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6.1 The eigenvalue problem: the basics
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The Eigenvalue Problem

We study the eigenvalue problem corresponding to a matrix A ∈ Cn×n:

Find x ∈ Cn\{0} and λ ∈ C such that Ax = λx.

Notation: We write Cm×n for the set of complex m× n matrices, and
Cm := Cm×1 for the set of complex column m-vectors.

For A = (aij) ∈ Cm×n write Ā := (aij) ∈ Cm×n (complex conjugate each

entry), and denote the adjoint by A∗ := AT ∈ Cn×m.

We introduce three important classes of square matrices:

A ∈ Cn×n is called hermitian iff A∗ = A,
(if A real: hermitian ⇔ symmetric)

A ∈ Cn×n is called normal iff A∗A = AA∗,

A ∈ Cn×n is called unitary iff A∗A = AA∗ = In.
(if A real: unitary ⇔ orthogonal)
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The basics: For A ∈ Cn×n, . . .

λ ∈ C is called eigenvalue of A iff Ax = λx for some x ∈ Cn\{0}.
Then, any x ∈ Cn\{0} with Ax = λx is called an eigenvector of A
corresponding to the eigenvalue λ.

define the characteristic polynomial

pA : C→ C, z 7→ det(zIn −A).

define the spectrum

Λ(A) := {λ ∈ C : λ is an eigenvalue of A}
and the spectral radius

ρ(A) := max{|λ| : λ ∈ Λ(A)}.
Some results:

If A is hermitian, then Λ(A) ⊆ R.
Λ(A) = {λ ∈ C : pA(λ) = 0}.
∃λ1, . . . , λn ∈ C : pA(z) =

∏n
i=1(z − λi) (⇒ Λ(A) = {λ1, . . . , λn}).

det(A) =
∏n
i=1 λi and tr(A) =

∑n
i=1 λi. 4 / 55



The basics: For A ∈ Cn×n, . . .

the algebraic multiplicity µA(λ) ∈ {1, . . . , n} of an eigenvalue
λ ∈ Λ(A) is the multiplicity of λ as a root of pA.
We call λ ∈ Λ(A) with µA(λ) = 1 a simple eigenvalue.

the eigenspace Eλ ⊆ Cn of an eigenvalue λ ∈ Λ(A) is defined to be
Eλ := N(λIn −A). We call γA(λ) := dim(Eλ) ∈ {1, . . . , n} the
geometric multiplicity of λ ∈ Λ(A).

an eigenvalue λ ∈ Λ(A) is called defective iff γA(λ) < µA(λ). A
matrix A ∈ Cn×n is called defective iff it has a defective eigenvalue.

If X ∈ Cn×n invertible, the map SX : Cn×n → Cn×n, A 7→ X−1AX
is called a similarity transformation of A. Further, B ∈ Cn×n is
called similar to A ∈ Cn×n iff ∃X ∈ Cn×n invertible: B = X−1AX.

Some results:

γA(λ) ≤ µA(λ) for any λ ∈ Λ(A).
If B ∈ Cn×n is similar to A ∈ Cn×n, then pA = pB, Λ(A) = Λ(B),
and µA(λ) = µB(λ) and γA(λ) = γB(λ) for all λ ∈ Λ(A) = Λ(B).
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Estimating the location of eigenvalues: Gerschgorin’s thm

Notation: We denote the closed disc in the complex plane around a point
a ∈ C with radius r > 0 by D(a, r) := {z ∈ C : |z − a| ≤ r} ⊆ C.

Theorem (Gerschgorin’s theorem)

Let A = (aij)1≤i,j≤n ∈ Cn×n. Define r1, . . . , rn ≥ 0 given by

ri :=
∑

j∈{1,...,n}\{i}

|aij |, i ∈ {1, . . . , n}.

Then, there holds Λ(A) ⊆
⋃n
i=1D(aii, ri), i.e., every eigenvalue of A lies

in at least one of the n Gerschgorin discs D(a11, r1), . . . , D(ann, rn).

Moreover, if there are 1 ≤ k ≤ n Gerschgorin discs such that their union U
is a connected set which is disjoint from the union of the remaining n− k
Gerschgorin discs, then U contains exactly k eigenvalues of A.

Note: Since Λ(A) = Λ(AT) for any A ∈ Cn×n, we can obtain additional
information on Λ(A) by applying Gerschgorin’s theorem to AT as well.
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Proof of Gerschgorin’s theorem

Claim: Let A = (aij)1≤i,j≤n ∈ Cn×n. Define r1, . . . , rn ≥ 0 given by

ri :=
∑

j∈{1,...,n}\{i}

|aij |, i ∈ {1, . . . , n}.

Then, there holds Λ(A) ⊆
⋃n
i=1D(aii, ri).

Proof: Let λ ∈ Λ(A). Let x = (x1, . . . , xn)T ∈ Cn\{0} with Ax = λx and
‖x‖∞ = maxk∈{1,...,n}|xk| = 1. Let i ∈ {1, . . . , n} with |xi| = 1. Then,

|λ− aii|= |(λ− aii)xi|= |(Ax)i − aiixi|

=

∣∣∣∣∣∣
n∑
j=1

aijxj − aiixi

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

j∈{1,...,n}\{i}

aijxj

∣∣∣∣∣∣ ≤ ri‖x‖∞= ri,

i.e., λ ∈ D(aii, ri).
(proof of second part of the theorem omitted)
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6.2 Eigenvalue-revealing factorizations
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Eigenvalue-revealing factn 1: Eigenvalue decomposition

Definition (Eigenvalue decomposition, diagonalizable matrices)

Let A ∈ Cn×n. If there exists an invertible matrix X ∈ Cn×n and a
diagonal matrix D ∈ Cn×n such that

A = XDX−1, (1)

then we call (1) an eigenvalue decomposition of A.

(i) We say A is diagonalizable iff there exists an eigenvalue
decomposition of A.

(ii) We say A is unitary diagonalizable iff there exists an eigenvalue
decomposition (1) of A with X unitary, i.e., iff ∃X ∈ Cn×n unitary,
D ∈ Cn×n diagonal: A = XDX∗.

Note that (1) is equivalent to AX = XD. Writing X = (x1| . . . |xn) and
D = diagn×n(λ1, . . . , λn), this yields Axi = λixi for i ∈ {1, . . . , n}.
=⇒ The eigenvalue decompn is an eigenvalue-revealing decomposition
as we can directly read off the eigvals from the diagonal of D.
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Characterization of diagonalizable matrices

Theorem (Characterization of diagonalizable matrices)

A matrix A ∈ Cn×n is diagonalizable iff it is non-defective, i.e., iff
γA(λ) = µA(λ) for all λ ∈ Λ(A).

Proof: “=⇒” Suppose A ∈ Cn×n has an eigenvalue decomposition
A = XDX−1 with X ∈ Cn×n invertible and D ∈ Cn×n diagonal.
A is similar to D. Hence,

Λ(A) = Λ(D) =: Λ,
∀λ ∈ Λ: µA(λ) = µD(λ), γA(λ) = γD(λ)

D is diagonal =⇒ γD(λ) = µD(λ) ∀λ ∈ Λ =⇒ γA(λ) = µA(λ) ∀λ ∈ Λ.

“⇐=” Suppose A ∈ Cn×n is non-defective. Denote its distinct eigenvalues
by λ1, . . . , λk ∈ Λ(A), k ≤ n. To each λi can find γA(λi) lin.indep.
eigenvecs of A. Since eigenvecs to distinct eigenvals are lin.indep., can
find a total of

∑k
i=1 γA(λi) =

∑k
i=1 µA(λi) = n lin.indep. eigenvectors

x1, . . . , xn ∈ Cn\{0} for A. Then, X := (x1| . . . |xn) is invertible and,
setting D := diagn×n(d1, . . . , dn) with d1, . . . , dn ∈ C satisfying
Axi = dixi, there holds AX = XD and hence A = XDX−1.
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Theorem (Characterization of unitary diagonalizable matrices)

A matrix A ∈ Cn×n is unitary diagonalizable iff it is normal. In particular,
every hermitian matrix is unitary diagonalizable.

Remark: If A ∈ Rn×n is symmetric, then ∃ a real eigenvalue decomposition
A = XDX−1 = XDXT with X ∈ Rn×n orthogonal and D ∈ Rn×n
diagonal. We call real symmetric matrices orthogonally diagonalizable.

Any symmetric matrix is orthogonally equivalent to a diagonal matrix.

Definition (Orthogonally equivalent matrices)

Two matrices A,B ∈ Rn×n are called orthogonally equivalent iff there
exists an orthogonal matrix Q ∈ Rn×n such that A = QBQT.
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Eigenvalue-revealing factn 2: Schur factorization

Drawback of eigenvalue decompn: it only exists for non-defective matrices.

Definition (Schur factorization)

Let A ∈ Cn×n. If there exists a unitary matrix Q ∈ Cn×n and an
upper-triangular matrix T ∈ Cn×n such that

A = QTQ∗,

then we call this factorization a Schur factorization of A.

Theorem (Existence of Schur factorization)

Every matrix A ∈ Cn×n has a Schur factorization.

Remark 1: If A = QTQ∗ is a Schur factn, then Λ(A) = Λ(T ).
=⇒ we can read off the eigenvalues of A from the diagonal of T .
Remark 2: If A ∈ Cn×n is normal and A = QTQ∗ is a Schur factn of A,
then T must be diagonal. (exercise)
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Claim: Every matrix A ∈ Cn×n has a Schur factorization A = QTQ∗.

Proof: (induction on n ∈ N). For the case n = 1, i.e., A = (a) ∈ C1×1, we
have that A = (a) = (1)(a)(1) = I1AI

∗
1 is a Schur factorization of A.

As induction hypothesis suppose the claim is true for some n ∈ N.

Let A ∈ C(n+1)×(n+1). Our goal is to construct a Schur factorization of A.
Let λ ∈ Λ(A) and x ∈ Cn+1\{0} with x∗x = 1 and Ax = λx. We can
find U = (u1| . . . |un|un+1) ∈ C(n+1)×(n+1) unitary with u1 = x. Then,

U∗AU =

(
λ w∗

0n×1 B

)
∈ C(n+1)×(n+1)

for some w ∈ Cn and B ∈ Cn×n. By hypothesis, ∃ Schur factn
B = V RV ∗ (V ∈ Cn×n unitary, R ∈ Cn×n upper-triangular). Then,[
U

(
1 01×n

0n×1 V

)]∗
A

[
U

(
1 01×n

0n×1 V

)]
=

(
1 01×n

0n×1 V ∗

)(
λ w∗

0n×1 B

)(
1 01×n

0n×1 V

)
=

(
λ w∗V

0n×1 R

)
=: T ∈ C(n+1)×(n+1).

=⇒ A = QTQ∗ with Q := U

(
1 01×n

0n×1 V

)
is a Schur factn of A.
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6.3 Transformation into upper-Hessenberg form
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Eigenvalue solvers must be iterative

“Bad news”: there is no algorithm which can compute the eigenvalues of
an arbitrary matrix in a finite number of steps.
=⇒ Any eigenvalue solver must be iterative.

Let a := (a0, . . . , an−1)
T ∈ Cn. Observe that the problem of finding the

roots of the monic polynomial p : C→ C, p(z) = zn +
∑n−1

i=0 aiz
i is

equivalent to finding the eigenvalues of the matrix

A :=
(
e2|e3| · · · |en| − a

)
∈ Cn×n.

(Pf: Denoting the roots of p by z1, . . . , zn ∈ C, (1, zi, z
2
i , . . . , z

n−1
i )T ∈ Cn

is an eigenvector of AT with eigenvalue zi for i ∈ {1, . . . , n}. Hence, since
Λ(A) = Λ(AT), we find that Λ(A) = {z1, . . . , zn}.)

=⇒ If there were an algorithm which can compute the exact eigenvalues
of an arbitrary matrix in finite steps, we would have a formula for
computing the roots of any arbitrary polynomial. However, this is
impossible since it is known that no such formula exists for polynomials of
degree greater than or equal to 5.
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We cannot find a Schur factn in finite time, but . . .

We can transform a given matrix into an “almost” triangular matrix via
unitary similarity transformations in a finite number of steps:

A =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 =⇒ H = Q∗AQ =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗

 .

Definition (upper-Hessenberg matrix)

A square matrix A = (aij) ∈ Cn×n is called an upper-Hessenberg matrix
iff aij = 0 whenever i > j + 1.

Definition (Hessenberg decomposition)

Let A ∈ Cn×n. If there exist a unitary matrix Q ∈ Cn×n and an
upper-Hessenberg matrix H ∈ Cn×n such that A = QHQ∗, then we call
this a Hessenberg decomposition of A.
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Hessenberg decomposition

Definition (Hessenberg decomposition)

Let A ∈ Cn×n. If there exist a unitary matrix Q ∈ Cn×n and an
upper-Hessenberg matrix H ∈ Cn×n such that A = QHQ∗, then we call
this a Hessenberg decomposition of A.

Theorem (Existence of Hessenberg decomposition)

Any square matrix A ∈ Cn×n has a Hessenberg decomposition. Moreover,
if A ∈ Rn×n is real, then there exists a Hessenberg decomposition
A = QHQT with Q ∈ Rn×n orthogonal and H ∈ Rn×n upper-Hessenberg.

Transformation into upper-Hessenberg form via unitary similarity
transformations is typically the first phase of any eigenvalue algorithm.
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Example: Transformation into upper-Hessenberg form

Consider A :=


1 1 0 −1 0
−2 −1 1 1 0
1 1 −1 1 0
2 1 1 −1 0
0 1 1 1 1

.

Step 1 : Find Q1 ∈ R5×5 orthogonal s.t. A1 := QT
1AQ1 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

.

We take QT
1 = Q1 to be a Householder reflector that leaves the first row

unchanged and introduces the desired zeros. Set x1 := (−2, 1, 2, 0)T and
v1 := sign(〈x1, e1〉)‖x1‖2e1 + x1 = (−5, 1, 2, 0)T, and take

Q1 :=

(
1 01×4

04×1 I4 − 2
v1v

T
1

‖v1‖22

)
=


1 0 0 0 0
0 − 2

3
1
3

2
3

0
0 1

3
14
15

− 2
15

0
0 2

3
− 2

15
11
15

0
0 0 0 0 1

 .

Then, Q1A = QT
1A has the desired zero-entries in first column, and so

does QT
1AQ1 (right-multpcn by Q1 leaves first column unchanged).
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We have A1 := QT
1AQ1 =


1 − 4

3
∗ ∗ ∗

3 − 17
9
∗ ∗ ∗

0 17
45

∗ ∗ ∗
0 19

45
∗ ∗ ∗

0 1
3

∗ ∗ ∗

 .

Step 2 : Find Q2 ∈ R5×5 orthogonal s.t. A2 := QT
2A1Q2 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

.

We take QT
2 = Q2 to be a Householder reflector that leaves the first two

rows unchanged and introduces the desired zeros. Set x2 := (1745 ,
19
45 ,

1
3)T

and v2 := sign(〈x2, e1〉)‖x2‖2e1 + x2 = 1
45(17 + 5

√
35, 19, 15)T, and take

Q2 :=

(
I2 02×3

03×2 I3 − 2
v2v

T
2

‖v2‖22

)
=


1 0 0 0 0
0 1 0 0 0
0 0 − 17

5
√
35

− 19

5
√
35

− 3√
35

0 0 − 19

5
√
35

39375+6137
√
35

102550
− 9975−969

√
35

20510

0 0 − 3√
35

− 9975−969
√
35

20510
2527+153

√
35

4102

 .

Then, Q2A1 = QT
2A1 has the desired zero-entries in its second column,

and so does A2 := QT
2A1Q2.
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We have A2 := QT
2A1Q2 =


1 − 4

3
− 4

3
√
35

∗ ∗
3 − 17

9
− 26

9
√
35

∗ ∗
0 −

√
35
9

523
315

∗ ∗
0 0 2565

√
35−8721

20510
∗ ∗

0 0 − 6885+3249
√
35

20510
∗ ∗

 .

Step 3 : Find Q3 ∈ R5×5 orthogonal s.t. A3 := QT
3A2Q3 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

.

We take QT
3 = Q3 Householder reflector that leaves first 3 rows unchanged

and introduces the desired zeros. Set x3 := ( 2565
√
35−8721

20510
,− 6885+3249

√
35

20510
)T

and v3 := sign(〈x3, e1〉)‖x3‖2e1 + x3, and take

Q3 :=

(
I3 03×2

02×3 I2 − 2
v3v

T
3

‖v3‖22

)
=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 − 285
√
910−969

√
26

15236
765
√
26+361

√
910

15236

0 0 0 765
√
26+361

√
910

15236
285
√
910−969

√
26

15236

 .

Then, Q3A2 = QT
3A2 has the desired zero-entry in its third column, and

so does QT
3A2Q3.
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We have

A3 = QT
3Q

T
2Q

T
1AQ1Q2Q3 =


1 − 4

3
− 4

3
√
35

− 4√
910

− 2√
26

3 − 17
9

− 26

9
√
35

−
√
910

105
0

0 −
√

35
9

523
315

8
√
26

105
0

0 0 − 9
√
26

35
8
35

0
0 0 0 0 −2

 =: H.

This is in upper-Hessenberg form. We find that A = QHQT with H as
above and

Q := Q1Q2Q3 =


1 0 0 0 0
0 − 2

3
− 11

3
√
35

− 11√
910

1√
26

0 1
3
− 8

3
√
35

− 8√
910

− 4√
26

0 2
3
− 7

3
√
35

− 7√
910

3√
26

0 0 − 3√
35

26√
910

0


is a Hessenberg decomposition of A (note Q is orthogonal as a product of

orthogonal matrices).
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Existence and (non-)uniqueness of Hessenberg decompn

Using this methodology, any arbitrary square matrix A ∈ Cn×n can be
transformed into upper-Hessenberg form via unitary similarity
transformations in (at most) n− 2 steps. We are now able to find a
Hessenberg decomposition to any given square matrix.

The Hessenberg decomposition is not unique. Consider, e.g., a 2× 2
matrix A ∈ C2×2. Then, for any unitary Q ∈ C2×2, we have that
A = Q(Q∗AQ)Q∗ is a Hessenberg decomposition of A (note any 2× 2
matrix is upper-Hessenberg).

Let A ∈ Cn×n be hermitian, and let A = QHQ∗ be a Hessenberg
decomposition of A. Then, H∗ = (Q∗AQ)∗ = Q∗A∗Q = Q∗AQ = H,
i.e., H is hermitian upper-Hessenberg and thus, H must be tridiagonal.

=⇒ we can transform any hermitian matrix via unitary similarity
transformations into a hermitian tridiagonal matrix.

=⇒ we can transform any real symmetric matrix via orthogonal similarity
transformations into a symmetric tridiagonal matrix.
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Algorithm: Transformation into upper-Hessenberg form

Let A ∈ Rn×n. To obtain the factor H of a Hessenberg decomposition
A = QHQT, do as follows:

for i = 1, . . . , n− 2 do
x = Ai+1:n,i

vi = sign(〈x, e1〉)‖x‖2e1 + x
vi = vi

‖vi‖2
Ai+1:n,i:n = Ai+1:n,i:n − 2vi

(
vTi Ai+1:n,i:n

)
A1:n,i+1:n = A1:n,i+1:n − 2 (A1:n,i+1:nvi) v

T
i

end for.

The algorithm stores the result H in place of A. Note that Q is not
explicitly formed, but can be obtained from the vectors v1, . . . , vn−2.

Theorem

The above algorithm requires ∼ 10
3 n

3 flops.

If A ∈ Rn×n is symmetric, clever modifications are used in practice to
transform into tridiagonal form using only ∼ 4

3n
3 flops.
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Backward stability of Hessenberg via Householder

Theorem

Suppose we apply the above algorithm to a matrix A ∈ Rn×n, leading to
outputs H̃ ∈ Rn×n and ṽ1, . . . , ṽn ∈ Rn (the computed factor H and
reflection vectors vi in floating point computation). Writing
Q̃ := Q̃1Q̃2 . . . Q̃n−2 with Q̃i denoting the orthogonal matrix
corresponding to the reflection vector ṽi, there holds

Q̃H̃Q̃T = A+ ∆A for some ∆A ∈ Rn×n with
‖∆A‖
‖A‖

= O(εmachine)

for all matrix norms ‖ · ‖ on Rn×n.
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6.4 Some classical algorithms
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For simplicity, . . .

Restriction: Assume from now on that A = AT ∈ Rn×n, i.e., A is a real
symmetric matrix.

=⇒ ∃ Q ∈ Rn×n orthogonal and D = diagn×n(λ1, . . . , λn) ∈ Rn×n with
{λ1, . . . , λn} = Λ(A) ⊆ R s.t. A = QDQT.
(The i-th column of Q is an eigenvec to the eigenval λi.)
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Rayleigh quotient: connection between eigvecs and eigvals

Definition (Rayleigh quotient)

Let A ∈ Rn×n be a symmetric matrix. We define the map

RA : Rn\{0} → R, x 7→ xTAx

xTx
=
〈Ax, x〉
‖x‖22

=

〈
A

x

‖x‖2
,
x

‖x‖2

〉
.

For x ∈ Rn\{0}, call RA(x) Rayleigh quotient of x (corresponding to A).

Theorem (Properties of the Rayleigh quotient)

Let A ∈ Rn×n be a symmetric matrix.

(i) If x ∈ Rn\{0} is eigvec of A, then RA(x) is its corresponding eigval.

(ii) RA is differentiable on Rn\{0} with gradient ∇RA : Rn\{0} → Rn

given by ∇RA(x) = 2 Ax−(RA(x))x
‖x‖22

.

For x ∈ Rn\{0}, have ∇RA(x) = 0 iff x is eigvec of A.

(iii) If q ∈ Rn\{0} eigvec of A: |RA(x)−RA(q)| = O(‖x− q‖22) as x→ q.
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A = AT ∈ Rn×n. (i) If x ∈ Rn\{0} eigvec of A, then RA(x) is corresponding eigval.

(ii) ∇RA(x) = 2 Ax−(RA(x))x

‖x‖22
, stationary pts of RA are the eigvecs of A.

(iii) If q ∈ Rn\{0} eigvec of A: |RA(x)−RA(q)| = O(‖x− q‖22) as x→ q.

Proof: (i) Let x ∈ Rn\{0} eigvec of A and let λ ∈ R be its corresponding eigval,
i.e., Ax = λx. Then,

RA(x) =
〈Ax, x〉
‖x‖22

=
〈λx, x〉
‖x‖22

= λ
〈x, x〉
‖x‖22

= λ.

(ii) Define f, g : Rn → R, f(x) := xTAx =
∑n

i,j=1 aijxixj ,

g(x) := xTx =
∑n

i=1 x
2
i . Note RA(x) = f(x)

g(x) ∀x ∈ Rn\{0}. Compute

∇f(x) =

n∑
i,j=1

aij (xjei + xiej) = 2

n∑
i,j=1

aijxjei = 2

n∑
i=1

(Ax)iei = 2Ax

and ∇g(x) = 2x. Therefore, for any x ∈ Rn\{0}, we have

∇RA(x) =

(
g∇f − f ∇g

g2

)
(x) =

2‖x‖22Ax− 2(xTAx)x

‖x‖42
= 2

Ax− (RA(x))x

‖x‖22
.

For x ∈ Rn\{0}: ∇RA(x) = 0 ⇔ Ax = (RA(x))x ⇔ x is eigvec of A.

(iii) Taylor: RA(x) = RA(q) + (∇RA(q))T︸ ︷︷ ︸
=0

x+ O(‖x− q‖22) as x→ q.
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Power iteration (Von Mises iteration)

=⇒ Algorithm for computing largest (in absolute value) eigval and a
corresponding eigenvec (under suitable assumptions)

Given A ∈ Rn×n symmetric.

Choose v(0) ∈ Rn with ‖v(0)‖2 = 1, and do the following:

for k = 1, 2, 3, . . . do
w = Av(k−1)

v(k) = w
‖w‖2

λ(k) = 〈Av(k), v(k)〉
end for

Observations:

∀k ∈ N: v(k) = Av(k−1)

‖Av(k−1)‖2
, and therefore,

v(k) =
Akv(0)

‖Akv(0)‖2
.

∀k ∈ N: λ(k) = RA(v(k)).

(Note: In practice, a suitable stopping criterion is necessary.) 29 / 55



Theorem (Convergence of power iteration)

Let A ∈ Rn×n symmetric with eigval decomposition A = QDQT, where
Q = (q1| · · · |qn) ∈ Rn×n orthogonal, D = diagn×n(λ1, . . . , λn) ∈ Rn×n
with {λ1, . . . , λn} = Λ(A) and |λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

Let v(0) ∈ Rn with ‖v(0)‖2 = 1, and let (v(k)) ⊆ Rn and (λ(k))k∈N be the
sequences produced by power iteration. If

|λ1| > |λ2|, 〈v(0), q1〉 6= 0,

then there holds

λ(k) → λ1 with |λ(k) − λ1| = O

(∣∣∣∣λ2λ1
∣∣∣∣2k
)

as k →∞,

‖v(k) − skq1‖2 = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)

as k →∞,

for some (sk)k∈N ⊆ {−1, 1}. (“span(v(k)) converges to span(q1)”)
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Proof: Suppose |λ1| > |λ2| and 〈v(0), q1〉 6= 0. Write

v(0) =

n∑
i=1

ciqi

with c1, . . . , cn ∈ R. Note that ci = 〈v(0), qi〉 ∀ i ∈ {1, . . . , n} and in
particular, c1 6= 0. Then,

v(k) =
Akv(0)

‖Akv(0)‖2
=

QDkQTv(0)

‖QDkQTv(0)‖2
=

∑n
i=1 ciλ

k
i qi∥∥∑n

i=1 ciλ
k
i qi
∥∥
2

=
c1λ

k
1

|c1λk1|

q1 +
∑n

i=2
ci
c1

(
λi
λ1

)k
qi∥∥∥∥q1 +

∑n
i=2

ci
c1

(
λi
λ1

)k
qi

∥∥∥∥
2

.

If λ1 > 0: v(k) → sign(c1)q1, ‖v(k) − sign(c1)q1‖2 = O(
∣∣∣λ2λ1 ∣∣∣k).

If λ1 < 0: ‖v(k) − (−1)ksign(c1)q1‖2 = O(
∣∣∣λ2λ1 ∣∣∣k).

=⇒
|λ(k)− λ1| = |RA(v(k))−RA(skq1)| = O(‖v(k)− skq1‖22) = O(

∣∣∣λ2λ1 ∣∣∣2k).
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Drawbacks of power iteration

It only computes the normalized eigenvector for the largest eigenvalue
(and it computes only this largest eigenvalue).

The rate of convergence for span(v(k)) to span(q1) is only linear, i.e.,
the error in each step is reduced by a constant factor (≈ |λ1λ2 |).

If |λ1| > |λ2|, but |λ1| is close to |λ2|, then convergence is very slow
(as |λ2λ1 | is only slightly below 1).
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Can we only compute “largest” eigval? An observation:

Let A ∈ Rn×n be a symmetric matrix with an eigenvalue decomposition
A = QDQT with Q = (q1| · · · |qn) ∈ Rn×n orthogonal and
D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A).

Observation: For µ ∈ R\Λ(A), A− µIn ∈ Rn×n is invertible and

Λ
(
(A− µIn)−1

)
=
{

(λ1 − µ)−1, . . . , (λn − µ)−1
}
.

Indeed, for i ∈ {1, . . . , n}, we have (A− µIn)−1qi = (λi − µ)−1qi since

(A− µIn)
(
(λi − µ)−1qi

)
= (λi − µ)−1 (Aqi − µqi) = (λi − µ)−1(λi − µ)qi = qi,

i.e., qi is an eigenvec to (A− µIn)−1 with eigval (λi − µ)−1.

We observe that the eigenvalue of (A− µIn)−1 with the largest absolute
value is (λj − µ)−1, where λj is the eigenvalue of A closest to µ.

=⇒ Apply power iteration to (A− µIn)−1 to find eigval of A closest to µ.
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Inverse iteration: Power iteration for (A− µIn)−1

Let A ∈ Rn×n symmetric and µ ∈ R\Λ(A).

Choose v(0) ∈ Rn with ‖v(0)‖2 = 1, and do the following:

for k = 1, 2, 3, . . . do
Solve (A− µIn)w = v(k−1) for w (⇐⇒ w = (A− µIn)−1v(k−1))
v(k) = w

‖w‖2
λ(k) = 〈Av(k), v(k)〉

end for

Theorem (Convergence of inverse iteration)

Let A ∈ Rn×n symmetric, A = QDQT with Q = (q1| · · · |qn) ∈ Rn×n orthogonal
and D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A). Let

µ ∈ R\Λ(A), let v(0) ∈ Rn with ‖v(0)‖2 = 1. Suppose λj , λk ∈ Λ(A) are s.t.
|µ− λj | < |µ− λk| ≤ |µ− λi| ∀i ∈ {1, . . . , n}\{j} and 〈v(0), qj〉 6= 0. Then,

|λ(k) − λj | = O

(∣∣∣∣λj − µλk − µ

∣∣∣∣2k
)
, ‖v(k) − skqj‖2 = O

(∣∣∣∣λj − µλk − µ

∣∣∣∣k
)

as k →∞

for some (sk)k∈N ⊆ {−1, 1}. 34 / 55



Theorem (Convergence of inverse iteration)

Let A ∈ Rn×n symmetric, A = QDQT with Q = (q1| · · · |qn) ∈ Rn×n orthogonal
and D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A). Let

µ ∈ R\Λ(A), let v(0) ∈ Rn with ‖v(0)‖2 = 1. Suppose λj , λk ∈ Λ(A) are s.t.
|µ− λj | < |µ− λk| ≤ |µ− λi| ∀i ∈ {1, . . . , n}\{j} and 〈v(0), qj〉 6= 0. Then,

|λ(k) − λj | = O

(∣∣∣∣λj − µλk − µ

∣∣∣∣2k
)
, ‖v(k) − skqj‖2 = O

(∣∣∣∣λj − µλk − µ

∣∣∣∣k
)

as k →∞

for some (sk)k∈N ⊆ {−1, 1}.

=⇒ If we have a good estimate for a certain eigval of A, can apply inverse
iteration to produce this eigval and a corresponding eigvec.

=⇒ In particular, inverse iteration is the go-to method if one wants to find
eigvecs to eigvals which are already known.

Drawback of inverse iteration: slow speed of convergence.
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Rayleigh quotient iteration

Idea: Combine Rayleigh quotient (a way to find an eigval from an eigvec)
and inverse iteration (a way to find an eigenvec from an eigenval).

Let A ∈ Rn×n symmetric.

Choose v(0) ∈ Rn with ‖v(0)‖2 = 1, set λ(0) := 〈Av(0), v(0)〉 and do:

for k = 1, 2, 3, . . . do
Solve the linear system (A− λ(k−1)In)w = v(k−1)

v(k) = w
‖w‖2

λ(k) = 〈Av(k), v(k)〉
end for
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Choose v(0) ∈ Rn with ‖v(0)‖2 = 1, set λ(0) := 〈Av(0), v(0)〉 and do:

for k = 1, 2, 3, . . . do
Solve the linear system (A− λ(k−1)In)w = v(k−1)

v(k) = w
‖w‖2

λ(k) = 〈Av(k), v(k)〉
end for

Theorem (Convergence of Rayleigh quotient iteration)

Let A ∈ Rn×n symmetric, A = QDQT with Q = (q1| · · · |qn) ∈ Rn×n orthogonal
and D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A). Then, for

almost all v(0) ∈ Rn with ‖v(0)‖2 = 1, the sequences (v(k)) ⊆ Rn and (λ(k)) ⊆ R
converge to an eigvec and eigval of A. Further, in this case and if λj ∈ Λ(A) is
such that v(0) is sufficiently close to qj , then

|λ(k+1) − λj | = O
(
|λ(k) − λj |3

)
, ‖v(k+1) − sk+1qj‖2 = O

(
‖v(k) − skqj‖32

)
for some (sk)k∈N ⊆ {−1, 1}.

=⇒ Cubic order of convergence! (extremely quick)
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Example: Let A :=

−1 2 2
2 1 2
2 2 −1

. Choose v(0) := 1
3

 1
−2
2

.

Step 0 : Compute

λ(0) := 〈Av(0), v(0)〉 = −17
9 = −1.8888 . . .

Step 1 : Solve (A− λ(0)I3)w(1) = v(0). Find w(1) = 3
70(191,−265, 184)T.

v(1) :=
w(1)

‖w(1)‖2
=


191

3
√

15618
−265

3
√

15618
184

3
√

15618

 =

 0.5094 . . .
−0.7068 . . .
0.4907 . . .

 ,

λ(1) := 〈Av(1), v(1)〉 = −128518

70281
= −1.8286 . . .

Step 2 : Solve (A− λ(1)I3)w(2) = v(1) and compute

v(2) :=
w(2)

‖w(2)‖2
=

 0.49999838 . . .
−0.70710677 . . .
0.50000162 . . .

 , λ(2) := 〈Av(2), v(2)〉 = −1.82842712475 . . .

Rk: λ(k) → 1− 2
√

2 and span(v(k)) converges to span((12 ,−
1√
2
, 12)T).
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6.5 The QR algorithm
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Restriction: Assume from now on that A = AT ∈ Rn×n, i.e., A is a real
symmetric matrix.

=⇒ there exist an orthogonal matrix Q ∈ Rn×n and a diagonal matrix
D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A) ⊆ R s.t.
A = QDQT. (The i-th column of Q is an eigenvec to the eigenval λi.)

Recall: If A ∈ Rn×n symmetric, we can find a Hessenberg decomposition

A = QHQT

with Q ∈ Rn×n orthogonal and H ∈ Rn×n symmetric and tridiagonal.

=⇒ Work with H instead of A.
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QR algorithm

Let A ∈ Rn×n be a symmetric tridiagonal matrix. Set A(0) := A and do:

for k = 1, 2, 3, . . . do
Compute a QR factorization A(k−1) = Q(k)R(k) of A(k−1)

A(k) = R(k)Q(k)

end for

Note that for any k ∈ N we have

A(k) = (Q(k))TA(k−1)Q(k),

i.e., the QR algorithm consists of orthogonal similarity transformations.

We are going to see that the sequence (A(k))k∈N converges under suitable
assumptions to a Schur form of A (here, as A is symmetric, this means to
a diagonal matrix containing the eigenvalues of A on the diagonal).
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Simultaneous iteration

Suppose we are given a symmetric tridiagonal matrix A ∈ Rn×n (i.e.,
Hessenberg reduction has already been performed).

Consider the following approach: Take linearly independent vectors

v
(0)
1 , . . . , v

(0)
n ∈ Rn and apply power iteration to these vectors

simultaneously in the following sense:

Setting V (0) := (v
(0)
1 | · · · |v

(0)
n ), compute V (k) := AkV (0) and write

(v
(k)
1 | · · · |v

(k)
n ) = V (k) = (Akv

(0)
1 | · · · |A

kv(0)n ),

and orthogonalize in the sense of computing a QR factn V (k) = Q(k)R(k).

Under suitable assumptions, the span of the first l columns of Q(k) will
converge to the span of eigvecs q1, . . . , ql to the l largest (in |·|) eigvals.

In practice, in view of numerical stability, the following normalized version
of simultaneous iteration is used (orthonormalize at each step):
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Simultaneous iteration

Let A ∈ Rn×n symmetric, tridiagonal. Choose Q(0) ∈ Rn×n orthogonal.

for k = 1, 2, 3, . . . do
Z = AQ(k−1)

Compute a QR factorization Z = Q(k)R(k) of Z
A(k) = (Q(k))TAQ(k)

end for

Theorem (Convergence of simultaneous iteration)

Let A ∈ Rn×n symmetric, tridiagonal, with eigenvalue decompn A = QDQT with
Q = (q1| · · · |qn) ∈ Rn×n orthogonal and D = diagn×n(λ1, . . . , λn) ∈ Rn×n with
{λ1, . . . , λn} = Λ(A). Suppose |λ1| > |λ2| > · · · > |λn|. Then, if

det(M1:i,1:i) 6= 0 ∀i ∈ {1, . . . , n}, where M := QTQ(0),

and writing Q(k) = (q
(k)
1 | . . . |q

(k)
n ), we have for any j ∈ {1, . . . , n} that for some

(sk)k∈N ⊆ {−1, 1} there holds

‖q(k)j − skqj‖2 = O

((
max

i∈{1,...,n−1}

∣∣∣∣λi+1

λi

∣∣∣∣)k
)
.
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QR algorithm ⇐⇒ simultaneous iteration

Theorem (Equivalence of QR algorithm and simultaneous iteration)

The QR algorithm and simultaneous iteration with Q(0) := In produce the
same sequences (A(k))k∈N. Further, we have that

Q
(k)
sIt = Q

(1)
QRQ

(2)
QR · · ·Q

(k)
QR =: Q̃

(k)
QR,

R̃
(k)
sIt := R

(k)
sIt · · ·R

(2)
sItR

(1)
sIt = R

(k)
QR · · ·R

(2)
QRR

(1)
QR =: R̃

(k)
QR

for any k ∈ N, and there holds

A(k) = (Q̃
(k)
QR)TAQ̃

(k)
QR,

Ak = Q̃
(k)
QRR̃

(k)
QR.

(Here, the subscript sIt refers to the iterates from simultaneous iteration
and the subscript QR refers to the iterates from the QR algorithm.)
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Convergence of QR algorithm

Theorem (Convergence of QR algorithm)

Let A ∈ Rn×n be a symmetric tridiagonal matrix with an eigenvalue decomposition
A = QDQT with Q = (q1| · · · |qn) ∈ Rn×n orthogonal and
D = diagn×n(λ1, . . . , λn) ∈ Rn×n with {λ1, . . . , λn} = Λ(A). Suppose

|λ1| > |λ2| > · · · > |λn|

and that

det(Q1:i,1:i) 6= 0 ∀i ∈ {1, . . . , n}.

Let (A(k))k∈N and (Q(k))k∈N be the sequences produced by the QR algorithm, and let

Q̃(k) := (q̃
(k)
1 | · · · |q̃

(k)
n ) := Q(1)Q(2) · · ·Q(k) for k ∈ N. Then, as k →∞, A(k) → D,

and for any j ∈ {1, . . . , n} we have for some (sk)k∈N ⊆ {−1, 1} that q̃(k)j − skqj → 0.

The speed of convergence is linear with constant maxi∈{1,...,n−1}

∣∣∣λi+1

λi

∣∣∣.
Observation: the iterates A(k) are Rayleigh quotients:

a
(k)
ii =〈ei, A(k)ei〉=〈ei, (Q̃(k))TAQ̃(k)ei〉=〈Q̃(k)ei, AQ̃

(k)ei〉=〈q̃(k)i , Aq̃
(k)
i 〉=RA(q̃

(k)
i )

for any i ∈ {1, . . . , n}.
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Example: QR algorithm

Consider A :=

 1 −1 0
−1 1 1
0 1 1

. The matrix A has the eigenvalue

decomposition A = QDQT with

D := diag3×3(λ1, λ2, λ3) :=

1 +
√

2 0 0
0 1 0

0 0 1−
√

2

=

2.414 . . . 0 0
0 1 0
0 0 −0.414 . . .

 ,

Q := (q1|q2|q3) :=

−
1
2

1√
2
− 1

2
1√
2

0 − 1√
2

1
2

1√
2

1
2

 =

 −0.5 0.707 . . . −0.5
0.707 . . . 0 −0.707 . . .

0.5 0.707 . . . 0.5

 .

Let us perform the QR algorithm:
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Step k = 1

We need to compute a QR factorization of A(0) := A. Take the QR
factorization A(0) = Q(1)R(1) with

Q(1) :=


1√
2

0 1√
2

− 1√
2

0 1√
2

0 1 0

 , R(1) :=


√

2 −
√

2 − 1√
2

0 1 1
0 0 1√

2

 .

We compute

A(1) := R(1)Q(1) =

 2 − 1√
2

0

− 1√
2

1 1√
2

0 1√
2

0

 =

 2 −0.707 . . . 0
−0.707 . . . 1 0.707 . . .

0 0.707 . . . 0

 ,

Q̃(1) := Q(1) =

 1√
2

0 1√
2

− 1√
2

0 1√
2

0 1 0

 =

 0.707 . . . 0 0.707 . . .
−0.707 . . . 0 0.707 . . .

0 1 0

 .
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Step k = 2

We need to compute a QR factorization of A(1). We omit the details and
take the QR factorization A(1) = Q(2)R(2) with

Q(2) :=

2
√
2

3
1

3
√
2

1
3
√
2

−1
3

2
3

2
3

0 1√
2
− 1√

2

 , R(2) :=


3√
2
−1 − 1

3
√
2

0 1
√
2
3

0 0
√
2
3

 .

We compute

A(2) := R(2)Q(2) =

 7
3 − 1

3 0
− 1

3 1 1
3

0 1
3 − 1

3

 =

 2.333 . . . −0.333 . . . 0
−0.333 . . . 1 0.333 . . .

0 0.333 . . . −0.333 . . .

 ,

Q̃(2) := Q̃(1)Q(2) =

 2
3

2
3 − 1

3
− 2

3
1
3 − 2

3
− 1

3
2
3

2
3

 =

 0.666 . . . 0.666 . . . −0.333 . . .
−0.666 . . . 0.333 . . . −0.666 . . .
−0.333 . . . 0.666 . . . 0.666 . . .

 .
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Step k = 3

We need to compute a QR factorization of A(2). We omit the details and
take the QR factorization A(2) = Q(3)R(3) with

Q(3) :=


7

5
√
2

2
15

1
15
√
2

− 1
5
√
2

14
15

7
15
√
2

0 1
3 −2

√
2

3

 , R(3) :=

5
√
2

3 −
√
2
3 − 1

15
√
2

0 1 1
5

0 0 3
5
√
2

 .

We compute

A(3) := R(3)Q(3) =


12
5

− 1

5
√
2

0

− 1

5
√
2

1 1

5
√
2

0 1

5
√

2
− 2

5

 =

 2.4 −0.141 . . . 0
−0.141 . . . 1 0.141 . . .

0 0.141 . . . −0.4

 ,

Q̃(3) := Q̃(2)Q(3) =


4

5
√
2

3
5

4

5
√
2

− 1√
2

0 1√
2

− 3

5
√
2

4
5
− 3

5
√
2

 =

 0.565 . . . 0.6 0.565 . . .
−0.707 . . . 0 0.707 . . .
−0.424 . . . 0.8 −0.424 . . .

 .

49 / 55



Step k = 4

We need to compute a QR factorization of A(3). We omit the details and
take the QR factorization A(3) = Q(4)R(4) with

Q(4) :=

12
√
2

17
7

85
√
2

1
85
√
2

− 1
17

84
85

12
85

0 1
5
√
2
− 7

5
√
2

 , R(4) :=


17
5
√
2
−1

5 − 1
85
√
2

0 1
√
2

17

0 0 5
√
2

17

 .

We compute

A(4) := R(4)Q(4) =

 41
17

− 1
17

0
− 1

17
1 1

17

0 1
17

− 7
17

 =

 2.411 . . . −0.058 . . . 0
−0.058 . . . 1 0.058 . . .

0 0.058 . . . −0.411 . . .

 ,

Q̃(4) := Q̃(3)Q(4) =

 9
17

12
17

− 8
17

− 12
17

1
17

− 12
17

− 8
17

12
17

9
17

 =

 0.529 . . . 0.705 . . . −0.470 . . .
−0.705 . . . 0.058 . . . −0.705 . . .
−0.470 . . . 0.705 . . . 0.529 . . .

 .
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We see that after 4 steps of the QR algorithm, we have obtained the
following approximations to the eigenvalues:

λ1 ≈ 41
17 = 2.411 . . . , (recall λ1 = 1 +

√
2 = 2.414 . . . )

λ2 ≈ 1, (recall λ2 = 1)

λ3 ≈ − 7
17 = −0.411 . . . , (recall λ3 = 1−

√
2 = −0.414 . . . )

and the following approximations to the (subspaces spanned by the)
eigenvectors:

span(q1) ≈ span(

 9
17
−12

17
− 8

17

) = span(

 0.529 . . .
−0.705 . . .
−0.470 . . .

), (recall q1 =

−1
2

1√
2
1
2

)

span(q2) ≈ span(

12
17
1
17
12
17

) = span(

0.705 . . .
0.058 . . .
0.705 . . .

), (recall q2 =


1√
2

0
1√
2

)

span(q3) ≈ span(

− 8
17
−12

17
9
17

) = span(

−0.470 . . .
−0.705 . . .
0.529 . . .

) (recall q3 =

 −1
2

− 1√
2

1
2

).
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QR algorithm with Rayleigh quotient shift

Let A ∈ Rn×n be a symmetric tridiagonal matrix. Set A(0) := A and do
the following:

for k = 1, 2, 3, . . . do

µ(k) = A
(k−1)
nn [here, A

(k−1)
nn is the (n,n)-entry of A(k−1)]

Compute a QR factorization A(k−1) − µ(k)In = Q(k)R(k)

A(k) = R(k)Q(k) + µ(k)In

end for
Remarks:

(i) For k ∈ N define Q̃(k) := Q(1)Q(2) · · ·Q(k) and R̃(k) := R(k) · · ·R(1). Then, for
any k ∈ N we have

A(k) = (Q̃(k))TAQ̃(k), (A− µ(k)In)(A− µ(k−1)In) · · · (A− µ(1)In) = Q̃(k)R̃(k).

The first result follows from the fact that

A(k) = (Q(k))TQ(k)(R(k)Q(k) + µ(k)In) = (Q(k))T
(

(Q(k)R(k))Q(k) + µ(k)Q(k)
)

= (Q(k))T
(

(A(k−1) − µ(k)In)Q(k) + µ(k)Q(k)
)

= (Q(k))TA(k−1)Q(k)

for any k ∈ N. The proof of the second result is omitted.
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(ii) The first column of Q̃(k) is the result of applying k steps of shifted power
iteration to e1 with shifts µ(1), . . . , µ(k), and the last column of Q̃(k) is the
result of applying k steps of shifted inverse iteration to en with shifts
µ(1), . . . , µ(k). To see the latter, define P := (en| · · · |e2|e1) ∈ Rn×n and
note that

(A− µ(k)In)−1(A− µ(k−1)In)−1 · · · (A− µ(1)In)−1P = ((Q̃(k)R̃(k))−1)TP

=
(

(R̃(k))−1(Q̃(k))T
)T

P = (Q̃(k)P )(P ((R̃(k))−1)TP )

is a QR factorization of the left-hand side.

(iii) For any k ∈ N, we have

A(k)
nn = 〈en, A(k)en〉 = 〈en, (Q̃(k))TAQ̃(k)en〉 = 〈Q̃(k)en, AQ̃

(k)en〉
= 〈q̃(k)n , Aq̃(k)n 〉 = RA(q̃(k)n ),

where q̃
(k)
n := Q̃(k)en denotes the last column of Q̃(k).

(iv) The approximation µ(k) to the eigenvalue corresponding to the eigenvector

approximated by q̃
(k)
n , and the approximated eigenvector q̃

(k)
n , are the result

of Rayleigh quotient iteration applied to en. It follows that we have cubic

convergence for the convergence of span(q̃
(k)
n ) to the span of an eigenvector.
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QR algorithm in practice: shift and deflation

Let A be a real symmetric tridiagonal square matrix. Set A(0) := A and
do the following:

for k = 1, 2, 3, . . . do

Choose a shift µ(k), e.g., the final diagonal entry of A(k−1)

Compute a QR factorization A(k−1) − µ(k)In = Q(k)R(k)

A(k) = R(k)Q(k) + µ(k)In

If an off-diagonal element A
(k)
i,i+1 is sufficiently close to 0, set

A
(k)
i,i+1 := 0, A

(k)
i+1,i := 0 so that A(k) =

(
A1 0

0 A2

)
is

block-diagonal and apply the algorithm to A1 and A2.

end for
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End of “Chapter 6: Eigenvalue Problems”.
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