-step method to the ODE y′(x) = 0 (i.e., f ≡ 0):

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn = 0.

Denote distinct zeros of ρ by z1, . . . , zS with multiplicities m1, . . . ,mS .
The general soln of this k-th order linear difference equation has the form

yn =

S∑
s=1

ps(n)z
n
s ,

where ps(·) is a polynomial of degree ms − 1.

If |zs| > 1, then ∃ starting values for which the corresponding solns grow
like |zs|n. If |zs| = 1 and ms > 1, then ∃ solns growing like nms−1.
=⇒ ∃ solns that grow unbounded as n → ∞, i.e. as h → 0 with nh fixed.

Considering starting data y0, . . . , yk−1 which give rise to such an
unbounded solution (yn), and starting data ŷ0 = ŷ1 = · · · = ŷk−1 = 0 for
which ŷn = 0 for all n, we see that zero-stability cannot hold.
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Some examples

• Explicit Euler: yn+1 − yn = hfn.
Here, ρ(z) = z − 1 which has a simple root at z = 1. =⇒ zero-stable.

• Implicit Euler: yn+1 − yn = hfn+1.
Again, ρ(z) = z − 1 =⇒ zero-stable.

• Trapezium rule method: yn+1 − yn = h(12fn+1 +
1
2fn).

Again, ρ(z) = z − 1 =⇒ zero-stable.

• 4-step Adams–Bashforth method:
yn+4 − yn+3 = h

(
55
24fn+3 − 59

24fn+2 +
37
24fn+1 − 9

24fn
)
.

Here, ρ(z) = z4 − z3 = z3(z − 1) which has the root z1 = 0 with
multiplicity 3, and the root z2 = 1 with multiplicity 1. =⇒ zero-stable.

• Consider the three-step (sixth-order accurate) LMM

11yn+3+27yn+2− 27yn+1− 11yn = h (3fn+3 + 27fn+2 + 27fn+1 + 3fn) .

Here, ρ(z) = 11z3 + 27z2 − 27z − 11 with roots z1 = 1, z2 = −19−4
√
15

11 ,

z3 = −19+4
√
15

11 . Note |z3| = 19+4
√
15

11 > 1 =⇒ not zero-stable.
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3.3 Consistency
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Consistency error of a LMM

Consider a LMM
∑k

j=0 αjyn+j = h
∑k

j=0 βjfn+j with αk ̸= 0 ̸= α2
0 + β2

0 .

Suppose σ(1) =
∑k

j=0 βj ̸= 0 (we see later that this holds for any
convergent LMM). Introduce the consistency error

Tn :=

∑k
j=0 [αjy(xn+j)− hβjy

′(xn+j)]

h
∑k

j=0 βj
,

where y is a soln to the ODE y′(x) = f(x, y(x)).

As for one-step methods, the consistency error can be thought of as the
residual obtained by inserting the true soln, and scaling this appropriately.

Definition (Consistent LMM)

The numerical scheme is said to be consistent with the ODE if the
consistency error is such that ∀ε > 0 ∃hε > 0 s.t. |Tn| < ε for all
h ∈ (0, hε) and for any (k + 1) points (xn, y(xn)), . . . , (xn+k, y(xn+k)) on
any solution curve in R of the IVP.
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Order of accuracy of a LMM

Definition (Order of accuracy)

The LMM is said to have order of accuracy p (or order of consistency
p) if p ∈ N is the largest natural number s.t. for any sufficiently smooth
solution curve in R of the IVP y′(x) = f(x, y(x)), y(x0) = y0, we have

|Tn| = O(hp),

i.e., ∃h0,K > 0 s.t. |Tn| ≤ Khp for all h ∈ (0, h0), for any (k + 1) points
(xn, y(xn)), . . . , (xn+k, y(xn+k)) on the solution curve.

Goal: Find conditions on the coefficients αj , βj of the LMM from which
we can easily see the order of accuracy.
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Taylor expansion for the consistency error

Let us expand the consistency error in powers of h:

σ(1)Tn =
1

h

k∑
j=0

[αjy(xn + jh)− hβjy
′(xn + jh)]

=
1

h

k∑
j=0

[
αj

∞∑
i=0

jihi

i!
y(i)(xn)− hβj

∞∑
i=0

jihi

i!
y(i+1)(xn)

]

=

k∑
j=0

[
1

h
αjy(xn) + αj

∞∑
i=0

ji+1hi

(i+ 1)!
y(i+1)(xn)− βj

∞∑
i=0

jihi

i!
y(i+1)(xn)

]

=
1

h

k∑
j=0

αjy(xn) +

∞∑
i=0

hi

 k∑
j=0

ji+1

(i+ 1)!
αj −

k∑
j=0

ji

i!
βj

y(i+1)(xn)

=
1

h
C0y(xn) +

∞∑
i=0

hiCi+1y
(i+1)(xn)

where C0 :=
∑k

j=0 αj and Cq :=
∑k

j=0
jq

q!αj −
∑k

j=0
jq−1

(q−1)!βj for q ∈ N.
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Order conditions

We have obtained that

Tn =
1

h

C0

σ(1)
y(xn) +

∞∑
i=0

hi
Ci+1

σ(1)
y(i+1)(xn),

where C0 :=
∑k

j=0 αj and Cq :=
∑k

j=0
jq

q!αj −
∑k

j=0
jq−1

(q−1)!βj for q ∈ N.

• The method is consistent iff C0 = C1 = 0, i.e.,

ρ(1) = 0 and ρ′(1) = σ(1) ̸= 0.

• The method is of order of accuracy p iff

C0 = C1 = · · · = Cp = 0 and Cp+1 ̸= 0.

In this case,

Tn = hp
Cp+1

σ(1)
y(p+1)(xn) + O(hp+1);

the number Cp+1 ̸= 0 is then called the error constant of the method.
22 / 48



Equivalent formulas for the constants Cj

The constants C0, C1, · · · ∈ R given by

C0 :=

k∑
j=0

αj , Cq :=

k∑
j=0

jq

q!
αj −

k∑
j=0

jq−1

(q − 1)!
βj for q ∈ N

can alternatively be computed as follows:

C0 = ρ(1),

C1 = ρ′(1)− σ(1),

2C2 = ρ′(1)− 2σ′(1) + ρ′′(1),

6C3 = ρ′(1)− 3σ′(1) + 3ρ′′(1)− 3σ′′(1) + ρ′′′(1),

24C4 = ρ′(1)− 4σ′(1) + 7ρ′′(1)− 12σ′′(1) + 6ρ′′′(1)− 4σ′′′(1) + ρ(4)(1),

120C5 = ρ′(1)−5σ′(1)+15ρ′′(1)−35σ′′(1)+25ρ′′′(1)−30σ′′′(1)+10ρ(4)(1)−5σ(4)(1)+ρ(5)(1),

...

q!Cq =

q−1∑
j=1

(
S(q, j)ρ(j)(1)− qS(q − 1, j)σ(j)(1)

)
+ ρ(q)(1), q ∈ N≥2,

where S(q, j) := 1
j!

∑j
i=0(−1)i

(
j
i

)
(j − i)q (Stirling numbers of 2nd kind).
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Example

Task: Construct an implicit linear two-step method of maximum order of
accuracy. Determine the order of accuracy and the error constant of the
method.

Taking α0 = a as parameter, the method has the form

yn+2 + α1yn+1 + ayn = h(β2fn+2 + β1fn+1 + β0fn),

with β2 ̸= 0 and a2 + β2
0 ̸= 0. Here, α2 = 1, α0 = a. We have

ρ(z) = z2 + α1z + a, σ(z) = β2z
2 + β1z + β0.

Assume σ(1) = β0 + β1 + β2 ̸= 0. We have to determine four unknowns:
α1, β2, β1, β0, so we require four equations; demanding that

C0 = ρ(1) = 1 + a+ α1 = 0,

C1 = ρ′(1)− σ(1) = 2 + α1 − β0 − β1 − β2 = 0,

2C2 = ρ′(1)− 2σ′(1) + ρ′′(1) = 4 + α1 − 2β1 − 4β2 = 0,

6C3 = ρ′(1)− 3σ′(1) + 3ρ′′(1)− 3σ′′(1) + ρ′′′(1) = 8 + α1 − 3β1 − 12β2 = 0.

=⇒ α1 = −(1 + a), β0 = − 1
12(1 + 5a), β1 =

2
3(1− a), β2 =

1
12(5 + a).
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We have obtained α1 = −1− a, β0 = − 1
12(1 + 5a), β1 =

2
3(1− a),

β2 =
1
12(5 + a), and the resulting method is

yn+2 − (1 + a)yn+1 + ayn =
h

12
((5 + a)fn+2 + 8(1− a)fn+1 − (1 + 5a)fn).

Note σ(1) = β0 + β1 + β2 = 1− a ̸= 0 iff a ̸= 1.

Now compute C4 and C5 which gives

C4 = −1 + a

24
, C5 = −17 + 13a

360
.

• If a ̸∈ {−1, 1}, then C4 ̸= 0, and the method is third-order accurate and
the error constant is C4 = − 1

24(1 + a).

• If a = −1, then C4 = 0 and C5 ̸= 0, and the method is fourth-order
accurate and the error constant is C5 = − 1

90 . The method in this case is
the Simpson rule method

yn+2 − yn =
h

3
(fn+2 + 4fn+1 + fn) .
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3.4 Convergence
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What is a convergent LMM?

Motivation: Zero-stability and consistency are of great theoretical
importance, but what matters most from the practical point of view is that
the computed approximations yn are close to the values of the true
solution y(xn), and that the global error en = y(xn)− yn decays when the
step size h is reduced.

Definition (Convergent LMM)

The LMM
∑k

j=0 αjyn+j = h
∑k

j=0 βjfn+j is said to be convergent if, for
all IVPs y′(x) = f(x, y(x)), y(x0) = y0 subject to the hypotheses of
Picard’s thm, we have

lim
h→0

nh=x−x0

yn = y(x)

for all x ∈ [x0, XM ] and for all solutions {yn}Nn=0 of the difference
equation (from the LMM) with consistent starting conditions, i.e. with
starting conds y0 = η0(h), y1 = η1(h), . . . , yk−1 = ηk−1(h), for which
limh→0 ηs(h) = y0 for s ∈ {0, . . . , k − 1}.
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The main result on convergence: Dahlquist’s theorem

We are going to prove the following result:

Theorem (Necessary conditions for convergence)

A convergent LMM must be consistent and zero-stable.

It can actually be shown that for a consistent LMM, zero-stability is
necessary and sufficient for the convergence of the LMM. This is the
famous Dahlquist Theorem:

Theorem (Dahlquist)

For a LMM that is consistent with the ODE y′(x) = f(x, y(x)) where f is
assumed to satisfy a Lipschitz condition, and starting with consistent
initial data, zero-stability is necessary and sufficient for convergence.
Moreover if the solution y has continuous derivatives of order (p+ 1) and
consistency error O(hp), then the global error en = y(xn)− yn is also
O(hp), i.e. the method is p-th order convergent.
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Proof that Convergence =⇒ Zero-stability

Suppose the LMM
∑k

j=0 αjyn+j = h
∑k

j=0 βjfn+j is convergent. Apply
to IVP y′(x) = 0, y(0) = 0, on [0, XM ], XM > 0 (note true soln: y ≡ 0):

k∑
j=0

αjyn+j = 0. (3)

Since method is convergent, have lim h→0
nh=x

yn = 0 ∀x ∈ [0, XM ], for all

solns of (3) with ys = ηs(h), limh→0 ηs(h) = 0, s ∈ {0, . . . , k − 1} (∗).

Let z = reiϕ with r ≥ 0, ϕ ∈ [0, 2π) be a root of ρ. Then,

yn = hrn cos(nϕ)

defines a solution to (3) satisfying (∗). Observe that if ϕ ̸∈ {0, π}, then
y2n − yn+1yn−1

sin2(ϕ)
= h2r2n

cos2(nϕ)− cos((n+ 1)ϕ) cos((n− 1)ϕ)

sin2(ϕ)
= h2r2n.

Since the left-hand side converges to 0 as h → 0, n → ∞, nh = x, find
limn→∞

(
x
n

)2
r2n = 0 ∀x ∈ [0, XM ]. =⇒ r ∈ [0, 1], i.e., z ∈ D̄1(0).
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Remains to prove that any root of ρ that lies on ∂D1(0) is simple.

Assume, instead, that z = reiϕ, is a multiple root of ρ, with |z| = r = 1
and ϕ ∈ [0, 2π). Then,

yn =
√
hn cos(nϕ)

defines a solution to (3). This satisfies (∗) as for any s ∈ {0, . . . , k − 1},

|ηs(h)| = |ys| ≤
√
h s ≤

√
h(k − 1) → 0 as h → 0.

If ϕ ∈ {0, π}, using nh = x find |yn| =
√
x
√
n and hence,

limn→∞,nh=x |yn| = ∞ when x ̸= 0, contradicting convergence (recall y ≡ 0).

If ϕ ̸∈ {0, π}, then
z2n − zn+1zn−1

sin2(ϕ)
= 1,

where zn = 1
n
√
h
yn =

√
h
x yn. As zn converges to 0 as h → 0, n → ∞,

nh = x, it follows that the left-hand side converges to 0 as h → 0,
n → ∞, nh = x, a contradiction.
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Proof that Convergence =⇒ Consistency

Suppose the LMM
∑k

j=0 αjyn+j = h
∑k

j=0 βjfn+j is convergent.

• First show that C0 = 0: Consider the IVP

y′(x) = 0, x ∈ [0, XM ], y(0) = 1

with true soln y ≡ 1. Applying the LMM to this IVP gives

k∑
j=0

αjyn+j = 0. (4)

Take “exact” starting values ys = 1, s ∈ {0, . . . , k − 1}. As method is
convergent, have lim h→0

nh=x
yn = 1. Since here, yn is indep. of h, we find

lim
n→∞

yn = 1.

Taking n → ∞ in (4), we find C0 = ρ(1) =
∑k

j=0 αj = 0.
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• Now show that C1 = 0: Apply LMM to IVP y′(x) = 1, y(0) = 0, on
[0, XM ], XM > 0 (note true soln y(x) = x):

k∑
j=0

αjyn+j = h

k∑
j=0

βj , (5)

where XM = Nh and n ∈ {0, . . . , N − k}.
For a convergent method any soln of (5) satisfying limh→0 ηs(h) = 0 (∗),
where ys = ηs(h), s ∈ {0, . . . k − 1}, must also satisfy lim h→0

nh=x
yn = x.

Since zero-stability is necessary for convergence, we know ρ does not have
a multiple root on ∂D1(0); therefore ρ′(1) =

∑k
j=1 jαj ̸= 0.

Let {yn}Nn=0 defined by yn = Knh, where K = σ(1)
ρ′(1) (note C1 = 0 ⇔ K = 1).

This satisfies (∗) for s ∈ {0, . . . , k − 1}, and is a soln of (5) as

k∑
j=0

αjyn+j = hK

k∑
j=0

αj(n+ j) = KnhC0 +Khρ′(1) = hσ(1).

=⇒ x = lim h→0
nh=x

yn = lim h→0
nh=x

Knh = Kx ∀x ∈ [0, XM ] =⇒ K = 1.
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3.5 Maximum order of accuracy of a zero-stable linear multi-step method
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Highest achievable order of a linear k-step method

Recall: Linear k-step method:
∑k

j=0 αjyn+j = h
∑k

j=0 βjfn+j .

For consistency, need C0 = ρ(1) = 0, C1 = ρ′(1)− σ(1) = 0, σ(1) ̸= 0.

Method has 2k + 2 coefficients: αj , βj , j ∈ {0, . . . , k}, of which αk is set
to 1 by normalization.

2k + 1 free parameters if method is implicit,

2k free parameters if the method is explicit (βk = 0).

We find that we can achieve

C0 = 0, C1 = 0, . . . , C2k = 0 (2k + 1 eqns) if method is implicit,

C0 = 0, C1 = 0, . . . , C2k−1 = 0 (2k eqns) if method is explicit,

and we cannot impose more constraints.

=⇒ Maximum order: p = 2k if implicit, and p = 2k − 1 if explicit.

34 / 48



Highest achievable order of a zero-stable LMM

Bad news: For k ≥ 3, k-step LMMs of maximum order (2k if implicit,
2k − 1 if explicit) are not zero-stable =⇒ should not be used in practice.

Theorem (Upper bound on order of accuracy of zero-stable LMMs)

There is no zero-stable linear k-step method whose order of accuracy
exceeds k + 1 if k is odd or k + 2 if k is even.

Definition (Optimal method)

A zero-stable linear k-step method of order of accuracy k + 2 is called an
optimal method.

Rk: For an optimal LMM, all roots of ρ lie on ∂D1(0).

Ex.: Task: Find a zero-stable LMM which is of max. order and optimal.

Note k must be even (as otherwise, order ≤ k + 1 and thus, not optimal).
=⇒ Want zero-stable method with k even, order p = 2k = k + 2.
=⇒ Want fourth-order accurate zero-stable 2-step method.
=⇒ Only such method is the Simpson rule method.
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3.6 Absolute stability of linear multi-step methods
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Motivation

Up to now: discussed stability and accuracy properties of LMMs in limit
h → 0, n → ∞, nh fixed.

However, it is of practical significance to investigate the performance of
methods in the case of h > 0 fixed and n → ∞.

Specifically, we would like to ensure that when applied to an IVP whose
soln decays to 0 as x → ∞, the LMM has a similar behaviour, for h > 0
fixed and xn = x0 + nh → ∞. Model problem:

y′(x) = λy(x), y(0) = y0,

where λ < 0, y0 ̸= 0. True soln is y(x) = y0 e
λx and hence,

lim
x→∞

y(x) = 0.
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Apply LMM to model problem

Now consider the linear k-step method
∑k

j=0 αjyn+j = h
∑k

j=0 βjfn+j

and apply it to the model problem

y′(x) = λy(x), y(0) = y0,

where λ < 0, y0 ̸= 0. Noting that f : R2 → R, f(x, z) = λz, this yields

0 =

k∑
j=0

(αjyn+j − hβjf(xn+j , yn+j)) =

k∑
j=0

(αj − hλβj) yn+j .

Since the general soln yn to this homogeneous difference equation can be
expressed as a linear combination of powers of roots of the associated
characteristic polynomial

π(z; h̄) :=
k∑

j=0

(
αj − h̄βj

)
zj = ρ(z)− h̄ σ(z), z ∈ C, (h̄ := λh),

it follows that yn will converge to zero for h > 0 fixed and n → ∞ iff all
roots of π(z; h̄) have modulus less than 1, i.e., iff all roots lie in D1(0).
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Absolute stability of LMMs

Definition (Absolute stability of LMMs)

The LMM
∑k

j=0 αjyn+j = h
∑k

j=0 βjfn+j is called absolutely stable for

a given h̄ iff for that h̄ all the roots rs = rs(h̄) of the stability polynomial

C ∋ z 7→ π(z; h̄) := ρ(z)− h̄ σ(z)

satisfy |rs| < 1, s ∈ {1, . . . , k}. Otherwise, the method is called
absolutely unstable.
An interval (α, β) ⊂ R is called the interval of absolute stability if it is
the largest open interval with the property that the method is absolutely
stable for all h̄ ∈ (α, β). If the method is absolutely unstable for all h̄, it is
said to have no interval of absolute stability.

Rk: It can be shown that an optimal k-step method, i.e., a zero-stable
linear k-step method of order k + 2, has no interval of absolute stability.
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Convergent LMMs are absolutely unstable for h̄ > 0 small

Since for λ > 0 the solution y(x) = y0e
λx of the model problem has

exponential growth, we expect that a consistent and zero-stable (and,
therefore, convergent) LMM has a similar behaviour for h > 0 sufficiently
small, and will therefore be absolutely unstable for small h̄ > 0.

Theorem

Every consistent zero-stable LMM is absolutely unstable for h̄ > 0 small.

Proof: Consistency =⇒ ∃p ∈ N: C0 = C1 = · · · = Cp = 0 ̸= Cp+1.

PS 2 =⇒ π(eh̄; h̄) = O(h̄p+1). Note π(z; h̄) = (αk − h̄βk)
∏k

s=1(z − rs),
where rs = rs(h̄), s ∈ {1, . . . , k}, denote the roots of z 7→ π(z; h̄). Thus,

(αk − h̄βk)(e
h̄ − r1(h̄)) · · · (eh̄ − rk(h̄)) = π(eh̄; h̄) = O(h̄p+1). (6)

As h̄ → 0, αk − h̄βk → αk ̸= 0 and rs(h̄) → ζs, s ∈ {1, . . . , k}, where ζs,
s ∈ {1, . . . , k}, are the roots of ρ. By consistency, 1 is a root of ρ; by
zero-stability, 1 is simple root of ρ. WLOG ζ1 = 1. As ζs ̸= 1 for s ̸= 1,
only factor converging to 0 in (6) is eh̄ − r1(h̄). =⇒ eh̄ − r1(h̄) = O(h̄p+1)
=⇒ r1(h̄) = eh̄ + O(h̄p+1) > 1 + 1

2 h̄ for h̄ > 0 sufficiently small.
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Locating the interval of absolute stability: Schur criterion

Consider the polynomial

ϕ : C → C, ϕ(z) = ckz
k + ck−1z

k−1 + · · ·+ c1z + c0,

with c0, c1, . . . , ck ∈ C and ck ̸= 0, c0 ̸= 0. The polynomial ϕ is called a
Schur polynomial if all of its roots lie in D1(0).
Define the polynomial

ϕ̂ : C → C, ϕ̂(z) = c̄0z
k + c̄1z

k−1 + · · ·+ c̄k−1z + c̄k,

where c̄j denotes the complex conjugate of cj , and define the polynomial

ϕ1 : C → C, ϕ1(z) =
ϕ̂(0)ϕ(z)− ϕ(0)ϕ̂(z)

z
.

Theorem (Schur’s criterion)

The polynomial ϕ is a Schur polynomial iff∣∣∣ϕ̂(0)∣∣∣ > |ϕ(0)| and ϕ1 is a Schur polynomial.
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Example: Interval of absolute stability via Schur criterion

Task: Find interval of abs. stab. of the LMM yn+2 − yn = h
2 (fn+1 + 3fn).

We have ρ(z) = z2 − 1 and σ(z) = 1
2(z + 3). Therefore,

π(z; h̄) = ρ(z)− h̄σ(z) = z2 − 1

2
h̄z −

(
1 +

3

2
h̄

)
.

Suppose 1 + 3
2 h̄ ̸= 0, i.e., h̄ ̸= −2

3 s.t. we can apply Schur crit. We have

π̂(z; h̄) = −
(
1 +

3

2
h̄

)
z2 − 1

2
h̄z + 1.

Note |π̂(0; h̄)| > |π(0; h̄)| iff 1 > |1 + 3
2 h̄| iff h̄ ∈ (−4

3 , 0). For such h̄,

π1(z; h̄) =
π̂(0; h̄)π(z; h̄)− π(0; h̄)π̂(z; h̄)

z
= −1

2
h̄

(
2 +

3

2
h̄

)
(3z + 1)

has unique root −1
3 ∈ D1(0). =⇒ z 7→ π1(z; h̄) is Schur polynomial

By Schur crit., z 7→ π(z; h̄), h̄ ̸= −2
3 , is Schur polynomial iff h̄ ∈ (−4

3 , 0).
Finally, for h̄ = −2

3 , π(z;−
2
3) = z(z + 1

3) is Schur polynomial.
=⇒ interval of absolute stability is (−4

3 , 0).
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Locating interval of abs. stab.: Routh–Hurwitz criterion

Consider the bijections m1 : D1(0) → C− and m2 = m−1
1 : C− → D1(0),

m1(z) :=
z − 1

z + 1
, m2(z) :=

1 + z

1− z
,

where C− := {z ∈ C : Re (z) < 0}. Consider the polynomial

(1− z)k
[
π

(
1 + z

1− z
; h̄

)]
= a0z

k + a1z
k−1 + · · ·+ ak. (7)

The roots of z 7→ π(z; h̄) lie inside D1(0) iff a0 ̸= 0 and the roots of (7) lie in

C−. (Note a0 = (−1)kπ(−1; h̄) and thus, a0 = 0 iff π(−1; h̄) = 0.)

Theorem (Routh–Hurwitz criterion)

The roots of a polynomial P : C → C, P (z) := a0z
k + a1z

k−1 + · · ·+ ak
with a0, . . . , ak ∈ R and a0 > 0 lie in C− iff all leading principal minors of

H :=


a1 a3 a5 · · · a2k−1
a0 a2 a4 · · · a2k−2
0 a1 a3 · · · a2k−3
0 a0 a2 · · · a2k−4
· · · · · · · · · · · · · · ·
0 0 0 · · · ak

 ∈ Rk×k

are positive, where we set aj := 0 if j > k. 43 / 48



Theorem (Routh–Hurwitz criterion)

The roots of a polynomial P : C → C, P (z) := a0z
k + a1z

k−1 + · · ·+ ak
with a0, . . . , ak ∈ R and a0 > 0 lie in C− iff all leading principal minors of

H :=


a1 a3 a5 · · · a2k−1

a0 a2 a4 · · · a2k−2

0 a1 a3 · · · a2k−3

0 a0 a2 · · · a2k−4

· · · · · · · · · · · · · · ·
0 0 0 · · · ak

 ∈ Rk×k

are positive, where we set aj := 0 if j > k.

The necessary and sufficient conditions for k ∈ {1, 2, 3, 4} for ensuring
that all roots of P : C → C, p(z) := a0z

k + a1z
k−1 + · · ·+ ak with

a0, . . . , ak ∈ R and a0 > 0 lie in C− are the following:

k = 1 a1 > 0.
k = 2 a1 > 0, a2 > 0.
k = 3 a1 > 0, a2 > 0, a3 > 0, a1a2 − a3a0 > 0.
k = 4 a1 > 0, a2 > 0, a3 > 0, a4 > 0, a1a2a3 − a0a

2
3 − a21a4 > 0.
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Example: Interval of absolute stability via RH criterion

Task: Find interval of abs. stab. of the LMM yn+2 − yn = h
2 (fn+1 + 3fn).

We have ρ(z) = z2 − 1 and σ(z) = 1
2(z + 3). Therefore,

π(z; h̄) = ρ(z)− h̄σ(z) = z2 − 1

2
h̄z −

(
1 +

3

2
h̄

)
.

We compute

P (z) := (1− z)2
[
π

(
1 + z

1− z
; h̄

)]
= −h̄z2 + (4 + 3h̄)z − 2h̄ =: a0z

2 + a1z + a2.

All roots of z 7→ π(z; h̄) lie inside D1(0) iff a0 = −h̄ ̸= 0 and all roots of
P lie in C−. So, for h̄ = 0 we are unstable. For h̄ ̸= 0, we use RH crit.:

Case h̄ < 0: all roots of P lie in C− iff (RH) 4 + 3h̄ > 0 and
−2h̄ > 0, i.e., iff h̄ ∈ (−4

3 , 0).

Case h̄ > 0: all roots of P lie in C− iff all roots of −P lie in C− iff
(RH) −(4 + 3h̄) > 0 and 2h̄ > 0; impossible.

=⇒ interval of absolute stability is (−4
3 , 0).
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k-step Adams–Bashforth methods

p: order of accuracy, Cp+1: error const., Ias interval of absolute stability.

k=1 p = 1, Cp+1 =
1
2 , Ias = (−2, 0),

yn+1 − yn = hfn;

k=2 p = 2, Cp+1 =
5
12 , Ias = (−1, 0),

yn+2 − yn+1 =
h

2
(3fn+1 − fn);

k=3 p = 3, Cp+1 =
3
8 , Ias = (− 6

11 , 0),

yn+3 − yn+2 =
h

12
(23fn+2 − 16fn+1 + 5fn);

k=4 p = 4, Cp+1 =
251
720 , Ias = (− 3

10 , 0),

yn+4 − yn+3 =
h

24
(55fn+3 − 59fn+2 + 37fn+1 − 9fn).
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k-step Adams–Moulton methods

p: order of accuracy, Cp+1: error const., Ias interval of absolute stability.

k=1 p = 2, Cp+1 = − 1
12 , Ias = (−∞, 0),

yn+1 − yn =
h

2
(fn+1 + fn);

k=2 p = 3, Cp+1 = − 1
24 , Ias = (−6, 0),

yn+2 − yn+1 =
h

12
(5fn+2 + 8fn+1 − fn);

k=3 p = 4, Cp+1 = − 19
720 , Ias = (−3, 0),

yn+3 − yn+2 =
h

24
(9fn+3 + 19fn+2 − 5fn+1 + fn);

k=4 p = 5, Cp+1 = − 27
1440 , Ias = (−90

49 , 0),

yn+4−yn+3 =
h

720
(251fn+4+646fn+3−264fn+2+106fn+1−19fn).

47 / 48



End of “Chapter 3: Linear multi-step methods”.
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