
MA4230 Matrix Computation

Chapter 5: Conditioning and Stability

5.1 Conditioning of mathematical problems

5.2 Floating point numbers and floating point arithmetic

5.3 Stability of numerical algorithms

5.4 Stability of solution algorithms for linear systems

1 / 51

5.1 Conditioning of mathematical problems

2 / 51

Well-conditioned and ill-conditioned problems

“Conditioning” ⇐⇒ perturbation behavior of mathematical problems.

We regard a (mathematical) problem as a function

f : X → Y

with normed vector spaces X (the data space) and Y (the solution space).

A problem f , together with a particular data point x ∈ X ((f, x) is
called problem instance or simply problem), is well-conditioned if
small changes in x only lead to small changes in f(x).

Otherwise, i.e., if a small change in x can lead to a large change in
f(x), we call the problem (instance) ill-conditioned.

=⇒ How can we decide whether a problem is well- or ill-conditioned?

3 / 51

Condition number

Condition number = measure for the perturbation behavior of a problem.

Definition (Absolute and relative condition number)

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y) be normed vector spaces. For a problem
f : X → Y and a given data point x ∈ X, we define

(i) the absolute condition number κ̂ = κ̂(x) by

κ̂ := lim
δ→0

sup
∆x∈X

0<‖∆x‖X≤δ

‖f(x+ ∆x)− f(x)‖Y
‖∆x‖X

,

(ii) and, if x ∈ X\{0} and f(x) ∈ Y \{0}, the relative condition
number κ = κ(x) by

κ := lim
δ→0

sup
∆x∈X

0<‖∆x‖X≤δ

‖f(x+∆x)−f(x)‖Y
‖f(x)‖Y
‖∆x‖X
‖x‖X

.

If κ is small (e.g., 1, 10, 100), the problem is called well-conditioned, and if
κ is large (e.g., 106, 1012), the problem is called ill-conditioned. 4 / 51

Condition numbers: a special case

Let X = Rn and Y = Rm with chosen norms ‖ · ‖(n) on Rn and ‖ · ‖(m)

on Rm. Consider a problem f : X → Y , a given data point x ∈ Rn, and
assume that f is differentiable at x.

Then, we have

κ̂ = ‖Jf (x)‖(m,n), κ =
‖Jf (x)‖(m,n)‖x‖(n)

‖f(x)‖(m)

where Jf (x) ∈ Rm×n denotes the Jacobian of f at x whose entries are
given by (Jf (x))ij = ∂jfi, and ‖ · ‖(m,n) denotes the matrix norm on
Rm×n induced by the norms ‖ · ‖(n) on Rn and ‖ · ‖(m) on Rm.

5 / 51

Example 1: constant multiple of a real number

For X = Y = R with norm ‖ · ‖(1) := | · | on R, consider the problem

f : R→ R, x 7→ 7x,

i.e., the problem of obtaining 7x from x ∈ R.

Note that f is differentiable on R and Jf (x) =
(
f ′(x)

)
=
(
7
)
∈ R1×1 for

all x ∈ R. Hence,

κ =
‖Jf (x)‖(1,1)‖x‖(1)

‖f(x)‖(1)
=
|7||x|
|7x|

= 1.

=⇒ The problem is well-conditioned.

6 / 51

Example 2: addition of two real numbers

For X = R2 with norm ‖ · ‖(2) := ‖ · ‖2 on R2, and Y = R with norm
‖ · ‖(1) := | · | on R, consider the problem

f : R2 → R, (x1, x2) 7→ x1 + x2,

i.e., the problem of finding the sum of two real numbers.

f is differentiable on R2 and Jf (x) =
(
∂1f(x) ∂2f(x)

)
=
(
1 1

)
∈ R1×2

for all x ∈ R2. Hence,

κ =
‖x‖(2)

‖f(x)‖(1)
‖Jf (x)‖(1,2) =

√
x2

1 + x2
2

|x1 + x2|
sup
z∈R2

‖z‖2=1

|
(
1 1

)
z| =

√
2

√
x2

1 + x2
2

|x1 + x2|
.

Note that when x2 ≈ −x1 and x1 6= 0 we have that κ is large and the
problem is ill-conditioned. This phenomenon is called cancellation error.

7 / 51

Example 3: polynomial root-finding

Consider the polynomials

p1(t) := t2 − 2t+ 1, [double root t = 1],

px(t) := t2 − 2t+ x for x ≤ 1, [roots t = 1±
√

1− x].

Set X = Y = R with norm | · | on R and define the problem f : R→ R,
x 7→ f(x) by setting f(x) to be the largest root of px if x ≤ 1, and set
f(x) := f(1) = 1 for all x > 1 (note this doesn’t introduce perturbation
errors to the right of x = 1 as f(1 + ∆x)− f(1) = 0 for ∆x > 0).

Let us show that κ(1) =∞, i.e., the problem is severely ill-conditioned.
Observe that f(1) = 1. If we perturb x = 1 by some ∆x < 0, we find a
change in f(x) of size |f(1 + ∆x)− f(1)| =

√
−∆x. (If we perturb x = 1

by some ∆x > 0, we find no change in f(x)). Hence, for any δ > 0 have

sup
∆x∈[−δ,δ]\{0}

|f(1 + ∆x)− f(1)|
|∆x|

|1|
|f(1)|

= sup
∆x∈[−δ,0)

√
−∆x

−∆x
=∞.

=⇒ κ(1) =∞.
8 / 51

Central conditioning problems of numerical linear algebra

Conditioning of matrix-vector multiplication

Conditioning of linear systems

Conditioning of least squares problems

9 / 51

Conditioning of matrix-vector multiplication

Let X = Rn and Y = Rm with chosen norms ‖ · ‖(n) on Rn and ‖ · ‖(m)

on Rm, and let A ∈ Rm×n. Look at the problem

f : Rn → Rm, x 7→ Ax,

i.e., the problem of computing Ax ∈ Rm from x ∈ Rn.

Note f is differentiable and Jf (x) = A for all x ∈ Rn. Hence,

κ =
‖Jf (x)‖(m,n)‖x‖(n)

‖f(x)‖(m)
=
‖A‖(m,n)‖x‖(n)

‖Ax‖(m)
,

where ‖ · ‖(m,n) matrix norm on Rm×n induced by the norms ‖ · ‖(n) on Rn
and ‖ · ‖(m) on Rm. If m = n, ‖ · ‖(m) = ‖ · ‖(n), and A is invertible, then

κ = ‖A‖(n,n)

‖A−1Ax‖(n)

‖Ax‖(n)
≤ ‖A‖(n,n)‖A−1‖(n,n).

This upper bound is attained for certain choices of x.
10 / 51

Condition number of a matrix

Definition (Condition number of a matrix)

Let A ∈ Rn×n be invertible and let ‖ · ‖ be a norm on Rn×n. Then, we
define the condition number of A with respect to the norm ‖ · ‖ to be

κ‖·‖(A) := ‖A‖ ‖A−1‖.

If this quantity is small, we call A well-conditioned. Otherwise, we call A
ill-conditioned.

The condition number of a singular square matrix is typically set to ∞.

11 / 51

Theorem (Conditioning of matrix-vector multiplication)

Let A ∈ Rn×n be invertible. Consider the vector space Rn with a chosen norm ‖ · ‖(n)

on Rn, and let ‖ · ‖(n,n) denote the matrix norm on Rn×n induced by the vector norm
‖ · ‖(n). Then, we have the following:

(i) For the problem f : Rn → Rn, x 7→ Ax, i.e., the problem of finding b = Ax from
x ∈ Rn, the condition number κ = κ(x) is given by

κ = ‖A‖(n,n)

‖x‖(n)

‖b‖(n)

≤ κ‖·‖(n,n)
(A). (1)

If ‖ · ‖(n) = ‖ · ‖2 is the vector 2-norm (and hence, ‖ · ‖(n,n) = ‖ · ‖2 the spectral
norm), we have equality in (1) if x is a multiple of a right singular vector of A
corresponding to the smallest singular value σn.

(ii) For the problem f : Rn → Rn, b 7→ A−1b, i.e., the problem of finding the solution
x ∈ Rn to Ax = b from the right-hand side b ∈ Rn, the condition number
κ = κ(b) is given by

κ = ‖A−1‖(n,n)

‖b‖(n)

‖x‖(n)

≤ κ‖·‖(n,n)
(A). (2)

If ‖ · ‖(n) = ‖ · ‖2 is the vector 2-norm (and hence, ‖ · ‖(n,n) = ‖ · ‖2 the spectral
norm), we have equality in (2) if b is a multiple of a left singular vector of A
corresponding to the largest singular value σ1.

12 / 51

Let us revisit the problem for A ∈ Rm×n being a rectangular matrix with
m ≥ n and rk(A) = n.

Then, observing that A†A = In, i.e., the Moore-Penrose inverse
A† ∈ Rn×m is a left-inverse, we find that

κ = ‖A‖(m,n)

‖A†Ax‖(n)

‖Ax‖(m)
≤ ‖A‖(m,n)‖A†‖(n,m),

where ‖ · ‖(m,n) is the induced matrix norm on Rm×n, and ‖ · ‖(n,m) is the
induced matrix norm on Rn×m (induced by the vector norms ‖ · ‖(n) on
Rn, ‖ · ‖(m) on Rm). We define the condition number of A to be

κ‖·‖(m,n),‖·‖(n,m)
(A) := ‖A‖(m,n)‖A†‖(n,m).

13 / 51

Conditioning of linear systems

Let X = Rn×n and Y = Rn with a chosen norm ‖ · ‖(n) on Rn and induced
matrix norm ‖ · ‖(n,n) on Rn×n. Let b ∈ Rn be fixed. Consider the problem

f : A 7→ A−1b ∈ Rn for A ∈ Rn×n invertible,

i.e., the problem of finding the solution x ∈ Rn to Ax = b.

Rk: Although the space of invertible n× n matrices is not a vector space,
we can still study the perturbation behavior of f since a perturbed
invertible matrix is still invertible if the perturbation is sufficiently small:

Lemma (Perturbation lemma)

Let A ∈ Rn×n be invertible, and let ‖ · ‖ be a submultiplicative norm on
Rn×n (i.e., ‖M1M2‖ ≤ ‖M1‖ ‖M2‖ for any M1,M2 ∈ Rn×n).
Then, for any ∆A ∈ Rn×n with ‖∆A‖ < ‖A−1‖−1, the perturbed matrix
A+ ∆A ∈ Rn×n is invertible and there holds

‖(A+ ∆A)−1‖ ≤ ‖A−1‖
1− ‖∆A‖ ‖A−1‖

.

14 / 51

Lemma (Perturbation lemma)

Let A ∈ Rn×n be invertible, and let ‖ · ‖ be a submultiplicative norm on Rn×n (i.e.,
‖M1M2‖ ≤ ‖M1‖ ‖M2‖ for any M1,M2 ∈ Rn×n).
Then, for any ∆A ∈ Rn×n with ‖∆A‖ < ‖A−1‖−1, the perturbed matrix
A+ ∆A ∈ Rn×n is invertible and there holds

‖(A+ ∆A)−1‖ ≤ ‖A−1‖
1− ‖∆A‖ ‖A−1‖ .

Proof: Use the following fact without pf: For any X ∈ Rn×n with
‖X‖ < 1, we have that In −X is invertible and there holds
(In −X)−1 =

∑∞
i=0X

i (Neumann series) and ‖(In −X)−1‖ ≤ 1
1−‖X‖ .

Let A ∈ Rn×n invertible and ∆A ∈ Rn×n with ‖∆A‖ < ‖A−1‖−1. Write

A+ ∆A = (In −X)A with X := −(∆A)A−1 ∈ Rn×n.

Then, ‖X‖ = ‖(∆A)A−1‖ ≤ ‖∆A‖ ‖A−1‖ < 1. Hence, we find that
A+ ∆A is invertible as a product of invertible matrices, and

‖(A+ ∆A)−1‖ ≤ ‖A−1‖‖(In −X)−1‖ ≤ ‖A−1‖
1− ‖X‖

≤ ‖A−1‖
1− ‖∆A‖ ‖A−1‖

.

15 / 51

Conditioning of linear systems

Recall: X = Rn×n, Y = Rn with norm ‖ · ‖(n) on Rn and induced norm
‖ · ‖(n,n) on Rn×n, b ∈ Rn. Let f : A 7→ A−1b for A ∈ Rn×n invertible.

Since induced norm ‖ · ‖(n,n) is submultiplicative, the perturbation lemma

can be applied. Let A ∈ Rn×n be invertible and let ∆A ∈ Rn×n be such
that ‖∆A‖(n,n) < ‖A−1‖−1

(n,n). We are interested in the quantity

q(∆A) :=
‖f(A+ ∆A)− f(A)‖(n)

‖∆A‖(n,n)

‖A‖(n,n)

‖f(A)‖(n)

=
‖(A+ ∆A)−1b−A−1b‖(n)

‖∆A‖(n,n)

‖A‖(n,n)

‖A−1b‖(n)

.

Write (A+ ∆A)−1b = x+ ∆x for some ∆x ∈ Rn where x := A−1b:

Ax = b, (A+ ∆A)(x+ ∆x) = b.

=⇒ (∆A)x+ (A+ ∆A)∆x = 0, i.e., ∆x = −(A+ ∆A)−1(∆A)x, and
thus,

(A+ ∆A)−1b−A−1b = ∆x = −(A+ ∆A)−1(∆A)A−1b.

16 / 51

We find that

q(∆A) =
‖(A+ ∆A)−1b−A−1b‖(n)

‖∆A‖(n,n)

‖A‖(n,n)

‖A−1b‖(n)

=
‖ − (A+ ∆A)−1(∆A)A−1b‖(n)

‖∆A‖(n,n)

‖A‖(n,n)

‖A−1b‖(n)

≤ ‖(A+ ∆A)−1‖(n,n)‖A‖(n,n)

≤
‖A‖(n,n)‖A−1‖(n,n)

1− ‖∆A‖(n,n)‖A−1‖(n,n)
=

κ‖·‖(n,n)
(A)

1− ‖∆A‖(n,n)

‖A‖(n,n)
κ‖·‖(n,n)

(A)
,

and it follows that the condition number for the problem f at the matrix
A is bounded by the condition number of the matrix A:

κ = lim
δ→0

sup
∆A∈Rn×n

0<‖∆A‖(n,n)≤δ

q(∆A) ≤ κ‖·‖(n,n)
(A).

It can actually be shown that there holds equality in the above estimate
(we omit the proof) and we arrive at the following theorem:

17 / 51

Conditioning of linear systems

Theorem (Conditioning of linear systems)

Consider the vector space Rn with a chosen norm ‖ · ‖(n) on Rn, and let
‖ · ‖(n,n) denote the matrix norm on Rn×n induced by ‖ · ‖(n). Then, for a
fixed b ∈ Rn, the condition number for the problem of finding the solution
x ∈ Rn of Ax = b from A ∈ {M ∈ Rn×n : M invertible} is given by

κ = κ‖·‖(n,n)
(A).

18 / 51

Conditioning of least squares problems

Given A ∈ Rm×n, m ≥ n, rk(A) = n, and b ∈ Rm, consider LS problem

Minimize ‖Av − b‖2 over v ∈ Rn.

Recall that in this situation we have

x = A†b is the unique solution to the least squares problem, i.e., the
unique vector x ∈ Rn satisfying ‖Ax− b‖2 = infv∈Rn ‖Av − b‖2,
y = Ax = AA†b is the unique vector y ∈ R(A) satisfying
‖y − b‖2 = infw∈R(A) ‖w − b‖2.

We consider the following mathematical problems:

(i) obtain y from b for fixed A, i.e., fb 7→y : Rm → Rm, b 7→ AA†b,
(ii) obtain x from b for fixed A, i.e., fb 7→x : Rm → Rn, b 7→ A†b,
(iii) obtain y from A for fixed b, i.e., fA 7→y : A 7→ AA†b ∈ Rm for

A ∈ Rm×n, rk(A) = n,
(iv) obtain x from A for fixed b, i.e., fA 7→x : A 7→ A†b ∈ Rn for

A ∈ Rm×n, rk(A) = n,

and we consider the 2-norm on Rm and Rn, and the spectral norm on
Rm×n and Rn×m.

19 / 51

Theorem (Conditioning of least squares problems)

In this situation, there holds

κb 7→y =
1

cos(θ)
, κb 7→x =

κ(A)

η cos(θ)
, κA 7→y ≤

κ(A)

cos(θ)
, κA 7→x ≤ κ(A) +

(κ(A))2 tan(θ)

η
,

where κi 7→j (i ∈ {b, A}, j ∈ {x, y}) condition number for fi 7→j , and

κ(A) := ‖A‖2‖A†‖2 ≥ 1, θ := cos−1

(
‖AA†b‖2
‖b‖2

)
∈
[
0,
π

2

]
, η :=

‖A‖2‖A†b‖2
‖AA†b‖2

∈ [1, κ(A)].

Observations:

For A ∈ Rm×n, m ≥ n, rk(A) = n, the condition number in the
spectral norm is given by κ(A) = ‖A‖2‖A†‖2 = σ1

σn
∈ [1,∞).

θ is a measure for the closeness of the projection AA†b to b.

If m = n, we have A† = A−1 and hence θ = 0. In particular, we find

κb 7→x = κ(A)
η = ‖A−1‖2‖b‖2

‖A−1b‖2 and κA 7→x ≤ κ(A) = ‖A‖2‖A−1‖2, i.e.,

we recover the previous results on the conditioning of linear systems.

20 / 51

Proof of (i)

Let A ∈ Rm×n, m ≥ n, rk(A) = n be fixed, and consider

fb 7→y : Rm → Rm, b 7→ AA†b.

Recall from PS3: P := AA† is the orthogonal projector onto R(A).
Note P 6= 0m×m as A 6= 0m×n.

=⇒ ‖AA†‖2 = 1.

We find that the condition number κb 7→y = κb 7→y(b) of fb 7→y is given by

κb 7→y =
‖Jfb 7→y

(b)‖2‖b‖2
‖fb 7→y(b)‖2

=
‖AA†‖2‖b‖2
‖AA†b‖2

=
‖b‖2
‖AA†b‖2

=
1

cos(θ)
.

21 / 51

Proof of (ii)

Let A ∈ Rm×n, m ≥ n, with rk(A) = n be fixed, and consider the problem

fb 7→x : Rm → Rn, b 7→ A†b.

Then, the condition number κb 7→x = κb 7→x(b) of fb 7→x is given by

κb 7→x =
‖Jfb 7→x

(b)‖2‖b‖2
‖fb 7→x(b)‖2

=
‖A†‖2‖b‖2
‖A†b‖2

= ‖A‖2‖A†‖2
‖AA†b‖2
‖A‖2‖A†b‖2

‖b‖2
‖AA†b‖2

=
κ(A)

η cos(θ)
.

Proof of (iii),(iv) omitted.

22 / 51

5.2 Floating point numbers and floating point arithmetic

23 / 51

How are real numbers represented on a computer?

Note: Computers use a finite number of bits to represent a number.

=⇒ there is

a largest represented number (rn): x+
max > 0,

a smallest rn: x−min < 0,

a smallest positive rn: x+
min > 0,

a largest negative rn: x−max < 0,

i.e., the set of all rn’s is a finite subset of [x−min, x
−
max]∪ {0} ∪ [x+

min, x
+
max].

=⇒ there must be gaps between represented numbers.

24 / 51

Floating Point System (FPS)

Definition (Floating point system)

Given

β ∈ N with β ≥ 2 (base, usually taken to be 2),

t ∈ N (precision),

emin, emax ∈ Z (minimal/maximal exponent),

we define the floating point system F = F (β, t, emin, emax) ⊆ R to be
the set of real numbers that can be written as

x = (−1)s · (m1β
−1 + · · ·+mtβ

−t) · βe =: (−1)s · [0.m1 . . .mt]β · βe

for some m1, . . . ,mt ∈ {0, 1, . . . , β − 1}, e ∈ Z ∩ [emin, emax], s ∈ {0, 1}.

We call the number [0.m1 . . .mt]β ∈ [0, 1) the mantissa of x, and the
number e ∈ Z the exponent of x.

Requiring m1 6= 0 if x 6= 0 and m1 = 0 if x = 0, representation is unique.

25 / 51

Largest/smallest rn’s

Recall: x = (−1)s · (m1β
−1 + · · ·+mtβ

−t) · βe for some

m1, . . . ,mt ∈ {0, 1, . . . , β − 1}, e ∈ Z ∩ [emin, emax], s ∈ {0, 1}.

In a FPS F = F (β, t, emin, emax), the largest rn is

x+
max = (β − 1)

(
t∑
i=1

β−i

)
· βemax = (1− β−t)βemax ,

the smallest rn is x−min = −(1− β−t)βemax , the smallest positive rn is

x+
min = β−1 · βemin = βemin−1,

and the largest negative rn is x−max = −βemin−1. Therefore, we have

F ⊆ [−(1− β−t)βemax ,−βemin−1] ∪ {0} ∪ [βemin−1, (1− β−t)βemax].

26 / 51

IEEE double precision arithmetic

One uses β = 2, t = 53, and the rn’s are of the form

x = (−1)s · (m12−1 + · · ·+m532−53) · 2(c10210+···+c020)−1022

= (−1)s · [0.m1 . . .m53]2 · 2[c10...c0]2−1022
(3)

with s, ci,mi ∈ {0, 1}, biased exponent [c10 . . . c0]2 ∈ {1, . . . , 2046}, and
m1 = 1. The excluded numbers [c10 . . . c0]2 ∈ {0, 2047} are used for
representing 0 and “NaN”. The number x from (3) is equivalent to

x = (−1)s · (m1 +m22−1 · · ·+m532−52) · 2(c10210+···+c020)−1023

= (−1)s · (1 + [0.m2 . . .m53]2) · 2[c10...c0]2−1023

= (−1)s · [1.m2 . . .m53]2 · 2[c10...c0]2−1023

and is stored as the binary number

| s︸︷︷︸
1 bit

| c10|c9|c8| . . . |c2|c1|c0︸ ︷︷ ︸
11 bits

|m2|m3|m4| . . . |m51|m52|m53︸ ︷︷ ︸
52 bits

|.

Note x+
max = (1− 2−53)21024 ≈ 1.8 · 10308, x+

min = 2−1022 ≈ 2.2 · 10−308,
x−min = −(1− 2−53)21024 ≈ −1.8 · 10308, x−max = −2−1022 ≈ −2.2 · 10−308.

27 / 51

Observe that, in IEEE double precision arithmetic, the rn’s

in the interval [1, 2] are {1 + j · 2−52 | j ∈ {0, 1, . . . , 252}},
in the interval [2, 4] are {2 + j · 2−51 | j ∈ {0, 1, . . . , 252}},
in the interval [2k, 2k+1] are {2k + j · 2k−52 | j ∈ {0, 1, . . . , 252}}.

=⇒ distance between adjacent numbers in relative sense at most
2−52 ≈ 2.2 · 10−16.
(Note that the rn’s in [252, 253] are precisely the integers N ∩ [252, 253]).

A measure for the resolution of F : the number εmachine.

Definition (machine epsilon)

To a FPS F = F (β, t, emin, emax), define the machine epsilon

εmachine =
1

2
β1−t.

The machine epsilon in IEEE double precision arithmetic is given by

εmachine =
21−53

2
= 2−53 ≈ 1.1 · 10−16.

(half the distance between 1 and next larger rn)
28 / 51

Rounding

For any x ∈ [x−min, x
−
max] ∪ [x+

min, x
+
max] there exists a rn x′ ∈ F satisfying

|x− x′|
|x|

≤ εmachine, (4)

i.e., the distance between x and x′ in a relative sense is at most εmachine.

Define a rounding operator fl : [x−min, x
−
max] ∪ {0} ∪ [x+

min, x
+
max]→ F

with the property

|x− fl(x)| = inf
y∈F
|x− y|

for all x ∈ [x−min, x
−
max] ∪ {0} ∪ [x+

min, x
+
max]. Then, x′ = fl(x) satisfies (4).

=⇒ ∀x ∈ [x−min, x
−
max] ∪ {0} ∪ [x+

min, x
+
max] ∃ ε ∈ [−εmachine, εmachine]:

fl(x) = x(1 + ε).

29 / 51

Floating Point Arithmetic

Floating point operations: analogue of elementary operations (+,−,×, /)
for two numbers of a FPS.

Definition (Floating point operations)

Let F be a FPS. Define the floating point operations ⊕,	,⊗,� on F by

x ©∗ y := fl(x ∗ y), (x, y ∈ F)

for ©∗ ∈ {⊕,	,⊗,�}.

In view of fl(x) = x(1 + ε) for some ε with |ε| ≤ εmachine:

Theorem (Fundamental axiom of floating point arithmetic)

Let F be a FPS and ©∗ ∈ {⊕,	,⊗,�}. Then, for all x, y ∈ F (y 6= 0 if
©∗ = �) there exists ε ∈ [−εmachine, εmachine] such that

x ©∗ y = (x ∗ y)(1 + ε).

In particular, |x ©∗ y − x ∗ y| ≤ εmachine |x ∗ y| for all x, y ∈ F .
30 / 51

5.3 Stability of numerical algorithms

31 / 51

What is an algorithm?

Simplification: From now on, we consider an idealized FPS F = F (β, t)
ignoring overflow and underflow (all integer exponents e ∈ Z allowed).

Question: What is an algorithm for “solving” a mathematical problem
f : X → Y (with X,Y normed vector spaces)?

Suppose we have a computer with FPS satisfying the fundamental axiom.
We regard an algorithm for the problem as a map

f̃ : X → Y ,

where for x ∈ X, f̃(x) is defined as follows:

1. Round x to a floating point number fl(x).

2. Run the (fixed) implementation of the algorithm with input fl(x).

3. Output is defined as f̃(x) (collection of floating point numbers in Y).

32 / 51

Landau symbol O

Definition (Landau symbol O)

For real-valued functions u = u(t) and v = v(t) of a variable t ∈ R>0:

u(t) = O(v(t)) as t↘ 0 :⇐⇒ ∃t0, C > 0 : |u(t)| ≤ Cv(t) ∀t ∈ (0, t0),

u(t) = O(v(t)) as t→∞ :⇐⇒ ∃t0, C > 0 : |u(t)| ≤ Cv(t) ∀t ∈ (t0,∞).

Examples:

u(t) := 2t2 + 9t3 = O(t2) as t↘ 0. Pf:

|2t2 + 9t3|
t2

= 2 + 9t ≤ 11 ∀t ∈ (0, 1).

u(t) := 3 log(t) + 4t− t3 = O(t3) as t→∞. Pf:

|3 log(t) + 4t− t3|
t3

=

∣∣∣∣3log(t)

t3
+ 4

1

t2
− 1

∣∣∣∣ −→ 1 as t→∞.

So, ∃t0 > 0 s.t. |u(t)|
t3
≤ 2 for all t > t0.

33 / 51

Accuracy and Stability

Definition (Accuracy, stability)

Let X and Y be normed vector spaces with norms ‖ · ‖X and ‖ · ‖Y . Let
f : X → Y be a problem and f̃ : X → Y be an algorithm for f .

(i) f̃ is called accurate iff for each x ∈ X there holds

‖f̃(x)− f(x)‖Y
‖f(x)‖Y

= O(εmachine).

(ii) f̃ is called stable iff for each x ∈ X there holds

‖f̃(x)− f(x̃)‖Y
‖f(x̃)‖Y

= O(εmachine) for some x̃ ∈ X with
‖x̃− x‖X
‖x‖X

= O(εmachine).

Statements of the form ‖p(x,εmachine)‖
‖q(x,εmachine)‖ = O(εmachine) are meant in the sense

‖p(x, εmachine)‖
‖q(x, εmachine)‖

= O(εmachine) as εmachine ↘ 0, uniformly in x, i.e.,

∃ ε0, C > 0 : ‖p(x, εmachine)‖ ≤ Cεmachine‖q(x, εmachine)‖ ∀εmachine ∈ (0, ε0), x ∈ X.
34 / 51

We dream of accuracy, but . . .

Accuracy: ‖f̃(x)−f(x)‖Y
‖f(x)‖Y = O(εmachine).

Stability:
‖f̃(x)−f(x̃)‖Y
‖f(x̃)‖Y = O(εmachine) for some x̃ ∈ X with ‖x̃−x‖X‖x‖X = O(εmachine).

If f ill-conditioned, there is little hope to construct an accurate f̃ :
Even if the only error would stem from rounding the input data (and say
everything else is performed exactly), this small perturbation can already
lead to large changes in the result.

=⇒ Appropriate goal in constructing algorithms is stability:

A stable algorithm gives the almost right answer to an almost right
question.

35 / 51

Backward stability: A stronger condition than stability

Definition (Backward stability)

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y) be normed vector spaces. Let f : X → Y
be a problem and f̃ : X → Y be an algorithm for f .
Then, f̃ is called backward stable iff for each x ∈ X there holds

f̃(x) = f(x̃) for some x̃ ∈ X with
‖x̃− x‖X
‖x‖X

= O(εmachine).

Any backward stable algorithm is stable.

A backward stable algorithm gives the exact answer to an almost
right question.

36 / 51

Illustration

37 / 51

Some results

Theorem (Independence of norm)

If X,Y are finite-dimensional, the definitions of accuracy, stability, and
backward stability are independent of the choice of norms in X and Y in
the sense that the corresponding conditions either all hold or fail
independently of the choice of norms.

Theorem (Accuracy of backward stable algorithms)

Let X and Y be normed vector spaces with norms ‖ · ‖X and ‖ · ‖Y .
Consider a problem f : X → Y with condition number κ, and a backward
stable algorithm f̃ : X → Y for f . Then, there holds

‖f̃(x)− f(x)‖Y
‖f(x)‖Y

= O(κ(x) εmachine).

In particular, if κ(x) = O(1), then f̃ is accurate.

38 / 51

Example 1: Stability of floating point operation ⊕
The floating point operations ⊕,	,⊗,� are all backward stable. We
prove this for ⊕ and leave the remaining operations as an exercise.

Let us consider the problem

f : R2 → R, f(x1, x2) := x1 + x2,

and the algorithm

f̃ : R2 → R, f̃(x1, x2) := fl(x1)⊕ fl(x2).

Choose ‖ · ‖1 as norm on R2 and |·| as norm on R. Let x = (x1, x2)T ∈ R2.

Then, fl(x1) = x1(1 + ε1) and fl(x2) = x2(1 + ε2) with |ε1|, |ε2| ≤ εmachine,
and we have fl(x1)⊕ fl(x2) = (fl(x1) + fl(x2))(1 + ε3) with |ε3| ≤ εmachine.

39 / 51

Recall: fl(x1) = x1(1 + ε1) and fl(x2) = x2(1 + ε2) with |ε1|, |ε2| ≤ εmachine, and

we have fl(x1)⊕ fl(x2) = (fl(x1) + fl(x2))(1 + ε3) with |ε3| ≤ εmachine.

Therefore, we find

f̃(x) = fl(x1)⊕ fl(x2) = (fl(x1) + fl(x2))(1 + ε3)

= (x1(1 + ε1) + x2(1 + ε2))(1 + ε3)

= x1(1 + ε1)(1 + ε3) + x2(1 + ε2)(1 + ε3)

= x̃1 + x̃2 = f(x̃)

with x̃1 = x1(1 + ε1)(1 + ε3), x̃2 = x2(1 + ε2)(1 + ε3) and x̃ = (x̃1, x̃2)T.
We have

|x̃1 − x1| = |ε1 + ε3 + ε1ε3| |x1| ≤ (|ε1|+ |ε3|+ |ε1| |ε3|)|x1| ≤ C(εmachine)|x1|,
|x̃2 − x2| = |ε2 + ε3 + ε2ε3| |x2| ≤ (|ε2|+ |ε3|+ |ε2| |ε3|)|x2| ≤ C(εmachine)|x2|,

with C(εmachine) := 2εmachine + ε2
machine, and hence,

‖x̃− x‖1 = |x̃1 − x1|+ |x̃2 − x2| ≤ C(εmachine)(|x1|+ |x2|) = C(εmachine)‖x‖1.

Since C(εmachine) = 2εmachine + ε2
machine = O(εmachine), it follows that f̃ is

backward stable.
40 / 51

Example 2: Stability of adding 1

Let us consider the problem

f : R→ R, f(x) := x+ 1,

and the algorithm

f̃ : R→ R, f̃(x) := fl(x)⊕ 1.

Then, f̃ is stable. Proof: We choose the absolute value | · | as norm on R.
For x ∈ R set x̃ = fl(x) so that we have |x̃− x| ≤ εmachine|x| and

|f̃(x)− f(x̃)| = |(fl(x)⊕ 1)− (x̃+ 1)| = |(x̃⊕ 1)− (x̃+ 1)|
≤ εmachine|x̃+ 1| = εmachine|f(x̃)|.

It follows that f̃ is stable. Exercise: f̃ is not backward stable.

41 / 51

Example 3: Stability of computing inner/outer products

(i) Inner product: Consider f : Rn ×Rn → R, f(x, y) := xTy. Then, the

algorithm f̃ : Rn × Rn → R given by

f̃(x, y) :=

[[[(fl(x1)⊗ fl(y1))⊕ (fl(x2)⊗ fl(y2))]⊕ (fl(x3)⊗ fl(y3))]⊕ . . .]⊕ (fl(xn)⊗ fl(yn))

is backward stable.

(ii) Outer product: Consider f : Rm × Rn → Rm×n, f(x, y) := xyT.
Then, the algorithm f̃ : Rm × Rn → Rm×n given by

f̃(x, y) :=

fl(x1)⊗ fl(y1) · · · fl(x1)⊗ fl(yn)
...

...
fl(xm)⊗ fl(y1) · · · fl(xm)⊗ fl(yn)

is stable, but not backward stable.

42 / 51

Example 4: (In)stability of computing eigenvalues

Consider the following algorithm for computing eigenvalues of A ∈ Rn×n:

1. First, find the coefficients of the characteristic polynomial
(i.e., λ 7→ det(λIn −A)).

2. Find the roots of the obtained polynomial.

This algorithm is unstable (hence, this is not used in practice).

Note that for e.g. A = I2 ∈ R2×2 we have the characteristic polynomial
t 7→ t2 − 2t+ 1.

Computing the coefficients of the characteristic polynomial, we have errors
of order O(εmachine), leading to errors in the roots of order O(

√
εmachine).

In IEEE double precision arithmetic, this means loss of 8 digits of accuracy.

43 / 51

5.4 Stability of solution algorithms for linear systems

44 / 51

Stability of solving Ax = b via QR (using Householder)

Given: A ∈ Rn×n invertible, b ∈ Rn. Find x ∈ Rn s.t. Ax = b.

1) Use Householder to obtain factor R ∈ Rn×n of a QR factn A = QR,
and reflection vectors v1, . . . , vn ∈ Rn (Q is not explicitly formed).

2) Compute y := QTb ∈ Rn from the vectors v1, . . . , vn and b.
3) Solve the upper-triangular system Rx = y by backward substitution.

Theorem

The above algorithm is backward stable in the sense that

(A+ ∆A)x̃ = b for some ∆A ∈ Rn×n with
‖∆A‖
‖A‖

= O(εmachine)

for all norms ‖ · ‖ on Rn×n, where x̃ ∈ Rn is the computed soln. Further,

‖x̃−A−1b‖(n)

‖A−1b‖(n)
= O(κ‖·‖(n,n)

(A) εmachine)

for any norm ‖ · ‖(n) on Rn with corresponding induced norm ‖ · ‖(n,n).

45 / 51

Backward stability of QR via Householder

Theorem (Backward stability of QR via Householder)

Suppose we apply Householder to an invertible matrix A ∈ Rn×n, leading
to outputs R̃ ∈ Rn×n and ṽ1, . . . , ṽn ∈ Rn (the computed factor R and
reflection vectors vi in floating point computation). Writing
Q̃ := Q̃1Q̃2 . . . Q̃n with Q̃i denoting the orthogonal matrix from Section
(Householder) corresponding to the reflection vector ṽi, there holds

Q̃R̃ = A+ ∆A for some ∆A ∈ Rn×n with
‖∆A‖
‖A‖

= O(εmachine)

for all matrix norms ‖ · ‖ on Rn×n.

46 / 51

Stability of Gaussian elimination

Theorem

(i) Gauß without pivoting: Suppose a LU factorization A = LU of an invertible
matrix A ∈ Rn×n, for which there exists a LU factorization, is computed by
Gauß. Then,

L̃Ũ = A+ ∆A for some ∆A ∈ Rn×n with
‖∆A‖
‖L‖‖U‖

= O(εmachine).

(ii) Gauß with partial pivoting: Suppose a PA=LU factorization of an invertible
matrix A ∈ Rn×n is computed by Gauß with partial pivoting. Then,

L̃Ũ = P̃A+ ∆A for some ∆A ∈ Rn×n with
‖∆A‖
‖A‖

= O(ρ εmachine)

where ρ denotes the growth factor of A defined by

ρ :=
maxi,j∈{1,...,n}|uij |
maxi,j∈{1,...,n}|aij |

.

If |lij | < 1 for all i > j, then P̃ = P for εmachine sufficiently small. 47 / 51

Stability of Gauß without pivoting

Recall L̃Ũ = A+ ∆A for some ∆A ∈ Rn×n with ‖∆A‖
‖L‖‖U‖ = O(εmachine).

=⇒ backward stability if ‖L‖‖U‖ = O(‖A‖). Otherwise, backward
instability is to be expected.

It is known that both L and U can be unboundedly large and that
Gaussian elimination without pivoting is unstable, and hence, should not
be used in general. We give a simple example illustrating the problem:

Consider A :=

(
10−20 1

1 1

)
. Gauß performed exactly gives

A = LU, L :=

(
1 0

1020 1

)
, U :=

(
10−20 1

0 1− 1020

)
.

In IEEE double precision arithmetic, the computed result would be

L̃ :=

(
1 0

1020 1

)
, Ũ :=

(
10−20 1

0 −1020

)
=⇒ L̃Ũ =

(
10−20 1

1 0

)
.

Considering Ax = b := (1, 0)T with exact solution x ≈ (−1, 1)T, we find
from L̃Ũ x̃ = b that x̃ = (0, 1)T, terrible!

48 / 51

Stability of Gauß with partial pivoting

Recall

L̃Ũ = P̃A+ ∆A for some ∆A ∈ Rn×n with
‖∆A‖
‖A‖

= O(ρ εmachine)

where

ρ :=
maxi,j∈{1,...,n}|uij |
maxi,j∈{1,...,n}|aij |

.

Problem sheets: ρ ≤ 2n−1 and this is sharp.

A growth factor of 2n means a loss of around n bits of precision, which is
a huge problem for high-dimensional problems (as they arise in practice).

Still, according to our definition, Gaussian elimination with partial pivoting
is backward stable (as dependence of the constant on the dimension is
allowed). However, we should rather think of it as stable for most
problems, but very unstable for certain matrices.

In practice, for problems with real applications, Gaussian elimination with
partial pivoting performs in a stable way. 49 / 51

Stability of solving Ax = b via Cholesky

Given a symmetric positive definite matrix A ∈ Rn×n and a vector b ∈ Rn,
do the following to obtain the solution x ∈ Rn to Ax = b.

1) Find the factor R ∈ Rn×n of the Cholesky factorization A = RTR.
2) Solve RTy = b for y ∈ Rn by forward substitution.
3) Solve Rx = y for x ∈ Rn by backward substitution.

We have:

(i) Backward stability of Cholesky factorization: Suppose we apply
Cholesky to a symmetric positive definite matrix A ∈ Rn×n. Then,

R̃TR̃ = A+ ∆A for some ∆A ∈ Rn×n with
‖∆A‖
‖A‖

= O(εmachine).

(ii) Solving Ax=b via Cholesky is backward stable in the sense that

(A+ ∆A)x̃ = b for some ∆A ∈ Rn×n with
‖∆A‖
‖A‖

= O(εmachine).

An intuitive reason for the stability of Cholesky factorization, compared to
LU factn, is that the factor R in the Cholesky factorization A = RTR
cannot become very large compared to A (e.g., ‖R‖22 = ‖A‖2).

50 / 51

End of “Chapter 5: Conditioning and Stability”.

51 / 51

	Conditioning and Stability
	Conditioning of mathematical problems
	Floating point numbers and floating point arithmetic
	Stability of numerical algorithms
	Stability of solution algorithms for linear systems

