MAA4255 Numerical Methods in Differential Equations

Chapter 1: Introduction/Preliminaries (Part I: ODEs)



What are Ordinary Differential Equations (ODEs)?

An ODE is an equation for a fct y = y(z) containing derivatives of y, e.g.,
o y'(z) = 3y(z),
o (y(x) +y'(x) +y" ()" =y"(x) —y" () +2°.

Explicit ODE of order n:

y(n) ('7") = f(.%', y(m), y,(x)7 e ?y(n_l)(x))'

Implicit ODE of order n:

Pla,y(@),y/ (@), ...,y™ (@) = 0.

In Part | of this course, we focus on explicit first-order ODEs, i.e.,

y' (@) = f(z,y(x)).



Initial-value Problems (IVPs)
Ex.: 3/(z) = 3y(z) has infinitely many solns: y(z) = ce3*, c € R.
= To get a unique solution, we need to specify y at some value g € R.
Y (@) =3y(@), yxo)=y = yl&)=yoe** ™).
y(zp) = yo is called an initial condition (i.c.). Problems of the form
y(@) = flzy@@),  ylo) =wo (1)
are called Initial-value Problems (IVPs).

Note: Not all IVPs have a unique solution. E.g.,

has multiple solutions: y =0 and y(x) = 2%363. (Here, f(z,z):= zg)

= f(+,) continuous not sufficient for uniqueness. So what is sufficient?
Rk: f continuous = (1) has at least one solution (Peano Existence Thm)



Picard’s Theorem for IVPs /(z) = f(z,y(x)), y(xo) = o

Theorem (Picard’s Theorem)

Suppose f(-,) is continuous in a region U C R? containing the rectangle
R := [z, X X [yo — Yar, yo + Y], where Xy > o, Yar > 0, suppose

AL >0: |f(x,2)— f(z,2)| < Llz—2| VY(z,2),(z,2) €R, (2)

and with M := max(, ,er |f(7, 2)|, suppose M(Xp — x0) < Yas. Then,
3 a unique continuously differentiable fct y : [xo, Xar] — R s.t.

y'(x) = f(z,y(x)) for x € (0, Xpr),  y(xo) = Yo

(2) is called Lipschitz condition (in 2nd argument of f), L is called
Lipschitz constant.

Proof: See any introductory ODE course or book. Idea: Picard iteration:
w@ =, @) i=w+ [ ftpa@)d  we.
o

Then, y, — y in C([xo, Xn]) and y solves the IVP. YT



Theorem (Picard’s Theorem)

Suppose f(-,) is continuous in a region U C R? containing the rectangle
R := [z, X X [yo — Yar, yo + Y], where Xy > x0,Yar > 0, suppose

3L >0: |f(l‘,Z)—f(l’,2)|§L|Z—2| V(l‘,Z),(iL‘,g)ER,

and with M := max(, ,er |f(7, 2)|, suppose M (X — x0) < Yas. Then,
3 a unique continuously differentiable fct y : [xo, Xar] — R s.t.

Y (@) = f(zyx)) for € (z0,Xnm),  ylwo) = o

Observation: the graph of y lies in R, i.e., (z,y(z)) € R Vx € [xg, Xar].
Pf of observation: Suppose this were not true. Then, by continuity of y,

Jz, € (o, Xar) 0 |y(xs) —wol = Y,  |y(x) — yo| < Y YV € [xo, z4).

/ (@) da| < / ' (2)] de
zo T

— [ 1@ y@)lds < M~ 20) < Va5 O

zo

= ’y(l'*) - y0| =
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IVPs for systems of ODEs
IVPs for systems of m ODEs:

y1 (@) = fi(@,v1(z),12(2), ..., ym(2)),  v1(x0) = Y01,
Yo (x) = fa(@, y1(2),92(2), ..., ym(2)),  y2(x0) = Y02,

y;n<$) = fm(x7 y1(-%'), y2($)7 ce 7ym($))a ym(a:o) = Yo,m;
or equivalently,
y/(.%') - f(x7y(x>)7 y($0) = Yo
with given

0,1 bil
o €R, y,= : eR™ f=| | :[vo, Xnm] xR™ = R™,
Yo,m fm

and we are seeking a soln'y = (y1,...,ym)" : [xo, Xar] — R™.



Picard's Thm for systems y'(z) = f(x,y(z)), y(zo) =y,

Introduce the Euclidean norm || - || : R™ — [0, 00) on R™ by

m
ull = | Y uil?, foru=(u,... uy,)" €R™
i=1

Theorem (Picard’s Theorem (version for systems))

Suppose that f(-,-) is a continuous in a region U C R'*™ containing
R={(z,2) e RxR™ : z € [x0, Xn1], ||z—yol <Yum},
where Xy > xo, Yar > 0, suppose that

IL>0:  ||f(z,2) - f(z,2)| < Ll|lz — 2| Y(z,2),(z,%) € R,

and with M := max, ,cr ||f(z, z)
3 a unique continuously differentiable fct'y : [xo, Xar] — R™ s.t.

y(z) =f(z,y(@),  y(zo) =yo.

, suppose M (X — xo9) < Yar. Then,




A sufficient condition guaranteeing the Lipschitz property

Recall Lipschitz condition for IVPs:

L >0: |f(z,2) — f(z,2)] < V(z,2),(z,2) € R. (3)
This is automatically satisfied if f is cts on R, differentiable in int(R), and
3050 |fzxz—‘ O o) <0 Va2 emR). (@)

Indeed, suppose that (4) holds. By the Mean-Value Thm, for any
(x,z) € R we have f(z,2) — f(z,2) = f.(z,£)(z — Z) for some £ between
z and Z. So, we obtain (3) with L :=C.

Recall Lipschitz condition for IVPs for systems:

L > 0: If(xz,z) — f(x,2)|| < L||z —2z| V(z,2),(z,2) € R.
This is automatically satisfied with L = C'if f cts on R, diff. in int(R), and
of
E(l‘a Z)

where || - || in (5) is the matrix norm induced by the Euclidean vector norm.
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IC>0: <C VY(z,2) €int(R), (5)




Warning: The converse is not necessarily true!
E.g., consider
f:R2Z SR, flx,z2):= |7

and R := [z9, X ] X [yo — Yar, yo + Yar] with 2o := yo := 0 and any
chosen X, Yas > 0. Then,

o f satisfies the Lipschitz condition with L = 1:

[f(@,2) = f(z, )| = |lz] = [2ll < |z = 2] V(z,2),(2,2) €R,

@ but f is not differentiable in int(R) (as z — |z| is not diff. at z = 0).



Stability

Definition (Stability)
Consider an IVP for a system of ODEs y'(z) = f(z,y(z)), y(z0) = ¥o-

(i) A solution y = v(x) is called stable on [z¢, X /] if Ve >0 35 > 0
s.t. for all z € R™ satisfying ||yo — z|| < J the solution w to

w'(z) = f(x, w(x)), w(zg) =2z

is defined in [xo, Xas] and satisfies || v(z) —w(x)| < e Vz € [z, X ).

(i) A soln y = v(z) which is stable on [z, c0) (i.e. stable on [zg, X /]
for each X s and with § independent of X)) is called stable in the
sense of Lyapunov.

(iii) If in addition to (ii) there holds

lim_[lv(z) — w(z)|| = 0,

T—00

then the solution y = v(x) is called asymptotically stable.




Stability: Example

Recall defn: A solution y = v(z) is called stable on [zg, X ;] if Ve > 0 35 > 0 s.t. for all

z € R™ satisfying ||yo — z|| < § the solution w to w'(z) = f(z, w(z)), w(zg) = z is defined in
[zo, X ] and satisfies ||v(z) — w(z)|| < € Yz € [z0, Xns]-

For some fixed A € R, consider the IVP

Y()=Xy(x), y(0)=1
with unique soln y = v(z) with v(z) := .
Question: For what values of \ is the soln y = v(z) stable on [0, c0) (i.e.,
stable on [0, X] for any X»s > 0 and § independent of X/)?

For z € R, the problem
w'(z) = dw(z), w(0) =z

has the unique soln w(z) := ze**. Note that |[v(z) — w(z)| = |1 — z[e?.
e Case A < 0: Then, |v(z) —w(z)| < |1 — 2| Vz € [0, 0).
= y = v(x) stable on [0, 00) when A < 0.
o Case A > 0: Note max,¢(o x,,][v(7) —w(x)| = |1 - 2|
= y = v(x) is unstable on [0, 00) when A > 0.
However, y = v(z) is stable on [0, X /] for fixed X ;.

eAXM_



Main result on stability

Theorem (Stability under assumptions of Picard’s Thm)

Under assumptions of Picard’s Thm, the unique solution'y = v(z) to
Y (x) =f(x,y(x)), y(xo) =y is stable on [zg, X ).

Proof: Let w be the soln to w/(z) = f(x,w(x)), w(xg) = z. Then, we
have v(z) =y, + le(] f(t,v(t))dt and w(x) = z + f;:j f(t,w(t))dt.

Iv(z) = w@)] < lyo - 2]l + \ [ v - f(m(t)))dtH

zo

< [lyo — =l + /x (¢, v(2) — £(2, w(t))|| dt

< llyo—2| + L / Iv(t) — wit)] dt.
zo

Gronwall Lemma: A(z) < a+ Lf;o A(t)dtVe = A(z) < ael@=20) g
[v(z) — w(@)|| < 0|y, — z|| < HXMmT0)|lyg — 4],

Given € > 0, set § = e~ LM —20)c: ||y (z) — w(2)| < € if |lyy — 2| < 6. —



Proof of Gronwall Lemma: Write I := [z, X3s]. We need to show that

A(z) <a+ L/ Atydt Yeel = Ax)<ael®20 vpel
@0

Multiplying the inequality —a — Lffo A(t) + A(x) <0 by e~ E2:

dr | L

0

So, the function in the brackets is non-increasing. Thus,

x
De-La e_L”/ A(t)dt < Qe~Leo gy el
L » L

Multiply by Lel®:

a+ L/ At)dt < aellm=m0) yy e .
o

It follows that A(z) < a + Lf;o A(t)dt < ael=20) vr e,

d €T
[ae_Lx + e_Lw/ A(t) dt] <0 Vo e I.
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End of “Chapter 1: Introduction/Preliminaries”.
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