
MA4230 Matrix Computation

Chapter 4: Linear Systems and Least Squares Problems

4.1 Gaussian elimination: LU factorization

4.2 Gaussian elimination with partial pivoting: PA=LU factorization

4.3 Gaussian elimination with full pivoting: PAQ=LU factorization

4.4 Symmetric Gaussian elimination: Cholesky factorization

4.5 Least Squares Problems

1 / 68

4.1 Gaussian elimination: LU factorization

2 / 68

The problem

Given A ∈ Rn×n and b ∈ Rn, find x ∈ Rn s.t.

Ax = b.

=⇒ Solve by Gaussian elimination.

No/partial/full pivoting =⇒ A = LU / PA = LU / PAQ = LU

We start with the LU factorization (Gauß without pivoting).

Definition (Lower-triangular and unit lower-triangular matrices)

A matrix L ∈ Rn×n is called lower-triangular iff LT is upper-triangular.
A matrix L ∈ Rn×n is called unit lower-triangular iff L is lower-triangular
and all of its diagonal entries are equal to 1.

3 / 68

LU factorization

Definition (LU factorization)

Let A ∈ Rn×n. If ∃ L ∈ Rn×n lower-triangular, U ∈ Rn×n upper-triangular
s.t. A = LU , then this factorization is called a LU factorization of A.

Gaussian elimination transforms A into an upper-triangular matrix

U = Ln−1 · · ·L2L1A ∈ Rn×n

with L1, . . . , Ln−1 ∈ Rn×n unit lower-triangular and of the form

L1=



1
∗ 1
...

. . .
...

. . .

∗ 1

 , L2=



1
1

∗
. . .

...
. . .

∗ 1

 ,· · ·, Ln−1=


1

1
. . .

1
∗ 1


with zero-entries not shown.

Assuming this is possible, obtain A = LU with L := L−1
1 · · ·L

−1
n−1 ∈ Rn×n

unit lower-triangular (exercise) and U ∈ Rn×n upper-triangular.
4 / 68

Gaussian elimination: Example

Consider A =


−2 2 1 −1
1 1 2 −2
−1 4 −1 1
1 3 −3 4

. We illustrate Gaussian elimination.

L1: The first step is to eliminate the sub-diagonal entries in the first
column of A via adding 1

2/−1
2/1

2 times row 1 to row 2/3/4:

L1A =


−2 2 1 −1
0 2 5/2 −5/2

0 3 −3/2 3/2

0 4 −5/2 7/2

 with L1 :=


1 0 0 0

1/2 1 0 0
−1/2 0 1 0
1/2 0 0 1

 .

L2: The second step is to eliminate the sub-diagonal entries in the second
column of L1A via adding −3

2/−2 times row 2 to row 3/4:

L2L1A =


−2 2 1 −1
0 2 5/2 −5/2

0 0 −21/4 21/4

0 0 −15/2 17/2

 with L2 :=


1 0 0 0
0 1 0 0
0 −3

2 1 0
0 −2 0 1

 .

5 / 68

L2: The second step is to eliminate the sub-diagonal entries in the second
column of L1A via adding −3

2/−2 times row 2 to row 3/4:

L2L1A =


−2 2 1 −1
0 2 5/2 −5/2

0 0 −21/4 21/4

0 0 −15/2 17/2

 with L2 :=


1 0 0 0
0 1 0 0
0 −3

2 1 0
0 −2 0 1

 .

L3: The third step is to eliminate the sub-diagonal entries in the third
column of L2L1A via adding −10

7 times row 3 to row 4:

L3L2L1A =


−2 2 1 −1
0 2 5/2 −5/2
0 0 −21/4 21/4
0 0 0 1

 =: U with L3 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 10

7 1

 .

We find that A = LU with U as above and L given by

L := L−1
1 L−1

2 L−1
3

is a LU factorization of A. Indeed, let’s compute L:
6 / 68

L = L−11 L−12 L−13 =


1 0 0 0
1
2 1 0 0
− 1

2 0 1 0
1
2 0 0 1


−1

1 0 0 0
0 1 0 0
0 − 3

2 1 0
0 −2 0 1


−1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 10

7 1


−1

=


1 0 0 0
−1

2 1 0 0
1
2 0 1 0
−1

2 0 0 1




1 0 0 0
0 1 0 0
0 3

2 1 0
0 2 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 10

7 1



=


1 0 0 0
−1

2 1 0 0
1
2

3
2 1 0

−1
2 2 10

7 1


Note how simple it is to compute L: the matrices Li can be inverted by
negating their sub-diagonal entries, and the matrix L can be obtained by
collecting these values appropriately. Coincidence? No:

7 / 68

Generally, if the i-th column xi of the matrix Li−1 · · ·L1A (the matrix A
if i = 1) is the vector xi = (x1i, . . . , xni)

T, then

Li =



1
. . .

1
−xi+1,i

xii
1

...
. . .

−xni
xii

1


= In − lie

T
i ∈ Rn×n, li :=



0
...
0

xi+1,i

xii

...
xni
xii


∈ Rn.

• L−1
i = In + lie

T
i : (In − lie

T
i)(In + lie

T
i)=In − lie

T
i lie

T
i =In − 〈li, ei〉lieTi =In.

• L = L−1
1 · · ·L

−1
n−1 is given by

L =


1

x21
x11

1
x31
x11

x32
x22

1
...

...
. . .

. . .
xn1
x11

xn2
x22

· · · xn,n−1

xn−1,n−1
1

.

Indeed, looking at the product of two such matrices we find

L−1
i L−1

i+1 = (In + lie
T
i)(In + li+1e

T
i+1) = In + lie

T
i + li+1e

T
i+1.

8 / 68

Gaussian elimination without pivoting: Algorithm

Given A ∈ Rn×n, do as follows:

L = In, U = A
for i = 1, . . . , n− 1 do

for j = i + 1, . . . , n do
lji =

uji

uii

uj,i:n = uj,i:n − ljiui,i:n
end for

end for.

Warning: A needs to be such that no division by zero happens.

Theorem

The above algorithm requires ∼ 2
3n

3 flops.

Proof: Exercise.

Compare with ∼ 4
3n

3 flops for QR via Householder.

9 / 68

Solving linear systems via LU

Problem: Given A ∈ Rn×n, b ∈ Rn, find x ∈ Rn s.t. Ax = b.

If there exists a LU factorization A = LU , we have

Ax = b ⇐⇒ LUx = b ⇐⇒

{
Ly = b,

Ux = y.

Therefore, once a LU factorization is computed (O(n3) flops), we can first
solve Ly = b for y by forward substitution (O(n2) flops) and then Ux = y
for x by backward substitution (O(n2) flops).

=⇒ But does every matrix have a LU factorization? Unfortunately, no.

E.g., A =

(
0 1
1 1

)
does not have a LU factorization. Indeed, if there were

L =

(
l11 0
l21 l22

)
∈ R2×2 and U =

(
u11 u12

0 u22

)
∈ R2×2 such that A = LU ,

then l11u11 = 0 and l11u12 = l21u11 = l21u12 + l22u22 = 1, contradiction.
10 / 68

Gaussian elimination in its current form (without pivoting) is impractical
to solve general linear systems. For instance, it fails for the matrix

A =

(
0 1
1 1

)
due to division by zero in the first step.

More dramatically, the algorithm is not stable for general n× n matrices
as we will see later in this course.

Improvement in stability via pivoting =⇒ next section.

11 / 68

4.2 Gaussian elimination with partial pivoting: PA=LU factorization

12 / 68

How to improve Gaussian elimination? Key observation
In i-th step of Gauß, add multiples of row i to rows i + 1, . . . , n to obtain

x11 x12 · · · x1i x1,i+1 · · · x1n
x22 · · · x2i x2,i+1 · · · x2n

. . .
.
.
.

.

.

.

.

.

.
xii xi,i+1 · · · xin

xi+1,i xi+1,i+1 · · · xi+1,n

.

.

.

.

.

.

.

.

.
xni xn,i+1 · · · xnn


=⇒



x11 x12 · · · x1i x1,i+1 · · · x1n
x22 · · · x2i x2,i+1 · · · x2n

. . .
.
.
.

.

.

.

.

.

.
xii xi,i+1 · · · xin
0 ∗ · · · ∗
.
.
.

.

.

.

.

.

.
0 ∗ · · · ∗


We call xii 6= 0 the pivot. Observation: Instead, can also add multiples of row j

with some j ∈ {i + 1, . . . , n} such that xji 6= 0 to rows i, . . . , j − 1, j + 1, . . . , n
to create zeros as follows:

x11 x12 · · · x1i x1,i+1 · · · x1n
x22 · · · x2i x2,i+1 · · · x2n

. . .
.
.
.

.

.

.

.

.

.
xii xi,i+1 · · · xin

.

.

.

.

.

.

.

.

.

xji xj,i+1 · · · xjn

.

.

.

.

.

.

.

.

.

xni xn,i+1 · · · xnn



=⇒



x11 x12 · · · x1i x1,i+1 · · · x1n
x22 · · · x2i x2,i+1 · · · x2n

. . .
.
.
.

.

.

.

.

.

.
0 ∗ · · · ∗
.
.
.

.

.

.

.

.

.
0 ∗ · · · ∗

xji xj,i+1 · · · xjn
0 ∗ · · · ∗
.
.
.

.

.

.

.

.

.
0 ∗ · · · ∗



.

In this case, xji 6= 0 is called the pivot.
13 / 68

Gaussian elimination with partial pivoting

This procedure is thought of as follows:

In the i-th step,
1. choose a pivot xji 6= 0 from column i and row j (some j ∈ {i, . . . , n}),
2. permute the rows such that xji is moved to the main diagonal,
3. do a standard Gaussian elimination step.

For numerical stability, the pivot is chosen as the largest entry in modulus
in column i and rows i, . . . , n.

This is called Gaussian elimination with partial pivoting and leads to a
LU factorization of PA for some permutation matrix P .

14 / 68

PA=LU factorization

Definition (PA=LU factorization)

Let A ∈ Rn×n. If there exist a lower-triangular matrix L ∈ Rn×n, an
upper-triangular matrix U ∈ Rn×n, and a permutation matrix P ∈ Rn×n

(i.e., a matrix which has exactly one entry 1 in each row and column and
zeros elsewhere) s.t.

PA = LU,

then we call this factorization a PA=LU factorization or a LU
factorization with partial pivoting corresponding to A.

Remark: Permutation matrices are orthogonal matrices.

15 / 68

Gaussian elimination with partial pivoting: Example

Consider A =


−2 2 1 −1
1 1 2 −2
−1 4 −1 1
1 3 −3 4

.

P1: As max{|−2|, |1|, |−1|, |1|} = |−2|, choose the (1, 1)-entry as pivot.
Since this is already on the diagonal, no permutation is needed:

P1A = A with P1 := I4.

L1: Eliminate sub-diagonal entries in first column of P1A = A via adding
1
2/−1

2/1
2 times row 1 to row 2/3/4:

L1P1A =


−2 2 1 −1
0 2 5/2 −5/2

0 3 −3/2 3/2

0 4 −5/2 7/2

 with L1 :=


1 0 0 0

1/2 1 0 0
−1/2 0 1 0
1/2 0 0 1

 .

16 / 68

Recall from previous slide: L1P1A =


−2 2 1 −1
0 2 5/2 −5/2

0 3 −3/2 3/2

0 4 −5/2 7/2

.

P2: As max{|2|, |3|, |4|} = |4|, choose the (4, 2)-entry as pivot. To this
end, we permute rows 2 and 4:

P2L1P1A =


−2 2 1 −1
0 4 −5/2 7/2

0 3 −3/2 3/2

0 2 5/2 −5/2

 with P2 :=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

L2: Eliminate sub-diagonal entries in second column of P2L1P1A via
adding −3

4/−1
2 times row 2 to row 3/4:

L2P2L1P1A =


−2 2 1 −1
0 4 −5/2 7/2

0 0 3/8 −9/8

0 0 15/4 −17/4

 with L2 :=


1 0 0 0
0 1 0 0
0 −3/4 1 0
0 −1/2 0 1

 .

17 / 68

Recall from previous slide: L2P2L1P1A =


−2 2 1 −1
0 4 −5/2 7/2

0 0 3/8 −9/8

0 0 15/4 −17/4

.

P3: As max{|38 |, |
15
4 |} = |15

4 |, choose the (4, 3)-entry as pivot. To this
end, we permute rows 3 and 4:

P3L2P2L1P1A =


−2 2 1 −1
0 4 −5/2 7/2

0 0 15/4 −17/4

0 0 3/8 −9/8

 with P3 :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

L3: Eliminate sub-diagonal entries in third column of P3L2P2L1P1A via
adding − 1

10 times row 3 to row 4:

L3P3L2P2L1P1A =


−2 2 1 −1
0 4 −5/2 7/2
0 0 15/4 −17/4
0 0 0 −7/10

 =: U, L3 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

10 1

 .

18 / 68

=⇒ L3P3L2P2L1P1A = U . How to obtain from this a PA=LU factn?

Set L′3 := L3, L′2 := P3L2P
−1
3 , and L′1 := P3P2L1P

−1
2 P−1

3 , i.e.,

L′3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

10 1

 , L′2 =


1 0 0 0
0 1 0 0
0 −1/2 1 0
0 −3/4 0 1

 , L′1 =


1 0 0 0

1/2 1 0 0
1/2 0 1 0
−1/2 0 0 1

 .

Then, L′3L
′
2L
′
1P3P2P1A = L3P3L2P2L1P1A = U .

We find that PA = LU with

P := P3P2P1 =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

, L := (L′3L
′
2L
′
1)−1 =


1 0 0 0
−1/2 1 0 0
−1/2 1/2 1 0
1/2 3/4 1/10 1


is a PA=LU factorization.

19 / 68

More generally, . . .

Gaussian elimination with partial pivoting transforms A ∈ Rn×n into an
upper-triangular U ∈ Rn×n by Gaussian elimination with an additional
left-multiplication of a permutation matrix Pi at the beginning of step i:

Ln−1Pn−1 · · ·L2P2L1P1A = U.

Here, P1, . . . , Pn−1 ∈ Rn×n are permutation matrices and
L1, . . . , Ln−1 ∈ Rn×n are unit lower-triangular.

Set L′n−1 := Ln−1, L′i := Pn−1 · · ·Pi+1LiP
−1
i+1 · · ·P

−1
n−1 for 1 ≤ i ≤ n− 2.

=⇒ (L′n−1 · · ·L′2L′1)(Pn−1 · · ·P2P1)A = U.

Observe that the matrix L′i has the same structure as Li. We then obtain
that PA = LU is a PA=LU factorization corresponding to A with

L := (L′n−1 · · ·L′2L′1)−1, P := Pn−1 · · ·P2P1.

Note P is a permutation matrix as product of permutation matrices, and
that L is well-defined and lower-triangular.

20 / 68

Gaussian elimination with partial pivoting: Algorithm

Given A ∈ Rn×n, do as follows:

P = In, L = In, U = A
for i = 1, . . . , n− 1 do

Choose r ∈ {i, . . . , n} such that |uri| = maxk∈{i,...,n}|uki|
ui,i:n ↔ ur,i:n
li,1:i−1 ↔ lr,1:i−1

pi,1:n ↔ pr,1:n

for j = i + 1, . . . , n do
lji =

uji

uii

uj,i:n = uj,i:n − ljiui,i:n
end for

end for.

Here, “↔” denotes “interchange”.

Warning: A needs to be such that no division by zero happens in the
algorithm above (as an exercise, think about how to obtain a PA=LU
factorization if all candidates for pivots are zero at some step i).

21 / 68

Work of Gauß with partial pivoting

• pivot selection requires O(n2) operations overall.

=⇒ To leading order, Gauß with partial pivoting requires same amount of
flops as Gauß without pivoting, i.e., ∼ 2

3n
3.

Gaussian elimination with partial pivoting is the standard way
to solve linear systems on a computer.

22 / 68

Solving linear systems via PA=LU factorization

Problem: Given A ∈ Rn×n and b ∈ Rn, find x ∈ Rn s.t. Ax = b.

If there exists a PA=LU factorization PA = LU , we have

Ax = b ⇐⇒ PAx = Pb ⇐⇒ LUx = Pb ⇐⇒

{
Ly = Pb,

Ux = y.

Therefore, once a PA=LU factorization is computed (O(n3) flops), we can
first form b̃ := Pb, then solve Ly = b̃ by forward substitution (O(n2) flops)
and then Ux = y for x by backward substitution (O(n2) flops).

What about existence of LU and PA=LU factorization?
(Recall we already know that not every matrix has a LU factorization.)

Theorem (Existence of LU and PA=LU factorization)

(i) Any matrix A ∈ Rn×n has a PA=LU factorization.

(ii) Let A ∈ Rn×n invertible. Then, there exists a LU factorization of A
iff det(A1:i,1:i) 6= 0 for all 1 ≤ i ≤ n.

23 / 68

4.3 Gaussian elimination with full pivoting: PAQ=LU factorization

24 / 68

Full pivoting: A further improvement in stability

Idea: Every entry of the sub-matrix Xi:n,i:n of the working matrix X at
step i is a candidate for the pivot.

Rk: Full pivoting is rarely used in practice due to large computational cost.

Gaussian elimination with full pivoting leads to a PAQ=LU factorization:

Definition (PAQ=LU factorization)

Let A ∈ Rn×n. If there exist a lower-triangular matrix L ∈ Rn×n, an
upper-triangular matrix U ∈ Rn×n, and permutation matrices
P,Q ∈ Rn×n such that there holds

PAQ = LU,

then we call this a PAQ=LU factorization or a LU factorization with
full pivoting corresponding to A.

Note: Any matrix A ∈ Rn×n admits a PAQ=LU factorization with Q = In.
25 / 68

Example: Gaussian elimination with full pivoting

Consider A :=


−2 2 1 −1
1 1 2 −2
−1 4 −1 1
1 3 −3 4

.

P1, Q1: As maxi,j∈{1,...,4}|aij | = |4|, we choose the (3, 2)-entry 4 as pivot
(note we could have also chosen the (4, 4)-entry 4).
To this end, we permute columns 1 and 2, and then rows 1 and 3:

P1AQ1 =


4 −1 −1 1
1 1 2 −2
2 −2 1 −1
3 1 −3 4

 , Q1 :=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , P1 :=


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .

L1: We eliminate the sub-diagonal entries in the first column of P1AQ1

via adding −1
4/−1

2/−3
4 times row 1 to row 2/3/4:

L1P1AQ1 =


4 −1 −1 1
0 5/4 9/4 −9/4

0 −3/2 3/2 −3/2

0 7/4 −9/4 13/4

 with L1 :=


1 0 0 0
−1/4 1 0 0
−1/2 0 1 0
−3/4 0 0 1

 .

26 / 68

L1P1AQ1 =


4 −1 −1 1
0 5/4 9/4 −9/4
0 −3/2 3/2 −3/2
0 7/4 −9/4 13/4

 =: A1.

P2, Q2: As max{|54 |, |−
3
2 |, |

7
4 |, |

9
4 |, |

3
2 |, |−

9
4 |, |−

9
4 |, |−

3
2 |, |

13
4 |} = |13

4 |, we
choose the (4, 4)-entry 13

4 as pivot.
To this end, we permute columns 2 and 4, and then rows 2 and 4:

P2A1Q2 =


4 1 −1 −1
0 13/4 −9/4 7/4

0 −3/2 3/2 −3/2

0 −9/4 9/4 5/4

 , Q2 := P2 :=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

L2: We eliminate the sub-diagonal entries in the second column of
P2A1Q2 via adding 6

13/ 9
13 times row 2 to row 3/4:

L2P2A1Q2 =


4 1 −1 −1
0 13/4 −9/4 7/4

0 0 6/13 −9/13

0 0 9/13 32/13

 with L2 :=


1 0 0 0
0 1 0 0
0 6/13 1 0
0 9/13 0 1

 .

27 / 68

L2P2A1Q2 =


4 1 −1 −1
0 13/4 −9/4 7/4
0 0 6/13 −9/13
0 0 9/13 32/13

 =: A2.

P3, Q3: As max{| 6
13 |, |

9
13 |, |−

9
13 |, |

32
13 |} = |32

13 |, we choose the (4, 4)-entry 32
13

as pivot.
To this end, we permute columns 3 and 4, and then rows 3 and 4:

P3A2Q3 =


4 1 −1 −1
0 13/4 7/4 −9/4

0 0 32/13 9/13

0 0 −9/13 6/13

 , Q3 := P3 :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

L3: We eliminate the sub-diagonal entries in the third column of P3A2Q3

via adding 9
32 times row 3 to row 4:

L3P3A2Q3 =


4 1 −1 −1
0 13/4 7/4 −9/4

0 0 32/13 9/13

0 0 0 21/32

 =: U with L3 :=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 9

32 1

 .

28 / 68

=⇒ L3P3L2P2L1P1AQ1Q2Q3 = U is upper-triangular.

Have L′3L
′
2L
′
1P3P2P1AQ1Q2Q3 = L3P3L2P2L1P1AQ1Q2Q3 = U with

L′3 := L3,

L′2 := P3L2P
−1
3 =


1 0 0 0
0 1 0 0
0 9/13 1 0
0 6/13 0 1

 , L′1 := P3P2L1P
−1
2 P−1

3 =


1 0 0 0
−3/4 1 0 0
−1/4 0 1 0
−1/2 0 0 1

 .

=⇒ We find that PAQ = LU with

P := P3P2P1 =


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 , Q := Q1Q2Q3 =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

,

L := (L′3L
′
2L
′
1)−1 =


1 0 0 0
3/4 1 0 0
1/4 −9/13 1 0
1/2 −6/13 −9/32 1

 , U =


4 1 −1 −1
0 13/4 7/4 −9/4
0 0 32/13 9/13
0 0 0 21/32


is a PAQ = LU factorization.

29 / 68

More generally, . . .

Gaussian elimination with full pivoting transforms A ∈ Rn×n into an
upper-triangular U ∈ Rn×n by Gaussian elimination with an additional
right-multiplication of a permutation matrix Qi and left-multiplication of a
permutation matrix Pi at the beginning of step i:

Ln−1Pn−1 · · ·L2P2L1P1AQ1Q2 · · ·Qn−1 = U.

Here, P1, . . . , Pn−1, Q1, . . . , Qn−1 ∈ Rn×n are permutation matrices and
L1, . . . , Ln−1 ∈ Rn×n are unit lower-triangular.

We deduce that

(L′n−1 · · ·L′2L′1)(Pn−1 · · ·P2P1)A(Q1Q2 · · ·Qn−1) = U

with L′n−1 := Ln−1 and L′i := Pn−1 · · ·Pi+1LiP
−1
i+1 · · ·P

−1
n−1 for

i ∈ {1, . . . , n− 2}. We then obtain that PAQ = LU is a PAQ=LU
factorization corresponding to A with

L := (L′n−1 · · ·L′2L′1)−1, P := Pn−1 · · ·P2P1, Q := Q1Q2 · · ·Qn−1.

Note that P and Q are permutation matrices as products of permutation
matrices, and that L is well-defined and lower-triangular.

30 / 68

Advantages and drawbacks

+ Full pivoting further improves stability compared to partial pivoting.

– Pivot selection for full pivoting requires O(n3) operations overall.

As an exercise, think about how a PAQ=LU factorization can be used to
solve a linear system Ax = b.

31 / 68

4.4 Symmetric Gaussian elimination: Cholesky factorization

32 / 68

Definite matrices

Definition (positive/negative (semi)definiteness)

A symmetric matrix A ∈ Rn×n is called

(i) positive definite, denoted A � 0, iff

〈x,Ax〉 = xTAx > 0 ∀x ∈ Rn\{0}.

(ii) positive semidefinite, denoted A � 0, iff

〈x,Ax〉 = xTAx ≥ 0 ∀x ∈ Rn.

(iii) negative definite, denoted A ≺ 0, iff

〈x,Ax〉 = xTAx < 0 ∀x ∈ Rn\{0}.

(iv) negative semidefinite, denoted A � 0, iff

〈x,Ax〉 = xTAx ≤ 0 ∀x ∈ Rn.

33 / 68

An equivalent characterization via eigenvalues

Theorem (Characterization of positive/negative (semi)definite matrices)

For a symmetric matrix A ∈ Rn×n, we have

(i) A � 0 ⇐⇒ all eigenvalues of A are positive,

(ii) A � 0 ⇐⇒ all eigenvalues of A are non-negative,

(iii) A ≺ 0 ⇐⇒ all eigenvalues of A are negative,

(iv) A � 0 ⇐⇒ all eigenvalues of A are non-positive.

Proof: Exercise. Use the following:

Lemma (Spectral theorem for symmetric matrices)

Symmetric matrices are orthogonally diagonalizable, i.e., for any
symmetric matrix A ∈ Rn×n there exist an orthogonal matrix Q ∈ Rn×n

and a diagonal matrix D ∈ Rn×n s.t. A = QDQT. The diagonal entries of
D are the eigenvalues of A, and the column vectors of Q are eigenvectors
of A. In particular, all eigenvalues of a symmetric matrix are real.

34 / 68

Examples for definiteness

A :=

(
1 −2
−2 4

)
� 0 as Λ(A) = {0, 5} ⊆ [0,∞).

B := −A � 0 as Λ(B) = {−5, 0} ⊆ (−∞, 0].

C :=

(
2 −1
−1 2

)
� 0 as Λ(C) = {1, 3} ⊆ (0,∞).

D := −C ≺ 0 as Λ(D) = {−3,−1} ⊆ (−∞, 0).

E :=

(
1 2
2 1

)
is neither positive semidefinite, nor negative

semidefinite (we say E is indefinite), as Λ(E) = {−1, 3}.

35 / 68

More on positive definite matrices

Let A ∈ Rn×n be a symmetric positive definite matrix and let
X ∈ Rn×r with n ≥ r and rk(X) = r. Then, the matrix XTAX is
symmetric positive definite (exercise).

A useful criterion for checking positive definiteness:

Theorem (Sylvester’s criterion for positive definiteness)

Let A ∈ Rn×n be a symmetric matrix. Then,

A � 0 ⇐⇒ ∀i ∈ {1, . . . , n} : det(A1:i,1:i) > 0.

The number det(A1:i,1:i) is called the i-th leading principal minor of A.
Therefore, a symmetric matrix is positive definite iff all of its leading
principal minors are positive.

=⇒ Any symmetric positive definite matrix has a LU factorization!
Even better: We can factorize a symmetric positive definite matrix twice
as quickly into triangular factors as a general matrix.

36 / 68

Cholesky factorization

Definition (Cholesky factorization)

Let A ∈ Rn×n be a symmetric positive definite matrix. If there exists an
upper-triangular matrix R ∈ Rn×n with positive diagonal entries s.t.

A = RTR,

then we call this a Cholesky factorization of A.

The following is the main result of this section:

Theorem (Existence and uniqueness of Cholesky factorization)

Every symmetric positive definite matrix A ∈ Rn×n admits a unique
Cholesky factorization.

So, let’s prove this . . .
37 / 68

Existence of Cholesky factorization: Symmetric Gauß

Consider a symmetric positive definite matrix A ∈ Rn×n. Write

A =

(
a11 wT

w B

)
∈ Rn×n

with a11 ∈ R, w ∈ Rn−1 and a symmetric matrix B ∈ R(n−1)×(n−1).

Note that

a11 = det(A1:1,1:1) > 0,

B � 0 since 〈x,Bx〉 =

〈(
0

x

)
, A

(
0

x

)〉
> 0 for all x ∈ Rn−1\{0}.

First step of symmetric Gaussian elimination:

L1AL
T
1 =

(
1 01×(n−1)

0(n−1)×1 B − wwT

a11

)
=: A1 with L1 :=

(
1√
a11

01×(n−1)

− w
a11

In−1

)
,

which we can equivalently write as

A = RT
1 A1R1 with R1 := (L−1

1)T =

(√
a11

wT
√
a11

0(n−1)×1 In−1

)
.

38 / 68

Recall A1 = L1AL
T
1 =

(
1 01×(n−1)

0(n−1)×1 B − wwT

a11

)
.

Note that

A1 is symmetric,

A1 = (LT
1)TA(LT

1) � 0 since LT
1 ∈ Rn×n is of full rank.

Therefore, we also have that the sub-matrix B − wwT

a11
∈ R(n−1)×(n−1) is

symmetric positive definite (same argument as when we deduced B � 0

from A � 0) and in particular, the (1, 1)-entry of B − wwT

a11
is positive.

=⇒ We can factor

A1 = RT
2 A2R2

with R2 ∈ Rn×n upper-triangular with positive diagonal entries and A2

being of the form A2 =

(
I2 02×(n−2)

0(n−2)×2 C

)
, using the same procedure

as before applied to B − wwT

a11
. Then, again, the sub-matrix C is

symmetric positive definite, and we can continue this process . . .
39 / 68

=⇒ continue this process until we arrive at a factorization

A = (RT
1 R

T
2 · · ·RT

n)In(Rn · · ·R2R1) = RTR

with R := Rn · · ·R2R1 ∈ Rn×n upper-triangular and having positive
diagonal entries. This is a Cholesky factorization of A!

Next: Remains to show uniqueness.

40 / 68

Theorem (Existence and uniqueness of Cholesky factorization)

Every symmetric positive definite matrix A ∈ Rn×n admits a unique
Cholesky factorization.

Proof: Symmetric Gaussian elimination provides existence of a Cholesky
factorization (argument can be made rigorous via induction).

For uniqueness, suppose that R,M ∈ Rn×n are two upper-triangular
matrices with positive diagonal entries such that

A = RTR = MTM.

Note that D := MR−1 is an upper-triangular matrix, but also, since

D = MR−1 = (MT)−1RT = (D−1)T,

it must be lower-triangular as well, hence diagonal.

Noting that In = DTD = D2, the diagonal entries of D are all ±1.
Finally, since DR = M and the diagonal entries of R and M are positive,
we must have that R = M .

41 / 68

Example: Computing the Cholesky factorization

Consider the symmetric positive definite matrix

A :=

16 −8 12
−8 5 −9
12 −9 22

 ∈ R3×3.

We illustrate symmetric Gaussian elimination:

L1: Eliminate the sub-diagonal entries in the first column of A by adding
1
2/-3

4 times row 1 to row 2/3, and multiply the first row by 1√
a11

= 1
4 :

L1A =

4 −2 3
0 1 −3
0 −3 13

 with L1 :=

 1/4 0 0
1/2 1 0
−3/4 0 1

 .

Next, we right-multiply L1A with LT
1 which creates a 1 in the (1, 1)

entry and zeros in the (1, 2) and (1, 3) entries:

L1AL
T
1 =

1 0 0
0 1 −3
0 −3 13

 .

42 / 68

Recall L1AL
T
1 =

1 0 0
0 1 −3
0 −3 13

.

L2: Eliminate sub-diagonal entry in second column of L1AL
T
1 by adding 3

times row 2 to row 3 (and multiply the second row by 1√
1

= 1):

L2L1AL
T
1 =

1 0 0
0 1 −3
0 0 4

 with L2 :=

1 0 0
0 1 0
0 3 1

 .

Next, we right-multiply L2L1AL
T
1 with LT

2 which creates a zero in
the (2, 3) entry:

L2L1AL
T
1 L

T
2 =

1 0 0
0 1 0
0 0 4

 .

43 / 68

Recall L2L1AL
T
1 L

T
2 =

1 0 0
0 1 0
0 0 4

.

L3: We multiply the third row of L2L1AL
T
1 L

T
2 by 1√

4
= 1

2 :

L3L2L1AL
T
1 L

T
2 =

1 0 0
0 1 0
0 0 2

 with L3 :=

1 0 0
0 1 0
0 0 1

2

 .

Finally, we right-multiply L3L2L1AL
T
1 L

T
2 by LT

3 which creates a 1 in
the (3, 3) entry:

L3L2L1AL
T
1 L

T
2 L

T
3 = I3.

We find that A = RTR with

R := [L−1
1 L−1

2 L−1
3]T =

 4 0 0
−2 1 0
3 0 1

1 0 0
0 1 0
0 −3 1

1 0 0
0 1 0
0 0 2

T

=

4 −2 3
0 1 −3
0 0 2


is the unique Cholesky factorization of A.

44 / 68

Cholesky factorization via symmetric Gauß: Algorithm

To obtain the Cholesky factorization A = RTR of a given symmetric
positive definite matrix A ∈ Rn×n, do as follows:

R = A
for i = 1, . . . , n do

for j = i + 1, . . . , n do
Rj,j:n = Rj,j:n − Ri,j:nRij

Rii

end for
Ri,i:n =

Ri,i:n√
Rii

end for.

Theorem

The above algorithm requires ∼ 1
3n

3 flops.

This is only half the cost of Gaussian elimination!

45 / 68

Solving linear systems via Cholesky factorization

For a given symmetric positive definite matrix A ∈ Rn×n and a vector
b ∈ Rn, consider the problem of finding x ∈ Rn such that Ax = b.

The standard way to solve the system in this case is by Cholesky
factorization: If A = RTR is the Cholesky factorization of A, we have

Ax = b ⇐⇒ RTRx = b ⇐⇒

{
RTy = b,

Rx = y.

Therefore, once the Cholesky factorization is computed (O(n3) flops), we
can first solve RTy = b for y by forward substitution (O(n2) flops) and
then Rx = y for x by backward substitution (O(n2) flops).

46 / 68

4.5 Least Squares Problems

47 / 68

Over-determined linear systems

Given A = (aij) ∈ Rm×n with m > n, and b = (b1, . . . , bm)T ∈ Rm.

Problem: Find x = (x1, . . . , xn)T ∈ Rn s.t.

Ax =



a11 · · · a1n
...

...
an1 · · · ann

an+1,1 · · · an+1,n
...

...
am1 · · · amn


x1

...
xn

 =



b1
...
bn
bn+1

...
bm


= b.

Such a problem does not admit a solution in general: consider e.g.,1 0
0 1
1 1

(x1

x2

)
=

1
1
1

 .

48 / 68

The least squares problem

Observation: Given A ∈ Rm×n, m > n, and b ∈ Rm,

[∃x ∈ Rn : Ax = b] ⇐⇒ b ∈ R(A).

Noting that dim(R(A)) ≤ n < m = dim(Rm), such an over-determined system

Ax = b is only solvable for special choices of b ∈ Rm.

=⇒ Consider the following generalized problem:

Find x ∈ Rn s.t. r := Ax− b is as small as possible.

We call r the residual. To measure the size of r, use the Euclidean norm.

Definition (Least squares problem)

Given A ∈ Rm×n, m ≥ n, and b ∈ Rm, we call the following problem the
least squares problem corresponding to the matrix A and the vector b:

Minimize ‖Av − b‖2 over v ∈ Rn.

A vector x ∈ Rn is called a solution to the least squares problem iff

‖Ax− b‖2 = inf
v∈Rn

‖Av − b‖2.
49 / 68

Motivation: Interpolation vs. least squares fitting

Suppose we are given data points (t1, y1), . . . , (tn, yn) with t1, . . . , tn ∈ R
distinct and y1, . . . , yn ∈ R.

(i) Polynomial interpolation:
There exists a unique polynomial p(t) =

∑n−1
k=0 pkt

k of degree n− 1
such that p(ti) = yi for all i ∈ {1, . . . , n}. (polynomial interpolant)

The coefficients p0, . . . , pn−1 ∈ R are uniquely determined from

V

 p0
...

pn−1

 =

y1
...
yn

 , V :=


1 t1 t21 · · · tn−1

1

1 t2 t22 · · · tn−1
2

...
...

...
...

1 tn t2n · · · tn−1
n

 ∈ Rn×n.

Note that the so-called Vandermonde matrix V = V (t1, . . . , tn) is
invertible since the values {ti} are distinct.
=⇒ Great! Or not? . . .
Drawback: Large oscillations near the ends of the interval [t1, tn].

50 / 68

Motivation: Interpolation vs. least squares fitting

Data (t1, y1), . . . , (tn, yn) with t1, . . . , tn ∈ R distinct, y1, . . . , yn ∈ R.

(ii) Least squares fitting: Ansatz: p(t) =
∑N−1

k=0 pkt
k with N < n.

The condition p(ti) = yi for i ∈ {1, . . . , n} leads to

Apcoeff :=


1 t1 t21 · · · tN−1

1

1 t2 t22 · · · tN−1
2

...
...

...
...

1 tn t2n · · · tN−1
n


 p0

...
pN−1

 =

y1
...
yn

 =: b.

which may not have a solution. Instead, we choose the coefficient
vector pcoeff = (p0, . . . , pN−1)T ∈ RN s.t.

‖Apcoeff − b‖2 = inf
v∈RN

‖Av − b‖2.

The least squares fit p(t) =
∑N−1

k=0 pkt
k minimizes the quantity√∑n

i=1|p(ti)− yi|2 among polynomials of degree at most N − 1.
=⇒ The least squares soln does not interpolate the data points,
but it describes the overall behavior better than the interpolant.

51 / 68

Example: Data points

52 / 68

Example: Interpolant (polynomial of degree 10)

53 / 68

Example: Degree 7 polynomial least squares fit

54 / 68

The main questions

Recall:

Definition (Least squares problem)

Given A ∈ Rm×n, m ≥ n, and b ∈ Rm, we call the following problem the
least squares problem corresponding to the matrix A and the vector b:

Minimize ‖Av − b‖2 over v ∈ Rn.

A vector x ∈ Rn is called a solution to the least squares problem iff

‖Ax− b‖2 = inf
v∈Rn

‖Av − b‖2.

Existence: Is there a soln to the LS problem for any choices of
A ∈ Rm×n with m ≥ n and b ∈ Rm?

Uniqueness: If there exists a soln to the LS problem, is this unique?

Computation: If there exist solns to the LS problems, how can we
find them?

55 / 68

An “equivalent” minimization problem

Recall LS problem:

Minimize ‖Av − b‖2 over v ∈ Rn.

If there exists x ∈ Rn s.t. ‖Ax− b‖2 = infv∈Rn ‖Av − b‖2, then we call
this minimizer x a solution to the LS problem.

Introduce an “equivalent” minimization problem:

Minimize ‖w − b‖2 over w ∈ R(A). (1)

If there exists y ∈ R(A) s.t. ‖y − b‖2 = infw∈R(A) ‖w − b‖2, then we call
this minimizer y a solution to the above minimization problem.

Observations:

If ∃ solution x ∈ Rn to LS, then y = Ax ∈ R(A) is a solution to (1).

If ∃ solution y ∈ R(A) to (1), then any x ∈ Rn satisfying Ax = y is
a solution to LS.

There holds infv∈Rn ‖Av − b‖2 = infw∈R(A) ‖w − b‖2.

56 / 68

Geometric illustration of the LS problem

57 / 68

Ingredients for existence proof

Theorem (Existence of solutions to the normal equation)

Let A ∈ Rm×n. Then, for any b ∈ Rm there exists a solution x ∈ Rn to
the normal equation ATAx = ATb.

Proof: Need to show that ATb ∈ R(ATA) for any b ∈ Rm. We are going
to show that R(AT) = R(ATA):

R(AT) = [N(A)]⊥ = [N(ATA)]⊥=R((ATA)T) = R(ATA).

(Used N(A) = N(ATA) and [N(M)]⊥ = R(MT) for any matrix M .)

Theorem (Orthogonal projector onto range of matrix)

Let A ∈ Rm×n. Then,

(i) R(A) and N(AT) are complementary subspaces of Rm,

(ii) R(A) ⊥N(AT).

In particular, ∃ a unique projector P ∈ Rm×m s.t. R(P) = R(A) and
N(P) = N(AT), and P is the unique orthogonal projector onto R(A).

58 / 68

Existence and Uniqueness results

Theorem (Existence and uniqueness result for least squares problems)

Let A ∈ Rm×n, m ≥ n, and b ∈ Rm. Let P ∈ Rm×m be the orthogonal
projector onto R(A). Then, we have the following:

(i) ∃ a unique solution to the minimization problem (1), i.e., a unique
y ∈ R(A) with ‖y − b‖2 = infw∈R(A) ‖w − b‖2. This soln is given by

y = Pb.

(ii) ∃ a solution to the least squares problem, i.e., x ∈ Rn satisfying
‖Ax− b‖2 = infv∈Rn ‖Av − b‖2. Moreover, x ∈ Rn is a solution iff

Ax = Pb, or equivalently, ATAx = ATb.

(iii) The least squares problem has a unique solution iff rk(A) = n.

59 / 68

Proof of (i)

We need to show that the minimization problem

Minimize ‖w − b‖2 over w ∈ R(A)

has the unique solution y = Pb ∈ R(A). (Note Pb ∈ R(P) = R(A).)

We have for any w ∈ R(A)\{Pb} that

‖w − b‖22 = ‖(w − Pb) + (Pb− b)‖22 = ‖w − Pb‖22 + ‖Pb− b‖22 > ‖Pb− b‖22,

where we have used that 〈w − Pb︸ ︷︷ ︸
∈R(P)

, P b− b︸ ︷︷ ︸
∈N(P)

〉 = 0.

=⇒ y = Pb is the unique element in R(A) satisfying

‖y − b‖2 = inf
w∈R(A)

‖w − b‖2.

60 / 68

Proof of (ii)

Need to show the following: ∃x ∈ Rn : ‖Ax− b‖2 = infv∈Rn ‖Av − b‖2,
and that x ∈ Rn is a solution iff Ax = Pb iff ATAx = ATb.

By (i), any x ∈ Rn satisfying Ax = Pb is a solution to LS. Conversely, if
x ∈ Rn is a solution to LS, then y = Ax is a solution to
‖y − b‖2 = infw∈R(A) ‖w − b‖2 and consequently, Ax = Pb.

Remains to show that for x ∈ Rn, we have Ax = Pb⇐⇒ ATAx = ATb.

“ =⇒ ” Let x ∈ Rn with Ax = Pb. Then,

Ax− b = Pb− b ∈N(P) = N(AT) =⇒ ATAx = ATb.

“⇐= ” Let x ∈ Rn with ATAx = ATb. Then Ax− b ∈N(AT) = N(P)
and hence,

Ax− Pb = (Im − P)Ax + P (Ax− b) = 0,

where we have used that Ax ∈ R(A) = R(P) = N(Im − P).
61 / 68

Proof of (iii)

Need to show: Solution to LS unique iff A has full rank.

By (ii), LS has a unique soln iff ATAx = ATb has a unique soln x ∈ Rn,
i.e., iff ATA ∈ Rn×n is invertible, i.e., iff rk(ATA) = n, i.e., iff rk(A) = n.

(Recall R(ATA) = R(AT) =⇒ rk(ATA) = rk(AT) = rk(A).)

62 / 68

Solution of the full-rank least squares problem

Let A ∈ Rm×n, m ≥ n, and assume that rk(A) = n. Then, the unique
solution to LS is given by

ATAx = ATb =⇒ x = (ATA)−1ATb.

We find that

x = A†b ∈ Rn, where A† := (ATA)−1AT ∈ Rn×m.

The matrix A† is the Moore–Penrose inverse (or pseudoinverse) of A.

The Moore–Penrose inverse is a generalization of the matrix inverse and is
being discussed extensively on the problem sheets.

63 / 68

Solution Algorithm 1: via normal eqn & Cholesky

Let A ∈ Rm×n, m ≥ n, b ∈ Rm and assume rk(A) = n. Then,

ATA ∈ Rn×n is symmetric positive definite.

Indeed, we have (ATA)T = ATA and

〈x,ATAx〉 = 〈Ax,Ax〉 = ‖Ax‖22 > 0 ∀x ∈ Rn\{0}.

Here, we have used that Ax ∈ Rm\{0} for x ∈ Rn\{0} since rk(A) = n.

Therefore, ATA has a unique Cholesky factn ATA = RTR and we have

ATAx = ATb ⇐⇒ RTRx = ATb.

Algorithm:

1) Compute Ã := ATA ∈ Rn×n and b̃ := ATb ∈ Rn.

2) Compute the Cholesky factorization Ã = RTR of Ã.

3) Solve the lower-triangular system RTz = b̃ for z ∈ Rn.

4) Solve the upper-triangular system Rx = z for x ∈ Rn.

64 / 68

1) Compute Ã := ATA ∈ Rn×n and b̃ := ATb ∈ Rn.

2) Compute the Cholesky factorization Ã = RTR of Ã.

3) Solve the lower-triangular system RTz = b̃ for z ∈ Rn.

4) Solve the upper-triangular system Rx = z for x ∈ Rn.

Theorem

This algorithm requires ∼ mn2 + 1
3n

3 flops.

65 / 68

Solution Algorithm 2: via reduced QR

Let A ∈ Rm×n, m ≥ n, b ∈ Rm, and assume A = Q̂R̂ reduced QR factn.

Then, x ∈ Rn is soln to LS iff ATAx = ATb iff

R̂TQ̂TQ̂R̂x = R̂TQ̂Tb =⇒ R̂TR̂x = R̂TQ̂Tb.

Observe: If A is of full rank, then R̂ is invertible and thus,

R̂x = Q̂Tb.

Assume rk(A) = n. Do the following:

1) Compute a reduced QR factorization A = Q̂R̂ of A.

2) Compute b̃ = Q̂Tb ∈ Rn.

3) Solve the upper-triangular system R̂x = b̃ for x ∈ Rn.

Using Householder find:

Theorem

This algorithm requires ∼ 2mn2 − 2
3n

3 flops.

66 / 68

Solution Algorithm 3: via reduced SVD

Let A ∈ Rm×n, m ≥ n, b ∈ Rm, and assume A = Û Σ̂V T reduced SVD.

Then, x ∈ Rn is a solution to LS iff ATAx = ATb iff

V Σ̂TÛTÛ Σ̂V Tx = V Σ̂TÛTb =⇒ V Σ̂TΣ̂V Tx = V Σ̂TÛTb.

Observe: If A is of full rank, then V Σ̂T ∈ Rn×n is invertible and thus,

Σ̂V Tx = ÛTb.

Assume rk(A) = n. Do the following:

1) Compute a reduced SVD A = Û Σ̂V T of A.

2) Compute b̃ = ÛTb ∈ Rn.

3) Solve the diagonal system Σ̂z = b̃ for z ∈ Rn.

4) Compute x = V z ∈ Rn.

Theorem

This algorithm requires ∼ 2mn2 + 11n3 flops.

67 / 68

End of “Chapter 4: Linear Systems and Least Squares Problems”.

68 / 68

	Linear Systems and Least Squares Problems
	Gaussian elimination: LU factorization
	Gaussian elimination with partial pivoting: PA=LU factorization
	Gaussian elimination with full pivoting: PAQ=LU factorization
	Symmetric Gaussian elimination: Cholesky factorization
	Least Squares Problems

