MA4230 Matrix Computation

Chapter 4: Linear Systems and Least Squares Problems

- 4.1 Gaussian elimination: LU factorization
- 4.2 Gaussian elimination with partial pivoting: PA=LU factorization
- 4.3 Gaussian elimination with full pivoting: PAQ=LU factorization
- 4.4 Symmetric Gaussian elimination: Cholesky factorization
- 4.5 Least Squares Problems

4.1 Gaussian elimination: LU factorization

The problem

Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, find $x \in \mathbb{R}^n$ s.t.

Ax = b.

 \implies Solve by Gaussian elimination.

No/partial/full pivoting $\implies A = LU / PA = LU / PAQ = LU$

We start with the LU factorization (Gauß without pivoting).

Definition (Lower-triangular and unit lower-triangular matrices)

A matrix $L \in \mathbb{R}^{n \times n}$ is called **lower-triangular** iff L^{T} is upper-triangular. A matrix $L \in \mathbb{R}^{n \times n}$ is called **unit lower-triangular** iff L is lower-triangular and all of its diagonal entries are equal to 1.

LU factorization

Definition (LU factorization)

Let $A \in \mathbb{R}^{n \times n}$. If $\exists L \in \mathbb{R}^{n \times n}$ lower-triangular, $U \in \mathbb{R}^{n \times n}$ upper-triangular s.t. A = LU, then this factorization is called a **LU factorization** of A.

Gaussian elimination transforms A into an upper-triangular matrix

 $U = L_{n-1} \cdots L_2 L_1 A \in \mathbb{R}^{n \times n}$

with $L_1, \ldots, L_{n-1} \in \mathbb{R}^{n \times n}$ unit lower-triangular and of the form

$$L_{1} = \begin{pmatrix} 1 & & & \\ * & 1 & & \\ \vdots & & \ddots & \\ \vdots & & & \ddots & \\ * & & & & 1 \end{pmatrix}, L_{2} = \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & * & \ddots & & \\ & \vdots & & \ddots & \\ & * & & & 1 \end{pmatrix}, \cdots, L_{n-1} = \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & & 1 & \\ & & & & & * & 1 \end{pmatrix}$$

with zero-entries not shown.

Assuming this is possible, obtain A = LU with $L := L_1^{-1} \cdots L_{n-1}^{-1} \in \mathbb{R}^{n \times n}$ unit lower-triangular (exercise) and $U \in \mathbb{R}^{n \times n}$ upper-triangular.

Gaussian elimination: Example

Consider
$$A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 1 & 1 & 2 & -2 \\ -1 & 4 & -1 & 1 \\ 1 & 3 & -3 & 4 \end{pmatrix}$$
. We illustrate Gaussian elimination.

 L_1 : The first step is to eliminate the sub-diagonal entries in the first column of A via adding $\frac{1}{2}/-\frac{1}{2}/\frac{1}{2}$ times row 1 to row 2/3/4:

$$L_1 A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 2 & 5/2 & -5/2 \\ 0 & 3 & -3/2 & 3/2 \\ 0 & 4 & -5/2 & 7/2 \end{pmatrix} \quad \text{with} \quad L_1 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & 0 \\ -1/2 & 0 & 1 & 0 \\ 1/2 & 0 & 0 & 1 \end{pmatrix}$$

 L_2 : The second step is to eliminate the sub-diagonal entries in the second column of L_1A via adding $-\frac{3}{2}/-2$ times row 2 to row 3/4:

$$L_2 L_1 A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 2 & \frac{5}{2} & -\frac{5}{2} \\ 0 & 0 & -\frac{21}{4} & \frac{21}{4} \\ 0 & 0 & -\frac{15}{2} & \frac{17}{2} \end{pmatrix} \quad \text{with} \quad L_2 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{3}{2} & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix}$$

5 / 68

*L*₂: The second step is to eliminate the sub-diagonal entries in the second column of L_1A via adding $-\frac{3}{2}/-2$ times row 2 to row 3/4:

$$L_2 L_1 A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 2 & 5/2 & -5/2 \\ 0 & 0 & -21/4 & 21/4 \\ 0 & 0 & -15/2 & 17/2 \end{pmatrix} \quad \text{with} \quad L_2 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{3}{2} & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix}$$

 L_3 : The third step is to eliminate the sub-diagonal entries in the third column of L_2L_1A via adding $-\frac{10}{7}$ times row 3 to row 4:

$$L_3 L_2 L_1 A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 2 & 5/2 & -5/2 \\ 0 & 0 & -21/4 & 21/4 \\ 0 & 0 & 0 & 1 \end{pmatrix} =: U \text{ with } L_3 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{10}{7} & 1 \end{pmatrix}$$

We find that A = LU with U as above and L given by

$$L := L_1^{-1} L_2^{-1} L_3^{-1}$$

is a LU factorization of A. Indeed, let's compute L:

$$\begin{split} L &= L_1^{-1} L_2^{-1} L_3^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ -\frac{1}{2} & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{3}{2} & 1 & 0 \\ 0 & -2 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\frac{10}{7} & 1 \end{pmatrix}^{-1} \\ &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 1 & 0 \\ -\frac{1}{2} & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \frac{3}{2} & 1 & 0 \\ 0 & 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{10}{7} & 1 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & \frac{3}{2} & 1 & 0 \\ -\frac{1}{2} & 2 & \frac{10}{7} & 1 \end{pmatrix} \end{split}$$

Note how simple it is to compute L: the matrices L_i can be inverted by negating their sub-diagonal entries, and the matrix L can be obtained by collecting these values appropriately. Coincidence? No:

Generally, if the *i*-th column x_i of the matrix $L_{i-1} \cdots L_1 A$ (the matrix A if i = 1) is the vector $x_i = (x_{1i}, \ldots, x_{ni})^T$, then

$$L_{i} = \begin{pmatrix} 1 & & & \\ & \ddots & & & \\ & & 1 & & \\ & & -\frac{x_{i+1,i}}{x_{ii}} & 1 & \\ & & \vdots & \ddots & \\ & & -\frac{x_{ni}}{x_{ii}} & & 1 \end{pmatrix} = I_{n} - l_{i}e_{i}^{\mathrm{T}} \in \mathbb{R}^{n \times n}, \quad l_{i} := \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \frac{x_{i+1,i}}{x_{ii}} \\ \vdots \\ \frac{x_{ni}}{x_{ii}} \\ \frac{x_{ni}}{x_{ii}} \end{pmatrix} \in \mathbb{R}^{n}.$$

• $L_i^{-1} = I_n + l_i e_i^{\mathrm{T}}$: $(I_n - l_i e_i^{\mathrm{T}})(I_n + l_i e_i^{\mathrm{T}}) = I_n - l_i e_i^{\mathrm{T}} l_i e_i^{\mathrm{T}} = I_n - \langle l_i, e_i \rangle l_i e_i^{\mathrm{T}} = I_n$. • $L = L_1^{-1} \cdots L_{n-1}^{-1}$ is given by

$$L = \begin{pmatrix} 1 & & & \\ \frac{x_{21}}{x_{11}} & 1 & & \\ \frac{x_{31}}{x_{11}} & \frac{x_{32}}{x_{22}} & 1 & \\ \vdots & \vdots & \ddots & \ddots & \\ \frac{x_{n1}}{x_{11}} & \frac{x_{n2}}{x_{22}} & \cdots & \frac{x_{n,n-1}}{x_{n-1,n-1}} & 1 \end{pmatrix}.$$

Indeed, looking at the product of two such matrices we find

$$L_i^{-1}L_{i+1}^{-1} = (I_n + l_i e_i^{\mathrm{T}})(I_n + l_{i+1}e_{i+1}^{\mathrm{T}}) = I_n + l_i e_i^{\mathrm{T}} + l_{i+1}e_{i+1}^{\mathrm{T}}.$$

Gaussian elimination without pivoting: Algorithm

Given $A \in \mathbb{R}^{n \times n}$, do as follows:

$$\begin{split} L &= I_n, \ U = A \\ \text{for } i = 1, \dots, n-1 \ \text{do} \\ &\text{for } j = i+1, \dots, n \ \text{do} \\ &l_{ji} = \frac{u_{ji}}{u_{ii}} \\ &u_{j,i:n} = u_{j,i:n} - l_{ji}u_{i,i:n} \\ &\text{end for} \\ \text{end for.} \end{split}$$

Warning: A needs to be such that no division by zero happens.

Theorem

The above algorithm requires $\sim \frac{2}{3}n^3$ flops.

Proof: Exercise.

Compare with $\sim \frac{4}{3}n^3$ flops for QR via Householder.

Solving linear systems via LU

Problem: Given $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, find $x \in \mathbb{R}^n$ s.t. Ax = b.

If there exists a LU factorization A = LU, we have

$$Ax = b \iff LUx = b \iff \begin{cases} Ly = b, \\ Ux = y. \end{cases}$$

Therefore, once a LU factorization is computed ($\mathfrak{O}(n^3)$ flops), we can first solve Ly = b for y by forward substitution ($\mathfrak{O}(n^2)$ flops) and then Ux = y for x by backward substitution ($\mathfrak{O}(n^2)$ flops).

 \implies But does every matrix have a LU factorization? Unfortunately, no.

E.g., $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ does not have a LU factorization. Indeed, if there were $L = \begin{pmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ and $U = \begin{pmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ such that A = LU, then $l_{11}u_{11} = 0$ and $l_{11}u_{12} = l_{21}u_{11} = l_{21}u_{12} + l_{22}u_{22} = 1$, contradiction.

Gaussian elimination in its current form (without pivoting) is impractical to solve general linear systems. For instance, it fails for the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$

due to division by zero in the first step.

More dramatically, the algorithm is not stable for general $n \times n$ matrices as we will see later in this course.

Improvement in stability via pivoting \implies next section.

4.2 Gaussian elimination with partial pivoting: PA=LU factorization

How to improve Gaussian elimination? Key observation In *i*-th step of Gauß, add multiples of row *i* to rows i + 1, ..., n to obtain

(x_{11})	x_{12}		x_{1i}	$x_{1,i+1}$	 x_{1n}		(x_{11})	x_{12}		x_{1i}	$x_{1,i+1}$	 x_{1n}
1	x_{22}		x_{2i}	$x_{2,i+1}$	 x_{2n}		1	x_{22}		x_{2i}	$x_{2,i+1}$	 x_{2n}
		•.	:	:	:				• .	:	:	:
		•							•			
			x_{ii}	$x_{i,i+1}$	 x_{in}	T⇒				x_{ii}	$x_{i,i+1}$	 x_{in}
			$x_{i+1,i}$	$x_{i+1,i+1}$	 $x_{i+1,n}$					0	*	 *
			:	:	:						:	:
(x_{ni}	$x_{n,i+1}$	 x_{nn} /					0	*	 * /

We call $x_{ii} \neq 0$ the **pivot**. Observation: Instead, can also add multiples of row j with some $j \in \{i + 1, ..., n\}$ such that $x_{ji} \neq 0$ to rows i, ..., j - 1, j + 1, ..., n to create zeros as follows:

(x_{11})	x_{12}		x_{1i}	$x_{1,i+1}$	 x_{1n}		(x_{11})	x_{12}		x_{1i}	$x_{1,i+1}$		x_{1n}
	x_{22}		x_{2i}	$x_{2,i+1}$	 x_{2n}			x_{22}		x_{2i}	$x_{2,i+1}$		x_{2n}
		1.	:	:	:				1.	:			:
			x_{ii}	$x_{i,i+1}$	 x_{in}					0	*		*
			:	:		\implies				:	:		:
										0	*		*
			x_{ji}	$x_{j,i+1}$	 x_{jn}					x_{ji}	$x_{j,i+1}$		x_{jn}
										0	*	• • •	*
			:	:	:								
										:	:		:
(x_{ni}	$x_{n,i+1}$	 x_{nn}		(0	*		* /

In this case, $x_{ii} \neq 0$ is called the pivot.

Gaussian elimination with partial pivoting

This procedure is thought of as follows:

In the *i*-th step,

- 1. choose a pivot $x_{ji} \neq 0$ from column i and row j (some $j \in \{i, \ldots, n\}$),
- 2. permute the rows such that x_{ii} is moved to the main diagonal,
- 3. do a standard Gaussian elimination step.

For numerical stability, the pivot is chosen as the largest entry in modulus in column i and rows i, \ldots, n .

This is called **Gaussian elimination with partial pivoting** and leads to a LU factorization of PA for some permutation matrix P.

PA=LU factorization

Definition (PA=LU factorization)

Let $A \in \mathbb{R}^{n \times n}$. If there exist a lower-triangular matrix $L \in \mathbb{R}^{n \times n}$, an upper-triangular matrix $U \in \mathbb{R}^{n \times n}$, and a permutation matrix $P \in \mathbb{R}^{n \times n}$ (i.e., a matrix which has exactly one entry 1 in each row and column and zeros elsewhere) s.t.

PA = LU,

then we call this factorization a **PA=LU factorization** or a **LU** factorization with partial pivoting corresponding to *A*.

Remark: Permutation matrices are orthogonal matrices.

Gaussian elimination with partial pivoting: Example

Consider
$$A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 1 & 1 & 2 & -2 \\ -1 & 4 & -1 & 1 \\ 1 & 3 & -3 & 4 \end{pmatrix}$$

 P_1 : As $\max\{|-2|, |1|, |-1|, |1|\} = |-2|$, choose the (1, 1)-entry as pivot. Since this is already on the diagonal, no permutation is needed:

$$P_1A = A$$
 with $P_1 := I_4$.

*L*₁: Eliminate sub-diagonal entries in first column of $P_1A = A$ via adding $\frac{1}{2}/-\frac{1}{2}/\frac{1}{2}$ times row 1 to row 2/3/4:

$$L_1 P_1 A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 2 & \frac{5}{2} & -\frac{5}{2} \\ 0 & 3 & -\frac{3}{2} & \frac{3}{2} \\ 0 & 4 & -\frac{5}{2} & \frac{7}{2} \end{pmatrix} \quad \text{with} \quad L_1 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ -\frac{1}{2} & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \end{pmatrix}$$

Recall from previous slide:
$$L_1P_1A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 2 & 5/2 & -5/2 \\ 0 & 3 & -3/2 & 3/2 \\ 0 & 4 & -5/2 & 7/2 \end{pmatrix}$$
.

 P_2 : As $\max\{|2|, |3|, |4|\} = |4|$, choose the (4, 2)-entry as pivot. To this end, we permute rows 2 and 4:

$$P_2L_1P_1A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 4 & -5/2 & 7/2 \\ 0 & 3 & -3/2 & 3/2 \\ 0 & 2 & 5/2 & -5/2 \end{pmatrix} \text{ with } P_2 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

*L*₂: Eliminate sub-diagonal entries in second column of $P_2L_1P_1A$ via adding $-\frac{3}{4}/-\frac{1}{2}$ times row 2 to row 3/4:

$$L_2 P_2 L_1 P_1 A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 4 & -5/2 & 7/2 \\ 0 & 0 & 3/8 & -9/8 \\ 0 & 0 & ^{15}/4 & -^{17}/4 \end{pmatrix} \text{ with } L_2 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -3/4 & 1 & 0 \\ 0 & -1/2 & 0 & 1/2 \end{pmatrix}$$

Recall from previous slide: $L_2P_2L_1P_1A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 4 & -5/2 & 7/2 \\ 0 & 0 & 3/8 & -9/8 \\ 0 & 0 & ^{15}\!/_4 & -^{17}\!/_4 \end{pmatrix}$.

 P_3 : As $\max\{|\frac{3}{8}|, |\frac{15}{4}|\} = |\frac{15}{4}|$, choose the (4, 3)-entry as pivot. To this end, we permute rows 3 and 4:

$$P_{3}L_{2}P_{2}L_{1}P_{1}A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 4 & -5/2 & 7/2 \\ 0 & 0 & 15/4 & -17/4 \\ 0 & 0 & 3/8 & -9/8 \end{pmatrix} \text{ with } P_{3} := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

 L_3 : Eliminate sub-diagonal entries in third column of $P_3L_2P_2L_1P_1A$ via adding $-\frac{1}{10}$ times row 3 to row 4:

$$L_3 P_3 L_2 P_2 L_1 P_1 A = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 0 & 4 & -5/2 & 7/2 \\ 0 & 0 & 15/4 & -17/4 \\ 0 & 0 & 0 & -7/10 \end{pmatrix} =: U, \ L_3 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{10} & 1 \end{pmatrix}$$

 $\implies L_3P_3L_2P_2L_1P_1A = U$. How to obtain from this a PA=LU factn?

Set
$$L'_3 := L_3$$
, $L'_2 := P_3 L_2 P_3^{-1}$, and $L'_1 := P_3 P_2 L_1 P_2^{-1} P_3^{-1}$, i.e.,

$$L'_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{10} & 1 \end{pmatrix}, \ L'_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{3}{4} & 0 & 1 \end{pmatrix}, \ L'_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 1 & 0 \\ -\frac{1}{2} & 0 & 0 & 1 \end{pmatrix}$$

Then, $L'_3L'_2L'_1P_3P_2P_1A = L_3P_3L_2P_2L_1P_1A = U.$

We find that PA = LU with

$$P := P_3 P_2 P_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \ L := (L'_3 L'_2 L'_1)^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1/2 & 1 & 0 & 0 \\ -1/2 & 1/2 & 1 & 0 \\ 1/2 & 3/4 & 1/10 & 1 \end{pmatrix}$$

is a PA=LU factorization.

More generally, ...

Gaussian elimination with partial pivoting transforms $A \in \mathbb{R}^{n \times n}$ into an upper-triangular $U \in \mathbb{R}^{n \times n}$ by Gaussian elimination with an additional left-multiplication of a permutation matrix P_i at the beginning of step i:

 $L_{n-1}P_{n-1}\cdots L_2P_2L_1P_1A=U.$

Here, $P_1, \ldots, P_{n-1} \in \mathbb{R}^{n \times n}$ are permutation matrices and $L_1, \ldots, L_{n-1} \in \mathbb{R}^{n \times n}$ are unit lower-triangular.

Set
$$L'_{n-1} := L_{n-1}, \ L'_i := P_{n-1} \cdots P_{i+1} L_i P_{i+1}^{-1} \cdots P_{n-1}^{-1}$$
 for $1 \le i \le n-2$.
 $\implies (L'_{n-1} \cdots L'_2 L'_1) (P_{n-1} \cdots P_2 P_1) A = U.$

Observe that the matrix L'_i has the same structure as L_i . We then obtain that PA = LU is a PA=LU factorization corresponding to A with

$$L := (L'_{n-1} \cdots L'_2 L'_1)^{-1}, \qquad P := P_{n-1} \cdots P_2 P_1.$$

Note P is a permutation matrix as product of permutation matrices, and that L is well-defined and lower-triangular.

Gaussian elimination with partial pivoting: Algorithm

Given $A \in \mathbb{R}^{n \times n}$, do as follows:

 $P = I_n, L = I_n, U = A$ for i = 1, ..., n - 1 do Choose $r \in \{i, \ldots, n\}$ such that $|u_{ri}| = \max_{k \in \{i, \ldots, n\}} |u_{ki}|$ $u_{i,i:n} \leftrightarrow u_{r,i:n}$ $l_{i,1:i-1} \leftrightarrow l_{r,1:i-1}$ $p_{i,1:n} \leftrightarrow p_{r,1:n}$ for j = i + 1, ..., n do $l_{ji} = \frac{u_{ji}}{u_{ji}}$ $u_{j,i:n} = u_{j,i:n} - l_{ji}u_{i,i:n}$ end for end for.

Here, " \leftrightarrow " denotes "interchange".

Warning: A needs to be such that no division by zero happens in the algorithm above (as an exercise, think about how to obtain a PA=LU factorization if all candidates for pivots are zero at some step i).

Work of Gauß with partial pivoting

• pivot selection requires $\mathfrak{O}(n^2)$ operations overall.

 \implies To leading order, Gauß with partial pivoting requires same amount of flops as Gauß without pivoting, i.e., $\sim \frac{2}{3}n^3.$

Gaussian elimination with partial pivoting is the standard way to solve linear systems on a computer. Solving linear systems via PA=LU factorization Problem: Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$, find $x \in \mathbb{R}^n$ s.t. Ax = b. If there exists a PA=LU factorization PA = LU, we have

 $Ax = b \iff PAx = Pb \iff LUx = Pb \iff \begin{cases} Ly = Pb, \\ Ux = y. \end{cases}$

Therefore, once a PA=LU factorization is computed ($\mathfrak{O}(n^3)$ flops), we can first form $\tilde{b} := Pb$, then solve $Ly = \tilde{b}$ by forward substitution ($\mathfrak{O}(n^2)$ flops) and then Ux = y for x by backward substitution ($\mathfrak{O}(n^2)$ flops).

What about existence of LU and PA=LU factorization? (Recall we already know that not every matrix has a LU factorization.)

Theorem (Existence of LU and PA=LU factorization)

- (i) Any matrix $A \in \mathbb{R}^{n \times n}$ has a PA=LU factorization.
- (ii) Let A ∈ ℝ^{n×n} invertible. Then, there exists a LU factorization of A iff det(A_{1:i,1:i}) ≠ 0 for all 1 ≤ i ≤ n.

4.3 Gaussian elimination with full pivoting: PAQ=LU factorization

Full pivoting: A further improvement in stability

Idea: Every entry of the sub-matrix $X_{i:n,i:n}$ of the working matrix X at step i is a candidate for the pivot.

Rk: Full pivoting is rarely used in practice due to large computational cost.

Gaussian elimination with full pivoting leads to a PAQ=LU factorization:

Definition (PAQ=LU factorization)

Let $A \in \mathbb{R}^{n \times n}$. If there exist a lower-triangular matrix $L \in \mathbb{R}^{n \times n}$, an upper-triangular matrix $U \in \mathbb{R}^{n \times n}$, and permutation matrices $P, Q \in \mathbb{R}^{n \times n}$ such that there holds

PAQ = LU,

then we call this a **PAQ=LU factorization** or a **LU factorization with full pivoting** corresponding to *A*.

Note: Any matrix $A \in \mathbb{R}^{n \times n}$ admits a PAQ=LU factorization with $Q = I_n$.

Example: Gaussian elimination with full pivoting

Consider
$$A := \begin{pmatrix} -2 & 2 & 1 & -1 \\ 1 & 1 & 2 & -2 \\ -1 & 4 & -1 & 1 \\ 1 & 3 & -3 & 4 \end{pmatrix}$$

 P_1, Q_1 : As $\max_{i,j \in \{1,...,4\}} |a_{ij}| = |4|$, we choose the (3, 2)-entry 4 as pivot (note we could have also chosen the (4, 4)-entry 4). To this end, we permute columns 1 and 2, and then rows 1 and 3:

$$P_1AQ_1 = \begin{pmatrix} 4 & -1 & -1 & 1 \\ 1 & 1 & 2 & -2 \\ 2 & -2 & 1 & -1 \\ 3 & 1 & -3 & 4 \end{pmatrix}, \quad Q_1 := \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, P_1 := \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 L_1 : We eliminate the sub-diagonal entries in the first column of P_1AQ_1 via adding $-\frac{1}{4}/-\frac{1}{2}/-\frac{3}{4}$ times row 1 to row 2/3/4:

$$L_1 P_1 A Q_1 = \begin{pmatrix} 4 & -1 & -1 & 1 \\ 0 & 5/4 & 9/4 & -9/4 \\ 0 & -3/2 & 3/2 & -3/2 \\ 0 & 7/4 & -9/4 & 13/4 \end{pmatrix} \quad \text{with } L_1 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1/4 & 1 & 0 & 0 \\ -1/2 & 0 & 1 & 0 \\ -3/4 & 0 & 0 & 1 \end{pmatrix}$$

$$L_1 P_1 A Q_1 = \begin{pmatrix} 4 & -1 & -1 & 1 \\ 0 & 5/4 & 9/4 & -9/4 \\ 0 & -3/2 & 3/2 & -3/2 \\ 0 & 7/4 & -9/4 & 13/4 \end{pmatrix} =: A_1.$$

 $P_{2}, Q_{2}: \text{ As } \max\{|\frac{5}{4}|, |-\frac{3}{2}|, |\frac{7}{4}|, |\frac{9}{4}|, |\frac{3}{2}|, |-\frac{9}{4}|, |-\frac{9}{4}|, |-\frac{3}{2}|, |\frac{13}{4}|\} = |\frac{13}{4}|, \text{ we choose the } (4, 4)\text{-entry } \frac{13}{4} \text{ as pivot.}$

To this end, we permute columns 2 and 4, and then rows 2 and 4:

$$P_2 A_1 Q_2 = \begin{pmatrix} 4 & 1 & -1 & -1 \\ 0 & \frac{13}{4} & -\frac{9}{4} & \frac{7}{4} \\ 0 & -\frac{3}{2} & \frac{3}{2} & -\frac{3}{2} \\ 0 & -\frac{9}{4} & \frac{9}{4} & \frac{5}{4} \end{pmatrix}, \quad Q_2 := P_2 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

 L_2 : We eliminate the sub-diagonal entries in the second column of $P_2A_1Q_2$ via adding $\frac{6}{13}/\frac{9}{13}$ times row 2 to row 3/4:

$$L_2 P_2 A_1 Q_2 = \begin{pmatrix} 4 & 1 & -1 & -1 \\ 0 & ^{13/4} & -^{9/4} & ^{7/4} \\ 0 & 0 & ^{6/13} & -^{9/13} \\ 0 & 0 & ^{9/13} & ^{32/13} \end{pmatrix} \quad \text{with } L_2 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & ^{6/13} & 1 & 0 \\ 0 & ^{9/13} & 0 & 1 \end{pmatrix}$$

$$L_2 P_2 A_1 Q_2 = \begin{pmatrix} 4 & 1 & -1 & -1 \\ 0 & {}^{13/_4} & -{}^{9/_4} & {}^{7/_4} \\ 0 & 0 & {}^{6/_{13}} & -{}^{9/_{13}} \\ 0 & 0 & {}^{9/_{13}} & {}^{32/_{13}} \end{pmatrix} =: A_2$$

 P_3, Q_3 : As $\max\{|\frac{6}{13}|, |\frac{9}{13}|, |-\frac{9}{13}|, |\frac{32}{13}|\} = |\frac{32}{13}|$, we choose the (4, 4)-entry $\frac{32}{13}$ as pivot.

To this end, we permute columns 3 and 4, and then rows 3 and 4:

$$P_{3}A_{2}Q_{3} = \begin{pmatrix} 4 & 1 & -1 & -1 \\ 0 & ^{13}\!/_{4} & ^{7}\!/_{4} & -^{9}\!/_{4} \\ 0 & 0 & ^{32}\!/_{13} & ^{9}\!/_{13} \\ 0 & 0 & -^{9}\!/_{13} & ^{6}\!/_{13} \end{pmatrix}, \quad Q_{3} := P_{3} := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

*L*₃: We eliminate the sub-diagonal entries in the third column of $P_3A_2Q_3$ via adding $\frac{9}{32}$ times row 3 to row 4:

$$L_3 P_3 A_2 Q_3 = \begin{pmatrix} 4 & 1 & -1 & -1 \\ 0 & ^{13/4} & ^{7/4} & -^{9/4} \\ 0 & 0 & ^{32/13} & ^{9/13} \\ 0 & 0 & 0 & ^{21/32} \end{pmatrix} =: U \text{ with } L_3 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{9}{32} & 1 \end{pmatrix}$$

 $\implies L_3P_3L_2P_2L_1P_1AQ_1Q_2Q_3 = U$ is upper-triangular.

Have $L_3'L_2'L_1'P_3P_2P_1AQ_1Q_2Q_3=L_3P_3L_2P_2L_1P_1AQ_1Q_2Q_3=U$ with $L_3':=L_3$,

$$L'_{2} := P_{3}L_{2}P_{3}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 9/13 & 1 & 0 \\ 0 & 6/13 & 0 & 1 \end{pmatrix}, \quad L'_{1} := P_{3}P_{2}L_{1}P_{2}^{-1}P_{3}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3/4 & 1 & 0 & 0 \\ -1/4 & 0 & 1 & 0 \\ -1/2 & 0 & 0 & 1 \end{pmatrix}$$

 \implies We find that PAQ = LU with

$$P := P_3 P_2 P_1 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \quad Q := Q_1 Q_2 Q_3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$

 $L := (L'_3 L'_2 L'_1)^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 3/4 & 1 & 0 & 0 \\ 1/4 & -9/13 & 1 & 0 \\ 1/2 & -6/13 & -9/32 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 4 & 1 & -1 & -1 \\ 0 & 13/4 & 7/4 & -9/4 \\ 0 & 0 & 32/13 & 9/13 \\ 0 & 0 & 0 & 21/32 \end{pmatrix}$

is a PAQ = LU factorization.

More generally, ...

Gaussian elimination with full pivoting transforms $A \in \mathbb{R}^{n \times n}$ into an upper-triangular $U \in \mathbb{R}^{n \times n}$ by Gaussian elimination with an additional right-multiplication of a permutation matrix Q_i and left-multiplication of a permutation matrix P_i at the beginning of step i:

 $L_{n-1}P_{n-1}\cdots L_2P_2L_1P_1AQ_1Q_2\cdots Q_{n-1} = U.$

Here, $P_1, \ldots, P_{n-1}, Q_1, \ldots, Q_{n-1} \in \mathbb{R}^{n \times n}$ are permutation matrices and $L_1, \ldots, L_{n-1} \in \mathbb{R}^{n \times n}$ are unit lower-triangular.

We deduce that

$$(L'_{n-1}\cdots L'_{2}L'_{1})(P_{n-1}\cdots P_{2}P_{1})A(Q_{1}Q_{2}\cdots Q_{n-1})=U$$

with $L'_{n-1} := L_{n-1}$ and $L'_i := P_{n-1} \cdots P_{i+1}L_iP_{i+1}^{-1} \cdots P_{n-1}^{-1}$ for $i \in \{1, \ldots, n-2\}$. We then obtain that PAQ = LU is a PAQ=LU factorization corresponding to A with

 $L := (L'_{n-1} \cdots L'_2 L'_1)^{-1}, \quad P := P_{n-1} \cdots P_2 P_1, \quad Q := Q_1 Q_2 \cdots Q_{n-1}.$

Note that P and Q are permutation matrices as products of permutation matrices, and that L is well-defined and lower-triangular.

Advantages and drawbacks

- + Full pivoting further improves stability compared to partial pivoting.
- Pivot selection for full pivoting requires $\mathfrak{O}(n^3)$ operations overall.

As an exercise, think about how a PAQ=LU factorization can be used to solve a linear system Ax = b.

4.4 Symmetric Gaussian elimination: Cholesky factorization

Definite matrices

Definition (positive/negative (semi)definiteness)

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called

(i) **positive definite**, denoted $A \succ 0$, iff

$$\langle x, Ax \rangle = x^{\mathrm{T}}Ax > 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}.$$

(ii) **positive semidefinite**, denoted $A \succeq 0$, iff

$$\langle x, Ax \rangle = x^{\mathrm{T}}Ax \ge 0 \quad \forall x \in \mathbb{R}^n.$$

(iii) **negative definite**, denoted $A \prec 0$, iff

$$\langle x, Ax \rangle = x^{\mathrm{T}}Ax < 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}.$$

(iv) **negative semidefinite**, denoted $A \leq 0$, iff

$$\langle x, Ax \rangle = x^{\mathrm{T}}Ax \le 0 \quad \forall x \in \mathbb{R}^n.$$

An equivalent characterization via eigenvalues

Theorem (Characterization of positive/negative (semi)definite matrices) For a symmetric matrix $A \in \mathbb{R}^{n \times n}$, we have (i) $A \succ 0 \iff$ all eigenvalues of A are positive, (ii) $A \succeq 0 \iff$ all eigenvalues of A are non-negative, (iii) $A \prec 0 \iff$ all eigenvalues of A are negative, (iv) $A \preceq 0 \iff$ all eigenvalues of A are non-positive.

Proof: Exercise. Use the following:

Lemma (Spectral theorem for symmetric matrices)

Symmetric matrices are orthogonally diagonalizable, i.e., for any symmetric matrix $A \in \mathbb{R}^{n \times n}$ there exist an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ s.t. $A = QDQ^{T}$. The diagonal entries of D are the eigenvalues of A, and the column vectors of Q are eigenvectors of A. In particular, all eigenvalues of a symmetric matrix are real.

Examples for definiteness

•
$$A := \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \succeq 0$$
 as $\Lambda(A) = \{0, 5\} \subseteq [0, \infty).$

• $B := -A \preceq 0$ as $\Lambda(B) = \{-5, 0\} \subseteq (-\infty, 0].$

•
$$C := \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \succ 0$$
 as $\Lambda(C) = \{1,3\} \subseteq (0,\infty).$

•
$$D := -C \prec 0$$
 as $\Lambda(D) = \{-3, -1\} \subseteq (-\infty, 0).$

• $E := \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is neither positive semidefinite, nor negative semidefinite (we say E is **indefinite**), as $\Lambda(E) = \{-1, 3\}$.

More on positive definite matrices

- Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix and let $X \in \mathbb{R}^{n \times r}$ with $n \ge r$ and $\operatorname{rk}(X) = r$. Then, the matrix $X^{\mathrm{T}}AX$ is symmetric positive definite (exercise).
- A useful criterion for checking positive definiteness:

Theorem (Sylvester's criterion for positive definiteness) Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then,

 $A \succ 0 \quad \Longleftrightarrow \quad \forall i \in \{1, \dots, n\} : \det(A_{1:i,1:i}) > 0.$

The number $det(A_{1:i,1:i})$ is called the *i*-th **leading principal minor** of A. Therefore, a symmetric matrix is positive definite iff all of its leading principal minors are positive.

⇒ Any symmetric positive definite matrix has a LU factorization! Even better: We can factorize a symmetric positive definite matrix twice as quickly into triangular factors as a general matrix.

Cholesky factorization

Definition (Cholesky factorization)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. If there exists an upper-triangular matrix $R \in \mathbb{R}^{n \times n}$ with **positive diagonal entries** s.t.

 $A = R^{\mathrm{T}}R,$

then we call this a **Cholesky factorization** of A.

The following is the main result of this section:

Theorem (Existence and uniqueness of Cholesky factorization) Every symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ admits a unique Cholesky factorization.

So, let's prove this ...

Existence of Cholesky factorization: Symmetric Gauß

Consider a symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$. Write

$$A = \begin{pmatrix} a_{11} & w^{\mathrm{T}} \\ w & B \end{pmatrix} \in \mathbb{R}^{n \times n}$$

with $a_{11} \in \mathbb{R}$, $w \in \mathbb{R}^{n-1}$ and a symmetric matrix $B \in \mathbb{R}^{(n-1) \times (n-1)}$.

Note that

•
$$a_{11} = \det(A_{1:1,1:1}) > 0$$
,
• $B \succ 0$ since $\langle x, Bx \rangle = \left\langle \left(\frac{0}{x} \right), A\left(\frac{0}{x} \right) \right\rangle > 0$ for all $x \in \mathbb{R}^{n-1} \setminus \{0\}$.

First step of symmetric Gaussian elimination:

$$L_1 A L_1^{\mathrm{T}} = \left(\begin{array}{c|c} 1 & 0_{1 \times (n-1)} \\ \hline 0_{(n-1) \times 1} & B - \frac{ww^{\mathrm{T}}}{a_{11}} \end{array} \right) =: A_1 \quad \text{with} \quad L_1 := \left(\begin{array}{c|c} \frac{1}{\sqrt{a_{11}}} & 0_{1 \times (n-1)} \\ \hline -\frac{w}{a_{11}} & I_{n-1} \end{array} \right)$$

which we can equivalently write as

$$A = R_1^{\mathrm{T}} A_1 R_1 \quad \text{with} \quad R_1 := (L_1^{-1})^{\mathrm{T}} = \left(\begin{array}{c|c} \sqrt{a_{11}} & \frac{w^{\mathrm{T}}}{\sqrt{a_{11}}} \\ 0_{(n-1)\times 1} & I_{n-1} \end{array} \right).$$

Recall
$$A_1 = L_1 A L_1^{\mathrm{T}} = \left(\begin{array}{c|c} 1 & 0_{1 \times (n-1)} \\ \hline 0_{(n-1) \times 1} & B - \frac{w w^{\mathrm{T}}}{a_{11}} \end{array} \right).$$

Note that

- A_1 is symmetric,
- $A_1 = (L_1^{\mathrm{T}})^{\mathrm{T}} A(L_1^{\mathrm{T}}) \succ 0$ since $L_1^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ is of full rank.

Therefore, we also have that the sub-matrix $B - \frac{ww^{\mathrm{T}}}{a_{11}} \in \mathbb{R}^{(n-1)\times(n-1)}$ is symmetric positive definite (same argument as when we deduced $B \succ 0$ from $A \succ 0$) and in particular, the (1, 1)-entry of $B - \frac{ww^{\mathrm{T}}}{a_{11}}$ is positive.

 \implies We can factor

 $A_1 = R_2^{\mathrm{T}} A_2 R_2$

with $R_2 \in \mathbb{R}^{n \times n}$ upper-triangular with positive diagonal entries and A_2 being of the form $A_2 = \begin{pmatrix} I_2 & 0_{2 \times (n-2)} \\ 0_{(n-2) \times 2} & C \end{pmatrix}$, using the same procedure as before applied to $B - \frac{ww^T}{a_{11}}$. Then, again, the sub-matrix C is symmetric positive definite, and we can continue this process ... \implies continue this process until we arrive at a factorization

 $A = (R_1^{\mathrm{T}} R_2^{\mathrm{T}} \cdots R_n^{\mathrm{T}}) I_n (R_n \cdots R_2 R_1) = R^{\mathrm{T}} R$

with $R := R_n \cdots R_2 R_1 \in \mathbb{R}^{n \times n}$ upper-triangular and having positive diagonal entries. This is a Cholesky factorization of A!

Next: Remains to show uniqueness.

Theorem (Existence and uniqueness of Cholesky factorization)

Every symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ admits a unique Cholesky factorization.

<u>Proof</u>: Symmetric Gaussian elimination provides existence of a Cholesky factorization (argument can be made rigorous via induction).

For uniqueness, suppose that $R,M\in\mathbb{R}^{n\times n}$ are two upper-triangular matrices with positive diagonal entries such that

 $A = R^{\mathrm{T}}R = M^{\mathrm{T}}M.$

Note that $D := MR^{-1}$ is an upper-triangular matrix, but also, since

$$D = MR^{-1} = (M^{\rm T})^{-1}R^{\rm T} = (D^{-1})^{\rm T},$$

it must be lower-triangular as well, hence diagonal.

Noting that $I_n = D^T D = D^2$, the diagonal entries of D are all ± 1 . Finally, since DR = M and the diagonal entries of R and M are positive, we must have that R = M.

Example: Computing the Cholesky factorization

Consider the symmetric positive definite matrix

$$A := \begin{pmatrix} 16 & -8 & 12 \\ -8 & 5 & -9 \\ 12 & -9 & 22 \end{pmatrix} \in \mathbb{R}^{3 \times 3}.$$

We illustrate symmetric Gaussian elimination:

*L*₁: Eliminate the sub-diagonal entries in the first column of *A* by adding $\frac{1}{2}/\frac{3}{4}$ times row 1 to row 2/3, and multiply the first row by $\frac{1}{\sqrt{a_{11}}} = \frac{1}{4}$:

$$L_1 A = \begin{pmatrix} 4 & -2 & 3 \\ 0 & 1 & -3 \\ 0 & -3 & 13 \end{pmatrix} \quad \text{with} \quad L_1 := \begin{pmatrix} 1/4 & 0 & 0 \\ 1/2 & 1 & 0 \\ -3/4 & 0 & 1 \end{pmatrix}$$

Next, we right-multiply L_1A with L_1^T which creates a 1 in the (1,1) entry and zeros in the (1,2) and (1,3) entries:

$$L_1 A L_1^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & -3 & 13 \end{pmatrix}.$$

Recall
$$L_1 A L_1^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & -3 & 13 \end{pmatrix}$$
.

 L_2 : Eliminate sub-diagonal entry in second column of $L_1AL_1^T$ by adding 3 times row 2 to row 3 (and multiply the second row by $\frac{1}{\sqrt{1}} = 1$):

$$L_2 L_1 A L_1^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{pmatrix} \quad \text{with} \quad L_2 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

Next, we right-multiply $L_2L_1AL_1^T$ with L_2^T which creates a zero in the (2,3) entry:

$$L_2 L_1 A L_1^{\mathrm{T}} L_2^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Recall
$$L_2 L_1 A L_1^{\mathrm{T}} L_2^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
.

 L_3 : We multiply the third row of $L_2L_1AL_1^TL_2^T$ by $\frac{1}{\sqrt{4}} = \frac{1}{2}$:

$$L_3 L_2 L_1 A L_1^{\mathrm{T}} L_2^{\mathrm{T}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{with} \quad L_3 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}$$

Finally, we right-multiply $L_3L_2L_1AL_1^TL_2^T$ by L_3^T which creates a 1 in the (3,3) entry:

$$L_3 L_2 L_1 A L_1^{\mathrm{T}} L_2^{\mathrm{T}} L_3^{\mathrm{T}} = \boldsymbol{I_3}.$$

We find that $A = R^{T}R$ with

$$R := [L_1^{-1}L_2^{-1}L_3^{-1}]^{\mathrm{T}} = \begin{bmatrix} \begin{pmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \end{bmatrix}^{\mathrm{T}} = \begin{pmatrix} 4 & -2 & 3 \\ 0 & 1 & -3 \\ 0 & 0 & 2 \end{pmatrix}^{\mathrm{T}}$$

is the unique Cholesky factorization of A.

Cholesky factorization via symmetric Gauß: Algorithm

To obtain the Cholesky factorization $A = R^{T}R$ of a given symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$, do as follows:

$$\begin{split} R &= A \\ \text{for } i &= 1, \dots, n \text{ do} \\ \text{for } j &= i + 1, \dots, n \text{ do} \\ R_{j,j:n} &= R_{j,j:n} - \frac{R_{i,j:n}R_{ij}}{R_{ii}} \\ \text{end for} \\ R_{i,i:n} &= \frac{R_{i,i:n}}{\sqrt{R_{ii}}} \\ \text{end for.} \end{split}$$

Theorem

The above algorithm requires $\sim \frac{1}{3}n^3$ flops.

This is only half the cost of Gaussian elimination!

Solving linear systems via Cholesky factorization

For a given symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^n$, consider the problem of finding $x \in \mathbb{R}^n$ such that Ax = b.

The standard way to solve the system in this case is by Cholesky factorization: If $A = R^{T}R$ is the Cholesky factorization of A, we have

$$Ax = b \quad \Longleftrightarrow \quad R^{\mathrm{T}}Rx = b \quad \Longleftrightarrow \quad \begin{cases} R^{\mathrm{T}}y = b, \\ Rx = y. \end{cases}$$

Therefore, once the Cholesky factorization is computed ($\mathfrak{O}(n^3)$ flops), we can first solve $R^T y = b$ for y by forward substitution ($\mathfrak{O}(n^2)$ flops) and then Rx = y for x by backward substitution ($\mathfrak{O}(n^2)$ flops).

4.5 Least Squares Problems

Over-determined linear systems

Given $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ with m > n, and $b = (b_1, \dots, b_m)^{\mathrm{T}} \in \mathbb{R}^m$.

Problem: Find $x = (x_1, \ldots, x_n)^T \in \mathbb{R}^n$ s.t.

$$Ax = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \\ a_{n+1,1} & \cdots & a_{n+1,n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \\ b_{n+1} \\ \vdots \\ b_m \end{pmatrix} = b.$$

Such a problem does not admit a solution in general: consider e.g.,

$$\begin{pmatrix} 1 & 0\\ 0 & 1\\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$$

•

The least squares problem

Observation: Given $A \in \mathbb{R}^{m \times n}$, m > n, and $b \in \mathbb{R}^m$,

 $[\exists x \in \mathbb{R}^n : Ax = b] \quad \Longleftrightarrow \quad b \in \mathcal{R}(A).$

Noting that $\dim(\mathscr{R}(A)) \leq n < m = \dim(\mathbb{R}^m)$, such an over-determined system Ax = b is only solvable for special choices of $b \in \mathbb{R}^m$.

 \implies Consider the following generalized problem:

Find $x \in \mathbb{R}^n$ s.t. r := Ax - b is as small as possible.

We call r the **residual**. To measure the size of r, use the Euclidean norm.

Definition (Least squares problem)

Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and $b \in \mathbb{R}^m$, we call the following problem the least squares problem corresponding to the matrix A and the vector b:

Minimize $||Av - b||_2$ over $v \in \mathbb{R}^n$.

A vector $x \in \mathbb{R}^n$ is called a solution to the least squares problem iff

$$||Ax - b||_2 = \inf_{v \in \mathbb{R}^n} ||Av - b||_2$$

Motivation: Interpolation vs. least squares fitting

Suppose we are given data points $(t_1, y_1), \ldots, (t_n, y_n)$ with $t_1, \ldots, t_n \in \mathbb{R}$ distinct and $y_1, \ldots, y_n \in \mathbb{R}$.

(i) Polynomial interpolation:

There exists a unique polynomial $p(t) = \sum_{k=0}^{n-1} p_k t^k$ of degree n-1 such that $p(t_i) = y_i$ for all $i \in \{1, ..., n\}$. (polynomial interpolant)

The coefficients $p_0,\ldots,p_{n-1}\in\mathbb{R}$ are uniquely determined from

$$V\begin{pmatrix} p_0\\ \vdots\\ p_{n-1} \end{pmatrix} = \begin{pmatrix} y_1\\ \vdots\\ y_n \end{pmatrix}, \qquad V := \begin{pmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{n-1}\\ 1 & t_2 & t_2^2 & \cdots & t_2^{n-1}\\ \vdots & \vdots & \vdots & & \vdots\\ 1 & t_n & t_n^2 & \cdots & t_n^{n-1} \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

Note that the so-called **Vandermonde matrix** $V = V(t_1, \ldots, t_n)$ is invertible since the values $\{t_i\}$ are distinct.

 \implies Great! Or not? ... Drawback: Large oscillations near the ends of the interval $[t_1, t_n]$. Motivation: Interpolation vs. least squares fitting

Data $(t_1, y_1), \ldots, (t_n, y_n)$ with $t_1, \ldots, t_n \in \mathbb{R}$ distinct, $y_1, \ldots, y_n \in \mathbb{R}$. (ii) Least squares fitting: Ansatz: $p(t) = \sum_{k=0}^{N-1} p_k t^k$ with N < n.

The condition $p(t_i) = y_i$ for $i \in \{1, \ldots, n\}$ leads to

$$Ap_{\text{coeff}} := \begin{pmatrix} 1 & t_1 & t_1^2 & \cdots & t_1^{N-1} \\ 1 & t_2 & t_2^2 & \cdots & t_2^{N-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & t_n & t_n^2 & \cdots & t_n^{N-1} \end{pmatrix} \begin{pmatrix} p_0 \\ \vdots \\ p_{N-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} =: b.$$

which may not have a solution. Instead, we choose the coefficient vector $p_{\rm coeff}=(p_0,\ldots,p_{N-1})^{\rm T}\in\mathbb{R}^N$ s.t.

$$||Ap_{\text{coeff}} - b||_2 = \inf_{v \in \mathbb{R}^N} ||Av - b||_2.$$

The least squares fit $p(t) = \sum_{k=0}^{N-1} p_k t^k$ minimizes the quantity $\sqrt{\sum_{i=1}^{n} |p(t_i) - y_i|^2}$ among polynomials of degree at most N - 1. \implies The least squares soln does not interpolate the data points, but it describes the overall behavior better than the interpolant.

Example: Data points

Example: Interpolant (polynomial of degree 10)

Example: Degree 7 polynomial least squares fit

The main questions

Recall:

Definition (Least squares problem)

Given $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and $b \in \mathbb{R}^m$, we call the following problem the least squares problem corresponding to the matrix A and the vector b:

Minimize $||Av - b||_2$ over $v \in \mathbb{R}^n$.

A vector $x \in \mathbb{R}^n$ is called a solution to the least squares problem iff

$$||Ax - b||_2 = \inf_{v \in \mathbb{R}^n} ||Av - b||_2.$$

- **Existence**: Is there a soln to the LS problem for any choices of $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ and $b \in \mathbb{R}^m$?
- Uniqueness: If there exists a soln to the LS problem, is this unique?
- **Computation**: If there exist solns to the LS problems, how can we find them?

An "equivalent" minimization problem

Recall LS problem:

Minimize $||Av - b||_2$ over $v \in \mathbb{R}^n$.

If there exists $x \in \mathbb{R}^n$ s.t. $||Ax - b||_2 = \inf_{v \in \mathbb{R}^n} ||Av - b||_2$, then we call this minimizer x a solution to the LS problem.

Introduce an "equivalent" minimization problem:

Minimize $||w - b||_2$ over $w \in \mathcal{R}(A)$. (1)

If there exists $y \in \Re(A)$ s.t. $\|y - b\|_2 = \inf_{w \in \Re(A)} \|w - b\|_2$, then we call this minimizer y a solution to the above minimization problem.

Observations:

- If \exists solution $x \in \mathbb{R}^n$ to LS, then $y = Ax \in \mathcal{R}(A)$ is a solution to (1).
- If \exists solution $y \in \mathcal{R}(A)$ to (1), then any $x \in \mathbb{R}^n$ satisfying Ax = y is a solution to LS.
- There holds $\inf_{v \in \mathbb{R}^n} \|Av b\|_2 = \inf_{w \in \mathscr{R}(A)} \|w b\|_2$.

Geometric illustration of the LS problem

Ingredients for existence proof

Theorem (Existence of solutions to the normal equation)

Let $A \in \mathbb{R}^{m \times n}$. Then, for any $b \in \mathbb{R}^m$ there exists a solution $x \in \mathbb{R}^n$ to the normal equation $A^T A x = A^T b$.

<u>Proof</u>: Need to show that $A^{\mathrm{T}}b \in \mathfrak{R}(A^{\mathrm{T}}A)$ for any $b \in \mathbb{R}^m$. We are going to show that $\mathfrak{R}(A^{\mathrm{T}}) = \mathfrak{R}(A^{\mathrm{T}}A)$:

$$\mathscr{R}(A^{\mathrm{T}}) = [\mathscr{N}(A)]^{\perp} = [\mathscr{N}(A^{\mathrm{T}}A)]^{\perp} = \mathscr{R}((A^{\mathrm{T}}A)^{\mathrm{T}}) = \mathscr{R}(A^{\mathrm{T}}A).$$

 $(\mathsf{Used}\ \mathcal{N}(A) = \mathcal{N}(A^{\mathrm{T}}A) \ \mathsf{and}\ [\mathcal{N}(M)]^{\perp} = \mathscr{R}(M^{\mathrm{T}}) \ \mathsf{for} \ \mathsf{any} \ \mathsf{matrix}\ M.) \quad \Box$

Theorem (Orthogonal projector onto range of matrix)

Let $A \in \mathbb{R}^{m \times n}$. Then,

(i) $\mathfrak{R}(A)$ and $\mathcal{N}(A^{\mathrm{T}})$ are complementary subspaces of \mathbb{R}^m ,

(ii)
$$\Re(A) \perp \mathcal{N}(A^{\mathrm{T}}).$$

In particular, \exists a unique projector $P \in \mathbb{R}^{m \times m}$ s.t. $\Re(P) = \Re(A)$ and $\mathcal{N}(P) = \mathcal{N}(A^{\mathrm{T}})$, and P is the unique orthogonal projector onto $\Re(A)$.

Existence and Uniqueness results

Theorem (Existence and uniqueness result for least squares problems) Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and $b \in \mathbb{R}^m$. Let $P \in \mathbb{R}^{m \times m}$ be the orthogonal projector onto $\mathcal{R}(A)$. Then, we have the following:

(i) \exists a unique solution to the minimization problem (1), i.e., a unique $y \in \Re(A)$ with $||y - b||_2 = \inf_{w \in \Re(A)} ||w - b||_2$. This soln is given by

$$y = Pb.$$

(ii) \exists a solution to the least squares problem, i.e., $x \in \mathbb{R}^n$ satisfying $||Ax - b||_2 = \inf_{v \in \mathbb{R}^n} ||Av - b||_2$. Moreover, $x \in \mathbb{R}^n$ is a solution iff

Ax = Pb, or equivalently, $A^{T}Ax = A^{T}b$.

(iii) The least squares problem has a unique solution iff rk(A) = n.

Proof of (i)

We need to show that the minimization problem

Minimize $||w - b||_2$ over $w \in \Re(A)$

has the unique solution $y = Pb \in \mathcal{R}(A)$. (Note $Pb \in \mathcal{R}(P) = \mathcal{R}(A)$.)

We have for any $w \in \mathfrak{R}(A) \setminus \{Pb\}$ that

 $||w - b||_{2}^{2} = ||(w - Pb) + (Pb - b)||_{2}^{2} = ||w - Pb||_{2}^{2} + ||Pb - b||_{2}^{2} > ||Pb - b||_{2}^{2},$

where we have used that $\langle \underbrace{w - Pb}_{\in \mathcal{R}(P)}, \underbrace{Pb - b}_{\in \mathcal{N}(P)} \rangle = 0.$

 $\implies y = Pb$ is the unique element in $\Re(A)$ satisfying

$$||y - b||_2 = \inf_{w \in \mathcal{R}(A)} ||w - b||_2.$$

Proof of (ii)

Need to show the following: $\exists x \in \mathbb{R}^n : ||Ax - b||_2 = \inf_{v \in \mathbb{R}^n} ||Av - b||_2$, and that $x \in \mathbb{R}^n$ is a solution iff Ax = Pb iff $A^TAx = A^Tb$.

By (i), any $x \in \mathbb{R}^n$ satisfying Ax = Pb is a solution to LS. Conversely, if $x \in \mathbb{R}^n$ is a solution to LS, then y = Ax is a solution to $\|y - b\|_2 = \inf_{w \in \mathscr{R}(A)} \|w - b\|_2$ and consequently, Ax = Pb.

Remains to show that for $x \in \mathbb{R}^n$, we have $Ax = Pb \iff A^TAx = A^Tb$. " \implies " Let $x \in \mathbb{R}^n$ with Ax = Pb. Then, $Ax - b = Pb - b \in \mathcal{N}(P) = \mathcal{N}(A^T) \implies A^TAx = A^Tb$.

" \Leftarrow " Let $x \in \mathbb{R}^n$ with $A^T A x = A^T b$. Then $A x - b \in \mathcal{N}(A^T) = \mathcal{N}(P)$ and hence,

$$Ax - Pb = (I_m - P)Ax + P(Ax - b) = 0,$$

where we have used that $Ax \in \mathfrak{R}(A) = \mathfrak{R}(P) = \mathcal{N}(I_m - P).$

Proof of (iii)

Need to show: Solution to LS unique iff A has full rank.

By (ii), LS has a unique soln iff $A^{T}Ax = A^{T}b$ has a unique soln $x \in \mathbb{R}^{n}$, i.e., iff $A^{T}A \in \mathbb{R}^{n \times n}$ is invertible, i.e., iff $\operatorname{rk}(A^{T}A) = n$, i.e., iff $\operatorname{rk}(A) = n$.

 $(\mathsf{Recall} \ \mathscr{R}(A^{\mathrm{T}}A) = \mathscr{R}(A^{\mathrm{T}}) \implies \mathrm{rk}(A^{\mathrm{T}}A) = \mathrm{rk}(A^{\mathrm{T}}) = \mathrm{rk}(A).)$

Solution of the full-rank least squares problem

Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$, and assume that $\mathrm{rk}(A) = n$. Then, the unique solution to LS is given by

$$A^{\mathrm{T}}Ax = A^{\mathrm{T}}b \quad \Longrightarrow \quad x = (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}}b.$$

We find that

$$x = A^{\dagger}b \in \mathbb{R}^n$$
, where $A^{\dagger} := (A^{\mathrm{T}}A)^{-1}A^{\mathrm{T}} \in \mathbb{R}^{n \times m}$.

The matrix A^{\dagger} is the **Moore–Penrose inverse** (or **pseudoinverse**) of A.

The Moore–Penrose inverse is a generalization of the matrix inverse and is being discussed extensively on the problem sheets.

Solution Algorithm 1: via normal eqn & Cholesky Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$, $b \in \mathbb{R}^m$ and assume $\operatorname{rk}(A) = n$. Then, $A^{\mathrm{T}}A \in \mathbb{R}^{n \times n}$ is symmetric positive definite.

Indeed, we have $(A^{\mathrm{T}}A)^{\mathrm{T}}=A^{\mathrm{T}}A$ and

$$\langle x, A^{\mathrm{T}}Ax \rangle = \langle Ax, Ax \rangle = ||Ax||_2^2 > 0 \qquad \forall x \in \mathbb{R}^n \setminus \{0\}.$$

Here, we have used that $Ax \in \mathbb{R}^m \setminus \{0\}$ for $x \in \mathbb{R}^n \setminus \{0\}$ since $\operatorname{rk}(A) = n$.

Therefore, $A^{T}A$ has a unique Cholesky factn $A^{T}A = R^{T}R$ and we have $A^{T}Ax = A^{T}b \iff R^{T}Rx = A^{T}b.$

Algorithm:

- 1) Compute $\tilde{A} := A^{\mathrm{T}}A \in \mathbb{R}^{n \times n}$ and $\tilde{b} := A^{\mathrm{T}}b \in \mathbb{R}^{n}$.
- 2) Compute the Cholesky factorization $\tilde{A} = R^{T}R$ of \tilde{A} .
- 3) Solve the lower-triangular system $R^{\mathrm{T}}z = \tilde{b}$ for $z \in \mathbb{R}^n$.
- 4) Solve the upper-triangular system Rx = z for $x \in \mathbb{R}^n$.

- 1) Compute $\tilde{A} := A^{\mathrm{T}}A \in \mathbb{R}^{n \times n}$ and $\tilde{b} := A^{\mathrm{T}}b \in \mathbb{R}^{n}$.
- 2) Compute the Cholesky factorization $\tilde{A} = R^{\mathrm{T}}R$ of \tilde{A} .
- 3) Solve the lower-triangular system $R^{\mathrm{T}}z = \tilde{b}$ for $z \in \mathbb{R}^n$.
- 4) Solve the upper-triangular system Rx = z for $x \in \mathbb{R}^n$.

Theorem

This algorithm requires $\sim mn^2 + \frac{1}{3}n^3$ flops.

Solution Algorithm 2: via reduced QR Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$, $b \in \mathbb{R}^m$, and assume $A = \hat{Q}\hat{R}$ reduced QR factn. Then, $x \in \mathbb{R}^n$ is soln to LS iff $A^TAx = A^Tb$ iff $\hat{R}^T\hat{Q}^T\hat{Q}\hat{R}x = \hat{R}^T\hat{Q}^Tb \implies \hat{R}^T\hat{R}x = \hat{R}^T\hat{Q}^Tb.$

Observe: If A is of full rank, then \hat{R} is invertible and thus,

 $\hat{R}x = \hat{Q}^{\mathrm{T}}b.$

Assume rk(A) = n. Do the following:

- 1) Compute a reduced QR factorization $A = \hat{Q}\hat{R}$ of A.
- 2) Compute $\tilde{b} = \hat{Q}^{\mathrm{T}} b \in \mathbb{R}^n$.

3) Solve the upper-triangular system $\hat{R}x = \tilde{b}$ for $x \in \mathbb{R}^n$.

Using Householder find:

Theorem

This algorithm requires $\sim 2mn^2 - \frac{2}{3}n^3$ flops.

Solution Algorithm 3: via reduced SVD Let $A \in \mathbb{R}^{m \times n}$, $m \ge n$, $b \in \mathbb{R}^m$, and assume $A = \hat{U}\hat{\Sigma}V^{\mathrm{T}}$ reduced SVD. Then, $x \in \mathbb{R}^n$ is a solution to LS iff $A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$ iff

$$V\hat{\Sigma}^{\mathrm{T}}\hat{U}^{\mathrm{T}}\hat{U}\hat{\Sigma}V^{\mathrm{T}}x = V\hat{\Sigma}^{\mathrm{T}}\hat{U}^{\mathrm{T}}b \implies V\hat{\Sigma}^{\mathrm{T}}\hat{\Sigma}V^{\mathrm{T}}x = V\hat{\Sigma}^{\mathrm{T}}\hat{U}^{\mathrm{T}}b.$$

Observe: If A is of full rank, then $V\hat{\Sigma}^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ is invertible and thus,

 $\hat{\Sigma}V^{\mathrm{T}}x = \hat{U}^{\mathrm{T}}b.$

Assume rk(A) = n. Do the following:

- 1) Compute a reduced SVD $A = \hat{U}\hat{\Sigma}V^{\mathrm{T}}$ of A.
- 2) Compute $\tilde{b} = \hat{U}^{\mathrm{T}} b \in \mathbb{R}^n$.
- 3) Solve the diagonal system $\hat{\Sigma}z = \tilde{b}$ for $z \in \mathbb{R}^n$.

4) Compute
$$x = Vz \in \mathbb{R}^n$$
.

Theorem

This algorithm requires $\sim 2mn^2 + 11n^3$ flops.

End of "Chapter 4: Linear Systems and Least Squares Problems".