MA4230 Matrix Computation

Chapter 4: Linear Systems and Least Squares Problems
4.1 Gaussian elimination: LU factorization
4.2 Gaussian elimination with partial pivoting: $\mathrm{PA}=\mathrm{LU}$ factorization
4.3 Gaussian elimination with full pivoting: $\mathrm{PAQ}=\mathrm{LU}$ factorization
4.4 Symmetric Gaussian elimination: Cholesky factorization
4.5 Least Squares Problems
4.1 Gaussian elimination: LU factorization

The problem

Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, find $x \in \mathbb{R}^{n}$ s.t.

$$
A x=b .
$$

\Longrightarrow Solve by Gaussian elimination.
No/partial/full pivoting $\Longrightarrow A=L U / P A=L U / P A Q=L U$
We start with the LU factorization (Gauß without pivoting).

Definition (Lower-triangular and unit lower-triangular matrices)
A matrix $L \in \mathbb{R}^{n \times n}$ is called lower-triangular iff L^{T} is upper-triangular. A matrix $L \in \mathbb{R}^{n \times n}$ is called unit lower-triangular iff L is lower-triangular and all of its diagonal entries are equal to 1.

LU factorization

Definition (LU factorization)

Let $A \in \mathbb{R}^{n \times n}$. If $\exists L \in \mathbb{R}^{n \times n}$ lower-triangular, $U \in \mathbb{R}^{n \times n}$ upper-triangular s.t. $A=L U$, then this factorization is called a $\mathbf{L U}$ factorization of A.

Gaussian elimination transforms A into an upper-triangular matrix

$$
U=L_{n-1} \cdots L_{2} L_{1} A \in \mathbb{R}^{n \times n}
$$

with $L_{1}, \ldots, L_{n-1} \in \mathbb{R}^{n \times n}$ unit lower-triangular and of the form
$L_{1}=\left(\begin{array}{ccccc}1 & & & & \\ * & 1 & & & \\ \vdots & & \ddots & & \\ \vdots & & & \ddots & \\ * & & & & 1\end{array}\right), L_{2}=\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & * & \ddots \\ & \vdots & \\ & * & \end{array}\right.$

with zero-entries not shown.
Assuming this is possible, obtain $A=L U$ with $L:=L_{1}^{-1} \cdots L_{n-1}^{-1} \in \mathbb{R}^{n \times n}$ unit lower-triangular (exercise) and $U \in \mathbb{R}^{n \times n}$ upper-triangular.

Gaussian elimination: Example

Consider $A=\left(\begin{array}{cccc}-2 & 2 & 1 & -1 \\ 1 & 1 & 2 & -2 \\ -1 & 4 & -1 & 1 \\ 1 & 3 & -3 & 4\end{array}\right)$. We illustrate Gaussian elimination.
L_{1} : The first step is to eliminate the sub-diagonal entries in the first column of A via adding $\frac{1}{2} /-\frac{1}{2} / \frac{1}{2}$ times row 1 to row $2 / 3 / 4$:

$$
L_{1} A=\left(\begin{array}{cccc}
-2 & 2 & 1 & -1 \\
0 & 2 & 5 / 2 & -5 / 2 \\
0 & 3 & -3 / 2 & 3 / 2 \\
0 & 4 & -5 / 2 & 7 / 2
\end{array}\right) \quad \text { with } \quad L_{1}:=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 \\
-1 / 2 & 0 & 1 & 0 \\
1 / 2 & 0 & 0 & 1
\end{array}\right) .
$$

L_{2} : The second step is to eliminate the sub-diagonal entries in the second column of $L_{1} A$ via adding $-\frac{3}{2} /-2$ times row 2 to row 3/4:
$L_{2} L_{1} A=\left(\begin{array}{cccc}-2 & 2 & 1 & -1 \\ 0 & 2 & 5 / 2 & -5 / 2 \\ 0 & 0 & -21 / 4 & 21 / 4 \\ 0 & 0 & -15 / 2 & 17 / 2\end{array}\right) \quad$ with $\quad L_{2}:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{3}{2} & 1 & 0 \\ 0 & -2 & 0 & 1\end{array}\right)$.
L_{2} : The second step is to eliminate the sub-diagonal entries in the second column of $L_{1} A$ via adding $-\frac{3}{2} /-2$ times row 2 to row 3/4:
$L_{2} L_{1} A=\left(\begin{array}{cccc}-2 & 2 & 1 & -1 \\ 0 & 2 & 5 / 2 & -5 / 2 \\ 0 & 0 & -21 / 4 & 21 / 4 \\ 0 & 0 & -15 / 2 & 17 / 2\end{array}\right) \quad$ with $\quad L_{2}:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{3}{2} & 1 & 0 \\ 0 & -2 & 0 & 1\end{array}\right)$.
L_{3} : The third step is to eliminate the sub-diagonal entries in the third column of $L_{2} L_{1} A$ via adding $-\frac{10}{7}$ times row 3 to row 4:

$$
L_{3} L_{2} L_{1} A=\left(\begin{array}{cccc}
-2 & 2 & 1 & -1 \\
0 & 2 & 5 / 2 & -5 / 2 \\
0 & 0 & -21 / 4 & 21 / 4 \\
0 & 0 & 0 & 1
\end{array}\right)=: U \text { with } L_{3}:=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{10}{7} & 1
\end{array}\right) .
$$

We find that $A=L U$ with U as above and L given by

$$
L:=L_{1}^{-1} L_{2}^{-1} L_{3}^{-1}
$$

is a LU factorization of A. Indeed, let's compute L :

$$
L=L_{1}^{-1} L_{2}^{-1} L_{3}^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
-\frac{1}{2} & 0 & 1 & 0 \\
\frac{1}{2} & 0 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -\frac{3}{2} & 1 & 0 \\
0 & -2 & 0 & 1
\end{array}\right)^{-1}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{10}{7} & 1
\end{array}\right)^{-1}
$$

$$
\begin{aligned}
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 & 0 \\
\frac{1}{2} & 0 & 1 & 0 \\
-\frac{1}{2} & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{3}{2} & 1 & 0 \\
0 & 2 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{10}{7} & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 & 0 \\
\frac{1}{2} & \frac{3}{2} & 1 & 0 \\
-\frac{1}{2} & 2 & \frac{10}{7} & 1
\end{array}\right)
\end{aligned}
$$

Note how simple it is to compute L : the matrices L_{i} can be inverted by negating their sub-diagonal entries, and the matrix L can be obtained by collecting these values appropriately. Coincidence? No:

Generally, if the i-th column x_{i} of the matrix $L_{i-1} \cdots L_{1} A$ (the matrix A if $i=1$) is the vector $x_{i}=\left(x_{1 i}, \ldots, x_{n i}\right)^{\mathrm{T}}$, then
$L_{i}=\left(\begin{array}{cccccc}1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & -\frac{x_{i+1, i}}{x_{i i}} & 1 & & \\ & & \vdots & & \ddots & \\ & & -\frac{x_{n i}}{x_{i i}} & & & 1\end{array}\right)=I_{n}-l_{i} e_{i}^{\mathrm{T}} \in \mathbb{R}^{n \times n}, \quad l_{i}:=\left(\begin{array}{c}0 \\ \vdots \\ 0 \\ \frac{x_{i+1, i}}{x_{i i}} \\ \vdots \\ \frac{x_{n i}}{x_{i i}}\end{array}\right) \in \mathbb{R}^{n}$.

- $L_{i}^{-1}=I_{n}+l_{i} e_{i}^{\mathrm{T}}:\left(I_{n}-l_{i} e_{i}^{\mathrm{T}}\right)\left(I_{n}+l_{i} e_{i}^{\mathrm{T}}\right)=I_{n}-l_{i} e_{i}^{\mathrm{T}} l_{i} e_{i}^{\mathrm{T}}=I_{n}-\left\langle l_{i}, e_{i}\right\rangle l_{i} e_{i}^{\mathrm{T}}=I_{n}$.
- $L=L_{1}^{-1} \cdots L_{n-1}^{-1}$ is given by

$$
L=\left(\begin{array}{ccccc}
1 & & & & \\
\frac{x_{21}}{x_{11}} & 1 & & & \\
\frac{x_{31}}{x_{11}} & \frac{x_{32}}{x_{22}} & 1 & & \\
\vdots & \vdots & \ddots & \ddots & \\
\frac{x_{n 1}}{x_{11}} & \frac{x_{n 2}}{x_{22}} & \cdots & \frac{x_{n, n-1}}{x_{n-1, n-1}} & 1
\end{array}\right) \text {. }
$$

Indeed, looking at the product of two such matrices we find

$$
L_{i}^{-1} L_{i+1}^{-1}=\left(I_{n}+l_{i} e_{i}^{\mathrm{T}}\right)\left(I_{n}+l_{i+1} e_{i+1}^{\mathrm{T}}\right)=I_{n}+l_{i} e_{i}^{\mathrm{T}}+l_{i+1} e_{i+1}^{\mathrm{T}}
$$

Gaussian elimination without pivoting: Algorithm

Given $A \in \mathbb{R}^{n \times n}$, do as follows:

$$
\begin{aligned}
& L=I_{n}, U=A \\
& \text { for } i=1, \ldots, n-1 \text { do } \\
& \quad \text { for } j=i+1, \ldots, n \text { do } \\
& \quad l_{j i}=\frac{u_{j i}}{u_{i i}} \\
& \quad u_{j, i: n}=u_{j, i: n}-l_{j i} u_{i, i: n}
\end{aligned}
$$

end for end for.
Warning: A needs to be such that no division by zero happens.

Theorem

The above algorithm requires $\sim \frac{2}{3} n^{3}$ flops.
Proof: Exercise.
Compare with $\sim \frac{4}{3} n^{3}$ flops for QR via Householder.

Solving linear systems via LU

Problem: Given $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$, find $x \in \mathbb{R}^{n}$ s.t. $A x=b$.
If there exists a LU factorization $A=L U$, we have

$$
A x=b \quad \Longleftrightarrow \quad L U x=b \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
L y=b \\
U x=y
\end{array}\right.
$$

Therefore, once a LU factorization is computed ($O\left(n^{3}\right)$ flops), we can first solve $L y=b$ for y by forward substitution ($O\left(n^{2}\right)$ flops) and then $U x=y$ for x by backward substitution ($O\left(n^{2}\right)$ flops).
\Longrightarrow But does every matrix have a LU factorization? Unfortunately, no.
E.g., $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ does not have a LU factorization. Indeed, if there were $L=\left(\begin{array}{cc}l_{11} & 0 \\ l_{21} & l_{22}\end{array}\right) \in \mathbb{R}^{2 \times 2}$ and $U=\left(\begin{array}{cc}u_{11} & u_{12} \\ 0 & u_{22}\end{array}\right) \in \mathbb{R}^{2 \times 2}$ such that $A=L U$, then $l_{11} u_{11}=0$ and $l_{11} u_{12}=l_{21} u_{11}=l_{21} u_{12}+l_{22} u_{22}=1$, contradiction.

Gaussian elimination in its current form (without pivoting) is impractical to solve general linear systems. For instance, it fails for the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

due to division by zero in the first step.
More dramatically, the algorithm is not stable for general $n \times n$ matrices as we will see later in this course.

Improvement in stability via pivoting \Longrightarrow next section.
4.2 Gaussian elimination with partial pivoting: $\mathrm{PA}=\mathrm{LU}$ factorization

How to improve Gaussian elimination? Key observation

 In i-th step of Gauß, add multiples of row i to rows $i+1, \ldots, n$ to obtain

We call $x_{i i} \neq 0$ the pivot. Observation: Instead, can also add multiples of row j with some $j \in\{i+1, \ldots, n\}$ such that $x_{j i} \neq 0$ to rows $i, \ldots, j-1, j+1, \ldots, n$ to create zeros as follows:

In this case, $x_{j i} \neq 0$ is called the pivot.

Gaussian elimination with partial pivoting

This procedure is thought of as follows:
In the i-th step,

1. choose a pivot $x_{j i} \neq 0$ from column i and row j (some $j \in\{i, \ldots, n\}$),
2. permute the rows such that $x_{j i}$ is moved to the main diagonal,
3. do a standard Gaussian elimination step.

For numerical stability, the pivot is chosen as the largest entry in modulus in column i and rows i, \ldots, n.

This is called Gaussian elimination with partial pivoting and leads to a $L U$ factorization of $P A$ for some permutation matrix P.

$\mathrm{PA}=\mathrm{LU}$ factorization

Definition (PA=LU factorization)

Let $A \in \mathbb{R}^{n \times n}$. If there exist a lower-triangular matrix $L \in \mathbb{R}^{n \times n}$, an upper-triangular matrix $U \in \mathbb{R}^{n \times n}$, and a permutation matrix $P \in \mathbb{R}^{n \times n}$ (i.e., a matrix which has exactly one entry 1 in each row and column and zeros elsewhere) s.t.

$$
P A=L U
$$

then we call this factorization a $\mathbf{P A}=\mathbf{L U}$ factorization or a $\mathbf{L U}$ factorization with partial pivoting corresponding to A.

Remark: Permutation matrices are orthogonal matrices.

Gaussian elimination with partial pivoting: Example
Consider $A=\left(\begin{array}{cccc}-2 & 2 & 1 & -1 \\ 1 & 1 & 2 & -2 \\ -1 & 4 & -1 & 1 \\ 1 & 3 & -3 & 4\end{array}\right)$.
P_{1} : As $\max \{|-2|,|1|,|-1|,|1|\}=|-2|$, choose the $(1,1)$-entry as pivot. Since this is already on the diagonal, no permutation is needed:

$$
P_{1} A=A \quad \text { with } \quad P_{1}:=I_{4} .
$$

L_{1} : Eliminate sub-diagonal entries in first column of $P_{1} A=A$ via adding $\frac{1}{2} /-\frac{1}{2} / \frac{1}{2}$ times row 1 to row $2 / 3 / 4$:

$$
L_{1} P_{1} A=\left(\begin{array}{cccc}
-2 & 2 & 1 & -1 \\
0 & 2 & 5 / 2 & -5 / 2 \\
0 & 3 & -3 / 2 & 3 / 2 \\
0 & 4 & -5 / 2 & 7 / 2
\end{array}\right) \quad \text { with } \quad L_{1}:=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 \\
-1 / 2 & 0 & 1 & 0 \\
1 / 2 & 0 & 0 & 1
\end{array}\right) .
$$

Recall from previous slide: $L_{1} P_{1} A=\left(\begin{array}{cccc}-2 & 2 & 1 & -1 \\ 0 & 2 & 5 / 2 & -5 / 2 \\ 0 & 3 & -3 / 2 & 3 / 2 \\ 0 & 4 & -5 / 2 & 7 / 2\end{array}\right)$.
P_{2} : As max $\{|2|,|3|,|4|\}=|4|$, choose the (4, 2)-entry as pivot. To this end, we permute rows 2 and 4:

$$
P_{2} L_{1} P_{1} A=\left(\begin{array}{cccc}
-2 & 2 & 1 & -1 \\
0 & 4 & -5 / 2 & 7 / 2 \\
0 & 3 & -3 / 2 & 3 / 2 \\
0 & 2 & 5 / 2 & -5 / 2
\end{array}\right) \text { with } P_{2}:=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) .
$$

L_{2} : Eliminate sub-diagonal entries in second column of $P_{2} L_{1} P_{1} A$ via adding $-\frac{3}{4} /-\frac{1}{2}$ times row 2 to row $3 / 4$:
$L_{2} P_{2} L_{1} P_{1} A=\left(\begin{array}{cccc}-2 & 2 & 1 & -1 \\ 0 & 4 & -5 / 2 & 7 / 2 \\ 0 & 0 & 3 / 8 & -9 / 8 \\ 0 & 0 & 15 / 4 & -17 / 4\end{array}\right)$ with $L_{2}:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -3 / 4 & 1 & 0 \\ 0 & -1 / 2 & 0 & 1\end{array}\right)$

Recall from previous slide: $L_{2} P_{2} L_{1} P_{1} A=\left(\begin{array}{cccc}-2 & 2 & 1 & -1 \\ 0 & 4 & -5 / 2 & 7 / 2 \\ 0 & 0 & 3 / 8 & -9 / 8 \\ 0 & 0 & 15 / 4 & -17 / 4\end{array}\right)$.
$P_{3}:$ As $\max \left\{\left|\frac{3}{8}\right|,\left|\frac{15}{4}\right|\right\}=\left|\frac{15}{4}\right|$, choose the $(4,3)$-entry as pivot. To this end, we permute rows 3 and 4:

$$
P_{3} L_{2} P_{2} L_{1} P_{1} A=\left(\begin{array}{cccc}
-2 & 2 & 1 & -1 \\
0 & 4 & -5 / 2 & 7 / 2 \\
0 & 0 & 15 / 4 & -17 / 4 \\
0 & 0 & 3 / 8 & -9 / 8
\end{array}\right) \text { with } P_{3}:=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

L_{3} : Eliminate sub-diagonal entries in third column of $P_{3} L_{2} P_{2} L_{1} P_{1} A$ via adding $-\frac{1}{10}$ times row 3 to row 4:
$L_{3} P_{3} L_{2} P_{2} L_{1} P_{1} A=\left(\begin{array}{cccc}-2 & 2 & 1 & -1 \\ 0 & 4 & -5 / 2 & 7 / 2 \\ 0 & 0 & 15 / 4 & -17 / 4 \\ 0 & 0 & 0 & -7 / 10\end{array}\right)=: U, L_{3}:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{10} & 1\end{array}\right)$
$\Longrightarrow \quad L_{3} P_{3} L_{2} P_{2} L_{1} P_{1} A=U$. How to obtain from this a PA=LU factn?
Set $L_{3}^{\prime}:=L_{3}, L_{2}^{\prime}:=P_{3} L_{2} P_{3}^{-1}$, and $L_{1}^{\prime}:=P_{3} P_{2} L_{1} P_{2}^{-1} P_{3}^{-1}$, i.e.,
$L_{3}^{\prime}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{10} & 1\end{array}\right), L_{2}^{\prime}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 / 2 & 1 & 0 \\ 0 & -3 / 4 & 0 & 1\end{array}\right), L_{1}^{\prime}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 / 2 & 1 & 0 & 0 \\ 1 / 2 & 0 & 1 & 0 \\ -1 / 2 & 0 & 0 & 1\end{array}\right)$
Then, $L_{3}^{\prime} L_{2}^{\prime} L_{1}^{\prime} P_{3} P_{2} P_{1} A=L_{3} P_{3} L_{2} P_{2} L_{1} P_{1} A=U$.
We find that $P A=L U$ with
$P:=P_{3} P_{2} P_{1}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), L:=\left(L_{3}^{\prime} L_{2}^{\prime} L_{1}^{\prime}\right)^{-1}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -1 / 2 & 1 & 0 & 0 \\ -1 / 2 & 1 / 2 & 1 & 0 \\ 1 / 2 & 3 / 4 & 1 / 10 & 1\end{array}\right)$
is a $\mathrm{PA}=\mathrm{LU}$ factorization.

More generally, ...

Gaussian elimination with partial pivoting transforms $A \in \mathbb{R}^{n \times n}$ into an upper-triangular $U \in \mathbb{R}^{n \times n}$ by Gaussian elimination with an additional left-multiplication of a permutation matrix P_{i} at the beginning of step i :

$$
L_{n-1} P_{n-1} \cdots L_{2} P_{2} L_{1} P_{1} A=U .
$$

Here, $P_{1}, \ldots, P_{n-1} \in \mathbb{R}^{n \times n}$ are permutation matrices and $L_{1}, \ldots, L_{n-1} \in \mathbb{R}^{n \times n}$ are unit lower-triangular.

Set $L_{n-1}^{\prime}:=L_{n-1}, L_{i}^{\prime}:=P_{n-1} \cdots P_{i+1} L_{i} P_{i+1}^{-1} \cdots P_{n-1}^{-1}$ for $1 \leq i \leq n-2$.

$$
\Longrightarrow \quad\left(L_{n-1}^{\prime} \cdots L_{2}^{\prime} L_{1}^{\prime}\right)\left(P_{n-1} \cdots P_{2} P_{1}\right) A=U .
$$

Observe that the matrix L_{i}^{\prime} has the same structure as L_{i}. We then obtain that $P A=L U$ is a $\mathrm{PA}=\mathrm{LU}$ factorization corresponding to A with

$$
L:=\left(L_{n-1}^{\prime} \cdots L_{2}^{\prime} L_{1}^{\prime}\right)^{-1}, \quad P:=P_{n-1} \cdots P_{2} P_{1} .
$$

Note P is a permutation matrix as product of permutation matrices, and that L is well-defined and lower-triangular.

Gaussian elimination with partial pivoting: Algorithm

Given $A \in \mathbb{R}^{n \times n}$, do as follows:

$$
\begin{aligned}
& P=I_{n}, L=I_{n}, U=A \\
& \text { for } i=1, \ldots, n-1 \text { do }
\end{aligned}
$$

Choose $r \in\{i, \ldots, n\}$ such that $\left|u_{r i}\right|=\max _{k \in\{i, \ldots, n\}}\left|u_{k i}\right|$

$$
\begin{aligned}
& u_{i, i: n} \leftrightarrow u_{r, i: n} \\
& l_{i, 1: i-1} \leftrightarrow l_{r, 1: i-1} \\
& p_{i, 1: n} \leftrightarrow p_{r, 1: n} \\
& \text { for } j=i+1, \ldots, n \text { do } \\
& \quad l_{j i}=\frac{u_{j i}}{u_{i i}} \\
& \quad u_{j, i: n}=u_{j, i: n}-l_{j i} u_{i, i: n}
\end{aligned}
$$

end for
end for.
Here, " \leftrightarrow " denotes "interchange".
Warning: A needs to be such that no division by zero happens in the algorithm above (as an exercise, think about how to obtain a $\mathrm{PA}=\mathrm{LU}$ factorization if all candidates for pivots are zero at some step i).

Work of Gauß with partial pivoting

- pivot selection requires $\mathcal{O}\left(n^{2}\right)$ operations overall.
\Longrightarrow To leading order, Gauß with partial pivoting requires same amount of flops as Gauß without pivoting, i.e., $\sim \frac{2}{3} n^{3}$.

Gaussian elimination with partial pivoting is the standard way to solve linear systems on a computer.

Solving linear systems via $\mathrm{PA}=\mathrm{LU}$ factorization

Problem: Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, find $x \in \mathbb{R}^{n}$ s.t. $A x=b$.
If there exists a $\mathrm{PA}=\mathrm{LU}$ factorization $P A=L U$, we have
$A x=b \quad \Longleftrightarrow \quad P A x=P b \quad \Longleftrightarrow \quad L U x=P b \quad \Longleftrightarrow \quad\left\{\begin{array}{l}L y=P b, \\ U x=y .\end{array}\right.$
Therefore, once a $\mathrm{PA}=\mathrm{LU}$ factorization is computed ($\mathcal{O}\left(n^{3}\right)$ flops), we can first form $\tilde{b}:=P b$, then solve $L y=\tilde{b}$ by forward substitution ($O\left(n^{2}\right)$ flops) and then $U x=y$ for x by backward substitution ($O\left(n^{2}\right)$ flops).

What about existence of LU and $\mathrm{PA}=\mathrm{LU}$ factorization? (Recall we already know that not every matrix has a LU factorization.)

Theorem (Existence of LU and $\mathrm{PA}=\mathrm{LU}$ factorization)
(i) Any matrix $A \in \mathbb{R}^{n \times n}$ has a $P A=L U$ factorization.
(ii) Let $A \in \mathbb{R}^{n \times n}$ invertible. Then, there exists a $L U$ factorization of A iff $\operatorname{det}\left(A_{1: i, 1: i}\right) \neq 0$ for all $1 \leq i \leq n$.
4.3 Gaussian elimination with full pivoting: $\mathrm{PAQ}=\mathrm{LU}$ factorization

Full pivoting: A further improvement in stability
Idea: Every entry of the sub-matrix $X_{i: n, i: n}$ of the working matrix X at step i is a candidate for the pivot.

Rk: Full pivoting is rarely used in practice due to large computational cost.
Gaussian elimination with full pivoting leads to a $\mathrm{PAQ}=\mathrm{LU}$ factorization:

Definition (PAQ $=\mathrm{LU}$ factorization)

Let $A \in \mathbb{R}^{n \times n}$. If there exist a lower-triangular matrix $L \in \mathbb{R}^{n \times n}$, an upper-triangular matrix $U \in \mathbb{R}^{n \times n}$, and permutation matrices $P, Q \in \mathbb{R}^{n \times n}$ such that there holds

$$
P A Q=L U,
$$

then we call this a $\mathbf{P A Q}=\mathbf{L U}$ factorization or a $\mathbf{L U}$ factorization with full pivoting corresponding to A.

Note: Any matrix $A \in \mathbb{R}^{n \times n}$ admits a $\mathrm{PAQ}=\mathrm{LU}$ factorization with $Q=I_{n}$.

Example: Gaussian elimination with full pivoting

Consider $A:=\left(\begin{array}{cccc}-2 & 2 & 1 & -1 \\ 1 & 1 & 2 & -2 \\ -1 & 4 & -1 & 1 \\ 1 & 3 & -3 & 4\end{array}\right)$.
$P_{1}, Q_{1}:$ As $\max _{i, j \in\{1, \ldots, 4\}}\left|a_{i j}\right|=|4|$, we choose the (3,2)-entry 4 as pivot (note we could have also chosen the (4,4)-entry 4).
To this end, we permute columns 1 and 2, and then rows 1 and 3 :
$P_{1} A Q_{1}=\left(\begin{array}{cccc}4 & -1 & -1 & 1 \\ 1 & 1 & 2 & -2 \\ 2 & -2 & 1 & -1 \\ 3 & 1 & -3 & 4\end{array}\right), \quad Q_{1}:=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right), P_{1}:=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
L_{1} : We eliminate the sub-diagonal entries in the first column of $P_{1} A Q_{1}$ via adding $-\frac{1}{4} /-\frac{1}{2} /-\frac{3}{4}$ times row 1 to row $2 / 3 / 4$:

$$
L_{1} P_{1} A Q_{1}=\left(\begin{array}{cccc}
4 & -1 & -1 & 1 \\
0 & 5 / 4 & 9 / 4 & -9 / 4 \\
0 & -3 / 2 & 3 / 2 & -3 / 2 \\
0 & 7 / 4 & -9 / 4 & 13 / 4
\end{array}\right) \quad \text { with } L_{1}:=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 4 & 1 & 0 & 0 \\
-1 / 2 & 0 & 1 & 0 \\
-3 / 4 & 0 & 0 & 1
\end{array}\right)
$$

$L_{1} P_{1} A Q_{1}=\left(\begin{array}{cccc}4 & -1 & -1 & 1 \\ 0 & 5 / 4 & 9 / 4 & -9 / 4 \\ 0 & -3 / 2 & 3 / 2 & -3 / 2 \\ 0 & 7 / 4 & -9 / 4 & 13 / 4\end{array}\right)=: A_{1}$.
P_{2}, Q_{2} : As max $\left\{\left|\frac{5}{4}\right|,\left|-\frac{3}{2}\right|,\left|\frac{7}{4}\right|,\left|\frac{9}{4}\right|,\left|\frac{3}{2}\right|,\left|-\frac{9}{4}\right|,\left|-\frac{9}{4}\right|,\left|-\frac{3}{2}\right|,\left|\frac{13}{4}\right|\right\}=\left|\frac{13}{4}\right|$, we choose the $(4,4)$-entry $\frac{13}{4}$ as pivot.
To this end, we permute columns 2 and 4 , and then rows 2 and 4 :
$P_{2} A_{1} Q_{2}=\left(\begin{array}{cccc}4 & 1 & -1 & -1 \\ 0 & 13 / 4 & -9 / 4 & 7 / 4 \\ 0 & -3 / 2 & 3 / 2 & -3 / 2 \\ 0 & -9 / 4 & 9 / 4 & 5 / 4\end{array}\right), \quad Q_{2}:=P_{2}:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)$.
L_{2} : We eliminate the sub-diagonal entries in the second column of $P_{2} A_{1} Q_{2}$ via adding $\frac{6}{13} / \frac{9}{13}$ times row 2 to row 3/4:
$L_{2} P_{2} A_{1} Q_{2}=\left(\begin{array}{cccc}4 & 1 & -1 & -1 \\ 0 & 13 / 4 & -9 / 4 & 7 / 4 \\ 0 & 0 & 6 / 13 & -9 / 13 \\ 0 & 0 & 9 / 13 & 32 / 13\end{array}\right) \quad$ with $L_{2}:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 6 / 13 & 1 & 0 \\ 0 & 9 / 13 & 0 & 1\end{array}\right)$
$L_{2} P_{2} A_{1} Q_{2}=\left(\begin{array}{cccc}4 & 1 & -1 & -1 \\ 0 & 13 / 4 & -9 / 4 & 7 / 4 \\ 0 & 0 & 6 / 13 & -9 / 13 \\ 0 & 0 & 9 / 13 & 32 / 13\end{array}\right)=: A_{2}$.
$P_{3}, Q_{3}:$ As $\max \left\{\left|\frac{6}{13}\right|,\left|\frac{9}{13}\right|,\left|-\frac{9}{13}\right|,\left|\frac{32}{13}\right|\right\}=\left|\frac{32}{13}\right|$, we choose the $(4,4)$-entry $\frac{32}{13}$ as pivot.
To this end, we permute columns 3 and 4, and then rows 3 and 4:
$P_{3} A_{2} Q_{3}=\left(\begin{array}{cccc}4 & 1 & -1 & -1 \\ 0 & 13 / 4 & 7 / 4 & -9 / 4 \\ 0 & 0 & 32 / 13 & 9 / 13 \\ 0 & 0 & -9 / 13 & 6 / 13\end{array}\right), \quad Q_{3}:=P_{3}:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$.
L_{3} : We eliminate the sub-diagonal entries in the third column of $P_{3} A_{2} Q_{3}$ via adding $\frac{9}{32}$ times row 3 to row 4 :
$L_{3} P_{3} A_{2} Q_{3}=\left(\begin{array}{cccc}4 & 1 & -1 & -1 \\ 0 & 13 / 4 & 7 / 4 & -9 / 4 \\ 0 & 0 & 32 / 13 & 9 / 13 \\ 0 & 0 & 0 & 21 / 32\end{array}\right)=: U$ with $L_{3}:=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{9}{32} & 1\end{array}\right)$
$\Longrightarrow L_{3} P_{3} L_{2} P_{2} L_{1} P_{1} A Q_{1} Q_{2} Q_{3}=U$ is upper-triangular.
Have $L_{3}^{\prime} L_{2}^{\prime} L_{1}^{\prime} P_{3} P_{2} P_{1} A Q_{1} Q_{2} Q_{3}=L_{3} P_{3} L_{2} P_{2} L_{1} P_{1} A Q_{1} Q_{2} Q_{3}=U$ with $L_{3}^{\prime}:=L_{3}$,
$L_{2}^{\prime}:=P_{3} L_{2} P_{3}^{-1}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 9 / 13 & 1 & 0 \\ 0 & 6 / 13 & 0 & 1\end{array}\right), \quad L_{1}^{\prime}:=P_{3} P_{2} L_{1} P_{2}^{-1} P_{3}^{-1}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ -3 / 4 & 1 & 0 & 0 \\ -1 / 4 & 0 & 1 & 0 \\ -1 / 2 & 0 & 0 & 1\end{array}\right)$
\Longrightarrow We find that $P A Q=L U$ with

$$
\begin{gathered}
P:=P_{3} P_{2} P_{1}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right), \quad Q:=Q_{1} Q_{2} Q_{3}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right), \\
L:=\left(L_{3}^{\prime} L_{2}^{\prime} L_{1}^{\prime}\right)^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
3 / 4 & 1 & 0 & 0 \\
1 / 4 & -9 / 13 & 1 & 0 \\
1 / 2 & -6 / 13 & -9 / 32 & 1
\end{array}\right), \quad U=\left(\begin{array}{cccc}
4 & 1 & -1 & -1 \\
0 & 13 / 4 & 7 / 4 & -9 / 4 \\
0 & 0 & 32 / 13 & 9 / 13 \\
0 & 0 & 0 & 21 / 32
\end{array}\right)
\end{gathered}
$$

is a $\mathrm{PAQ}=\mathrm{LU}$ factorization.

More generally, ...

Gaussian elimination with full pivoting transforms $A \in \mathbb{R}^{n \times n}$ into an upper-triangular $U \in \mathbb{R}^{n \times n}$ by Gaussian elimination with an additional right-multiplication of a permutation matrix Q_{i} and left-multiplication of a permutation matrix P_{i} at the beginning of step i :

$$
L_{n-1} P_{n-1} \cdots L_{2} P_{2} L_{1} P_{1} A Q_{1} Q_{2} \cdots Q_{n-1}=U
$$

Here, $P_{1}, \ldots, P_{n-1}, Q_{1}, \ldots, Q_{n-1} \in \mathbb{R}^{n \times n}$ are permutation matrices and $L_{1}, \ldots, L_{n-1} \in \mathbb{R}^{n \times n}$ are unit lower-triangular.
We deduce that

$$
\left(L_{n-1}^{\prime} \cdots L_{2}^{\prime} L_{1}^{\prime}\right)\left(P_{n-1} \cdots P_{2} P_{1}\right) A\left(Q_{1} Q_{2} \cdots Q_{n-1}\right)=U
$$

with $L_{n-1}^{\prime}:=L_{n-1}$ and $L_{i}^{\prime}:=P_{n-1} \cdots P_{i+1} L_{i} P_{i+1}^{-1} \cdots P_{n-1}^{-1}$ for $i \in\{1, \ldots, n-2\}$. We then obtain that $P A Q=L U$ is a $\mathrm{PAQ}=\mathrm{LU}$ factorization corresponding to A with

$$
L:=\left(L_{n-1}^{\prime} \cdots L_{2}^{\prime} L_{1}^{\prime}\right)^{-1}, \quad P:=P_{n-1} \cdots P_{2} P_{1}, \quad Q:=Q_{1} Q_{2} \cdots Q_{n-1}
$$

Note that P and Q are permutation matrices as products of permutation matrices, and that L is well-defined and lower-triangular.

Advantages and drawbacks

+ Full pivoting further improves stability compared to partial pivoting.
- Pivot selection for full pivoting requires $\mathcal{O}\left(n^{3}\right)$ operations overall.

As an exercise, think about how a $\mathrm{PAQ}=\mathrm{LU}$ factorization can be used to solve a linear system $A x=b$.

4.4 Symmetric Gaussian elimination: Cholesky factorization

Definite matrices

Definition (positive/negative (semi)definiteness)

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called
(i) positive definite, denoted $A \succ 0$, iff

$$
\langle x, A x\rangle=x^{\mathrm{T}} A x>0 \quad \forall x \in \mathbb{R}^{n} \backslash\{0\} .
$$

(ii) positive semidefinite, denoted $A \succeq 0$, iff

$$
\langle x, A x\rangle=x^{\mathrm{T}} A x \geq 0 \quad \forall x \in \mathbb{R}^{n} .
$$

(iii) negative definite, denoted $A \prec 0$, iff

$$
\langle x, A x\rangle=x^{\mathrm{T}} A x<0 \quad \forall x \in \mathbb{R}^{n} \backslash\{0\} .
$$

(iv) negative semidefinite, denoted $A \preceq 0$, iff

$$
\langle x, A x\rangle=x^{\mathrm{T}} A x \leq 0 \quad \forall x \in \mathbb{R}^{n} .
$$

An equivalent characterization via eigenvalues

Theorem (Characterization of positive/negative (semi)definite matrices)
For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, we have
(i) $A \succ 0 \Longleftrightarrow$ all eigenvalues of A are positive,
(ii) $A \succeq 0 \Longleftrightarrow$ all eigenvalues of A are non-negative,
(iii) $A \prec 0 \Longleftrightarrow$ all eigenvalues of A are negative,
(iv) $A \preceq 0 \Longleftrightarrow$ all eigenvalues of A are non-positive.

Proof: Exercise. Use the following:
Lemma (Spectral theorem for symmetric matrices)
Symmetric matrices are orthogonally diagonalizable, i.e., for any symmetric matrix $A \in \mathbb{R}^{n \times n}$ there exist an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ s.t. $A=Q D Q^{\mathrm{T}}$. The diagonal entries of D are the eigenvalues of A, and the column vectors of Q are eigenvectors of A. In particular, all eigenvalues of a symmetric matrix are real.

Examples for definiteness

- $A:=\left(\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right) \succeq 0$ as $\Lambda(A)=\{0,5\} \subseteq[0, \infty)$.
- $B:=-A \preceq 0$ as $\Lambda(B)=\{-5,0\} \subseteq(-\infty, 0]$.
- $C:=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right) \succ 0$ as $\Lambda(C)=\{1,3\} \subseteq(0, \infty)$.
- $D:=-C \prec 0$ as $\Lambda(D)=\{-3,-1\} \subseteq(-\infty, 0)$.
- $E:=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ is neither positive semidefinite, nor negative semidefinite (we say E is indefinite), as $\Lambda(E)=\{-1,3\}$.

More on positive definite matrices

- Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix and let $X \in \mathbb{R}^{n \times r}$ with $n \geq r$ and $\operatorname{rk}(X)=r$. Then, the matrix $X^{\mathrm{T}} A X$ is symmetric positive definite (exercise).
- A useful criterion for checking positive definiteness:

Theorem (Sylvester's criterion for positive definiteness)
Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then,

$$
A \succ 0 \quad \Longleftrightarrow \quad \forall i \in\{1, \ldots, n\}: \operatorname{det}\left(A_{1: i, 1: i}\right)>0
$$

The number $\operatorname{det}\left(A_{1: i, 1: i}\right)$ is called the i-th leading principal minor of A. Therefore, a symmetric matrix is positive definite iff all of its leading principal minors are positive.
\Longrightarrow Any symmetric positive definite matrix has a LU factorization! Even better: We can factorize a symmetric positive definite matrix twice as quickly into triangular factors as a general matrix.

Cholesky factorization

Definition (Cholesky factorization)
Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. If there exists an upper-triangular matrix $R \in \mathbb{R}^{n \times n}$ with positive diagonal entries s.t.

$$
A=R^{\mathrm{T}} R
$$

then we call this a Cholesky factorization of A.

The following is the main result of this section:

Theorem (Existence and uniqueness of Cholesky factorization)
Every symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ admits a unique Cholesky factorization.

So, let's prove this ...

Existence of Cholesky factorization: Symmetric Gauß

Consider a symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$. Write

$$
A=\left(\begin{array}{c|c}
a_{11} & w^{\mathrm{T}} \\
\hline w & B
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

with $a_{11} \in \mathbb{R}, w \in \mathbb{R}^{n-1}$ and a symmetric matrix $B \in \mathbb{R}^{(n-1) \times(n-1)}$.
Note that

- $a_{11}=\operatorname{det}\left(A_{1: 1,1: 1}\right)>0$,
- $B \succ 0$ since $\langle x, B x\rangle=\left\langle\binom{ 0}{x}, A\binom{0}{x}\right\rangle>0$ for all $x \in \mathbb{R}^{n-1} \backslash\{0\}$.

First step of symmetric Gaussian elimination:

which we can equivalently write as

$$
A=R_{1}^{\mathrm{T}} A_{1} R_{1} \quad \text { with } \quad R_{1}:=\left(L_{1}^{-1}\right)^{\mathrm{T}}=\left(\begin{array}{c|c}
\sqrt{a_{11}} & \frac{w^{\mathrm{T}}}{\sqrt{a_{11}}} \\
\hline 0_{(n-1) \times 1} & I_{n-1}
\end{array}\right) .
$$

Recall $A_{1}=L_{1} A L_{1}^{\mathrm{T}}=\left(\begin{array}{c|c}1 & 0_{1 \times(n-1)} \\ \hline 0_{(n-1) \times 1} & B-\frac{w w^{1}}{a_{11}}\end{array}\right)$.
Note that

- A_{1} is symmetric,
- $A_{1}=\left(L_{1}^{\mathrm{T}}\right)^{\mathrm{T}} A\left(L_{1}^{\mathrm{T}}\right) \succ 0$ since $L_{1}^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ is of full rank.

Therefore, we also have that the sub-matrix $B-\frac{w w^{\mathrm{T}}}{a_{11}} \in \mathbb{R}^{(n-1) \times(n-1)}$ is symmetric positive definite (same argument as when we deduced $B \succ 0$ from $A \succ 0$) and in particular, the $(1,1)$-entry of $B-\frac{w w^{\mathrm{T}}}{a_{11}}$ is positive.
\Longrightarrow We can factor

$$
A_{1}=R_{2}^{\mathrm{T}} A_{2} R_{2}
$$

with $R_{2} \in \mathbb{R}^{n \times n}$ upper-triangular with positive diagonal entries and A_{2} being of the form $A_{2}=\left(\begin{array}{c|c}I_{2} & 0_{2 \times(n-2)} \\ \hline 0_{(n-2) \times 2} & C\end{array}\right)$, using the same procedure as before applied to $B-\frac{w w^{\mathrm{T}}}{a_{11}}$. Then, again, the sub-matrix C is symmetric positive definite, and we can continue this process ...
\Longrightarrow continue this process until we arrive at a factorization

$$
A=\left(R_{1}^{\mathrm{T}} R_{2}^{\mathrm{T}} \cdots R_{n}^{\mathrm{T}}\right) I_{n}\left(R_{n} \cdots R_{2} R_{1}\right)=R^{\mathrm{T}} R
$$

with $R:=R_{n} \cdots R_{2} R_{1} \in \mathbb{R}^{n \times n}$ upper-triangular and having positive diagonal entries. This is a Cholesky factorization of A !

Next: Remains to show uniqueness.

Theorem (Existence and uniqueness of Cholesky factorization)

Every symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ admits a unique Cholesky factorization.

Proof: Symmetric Gaussian elimination provides existence of a Cholesky factorization (argument can be made rigorous via induction).

For uniqueness, suppose that $R, M \in \mathbb{R}^{n \times n}$ are two upper-triangular matrices with positive diagonal entries such that

$$
A=R^{\mathrm{T}} R=M^{\mathrm{T}} M
$$

Note that $D:=M R^{-1}$ is an upper-triangular matrix, but also, since

$$
D=M R^{-1}=\left(M^{\mathrm{T}}\right)^{-1} R^{\mathrm{T}}=\left(D^{-1}\right)^{\mathrm{T}},
$$

it must be lower-triangular as well, hence diagonal.
Noting that $I_{n}=D^{\mathrm{T}} D=D^{2}$, the diagonal entries of D are all ± 1. Finally, since $D R=M$ and the diagonal entries of R and M are positive, we must have that $R=M$.

Example: Computing the Cholesky factorization

Consider the symmetric positive definite matrix

$$
A:=\left(\begin{array}{ccc}
16 & -8 & 12 \\
-8 & 5 & -9 \\
12 & -9 & 22
\end{array}\right) \in \mathbb{R}^{3 \times 3}
$$

We illustrate symmetric Gaussian elimination:
L_{1} : Eliminate the sub-diagonal entries in the first column of A by adding $\frac{1}{2} /-\frac{3}{4}$ times row 1 to row $2 / 3$, and multiply the first row by $\frac{1}{\sqrt{a_{11}}}=\frac{1}{4}$:

$$
L_{1} A=\left(\begin{array}{ccc}
4 & -2 & 3 \\
0 & 1 & -3 \\
0 & -3 & 13
\end{array}\right) \quad \text { with } \quad L_{1}:=\left(\begin{array}{ccc}
1 / 4 & 0 & 0 \\
1 / 2 & 1 & 0 \\
-3 / 4 & 0 & 1
\end{array}\right)
$$

Next, we right-multiply $L_{1} A$ with L_{1}^{T} which creates a 1 in the $(1,1)$ entry and zeros in the $(1,2)$ and $(1,3)$ entries:

$$
L_{1} A L_{1}^{\mathrm{T}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -3 \\
0 & -3 & 13
\end{array}\right) .
$$

Recall $L_{1} A L_{1}^{\mathrm{T}}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & -3 & 13\end{array}\right)$.
L_{2} : Eliminate sub-diagonal entry in second column of $L_{1} A L_{1}^{\mathrm{T}}$ by adding 3 times row 2 to row 3 (and multiply the second row by $\frac{1}{\sqrt{1}}=1$):

$$
L_{2} L_{1} A L_{1}^{\mathrm{T}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -3 \\
0 & 0 & 4
\end{array}\right) \quad \text { with } \quad L_{2}:=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right) .
$$

Next, we right-multiply $L_{2} L_{1} A L_{1}^{\mathrm{T}}$ with L_{2}^{T} which creates a zero in the $(2,3)$ entry:

$$
L_{2} L_{1} A L_{1}^{\mathrm{T}} L_{2}^{\mathrm{T}}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

Recall $L_{2} L_{1} A L_{1}^{\mathrm{T}} L_{2}^{\mathrm{T}}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right)$.
L_{3} : We multiply the third row of $L_{2} L_{1} A L_{1}^{\mathrm{T}} L_{2}^{\mathrm{T}}$ by $\frac{1}{\sqrt{4}}=\frac{1}{2}$:

$$
L_{3} L_{2} L_{1} A L_{1}^{\mathrm{T}} L_{2}^{\mathrm{T}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) \quad \text { with } \quad L_{3}:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right)
$$

Finally, we right-multiply $L_{3} L_{2} L_{1} A L_{1}^{\mathrm{T}} L_{2}^{\mathrm{T}}$ by L_{3}^{T} which creates a 1 in the $(3,3)$ entry:

$$
L_{3} L_{2} L_{1} A L_{1}^{\mathrm{T}} L_{2}^{\mathrm{T}} L_{3}^{\mathrm{T}}=I_{3}
$$

We find that $A=R^{\mathrm{T}} R$ with
$R:=\left[L_{1}^{-1} L_{2}^{-1} L_{3}^{-1}\right]^{\mathrm{T}}=\left[\left(\begin{array}{ccc}4 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)\right]^{\mathrm{T}}=\left(\begin{array}{ccc}4 & -2 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & 2\end{array}\right)$
is the unique Cholesky factorization of A.

Cholesky factorization via symmetric Gauß: Algorithm

To obtain the Cholesky factorization $A=R^{\mathrm{T}} R$ of a given symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$, do as follows:

$$
R=A
$$

$$
\text { for } i=1, \ldots, n \text { do }
$$

$$
\text { for } j=i+1, \ldots, n \text { do }
$$

$$
R_{j, j: n}=R_{j, j: n}-\frac{R_{i, j: n} R_{i j}}{R_{i i}}
$$

end for

$$
R_{i, i: n}=\frac{R_{i, i: n}}{\sqrt{R_{i i}}}
$$

end for.

Theorem

The above algorithm requires $\sim \frac{1}{3} n^{3}$ flops.
This is only half the cost of Gaussian elimination!

Solving linear systems via Cholesky factorization

For a given symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^{n}$, consider the problem of finding $x \in \mathbb{R}^{n}$ such that $A x=b$.

The standard way to solve the system in this case is by Cholesky factorization: If $A=R^{\mathrm{T}} R$ is the Cholesky factorization of A, we have

$$
A x=b \quad \Longleftrightarrow \quad R^{\mathrm{T}} R x=b \quad \Longleftrightarrow \quad\left\{\begin{array}{l}
R^{\mathrm{T}} y=b \\
R x=y
\end{array}\right.
$$

Therefore, once the Cholesky factorization is computed ($O\left(n^{3}\right)$ flops), we can first solve $R^{\mathrm{T}} y=b$ for y by forward substitution ($O\left(n^{2}\right)$ flops) and then $R x=y$ for x by backward substitution ($O\left(n^{2}\right)$ flops).

4.5 Least Squares Problems

Over-determined linear systems

Given $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ with $m>n$, and $b=\left(b_{1}, \ldots, b_{m}\right)^{\mathrm{T}} \in \mathbb{R}^{m}$.
Problem: Find $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}$ s.t.

$$
A x=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \cdots & a_{n n} \\
a_{n+1,1} & \cdots & a_{n+1, n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n} \\
b_{n+1} \\
\vdots \\
b_{m}
\end{array}\right)=b .
$$

Such a problem does not admit a solution in general: consider e.g.,

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

The least squares problem

Observation: Given $A \in \mathbb{R}^{m \times n}, m>n$, and $b \in \mathbb{R}^{m}$,

$$
\left[\exists x \in \mathbb{R}^{n}: A x=b\right] \quad \Longleftrightarrow \quad b \in \mathscr{R}(A) .
$$

Noting that $\operatorname{dim}(\mathscr{R}(A)) \leq n<m=\operatorname{dim}\left(\mathbb{R}^{m}\right)$, such an over-determined system $A x=b$ is only solvable for special choices of $b \in \mathbb{R}^{m}$.
\Longrightarrow Consider the following generalized problem:

$$
\text { Find } x \in \mathbb{R}^{n} \quad \text { s.t. } \quad r:=A x-b \text { is as small as possible. }
$$

We call r the residual. To measure the size of r, use the Euclidean norm.
Definition (Least squares problem)
Given $A \in \mathbb{R}^{m \times n}, m \geq n$, and $b \in \mathbb{R}^{m}$, we call the following problem the least squares problem corresponding to the matrix A and the vector b :

$$
\text { Minimize }\|A v-b\|_{2} \text { over } v \in \mathbb{R}^{n}
$$

A vector $x \in \mathbb{R}^{n}$ is called a solution to the least squares problem iff

$$
\|A x-b\|_{2}=\inf _{v \in \mathbb{R}^{n}}\|A v-b\|_{2}
$$

Motivation: Interpolation vs. least squares fitting

 Suppose we are given data points $\left(t_{1}, y_{1}\right), \ldots,\left(t_{n}, y_{n}\right)$ with $t_{1}, \ldots, t_{n} \in \mathbb{R}$ distinct and $y_{1}, \ldots, y_{n} \in \mathbb{R}$.(i) Polynomial interpolation:

There exists a unique polynomial $p(t)=\sum_{k=0}^{n-1} p_{k} t^{k}$ of degree $n-1$ such that $p\left(t_{i}\right)=y_{i}$ for all $i \in\{1, \ldots, n\}$. (polynomial interpolant)

The coefficients $p_{0}, \ldots, p_{n-1} \in \mathbb{R}$ are uniquely determined from

$$
V\left(\begin{array}{c}
p_{0} \\
\vdots \\
p_{n-1}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right), \quad V:=\left(\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \cdots & t_{1}^{n-1} \\
1 & t_{2} & t_{2}^{2} & \cdots & t_{2}^{n-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & t_{n} & t_{n}^{2} & \cdots & t_{n}^{n-1}
\end{array}\right) \in \mathbb{R}^{n \times n} .
$$

Note that the so-called Vandermonde matrix $V=V\left(t_{1}, \ldots, t_{n}\right)$ is invertible since the values $\left\{t_{i}\right\}$ are distinct.
\Longrightarrow Great! Or not?
Drawback: Large oscillations near the ends of the interval $\left[t_{1}, t_{n}\right]$.

Motivation: Interpolation vs. least squares fitting

Data $\left(t_{1}, y_{1}\right), \ldots,\left(t_{n}, y_{n}\right)$ with $t_{1}, \ldots, t_{n} \in \mathbb{R}$ distinct, $y_{1}, \ldots, y_{n} \in \mathbb{R}$.
(ii) Least squares fitting: Ansatz: $p(t)=\sum_{k=0}^{N-1} p_{k} t^{k}$ with $N<n$.

The condition $p\left(t_{i}\right)=y_{i}$ for $i \in\{1, \ldots, n\}$ leads to

$$
A p_{\text {coeff }}:=\left(\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \cdots & t_{1}^{N-1} \\
1 & t_{2} & t_{2}^{2} & \cdots & t_{2}^{N-1} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & t_{n} & t_{n}^{2} & \cdots & t_{n}^{N-1}
\end{array}\right)\left(\begin{array}{c}
p_{0} \\
\vdots \\
p_{N-1}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=: b .
$$

which may not have a solution. Instead, we choose the coefficient vector $p_{\text {coeff }}=\left(p_{0}, \ldots, p_{N-1}\right)^{\mathrm{T}} \in \mathbb{R}^{N}$ s.t.

$$
\left\|A p_{\text {coeff }}-b\right\|_{2}=\inf _{v \in \mathbb{R}^{N}}\|A v-b\|_{2}
$$

The least squares fit $p(t)=\sum_{k=0}^{N-1} p_{k} t^{k}$ minimizes the quantity $\sqrt{\sum_{i=1}^{n}\left|p\left(t_{i}\right)-y_{i}\right|^{2}}$ among polynomials of degree at most $N-1$.
\Longrightarrow The least squares soln does not interpolate the data points, but it describes the overall behavior better than the interpolant.

Example: Data points

Example: Interpolant (polynomial of degree 10)

Example: Degree 7 polynomial least squares fit

The main questions

Recall:

Definition (Least squares problem)

Given $A \in \mathbb{R}^{m \times n}, m \geq n$, and $b \in \mathbb{R}^{m}$, we call the following problem the least squares problem corresponding to the matrix A and the vector b :

$$
\text { Minimize }\|A v-b\|_{2} \text { over } v \in \mathbb{R}^{n} \text {. }
$$

A vector $x \in \mathbb{R}^{n}$ is called a solution to the least squares problem iff

$$
\|A x-b\|_{2}=\inf _{v \in \mathbb{R}^{n}}\|A v-b\|_{2}
$$

- Existence: Is there a soln to the LS problem for any choices of $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ and $b \in \mathbb{R}^{m}$?
- Uniqueness: If there exists a soln to the LS problem, is this unique?
- Computation: If there exist solns to the LS problems, how can we find them?

An "equivalent" minimization problem

Recall LS problem:

$$
\text { Minimize }\|A v-b\|_{2} \text { over } v \in \mathbb{R}^{n}
$$

If there exists $x \in \mathbb{R}^{n}$ s.t. $\|A x-b\|_{2}=\inf _{v \in \mathbb{R}^{n}}\|A v-b\|_{2}$, then we call this minimizer x a solution to the LS problem.

Introduce an "equivalent" minimization problem:

$$
\begin{equation*}
\text { Minimize }\|w-b\|_{2} \text { over } w \in \mathscr{R}(A) \tag{1}
\end{equation*}
$$

If there exists $y \in \mathscr{R}(A)$ s.t. $\|y-b\|_{2}=\inf _{w \in \mathscr{R}(A)}\|w-b\|_{2}$, then we call this minimizer y a solution to the above minimization problem.

Observations:

- If \exists solution $x \in \mathbb{R}^{n}$ to LS , then $y=A x \in \mathscr{R}(A)$ is a solution to (1).
- If \exists solution $y \in \mathscr{R}(A)$ to (1), then any $x \in \mathbb{R}^{n}$ satisfying $A x=y$ is a solution to LS.
- There holds $\inf _{v \in \mathbb{R}^{n}}\|A v-b\|_{2}=\inf _{w \in \mathscr{R}(A)}\|w-b\|_{2}$.

Geometric illustration of the LS problem

Ingredients for existence proof

Theorem (Existence of solutions to the normal equation)
Let $A \in \mathbb{R}^{m \times n}$. Then, for any $b \in \mathbb{R}^{m}$ there exists a solution $x \in \mathbb{R}^{n}$ to the normal equation $A^{\mathrm{T}} A x=A^{\mathrm{T}} b$.

Proof: Need to show that $A^{\mathrm{T}} b \in \mathscr{R}\left(A^{\mathrm{T}} A\right)$ for any $b \in \mathbb{R}^{m}$. We are going to show that $\mathscr{R}\left(A^{\mathrm{T}}\right)=\mathscr{R}\left(A^{\mathrm{T}} A\right)$:

$$
\mathscr{R}\left(A^{\mathrm{T}}\right)=[\mathcal{N}(A)]^{\perp}=\left[\mathcal{N}\left(A^{\mathrm{T}} A\right)\right]^{\perp}=\mathscr{R}\left(\left(A^{\mathrm{T}} A\right)^{\mathrm{T}}\right)=\mathscr{R}\left(A^{\mathrm{T}} A\right) .
$$

(Used $\mathcal{N}(A)=\mathcal{N}\left(A^{\mathrm{T}} A\right)$ and $[\mathcal{N}(M)]^{\perp}=\mathscr{R}\left(M^{\mathrm{T}}\right)$ for any matrix M.)
Theorem (Orthogonal projector onto range of matrix)
Let $A \in \mathbb{R}^{m \times n}$. Then,
(i) $\mathscr{R}(A)$ and $\mathcal{N}\left(A^{\mathrm{T}}\right)$ are complementary subspaces of \mathbb{R}^{m},
(ii) $\mathscr{R}(A) \perp \mathcal{N}\left(A^{\mathrm{T}}\right)$.

In particular, \exists a unique projector $P \in \mathbb{R}^{m \times m}$ s.t. $\mathscr{R}(P)=\mathscr{R}(A)$ and $\mathcal{N}(P)=\mathcal{N}\left(A^{\mathrm{T}}\right)$, and P is the unique orthogonal projector onto $\mathscr{R}(A)$.

Existence and Uniqueness results

Theorem (Existence and uniqueness result for least squares problems)
Let $A \in \mathbb{R}^{m \times n}, m \geq n$, and $b \in \mathbb{R}^{m}$. Let $P \in \mathbb{R}^{m \times m}$ be the orthogonal projector onto $\mathscr{R}(A)$. Then, we have the following:
(i) \exists a unique solution to the minimization problem (1), i.e., a unique $y \in \mathscr{R}(A)$ with $\|y-b\|_{2}=\inf _{w \in \mathscr{R}(A)}\|w-b\|_{2}$. This soln is given by

$$
y=P b
$$

(ii) \exists a solution to the least squares problem, i.e., $x \in \mathbb{R}^{n}$ satisfying $\|A x-b\|_{2}=\inf _{v \in \mathbb{R}^{n}}\|A v-b\|_{2}$. Moreover, $x \in \mathbb{R}^{n}$ is a solution iff

$$
A x=P b, \text { or equivalently, } A^{\mathrm{T}} A x=A^{\mathrm{T}} b .
$$

(iii) The least squares problem has a unique solution iff $\operatorname{rk}(A)=n$.

Proof of (i)

We need to show that the minimization problem

$$
\text { Minimize }\|w-b\|_{2} \text { over } w \in \mathscr{R}(A)
$$

has the unique solution $y=P b \in \mathscr{R}(A)$. (Note $P b \in \mathscr{R}(P)=\mathscr{R}(A)$.)
We have for any $w \in \mathscr{R}(A) \backslash\{P b\}$ that

$$
\|w-b\|_{2}^{2}=\|(w-P b)+(P b-b)\|_{2}^{2}=\|w-P b\|_{2}^{2}+\|P b-b\|_{2}^{2}>\|P b-b\|_{2}^{2}
$$

where we have used that $\langle\underbrace{w-P b}_{\in \mathscr{R}(P)}, \underbrace{P b-b}_{\in \mathcal{N}(P)}\rangle=0$.
$\Longrightarrow y=P b$ is the unique element in $\mathscr{R}(A)$ satisfying

$$
\|y-b\|_{2}=\inf _{w \in \mathscr{R}(A)}\|w-b\|_{2}
$$

Proof of (ii)

Need to show the following: $\exists x \in \mathbb{R}^{n}:\|A x-b\|_{2}=\inf _{v \in \mathbb{R}^{n}}\|A v-b\|_{2}$, and that $x \in \mathbb{R}^{n}$ is a solution iff $A x=P b$ iff $A^{\mathrm{T}} A x=A^{\mathrm{T}} b$.

By (i), any $x \in \mathbb{R}^{n}$ satisfying $A x=P b$ is a solution to LS. Conversely, if $x \in \mathbb{R}^{n}$ is a solution to LS , then $y=A x$ is a solution to $\|y-b\|_{2}=\inf _{w \in \mathscr{R}(A)}\|w-b\|_{2}$ and consequently, $A x=P b$.

Remains to show that for $x \in \mathbb{R}^{n}$, we have $A x=P b \Longleftrightarrow A^{\mathrm{T}} A x=A^{\mathrm{T}} b$.
$" \Longrightarrow$ " Let $x \in \mathbb{R}^{n}$ with $A x=P b$. Then,

$$
A x-b=P b-b \in \mathcal{N}(P)=\mathcal{N}\left(A^{\mathrm{T}}\right) \quad \Longrightarrow \quad A^{\mathrm{T}} A x=A^{\mathrm{T}} b
$$

$" \Longleftarrow "$ Let $x \in \mathbb{R}^{n}$ with $A^{\mathrm{T}} A x=A^{\mathrm{T}} b$. Then $A x-b \in \mathcal{N}\left(A^{\mathrm{T}}\right)=\mathcal{N}(P)$ and hence,

$$
A x-P b=\left(I_{m}-P\right) A x+P(A x-b)=0
$$

where we have used that $A x \in \mathscr{R}(A)=\mathscr{R}(P)=\mathcal{N}\left(I_{m}-P\right)$.

Proof of (iii)

Need to show: Solution to LS unique iff A has full rank.
By (ii), LS has a unique soln iff $A^{\mathrm{T}} A x=A^{\mathrm{T}} b$ has a unique soln $x \in \mathbb{R}^{n}$, i.e., iff $A^{\mathrm{T}} A \in \mathbb{R}^{n \times n}$ is invertible, i.e., iff $\operatorname{rk}\left(A^{\mathrm{T}} A\right)=n$, i.e., iff $\operatorname{rk}(A)=n$.
(Recall $\mathscr{R}\left(A^{\mathrm{T}} A\right)=\mathscr{R}\left(A^{\mathrm{T}}\right) \quad \Longrightarrow \quad \operatorname{rk}\left(A^{\mathrm{T}} A\right)=\operatorname{rk}\left(A^{\mathrm{T}}\right)=\operatorname{rk}(A)$.)

Solution of the full-rank least squares problem

Let $A \in \mathbb{R}^{m \times n}, m \geq n$, and assume that $\operatorname{rk}(A)=n$. Then, the unique solution to LS is given by

$$
A^{\mathrm{T}} A x=A^{\mathrm{T}} b \quad \Longrightarrow \quad x=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} b
$$

We find that

$$
x=A^{\dagger} b \in \mathbb{R}^{n}, \quad \text { where } \quad A^{\dagger}:=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \in \mathbb{R}^{n \times m} .
$$

The matrix A^{\dagger} is the Moore-Penrose inverse (or pseudoinverse) of A.
The Moore-Penrose inverse is a generalization of the matrix inverse and is being discussed extensively on the problem sheets.

Solution Algorithm 1: via normal eqn \& Cholesky

Let $A \in \mathbb{R}^{m \times n}, m \geq n, b \in \mathbb{R}^{m}$ and assume $\operatorname{rk}(A)=n$. Then,

$$
A^{\mathrm{T}} A \in \mathbb{R}^{n \times n} \quad \text { is symmetric positive definite. }
$$

Indeed, we have $\left(A^{\mathrm{T}} A\right)^{\mathrm{T}}=A^{\mathrm{T}} A$ and

$$
\left\langle x, A^{\mathrm{T}} A x\right\rangle=\langle A x, A x\rangle=\|A x\|_{2}^{2}>0 \quad \forall x \in \mathbb{R}^{n} \backslash\{0\}
$$

Here, we have used that $A x \in \mathbb{R}^{m} \backslash\{0\}$ for $x \in \mathbb{R}^{n} \backslash\{0\}$ since $\operatorname{rk}(A)=n$.
Therefore, $A^{\mathrm{T}} A$ has a unique Cholesky factn $A^{\mathrm{T}} A=R^{\mathrm{T}} R$ and we have

$$
A^{\mathrm{T}} A x=A^{\mathrm{T}} b \quad \Longleftrightarrow \quad R^{\mathrm{T}} R x=A^{\mathrm{T}} b
$$

Algorithm:

1) Compute $\tilde{A}:=A^{\mathrm{T}} A \in \mathbb{R}^{n \times n}$ and $\tilde{b}:=A^{\mathrm{T}} b \in \mathbb{R}^{n}$.
2) Compute the Cholesky factorization $\tilde{A}=R^{\mathrm{T}} R$ of \tilde{A}.
3) Solve the lower-triangular system $R^{\mathrm{T}} z=\tilde{b}$ for $z \in \mathbb{R}^{n}$.
4) Solve the upper-triangular system $R x=z$ for $x \in \mathbb{R}^{n}$.
5) Compute $\tilde{A}:=A^{\mathrm{T}} A \in \mathbb{R}^{n \times n}$ and $\tilde{b}:=A^{\mathrm{T}} b \in \mathbb{R}^{n}$.
6) Compute the Cholesky factorization $\tilde{A}=R^{\mathrm{T}} R$ of \tilde{A}.
7) Solve the lower-triangular system $R^{\mathrm{T}} z=\tilde{b}$ for $z \in \mathbb{R}^{n}$.
8) Solve the upper-triangular system $R x=z$ for $x \in \mathbb{R}^{n}$.

Theorem

This algorithm requires $\sim m n^{2}+\frac{1}{3} n^{3}$ flops.

Solution Algorithm 2: via reduced QR

Let $A \in \mathbb{R}^{m \times n}, m \geq n, b \in \mathbb{R}^{m}$, and assume $A=\hat{Q} \hat{R}$ reduced $Q \mathrm{R}$ factn.
Then, $x \in \mathbb{R}^{n}$ is soln to LS iff $A^{\mathrm{T}} A x=A^{\mathrm{T}} b$ iff

$$
\hat{R}^{\mathrm{T}} \hat{Q}^{\mathrm{T}} \hat{Q} \hat{R} x=\hat{R}^{\mathrm{T}} \hat{Q}^{\mathrm{T}} b \quad \Longrightarrow \quad \hat{R}^{\mathrm{T}} \hat{R} x=\hat{R}^{\mathrm{T}} \hat{Q}^{\mathrm{T}} b
$$

Observe: If A is of full rank, then \hat{R} is invertible and thus,

$$
\hat{R} x=\hat{Q}^{\mathrm{T}} b
$$

Assume $\operatorname{rk}(A)=n$. Do the following:

1) Compute a reduced $Q R$ factorization $A=\hat{Q} \hat{R}$ of A.
2) Compute $\tilde{b}=\hat{Q}^{\mathrm{T}} b \in \mathbb{R}^{n}$.
3) Solve the upper-triangular system $\hat{R} x=\tilde{b}$ for $x \in \mathbb{R}^{n}$.

Using Householder find:

Theorem

This algorithm requires $\sim 2 m n^{2}-\frac{2}{3} n^{3}$ flops.

Solution Algorithm 3: via reduced SVD

Let $A \in \mathbb{R}^{m \times n}, m \geq n, b \in \mathbb{R}^{m}$, and assume $A=\hat{U} \hat{\Sigma} V^{\mathrm{T}}$ reduced SVD.
Then, $x \in \mathbb{R}^{n}$ is a solution to LS iff $A^{\mathrm{T}} A x=A^{\mathrm{T}} b$ iff

$$
V \hat{\Sigma}^{\mathrm{T}} \hat{U}^{\mathrm{T}} \hat{U} \hat{\Sigma} V^{\mathrm{T}} x=V \hat{\Sigma}^{\mathrm{T}} \hat{U}^{\mathrm{T}} b \quad \Longrightarrow \quad V \hat{\Sigma}^{\mathrm{T}} \hat{\Sigma} V^{\mathrm{T}} x=V \hat{\Sigma}^{\mathrm{T}} \hat{U}^{\mathrm{T}} b
$$

Observe: If A is of full rank, then $V \hat{\Sigma}^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ is invertible and thus,

$$
\hat{\Sigma} V^{\mathrm{T}} x=\hat{U}^{\mathrm{T}} b
$$

Assume $\operatorname{rk}(A)=n$. Do the following:

1) Compute a reduced SVD $A=\hat{U} \hat{\Sigma} V^{\mathrm{T}}$ of A.
2) Compute $\tilde{b}=\hat{U}^{\mathrm{T}} b \in \mathbb{R}^{n}$.
3) Solve the diagonal system $\hat{\Sigma} z=\tilde{b}$ for $z \in \mathbb{R}^{n}$.
4) Compute $x=V z \in \mathbb{R}^{n}$.

Theorem

This algorithm requires $\sim 2 m n^{2}+11 n^{3}$ flops.

End of "Chapter 4: Linear Systems and Least Squares Problems".

