MA4255 Numerical Methods in Differential Equations

Chapter 1: Introduction/Preliminaries (Part I: ODEs)

What are Ordinary Differential Equations (ODEs)?

An ODE is an equation for a fct $y=y(x)$ containing derivatives of y, e.g.,

- $y^{\prime}(x)=3 y(x)$,
- $\left(y(x)+y^{\prime}(x)+y^{\prime \prime \prime \prime}(x)\right)^{7}=y^{\prime \prime}(x)-y^{\prime \prime \prime \prime}(x)+x^{3}$.

Explicit ODE of order \mathbf{n} :

$$
y^{(n)}(x)=f\left(x, y(x), y^{\prime}(x), \ldots, y^{(n-1)}(x)\right)
$$

Implicit ODE of order \mathbf{n} :

$$
F\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0
$$

In Part I of this course, we focus on explicit first-order ODEs, i.e.,

$$
y^{\prime}(x)=f(x, y(x))
$$

Initial-value Problems (IVPs)

Ex.: $y^{\prime}(x)=3 y(x)$ has infinitely many solns: $y(x)=c e^{3 x}, c \in \mathbb{R}$.
\Longrightarrow To get a unique solution, we need to specify y at some value $x_{0} \in \mathbb{R}$.

$$
y^{\prime}(x)=3 y(x), \quad y\left(x_{0}\right)=y_{0} \quad \Longrightarrow \quad y(x)=y_{0} e^{3\left(x-x_{0}\right)} .
$$

$y\left(x_{0}\right)=y_{0}$ is called an initial condition (i.c.). Problems of the form

$$
\begin{equation*}
y^{\prime}(x)=f(x, y(x)), \quad y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

are called Initial-value Problems (IVPs).
Note: Not all IVPs have a unique solution. E.g.,

$$
y^{\prime}(x)=[y(x)]^{\frac{2}{3}}, \quad y(0)=0
$$

has multiple solutions: $y \equiv 0$ and $y(x)=\frac{1}{27} x^{3}$. (Here, $f(x, z):=z^{\frac{2}{3}}$)
$\Longrightarrow f(\cdot, \cdot)$ continuous not sufficient for uniqueness. So what is sufficient? Rk: f continuous $\Longrightarrow(1)$ has at least one solution (Peano Existence Thm)

Picard's Theorem for IVPs $y^{\prime}(x)=f(x, y(x)), y\left(x_{0}\right)=y_{0}$

Theorem (Picard's Theorem)

Suppose $f(\cdot, \cdot)$ is continuous in a region $U \subseteq \mathbb{R}^{2}$ containing the rectangle $\mathrm{R}:=\left[x_{0}, X_{M}\right] \times\left[y_{0}-Y_{M}, y_{0}+Y_{M}\right]$, where $X_{M}>x_{0}, Y_{M}>0$, suppose

$$
\begin{equation*}
\exists L>0: \quad|f(x, z)-f(x, \tilde{z})| \leq L|z-\tilde{z}| \quad \forall(x, z),(x, \tilde{z}) \in \mathrm{R} \tag{2}
\end{equation*}
$$

and with $M:=\max _{(x, z) \in \mathrm{R}}|f(x, z)|$, suppose $M\left(X_{M}-x_{0}\right) \leq Y_{M}$. Then, \exists a unique continuously differentiable fct $y:\left[x_{0}, X_{M}\right] \rightarrow \mathbb{R}$ s.t.

$$
y^{\prime}(x)=f(x, y(x)) \quad \text { for } \quad x \in\left(x_{0}, X_{M}\right), \quad y\left(x_{0}\right)=y_{0} .
$$

(2) is called Lipschitz condition (in 2nd argument of f), L is called Lipschitz constant.
Proof: See any introductory ODE course or book. Idea: Picard iteration:

$$
y_{0}(x) \equiv y_{0}, \quad y_{n}(x):=y_{0}+\int_{x_{0}}^{x} f\left(t, y_{n-1}(t)\right) \mathrm{d} t, \quad n \in \mathbb{N} .
$$

Then, $y_{n} \rightarrow y$ in $C\left(\left[x_{0}, X_{M}\right]\right)$ and y solves the IVP.

Theorem (Picard's Theorem)

Suppose $f(\cdot, \cdot)$ is continuous in a region $U \subseteq \mathbb{R}^{2}$ containing the rectangle $\mathrm{R}:=\left[x_{0}, X_{M}\right] \times\left[y_{0}-Y_{M}, y_{0}+Y_{M}\right]$, where $X_{M}>x_{0}, Y_{M}>0$, suppose

$$
\exists L>0: \quad|f(x, z)-f(x, \tilde{z})| \leq L|z-\tilde{z}| \quad \forall(x, z),(x, \tilde{z}) \in \mathrm{R}
$$

and with $M:=\max _{(x, z) \in \mathrm{R}}|f(x, z)|$, suppose $M\left(X_{M}-x_{0}\right) \leq Y_{M}$. Then, \exists a unique continuously differentiable fct $y:\left[x_{0}, X_{M}\right] \rightarrow \mathbb{R}$ s.t.

$$
y^{\prime}(x)=f(x, y(x)) \quad \text { for } \quad x \in\left(x_{0}, X_{M}\right), \quad y\left(x_{0}\right)=y_{0} .
$$

Observation: the graph of y lies in R , i.e., $(x, y(x)) \in \mathbf{R} \forall x \in\left[x_{0}, X_{M}\right]$. Pf of observation: Suppose this were not true. Then, by continuity of y,

$$
\exists x_{*} \in\left(x_{0}, X_{M}\right): \quad\left|y\left(x_{*}\right)-y_{0}\right|=Y_{M}, \quad\left|y(x)-y_{0}\right|<Y_{M} \forall x \in\left[x_{0}, x_{*}\right)
$$

$$
\Rightarrow\left|y\left(x_{*}\right)-y_{0}\right|=\left|\int_{x_{0}}^{x_{*}} y^{\prime}(x) \mathrm{d} x\right| \leq \int_{x_{0}}^{x_{*}}\left|y^{\prime}(x)\right| \mathrm{d} x
$$

$$
=\int_{x_{0}}^{x_{*}}|f(x, y(x))| \mathrm{d} x \leq M\left(x_{*}-x_{0}\right)<Y_{M}
$$

IVPs for systems of ODEs

IVPs for systems of m ODEs:

$$
\left\{\begin{array}{rlrl}
y_{1}^{\prime}(x) & =f_{1}\left(x, y_{1}(x), y_{2}(x), \ldots, y_{m}(x)\right), & y_{1}\left(x_{0}\right)=y_{0,1} \\
y_{2}^{\prime}(x) & =f_{2}\left(x, y_{1}(x), y_{2}(x), \ldots, y_{m}(x)\right), & y_{2}\left(x_{0}\right)=y_{0,2} \\
& \vdots \\
y_{m}^{\prime}(x) & =f_{m}\left(x, y_{1}(x), y_{2}(x), \ldots, y_{m}(x)\right), & y_{m}\left(x_{0}\right)=y_{0, m}
\end{array}\right.
$$

or equivalently,

$$
\mathbf{y}^{\prime}(x)=\mathbf{f}(x, \mathbf{y}(x)), \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}
$$

with given

$$
x_{0} \in \mathbb{R}, \quad \mathbf{y}_{0}=\left(\begin{array}{c}
y_{0,1} \\
\vdots \\
y_{0, m}
\end{array}\right) \in \mathbb{R}^{m}, \quad \mathbf{f}=\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{m}
\end{array}\right):\left[x_{0}, X_{M}\right] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}
$$

and we are seeking a soln $\mathbf{y}=\left(y_{1}, \ldots, y_{m}\right)^{\mathrm{T}}:\left[x_{0}, X_{M}\right] \rightarrow \mathbb{R}^{m}$.

Picard's Thm for systems $\mathbf{y}^{\prime}(x)=\mathbf{f}(x, \mathbf{y}(x)), \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}$

 Introduce the Euclidean norm $\|\cdot\|: \mathbb{R}^{m} \rightarrow[0, \infty)$ on \mathbb{R}^{m} by$$
\|\mathbf{u}\|:=\sqrt{\sum_{i=1}^{m}\left|u_{i}\right|^{2}}, \quad \text { for } \mathbf{u}=\left(u_{1}, \ldots, u_{m}\right)^{\mathrm{T}} \in \mathbb{R}^{m}
$$

Theorem (Picard's Theorem (version for systems))
Suppose that $\mathbf{f}(\cdot, \cdot)$ is a continuous in a region $U \subseteq \mathbb{R}^{1+m}$ containing

$$
\mathrm{R}=\left\{(x, \mathbf{z}) \in \mathbb{R} \times \mathbb{R}^{m}: x \in\left[x_{0}, X_{M}\right], \quad\left\|\mathbf{z}-\mathbf{y}_{0}\right\| \leq Y_{M}\right\}
$$

where $X_{M}>x_{0}, Y_{M}>0$, suppose that

$$
\exists L>0: \quad\|\mathbf{f}(x, \mathbf{z})-\mathbf{f}(x, \tilde{\mathbf{z}})\| \leq L\|\mathbf{z}-\tilde{\mathbf{z}}\| \quad \forall(x, \mathbf{z}),(x, \tilde{\mathbf{z}}) \in \mathrm{R}
$$

and with $M:=\max _{(x, \mathbf{z}) \in \mathrm{R}}\|\mathbf{f}(x, \mathbf{z})\|$, suppose $M\left(X_{M}-x_{0}\right) \leq Y_{M}$. Then, \exists a unique continuously differentiable fct $\mathbf{y}:\left[x_{0}, X_{M}\right] \rightarrow \mathbb{R}^{m}$ s.t.

$$
\mathbf{y}^{\prime}(x)=\mathbf{f}(x, \mathbf{y}(x)), \quad \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0} .
$$

A sufficient condition guaranteeing the Lipschitz property

Recall Lipschitz condition for IVPs:

$$
\begin{equation*}
\exists L>0: \quad|f(x, z)-f(x, \tilde{z})| \leq L|z-\tilde{z}| \quad \forall(x, z),(x, \tilde{z}) \in \mathrm{R} \tag{3}
\end{equation*}
$$

This is automatically satisfied if f is cts on R , differentiable in $\operatorname{int}(\mathrm{R})$, and

$$
\begin{equation*}
\exists C>0: \quad\left|f_{z}(x, z)\right|:=\left|\frac{\partial f}{\partial z}(x, z)\right| \leq C \quad \forall(x, z) \in \operatorname{int}(\mathrm{R}) \tag{4}
\end{equation*}
$$

Indeed, suppose that (4) holds. By the Mean-Value Thm, for any $(x, z) \in \mathrm{R}$ we have $f(x, z)-f(x, \tilde{z})=f_{z}(x, \xi)(z-\tilde{z})$ for some ξ between z and \tilde{z}. So, we obtain (3) with $L:=C$.

Recall Lipschitz condition for IVPs for systems:

$$
\exists L>0: \quad\|\mathbf{f}(x, \mathbf{z})-\mathbf{f}(x, \tilde{\mathbf{z}})\| \leq L\|\mathbf{z}-\tilde{\mathbf{z}}\| \quad \forall(x, \mathbf{z}),(x, \tilde{\mathbf{z}}) \in \mathbf{R}
$$

This is automatically satisfied with $L=C$ if \mathbf{f} cts on R , diff. in int (R), and

$$
\begin{equation*}
\exists C>0: \quad\left\|\frac{\partial \mathbf{f}}{\partial \mathbf{z}}(x, z)\right\| \leq C \quad \forall(x, z) \in \operatorname{int}(\mathrm{R}) \tag{5}
\end{equation*}
$$

where $\|\cdot\|$ in (5) is the matrix norm induced by the Euclidean vector norm.

Warning: The converse is not necessarily true!

E.g., consider

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, z):=|z|
$$

and $\mathrm{R}:=\left[x_{0}, X_{M}\right] \times\left[y_{0}-Y_{M}, y_{0}+Y_{M}\right]$ with $x_{0}:=y_{0}:=0$ and any chosen $X_{M}, Y_{M}>0$. Then,

- f satisfies the Lipschitz condition with $L=1$:

$$
|f(x, z)-f(x, \tilde{z})|=||z|-|\tilde{z}|| \leq|z-\tilde{z}| \quad \forall(x, z),(x, \tilde{z}) \in \mathrm{R},
$$

- but f is not differentiable $\operatorname{in} \operatorname{int}(\mathrm{R})($ as $z \mapsto|z|$ is not diff. at $z=0)$.

Stability

Definition (Stability)

Consider an IVP for a system of ODEs $\mathbf{y}^{\prime}(x)=\mathbf{f}(x, \mathbf{y}(x)), \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}$.
(i) A solution $\mathbf{y}=\mathbf{v}(x)$ is called stable on $\left[x_{0}, X_{M}\right]$ if $\forall \varepsilon>0 \exists \delta>0$ s.t. for all $\mathbf{z} \in \mathbb{R}^{m}$ satisfying $\left\|\mathbf{y}_{0}-\mathbf{z}\right\|<\delta$ the solution \mathbf{w} to

$$
\mathbf{w}^{\prime}(x)=\mathbf{f}(x, \mathbf{w}(x)), \quad \mathbf{w}\left(x_{0}\right)=\mathbf{z}
$$

is defined in $\left[x_{0}, X_{M}\right]$ and satisfies $\|\mathbf{v}(x)-\mathbf{w}(x)\|<\varepsilon \forall x \in\left[x_{0}, X_{M}\right]$.
(ii) A soln $\mathbf{y}=\mathbf{v}(x)$ which is stable on $\left[x_{0}, \infty\right.$) (i.e. stable on $\left[x_{0}, X_{M}\right]$ for each X_{M} and with δ independent of X_{M}) is called stable in the sense of Lyapunov.
(iii) If in addition to (ii) there holds

$$
\lim _{x \rightarrow \infty}\|\mathbf{v}(x)-\mathbf{w}(x)\|=0
$$

then the solution $\mathbf{y}=\mathbf{v}(x)$ is called asymptotically stable.

Stability: Example

Recall defn: A solution $\mathbf{y}=\mathbf{v}(x)$ is called stable on $\left[x_{0}, X_{M}\right]$ if $\forall \varepsilon>0 \exists \delta>0$ s.t. for all $\mathbf{z} \in \mathbb{R}^{m}$ satisfying $\left\|\mathbf{y}_{0}-\mathbf{z}\right\|<\delta$ the solution \mathbf{w} to $\mathbf{w}^{\prime}(x)=\mathbf{f}(x, \mathbf{w}(x)), \mathbf{w}\left(x_{0}\right)=\mathbf{z}$ is defined in $\left[x_{0}, X_{M}\right]$ and satisfies $\|\mathbf{v}(x)-\mathbf{w}(x)\|<\varepsilon \forall x \in\left[x_{0}, X_{M}\right]$.
For some fixed $\lambda \in \mathbb{R}$, consider the IVP

$$
y^{\prime}(x)=\lambda y(x), \quad y(0)=1
$$

with unique soln $y=v(x)$ with $v(x):=e^{\lambda x}$.
Question: For what values of λ is the soln $y=v(x)$ stable on $[0, \infty)$ (i.e., stable on $\left[0, X_{M}\right]$ for any $X_{M}>0$ and δ independent of $\left.X_{M}\right)$?
For $z \in \mathbb{R}$, the problem

$$
w^{\prime}(x)=\lambda w(x), \quad w(0)=z
$$

has the unique soln $w(x):=z e^{\lambda x}$. Note that $|v(x)-w(x)|=|1-z| e^{\lambda x}$.

- Case $\lambda \leq 0$: Then, $|v(x)-w(x)| \leq|1-z| \forall x \in[0, \infty)$. $\Longrightarrow y=v(x)$ stable on $[0, \infty)$ when $\lambda \leq 0$.
- Case $\lambda>0$: Note $\max _{x \in\left[0, X_{M}\right]}|v(x)-w(x)|=|1-z| e^{\lambda X_{M}}$. $\Longrightarrow y=v(x)$ is unstable on $[0, \infty)$ when $\lambda>0$.
However, $y=v(x)$ is stable on $\left[0, X_{M}\right]$ for fixed X_{M}.

Main result on stability

Theorem (Stability under assumptions of Picard's Thm)
Under assumptions of Picard's Thm, the unique solution $\mathbf{y}=\mathbf{v}(x)$ to $\mathbf{y}^{\prime}(x)=\mathbf{f}(x, \mathbf{y}(x)), \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}$ is stable on $\left[x_{0}, X_{M}\right]$.

Proof: Let \mathbf{w} be the soln to $\mathbf{w}^{\prime}(x)=\mathbf{f}(x, \mathbf{w}(x)), \mathbf{w}\left(x_{0}\right)=\mathbf{z}$. Then, we have $\mathbf{v}(x)=\mathbf{y}_{0}+\int_{x_{0}}^{x} \mathbf{f}(t, \mathbf{v}(t)) \mathrm{d} t$ and $\mathbf{w}(x)=\mathbf{z}+\int_{x_{0}}^{x} \mathbf{f}(t, \mathbf{w}(t)) \mathrm{d} t$.

$$
\begin{aligned}
\|\mathbf{v}(x)-\mathbf{w}(x)\| & \leq\left\|\mathbf{y}_{0}-\mathbf{z}\right\|+\left\|\int_{x_{0}}^{x}(\mathbf{f}(t, \mathbf{v}(t))-\mathbf{f}(t, \mathbf{w}(t))) \mathrm{d} t\right\| \\
& \leq\left\|\mathbf{y}_{0}-\mathbf{z}\right\|+\int_{x_{0}}^{x}\|\mathbf{f}(t, \mathbf{v}(t))-\mathbf{f}(t, \mathbf{w}(t))\| \mathrm{d} t \\
& \leq\left\|\mathbf{y}_{0}-\mathbf{z}\right\|+L \int_{x_{0}}^{x}\|\mathbf{v}(t)-\mathbf{w}(t)\| \mathrm{d} t .
\end{aligned}
$$

Gronwall Lemma: $A(x) \leq a+L \int_{x_{0}}^{x} A(t) \mathrm{d} t \forall x \Longrightarrow A(x) \leq a e^{L\left(x-x_{0}\right)} \forall x$.

$$
\|\mathbf{v}(x)-\mathbf{w}(x)\| \leq e^{L\left(x-x_{0}\right)}\left\|\mathbf{y}_{0}-\mathbf{z}\right\| \leq e^{L\left(X_{M}-x_{0}\right)}\left\|\mathbf{y}_{0}-\mathbf{z}\right\|
$$

Given $\varepsilon>0$, set $\delta=e^{-L\left(X_{M}-x_{0}\right)} \varepsilon:\|\mathbf{v}(x)-\mathbf{w}(x)\|<\varepsilon$ if $\left\|\mathbf{y}_{0}-\mathbf{z}\right\|<\delta$.

Proof of Gronwall Lemma: Write $I:=\left[x_{0}, X_{M}\right]$. We need to show that

$$
A(x) \leq a+L \int_{x_{0}}^{x} A(t) \mathrm{d} t \quad \forall x \in I \quad \Longrightarrow \quad A(x) \leq a e^{L\left(x-x_{0}\right)} \quad \forall x \in I .
$$

Multiplying the inequality $-a-L \int_{x_{0}}^{x} A(t)+A(x) \leq 0$ by $e^{-L x}$:

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{a}{L} e^{-L x}+e^{-L x} \int_{x_{0}}^{x} A(t) \mathrm{d} t\right] \leq 0 \quad \forall x \in I
$$

So, the function in the brackets is non-increasing. Thus,

$$
\frac{a}{L} e^{-L x}+e^{-L x} \int_{x_{0}}^{x} A(t) \mathrm{d} t \leq \frac{a}{L} e^{-L x_{0}} \quad \forall x \in I
$$

Multiply by $L e^{L x}$:

$$
a+L \int_{x_{0}}^{x} A(t) \mathrm{d} t \leq a e^{L\left(x-x_{0}\right)} \quad \forall x \in I
$$

It follows that $A(x) \leq a+L \int_{x_{0}}^{x} A(t) \mathrm{d} t \leq a e^{L\left(x-x_{0}\right)} \quad \forall x \in I$.

End of "Chapter 1: Introduction/Preliminaries".

