MA4230 Matrix Computation

Chapter 4: Linear Systems and Least Squares Problems

4.1 Gaussian elimination: LU factorization

4.2 Gaussian elimination with partial pivoting: PA=LU factorization
4.3 Gaussian elimination with full pivoting: PAQ=LU factorization
4.4 Symmetric Gaussian elimination: Cholesky factorization

4.5 Least Squares Problems



4.1 Gaussian elimination: LU factorization



The problem

Given A € R™" and b € R", find z € R" s.t.
Ax =b.
— Solve by Gaussian elimination.
No/partial /full pivoting = A= LU / PA=LU | PAQ = LU

We start with the LU factorization (GauB without pivoting).

Definition (Lower-triangular and unit lower-triangular matrices)

A matrix L € R™*" is called lower-triangular iff L™ is upper-triangular.
A matrix L € R™*" is called unit lower-triangular iff L is lower-triangular
and all of its diagonal entries are equal to 1.




LU factorization

Definition (LU factorization)

Let A € R™™™, If 3 L € R™" lower-triangular, U € R™*"™ upper-triangular
s.t. A = LU, then this factorization is called a LU factorization of A.

Gaussian elimination transforms A into an upper-triangular matrix

U=1L,_1-Lsl A€ R™*™

with L1, ..., L1 € R™™ unit lower-triangular and of the form
1 1 1
* 1 1 1
Li=| : JLo=|  x ;s Ln1=
: . 1
* 1 * 1 * 1

with zero-entries not shown.

Assuming this is possible, obtain A = LU with L := L;'---L 1 € R™"
unit lower-triangular (exercise) and U € R™*™ upper-triangular.
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Gaussian elimination: Example

-2 2 1 -1
) 1 1 2 =2 ) ) o
Consider A = 14 -1 11 We illustrate Gaussian elimination.
1 3 -3 4

L1: The first step is to eliminate the sub-diagonal entries in the first
column of A via adding §/—3/3 times row 1 to row 2/3/4:

-2 2 1 —1 1 0 0 0

1 0 2 52 5 . | Y2 100
LiA= 0 3 =32 3/ with Ly o= —1/2.0 1 0
0 4 =52 7/ 20 0 1

Lo: The second step is to eliminate the sub-diagonal entries in the second
column of LA via adding —3/—2 times row 2 to row 3/4:

-2 2 1 -1 1 0 00
0 2 52 =5/ 1 0
0 0 —21/1 214 _
0 0 —15/2 17/2

—
(@]
—
(@]

Lol A= with Ly :=

3
2
2

o O
O =
=)



Lo: The second step is to eliminate the sub-diagonal entries in the second
column of L1 A via adding —3/—2 times row 2 to row 3/4:

-2 2 1 -1 1 0 0 0

10 2 52 =5~ . 16 1 00

Lol 1A= 0 0 _21/4 21/4 with Lo := 0 _% 10
0 0 —15/2 17/2 0 -2 0 1

L3: The third step is to eliminate the sub-diagonal entries in the third
column of Lol A via adding —1—70 times row 3 to row 4:

909 1 1 10 0 0
o o2 s sl o o1 0 o0
L3L2L1A - 0 0 7-)]/,1 21/,1 =: U with L3 T 0 O 1 0
00 0 1 00 -7 1

7
We find that A = LU with U as above and L given by

L:=L{'Ly Ly?

is a LU factorization of A. Indeed, let's compute L:



1 00 0 1 0 00 10 0 0
11— 3 100 0 1 00 01 0 0
_r—1ly-17-1_ | 3
L_L1L2L3_—%010 0 -2 10 00 1 0
3 00 1 0 -2 0 1 00 -1
1 000\ /1L 00O /100 0
-2 1t 0o0]fo1 00|01 0 O
|3 ot1oJfo 2 1o]loo0o 1 0
-2 001/ \0 20 1/\0 0 ¥ 1
1 0 0 0
1
§15110O
-z 2 21

Note how simple it is to compute L: the matrices L; can be inverted by
negating their sub-diagonal entries, and the matrix L can be obtained by
collecting these values appropriately. Coincidence? No:

7
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Generally, if the i-th column z; of the matrix L;_; --- L1 A (the matrix A
if i = 1) is the vector z; = (x14,..., %) ", then

1 0
1 0
T nxn n
L; = Tivli o q =1, —lie; €R o= i eR
T Tis
_ Tng 1 Tni

o L' =1, + el (I, — Liel)(I, + Liel)=I, — LieTlieT =1, — (l;, ex)l;eT =1,,.
o [ = Lfl e L;il is given by

1
r21 1
11
Z31 32 1
L= 11 22
11 T22 Tn—1,n—1

Indeed, looking at the product of two such matrices we find

Li_lLZ-__,'_ll = (In + lZeZT)(In + li+1€?+1) =1, + lle;F + l¢+1€iT+1.



Gaussian elimination without pivoting: Algorithm

Given A € R™ "™, do as follows:
L=1I1,U=A
fori=1,...,n—1do

forj=i+1,...,ndo
i =
Ujin = Wjim — ljilliin
end for
end for.

Warning: A needs to be such that no division by zero happens.

Theorem

The above algorithm requires ~ 2n? flops.

Proof: Exercise.

Compare with ~ %n?’ flops for QR via Householder.



Solving linear systems via LU
Problem: Given A € R™*" b e R", find z € R" s.t. Az =b.

If there exists a LU factorization A = LU, we have

Ly =b,

Ar=b <= LUx=b <= {
Uz =y.

Therefore, once a LU factorization is computed (6(n?) flops), we can first
solve Ly = b for y by forward substitution (6(n?) flops) and then Uz =y
for 2 by backward substitution (6(n?) flops).

= But does every matrix have a LU factorization? Unfortunately, no.

Eg, A= <(1) 1) does not have a LU factorization. Indeed, if there were

I_ <511 0 ) €R2 and U = (““ “12> € R¥? such that A = LU,
lo1 22 0 um

then l1qu11 = 0 and l11u12 = lo1u11 = lo1uig + laguos = 1, contradiction.



Gaussian elimination in its current form (without pivoting) is impractical
to solve general linear systems. For instance, it fails for the matrix

0 1
(1)
due to division by zero in the first step.

More dramatically, the algorithm is not stable for general n x n matrices
as we will see later in this course.

Improvement in stability via pivoting = next section.
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4.2 Gaussian elimination with partial pivoting: PA=LU factorization
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How to improve Gaussian elimination? Key observation

In i-th step of GauB, add multiples of row i to rows i + 1,...,n to obtain

T11  Ti2 z1, T1,i41 Tin Tl @12 Ty T1,i41 Tin
22 24 T2 41 ZTon 22 T2i @241 T2n

Tig Ti i1 Tin |== Tii T4l Tin

Titl,i  Titl,i41 Tit1,n 0 *

Tni Tn,itl Tnn 0 *

We call x;; # 0 the pivot. Observation: Instead, can also add multiples of row j
with some j € {i +1,...,n} such that zj; #0torows4,...,j—1,j+1,...,n
to create zeros as follows:

T11  T12 T Tli41 Tin T11 o x12 o X1 T1i41 Tin
22 24 X2 441 T2n 22 T24 T2 441 T2n

Tig T 41 Tin 0 * *

== . X .

0 * *
Tjio o Tjit1 Tjn Tji o it Tjn

0 * *

Tni  Tn,idl Tnn 0 * *

In this case, z;; # 0 is called the pivot.



Gaussian elimination with partial pivoting

This procedure is thought of as follows:

In the i-th step,

1. choose a pivot zj; # 0 from column i and row j (some j € {i,...,n}),

2. permute the rows such that zj; is moved to the main diagonal,
3. do a standard Gaussian elimination step.

For numerical stability, the pivot is chosen as the largest entry in modulus
in column 7 and rows 7,...,n.

This is called Gaussian elimination with partial pivoting and leads to a
LU factorization of PA for some permutation matrix P.
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PA=LU factorization

Definition (PA=LU factorization)

Let A € R™", If there exist a lower-triangular matrix L € R™*", an
upper-triangular matrix U € R™*", and a permutation matrix P € R"*"
(i.e., a matrix which has exactly one entry 1 in each row and column and
zeros elsewhere) s.t.

PA=LU,

then we call this factorization a PA=LU factorization or a LU
factorization with partial pivoting corresponding to A.

Remark: Permutation matrices are orthogonal matrices.
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Gaussian elimination with partial pivoting: Example

-2 2 1 -1

. 1 1 2 =2
Consider A = 14 -1 1
1 3 -3 4

Pr: As max{|—2|, [1],|—1],|1|} = |—2]|, choose the (1,1)-entry as pivot.
Since this is already on the diagonal, no permutation is needed:

PIA=A with P =1,

L1: Eliminate sub-diagonal entries in first column of P;A = A via adding
3/—3/3 times row 1 to row 2/3/4:

-2 2 1 -1 1 0 0O

1 0 2 542 =5 . | Y2 100
L1PA= 0 3 _3/2 3/2 with L := _1/2 01 0
0 4 =52 172 2.0 0 1
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-2 2 1 —1

, . 0 2 52 5>

Recall from previous slide: L1 P A = 0 3 =3 s
0 4 =52 17/

Py: As max{|2|, [3],|4]} = |4], choose the (
end, we permute rows 2 and 4:

N

,2)-entry as pivot. To this

-2 2 1 —1 1 0 00

fo o4 s ol o o001

P L1 PA= 0 3 _3/2 3/2 with Py := 00 1 0
0 2 5/ =5/ 0100

Lo: Eliminate sub-diagonal entries in second column of P,L P A via
adding —3/—1 times row 2 to row 3/4:

-2 2 1 -1 1 0 0 0

10 4 =52 7 . 10 1 0 0
LoPy L1 PlA = 0 0 3/8 —9/8 with Lo := 0 _3/4 1

0 0 154 —17/ 0 —1h 0 1
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-2 2 1 —1

, . () 4 —5/2 /2

Recall from previous slide: LoPyL1 P A = 0 0 s -9
0 0 15/2 —17/4

Ps: As max{|2], |12} = [1|, choose the (4,3)-entry as pivot. To this
end, we permute rows 3 and 4:

-2 2 1 —1 1 000
0 4 =52 7/ . ({06100
P3LoPy L1 PLA = 0 0 15/4 _17/4 with P3 := 00 0 1
0 0 3 98 0010

L3: Eliminate sub-diagonal entries in third column of P3LoPo L Pi A via
adding —% times row 3 to row 4:

-2 2 1 -1 10 0 0
0 4 =52 T2 | /01 0 0
LiBLPLiPA= [ o 50 | =ULs=1g o |
0 0 0 =7 00 —% 1



= L3P3LoP> L1 PiA = U. How to obtain from this a PA=LU factn?

Set Ly := L3, L}y := P3LoP; ', and L} := PysPoL Py ' Pyt e,

10 0 0 1 0 0 0 1 0 00

, 101 0 O ;10 1 0 0 , | Y2 100

L3 = 00 1 0]’ Ly = 0 -2 1 0]’ L= /20 1 0

00 —% 1 0 —3/4 0 1 —1/2 0 0 1
Then, LgLéLllpgpgplA = L3P3L2P2L1P1A =U.

We find that PA = LU with

1 0 00 1 0 0 O

o {0 0 0 1 i1 | Y21 0 O

P:=P3PP = 01 0 ol L:= (L3LyLy) " = i o1p 10

00 1 0 2 3/4 1/10 1

is a PA=LU factorization.
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More generally, ...

Gaussian elimination with partial pivoting transforms A € R™™ into an
upper-triangular U € R™*™ by Gaussian elimination with an additional
left-multiplication of a permutation matrix P; at the beginning of step :

Lyp 1 Py_1---LoP L1 PIA=U.

Here, Pi,..., P,_1 € R™ ™ are permutation matrices and
Li,...,L,_1 € R™™™ are unit lower-triangular.

Set L/

7

-1 1 .
1 Lnfl, L; = Ip—1-"" ]Di+1Lif)i+1 s Pnfl for 1 <1<n-— 2.

Observe that the matrix L/ has the same structure as L;. We then obtain
that PA = LU is a PA=LU factorization corresponding to A with

L::( ;Lfl"'LIQL/Oilv PZ:P7171"‘P2P1.

Note P is a permutation matrix as product of permutation matrices, and
that L is well-defined and lower-triangular.



Gaussian elimination with partial pivoting: Algorithm

Given A € R™ "™, do as follows:

P=1I,L=1,U=A

fori=1,...,n—1do
Choose 7 € {i,...,n} such that |u,;| = maxgeg; . nyluril
Ui i:n 2 Urjin
litio1 < lrpiica
Piln < Drin
forj=i+1,...,n do

Lo: — Y
IV wgg

Ujin = Ujim — ljilliin
end for
end for.

Here, “<" denotes “interchange”.

Warning: A needs to be such that no division by zero happens in the
algorithm above (as an exercise, think about how to obtain a PA=LU
factorization if all candidates for pivots are zero at some step ).



Work of GauB with partial pivoting

e pivot selection requires ©(n?) operations overall.

= To leading order, GauB3 with partial pivoting requires same amount of
flops as GauB without pivoting, i.e., ~ §n3.

Gaussian elimination with partial pivoting is the standard way
to solve linear systems on a computer.
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Solving linear systems via PA=LU factorization
Problem: Given A € R™™ and b € R", find z € R™ s.t. Ax = b.

If there exists a PA=LU factorization PA = LU, we have
Ly = Pb,

Ar=b <+— PAzx=Pb +— LUxz=Pb <+— {
Uz =y.

Therefore, once a PA=LU factorization is computed (6(n?) flops), we can
first form b := Pb, then solve Ly = b by forward substitution (0(n?) flops)
and then Ux = y for by backward substitution (6(n?) flops).

What about existence of LU and PA=LU factorization?
(Recall we already know that not every matrix has a LU factorization.)

Theorem (Existence of LU and PA=LU factorization)

(i) Any matrix A € R"*"™ has a PA=LU factorization.

(i) Let A € R™*™ invertible. Then, there exists a LU factorization of A
I'ffdet(Alzi)l;i) 75 0 for all 1 < 7 <n.
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4.3 Gaussian elimination with full pivoting: PAQ=LU factorization
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Full pivoting: A further improvement in stability

Idea: Every entry of the sub-matrix Xj.,, ;., of the working matrix X at

step i is a candidate for the pivot.

Rk: Full pivoting is rarely used in practice due to large computational cost.

Gaussian elimination with full pivoting leads to a PAQ=LU factorization:

Definition (PAQ=LU factorization)

Let A € R™ "™ If there exist a lower-triangular matrix L € R™*", an
upper-triangular matrix U € R™*", and permutation matrices
P,Q € R™" such that there holds

PAQ = LU,

then we call this a PAQ=LU factorization or a LU factorization with

full pivoting corresponding to A.

v

Note: Any matrix A € R™*" admits a PAQ=LU factorization with Q = I,,.



Example: Gaussian elimination with full pivoting

-2 2 1 —1
. 1 1 2 =2
Consider A := R
1 3 -3 4
Pr,Qi: As max; jeqy . ay|ai;| = |4], we choose the (3,2)-entry 4 as pivot

(note we could have also chosen the (4, 4)-entry 4).

To this end, we permute columns 1 and 2, and then rows 1 and 3:
4 -1 -1 1 0 1 0 0 0 0 1 0
1 1 2 =2 1 0 0 O 01 0 O
PlAQl = 9 _9 1 11! Ql = 0 0 1 0ol Pl = 1 0 0 O
3 1 -3 4 0 0 0 1 0 0 0 1
L1: We eliminate the sub- diagonal entries in the first column of P; AQ
via adding —1/—1/—3 times row 1 to row 2/3/4:
4 -1 -1 1 1 000
[0 34 91 94 . |-+ 1 0 0
LiPLAQ: = 0 _3/2 3/2 _3/2 with Ly := _1/2 01 0
0 74 =91 13/4 =3/ 0 0 1



4 -1 -1 1
0 5/4 94 =94
L1P1AQ1 = O 7:/3/2 3/2 73§2 = Al.
0 7/a =91 134
P, Q2 As max{| 3|, =31, [T1 1T1 [5] [= 31, [= 21 =31, |5} = | 5], we

choose the (4,4)-entry % as pivot.
To this end, we permute columns 2 and 4, and then rows 2 and 4:

4 1 -1 -1 1 0 00
|0 134 94 T 5 |00 01
PZAIQQ - 0 _3/2 3/2 _3/2 ) QQ = P2 = 00 1 0
0 —9/4 94 5/a 01 00
Lo: We eliminate the sub-diagonal entries in the second column of
PyA1Q)2 via adding 1%/1% times row 2 to row 3/4:
4 1 -1 -1 1 0 00
|0 134 =94 T/ . 0 1 0 0
LaPo i Q2 = 0 0 613 —913 with Ly := 0 613 1 0
0 0 93 3213 0 913 0 1
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4 1 -1 -1
_ |0 e = T
L2P24hQ2 = 0 0 613 =93
0 0 93 *2/15
Ps, Qs As max{| 5[, [35]. |[=-5]. 2]} = |92], we choose the (4,4)-entry 32
as pivot.

To this end, we permute columns 3 and 4, and then rows 3 and 4:

4 1 -1 -1 10 00
|10 18/ T4 94 5 o100
e e 8213 9/13 | @=R=1,4
0 0 —9%3 6/13 0010
L3: We eliminate the sub-diagonal entries in the third column of P3A>Q3
via adding 3% times row 3 to row 4:
4 1 -1 -1 10 0 O
|0 B4 T4 9| . 101 0 O
L3P3A2Q3 = 0 0 32/13 9/13 =: U with L3z := 00 1 0
0 0 0 23 00 3 1
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= L3P3LoPo L1 Py AQ1Q2Q3 = U is upper-triangular.

H,ave L5 Ly L PsPa Py AQ1Q2Q3 = L3P3La Py L1 PrAQ1Q2Q3 = U with
L3 = L3,

1 0 00 1 0 0 0
. o o 1 000 . o |31 0 0
Ly = P3LaPy = 0 %s 1 0]’ Ly = PsPL Py ' Pyt = —1/4 0 1 0
0 613 0 1 -2 0 0 1
= We find that PAQ = LU with
0 01 0 0 0 1 0
0 0 0 1 1 0 0 0
P'_ -P3P2P1 - 0 1 0 0 (2_ (21622(23 - 0 0 0 1 9
1 0 0 0 01 00
1 0 1 -1 -1

0
3/4 1 0
s —9/13 1
/s —6/13 —9/32

is a PAQ = LU factorization.

18/ Ty —94
0 3213 913
0 0 23

L= (LAL4LY) ™" =

_ o o o
O O O =
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More generally, ...

Gaussian elimination with full pivoting transforms A € R™*™ into an
upper-triangular U € R™*™ by Gaussian elimination with an additional
right-multiplication of a permutation matrix (); and left-multiplication of a
permutation matrix P; at the beginning of step i:

Ly 1Py1-+ LoPo L1 PLAQ1Q2 - Qp1 = U.
Here, Pi,...,Pr_1,Q1,...,Qn_1 € R™ ™ are permutation matrices and
Ly,..., L, 1 € R™™ are unit lower-triangular.

We deduce that
(Ly_y - LYLY)(Paey -+ - PP A(Q1Q2 - - Quo1) = U
with L) =L, yand L := P, - P L; P} - P! for

i+l
ie{l,...,n—2}. We then obtain that PAQ = LU is a PAQ=LU

factorization corresponding to A with
L::( iz—l"'L/QLll)_la P:=P, 1 PP, Q:=QQ2 - Qn1.

Note that P and @Q are permutation matrices as products of permutation
matrices, and that L is well-defined and lower-triangular.



Advantages and drawbacks

+ Full pivoting further improves stability compared to partial pivoting.

— Pivot selection for full pivoting requires ©(n?) operations overall.

As an exercise, think about how a PAQ=LU factorization can be used to
solve a linear system Az = b.
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4.4 Symmetric Gaussian elimination: Cholesky factorization
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Definite matrices

Definition (positive/negative (semi)definiteness)
A symmetric matrix A € R™*" is called
(i) positive definite, denoted A > 0, iff

(x,Az) = 2T Az >0 Vz € R"\{0}.

(i) positive semidefinite, denoted A > 0, iff
(r,Az) = 2zTAz >0 Yz eR"

(iii) negative definite, denoted A < 0, iff

(z,Az) = 2T Az <0 Vz € R™\{0}.

(iv) negative semidefinite, denoted A < 0, iff

(x,Az) =2zTAx <0 Vz cR"
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An equivalent characterization via eigenvalues

Theorem (Characterization of positive/negative (semi)definite matrices)
For a symmetric matrix A € R™"*", we have

(i) A > 0 <= all eigenvalues of A are positive,

(i) A > 0 <= all eigenvalues of A are non-negative,

)
(iii) A <0 < all eigenvalues of A are negative,
(iv) A <0 <= all eigenvalues of A are non-positive.

Proof: Exercise. Use the following:

Lemma (Spectral theorem for symmetric matrices)

Symmetric matrices are orthogonally diagonalizable, i.e., for any
symmetric matrix A € R™ " there exist an orthogonal matrix () € R™*"
and a diagonal matrix D € R™*" s.t. A= QDQ". The diagonal entries of
D are the eigenvalues of A, and the column vectors of () are eigenvectors
of A. In particular, all eigenvalues of a symmetric matrix are real.

v
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Examples for definiteness

A <_12 _42> -~ 0 as A(A) = {0,5} C [0, 00).

o B:= A=<0asA(B) = {-5,0} C (—o0,0].

C = <_21 _21> 0 as A(C) = {1,3} C (0, ).

e D:=—-C<0asA(D)={-3,-1} C (—00,0).

1 2y, . . e .
FE = <2 1) is neither positive semidefinite, nor negative

semidefinite (we say E is indefinite), as A(E) = {—1, 3}.
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More on positive definite matrices

o Let A € R™™ be a symmetric positive definite matrix and let
X € R™" with n > 7 and rk(X) = 7. Then, the matrix XTAX is
symmetric positive definite (exercise).

@ A useful criterion for checking positive definiteness:
Theorem (Sylvester’s criterion for positive definiteness)
Let A € R™ ™ be a symmetric matrix. Then,

A-0 << Vie {1, o6 .,n} : det(Al:i,l:i) > 0.

The number det( A1) is called the i-th leading principal minor of A.
Therefore, a symmetric matrix is positive definite iff all of its leading
principal minors are positive.

=—> Any symmetric positive definite matrix has a LU factorization!
Even better: We can factorize a symmetric positive definite matrix twice
as quickly into triangular factors as a general matrix.
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Cholesky factorization

Definition (Cholesky factorization)

Let A € R™™ be a symmetric positive definite matrix. If there exists an
upper-triangular matrix R € R™"*"™ with positive diagonal entries s.t.

A= R'R,

then we call this a Cholesky factorization of A.

The following is the main result of this section:

Theorem (Existence and uniqueness of Cholesky factorization)

Every symmetric positive definite matrix A € R™"*™ admits a unique
Cholesky factorization.

So, let's prove this ...



Existence of Cholesky factorization: Symmetric GauB3

Consider a symmetric positive definite matrix A € R™*". Write

w?t

nxn
B eR

ar
A pr—
w

with a1; € R, w € R*~! and a symmetric matrix B € R(n=1)x(n=1)

Note that
° all—det(Allll >0

e B~ 0 since (x, Bx) <H H>>0foranxeR”1\{o}

First step of symmetric Gaussian elimination:
1

O1x (nfl)\

1 0 _
LlALl - (O (n—1) Bli(z'“’l%\ = Al with Ll = ( a/llzl

ail ail ‘

which we can equwalently write as

A=RTAR, with R;:= (L;l)T:( Vo \ “izu),

Infl /



Recall Ay = L1ALT = \O(n 11 | gli fuwl%).

ail

Note that
@ Aj is symmetric,
o Ay = (LD)TA(LT) = 0 since LT € R™™ is of fuII rank.

Therefore, we also have that the sub-matrix B — "~ L e R=Dx(n=1) g

symmetric positive definite (same argument as when we deduced B > 0
ww

from A > 0) and in particular, the (1,1)-entry of B — TlT is positive.

= We can factor
A = R2TA2R2

with Ry € R™*™ upper-triangular with positive diagonal entries and As

I
being of the form Ay = (I | 02X(7”*2)\, using the same procedure
\0 n 2)x2 ‘ C }

as before applied to B — an . Then, again, the sub-matrix C' is

symmetric positive definite, and we can continue this process . ..



= continue this process until we arrive at a factorization
A= (RTRy ---ROI(R,---RaR;) = R'R

with R := R, --- Ro Ry € R™ "™ upper-triangular and having positive
diagonal entries. This is a Cholesky factorization of A!

Next: Remains to show uniqueness.
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Theorem (Existence and uniqueness of Cholesky factorization)

Every symmetric positive definite matrix A € R™*"™ admits a unique
Cholesky factorization.

Proof: Symmetric Gaussian elimination provides existence of a Cholesky
factorization (argument can be made rigorous via induction).

For uniqueness, suppose that R, M € R™*"™ are two upper-triangular
matrices with positive diagonal entries such that

A=R'R=M"M.
Note that D := M R~! is an upper-triangular matrix, but also, since
D=MR = (M")IRT = (DT,
it must be lower-triangular as well, hence diagonal.

Noting that I, = DT D = D?, the diagonal entries of D are all +1.
Finally, since DR = M and the diagonal entries of R and M are positive,
we must have that R = M. O



Example: Computing the Cholesky factorization

Consider the symmetric positive definite matrix

16 —8 12
A=1-8 5 —9]| eR3¥3,
12 -9 22

We illustrate symmetric Gaussian elimination:

L12

Eliminate the sub-diagonal entries in the first column of A by adding
1,3

5/-7 times row 1 to row 2/3, and multiply the first row by \/i? = i:
4 -2 3 /a0 0
LtA=(0 1 -3 with L= /2 1 0
0 -3 13 =3/ 0 1

Next, we right-multiply L1 A with LT which creates a 1 in the (1,1)
entry and zeros in the (1,2) and (1,3) entries:

1 0 0
LALT =10 1 -3
0 -3 13

42 / 68



1 0 0
Recall LlALlT: o 1 -3

0 =3 13

Ls: Eliminate sub-diagonal entry in second column of LiALT by adding 3
times row 2 to row 3 (and multiply the second row by % =1):

10 0
Lol ALY = | 0

100
1 =3 with Lp:=10 1 0
00 4 0 3 1

Next, we right-multiply LoL; ALT with L3 which creates a zero in
the (2, 3) entry:

1 0 0
Lol ALTLY = [0

10
00 4
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100
Recall LoLiALTLY = |0 1 0
00 4
L3: We multiply the third row of LoL1 ALTL] by ﬁ =1L
100 10
L3Lol ALTLY = [0 1 0] with Lz:= (0 1
00 2 0 0

= o O

Finally, we right-multiply L3LoLi ALT LY by LY which creates a 1 in
the (3, 3) entry:

L3Lol  ALTLILY = I.
We find that A = RT R with

4 0 0\ /1 0 0
R:=[L7'Ly'L;' " =1{[-2 1 o]0 1 o0
30 1) \0 -3 1

is the unique Cholesky factorization of A.



Cholesky factorization via symmetric GauB: Algorithm

To obtain the Cholesky factorization A = RTR of a given symmetric
positive definite matrix A € R™*", do as follows:
R=A
fori=1,...,ndo
forj=i+1,...,ndo
Ry jin = Ry — o7
end for

R' ) _ Ri,i:n
1,0n

VR
end for.

Theorem

The above algorithm requires ~ %ng flops. J

This is only half the cost of Gaussian elimination!
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Solving linear systems via Cholesky factorization
For a given symmetric positive definite matrix A € R™*™ and a vector

b € R", consider the problem of finding z € R™ such that Ax = b.

The standard way to solve the system in this case is by Cholesky
factorization: If A = RTR is the Cholesky factorization of A, we have

Ry =1,

Ar=b <= R'Rzx=0b <+ {
Rx =y.

Therefore, once the Cholesky factorization is computed (6(n?) flops), we
can first solve RTy = b for y by forward substitution (6(n?) flops) and
then Rx = y for = by backward substitution (6(n?) flops).

46 / 68



4.5 Least Squares Problems
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Over-determined linear systems

Given A = (a;;) € R™™ with m > n, and b= (by,...,by)T € R™.

Problem: Find = = (z1,...,2,)" € R" s.t.
ar v Qip by
T b
anl o o G, .
A$ — " nn = n = b‘
n+1,1 " OGn4ln bn+1
am1 ce Amn bm

Such a problem does not admit a solution in general: consider e.g.,
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The least squares problem
Observation: Given A € R™*™ m > n, and b € R™,
[TxreR": Az =b] <= beR(A).

Noting that dim(R(A)) <n < m = dim(R™), such an over-determined system
Ax = b is only solvable for special choices of b € R™.

—> Consider the following generalized problem:

Find z €R"™ st. r:=Ax—b isassmall as possible.
We call 7 the residual. To measure the size of r, use the Euclidean norm.
Definition (Least squares problem)

Given A € R™*™ 'm > n, and b € R™, we call the following problem the
least squares problem corresponding to the matrix A and the vector b:

Minimize || Av — b||2 over v € R"™.

A vector x € R" is called a solution to the least squares problem iff

|Az — bla = inf ||Av — bl2.
vER™



Motivation: Interpolation vs. least squares fitting

Suppose we are given data points (t1,y1),- .., (tn, Yn) With t1,...,t, € R
distinct and y1,...,y, € R.
(i) Polynomial interpolation:
There exists a unique polynomial p(t) = Zz;é pith of degree n — 1
such that p(t;) = y; for all i € {1,...,n}. (polynomial interpolant)

The coefficients pg, ..., pn—1 € R are uniquely determined from
1oty 2 - !
Po n 2 n—1
1ty 3 - )
14 = 5 V= . . . . € R™*",
) o 3
Pn Yn 1 t, t% g 1

Note that the so-called Vandermonde matrix V =V (t1,...,t,) is
invertible since the values {t;} are distinct.

= Great! Or not? ...

Drawback: Large oscillations near the ends of the interval [t1,,].
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Motivation: Interpolation vs. least squares fitting

Data (t1,%1),-- ., (tn,yn) with t1,...,t, € R distinct Yls - Yn € R.
(i) Least squares fitting: Ansatz: p(t) = > ppt® with N < n,

The condition p(t;) = y; for i € {1,...,n} leads to

1t 2 .- t{\"l
2 N-1 Po Y1
1 ty t5 --- t ) ]
Apcoeft 1= o : : : = : =:b.
1 ¢, t% tanl PN-1 Yn

which may not have a solution. Instead, we choose the coefficient
vector peoett = (po,---,pn-1)" € RV st

HApcoeff - bHQ = yierﬂleN HAU - bH2

The least squares fit p(t) = ZkN;Ol pit® minimizes the quantity
Vo, p(ti) — yi|? among polynomials of degree at most N — 1.
=— The least squares soln does not interpolate the data points,
but it describes the overall behavior better than the interpolant.




Example: Data points

o
g
By
Y
g
Y

12

(=]
P 3k
i
o L
o0
—
(=]
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Example: Interpolant (polynomial of degree 10)
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Example: Degree 7 polynomial least squares fit

1z
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The main questions

Recall:

Definition (Least squares problem)

Given A € R™*"™ m > n, and b € R™, we call the following problem the
least squares problem corresponding to the matrix A and the vector b:

Minimize ||Av — bl|2 over v € R™.

A vector € R" is called a solution to the least squares problem iff

Ax — = inf ||Av — b||s.
Az — bll2 = inf [|4v = bl

o Existence: Is there a soln to the LS problem for any choices of
A € R™"™ with m > n and b € R™?

@ Uniqueness: If there exists a soln to the LS problem, is this unique?

o Computation: If there exist solns to the LS problems, how can we
find them?
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An “equivalent” minimization problem

Recall LS problem:
Minimize ||Av — bl|2 over v € R".

If there exists © € R" s.t. ||[Ax — b||2 = inf,crn ||Av — b||2, then we call
this minimizer x a solution to the LS problem.

Introduce an “equivalent” minimization problem:
Minimize ||w — b||2 over w € R(A). (1)

If there exists y € R(A) s.t. [ly — bll2 = inf,cqa) [|w — bl2, then we call
this minimizer y a solution to the above minimization problem.

Observations:
o If I solution € R™ to LS, then y = Ax € R(A) is a solution to (1).
@ If 3 solution y € R(A) to (1), then any x € R" satisfying Az = y is
a solution to LS.
@ There holds inf,egn [|Av — b2 = inf,cq(a) [lw — b]|2.



Geometric illustration of the LS problem
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Ingredients for existence proof

Theorem (Existence of solutions to the normal equation)

Let A € R™*™ Then, for any b € R™ there exists a solution z € R"™ to
the normal equation AT Az = ATb.

Proof: Need to show that AT € R (AT A) for any b € R™. We are going
to show that R (A1) = R(ATA):

R(AT) =[N (A = N (ATA]F =R((ATA)T) = R(ATA).
(Used ¥ (A) = N (ATA) and [NV (M)]F = R(MT) for any matrix M.) [
Theorem (Orthogonal projector onto range of matrix)
Let A € R™*™ Then,
(i) R(A) and N (AT) are complementary subspaces of R™,
(i) R(A) L N(AT).

In particular, 3 a unique projector P € R™*™ s.t. R(P) = R(A) and
N(P) = N(A"Y), and P is the unique orthogonal projector onto R(A).

58 / 68



Existence and Uniqueness results

Theorem (Existence and uniqueness result for least squares problems)

Let A€ R™*™ m >mn, and b e R™. Let P € R™*™ be the orthogonal
projector onto R(A). Then, we have the following:

(i) 3 a unique solution to the minimization problem (1), i.e., a unique
y € R(A) with [ly — b2 = inf,cq () [[w — bl|2. This soln is given by

y = Pb.
(ii) 3 a solution to the least squares problem, i.e., = € R™ satisfying
|[Az — b||2 = inf,cgrn ||Av — b||2. Moreover, x € R™ is a solution iff

Az = Pb, or equivalently, AT Az = ATb.

(iii) The least squares problem has a unique solution iff rk(A) = n.

V.
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Proof of (i)
We need to show that the minimization problem
Minimize ||w — b||2 over w € R(A)
has the unique solution y = Pb € R(A). (Note Pb € R(P) = R(A).)
We have for any w € R(A)\{Pb} that
lw = b3 = [I(w — Pb) + (Pb = b)|3 = [lw — Pbl3 + [[Pb = bl|3 > || Pb — b]|3,

where we have used that (w — Pb, Pb—b) = 0.
N—— ——

ER(P) €eN(P)
= y = Pb is the unique element in R(A) satisfying

—b|l2= inf —b||2.
Iy —bl> = inf | fhw bl
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Proof of (ii)

Need to show the following: 3z € R™ : ||Az — b||2 = inf ern ||Av — b
and that 2 € R" is a solution iff Az = Pb iff ATAz = ATb.

2

By (i), any = € R" satisfying Az = Pb is a solution to LS. Conversely, if
x € R™ is a solution to LS, then y = Az is a solution to
ly — bll2 = infyeq(a) [[w — b2 and consequently, Az = Pb.

Remains to show that for z € R™, we have Az = Pb <= AT Az = ATb.
“="7 Let x € R"™ with Az = Pb. Then,

Az —b=Pb—be N(P)=nN(A") —  ATAz = A"b,

“e=" Let z € R" with ATAz = ATb. Then Az —bec N(AT) = N(P)
and hence,

Az — Pb= (I, — P)Azx + P(Az — b) =0,

where we have used that Az € R(A) = R(P) = N (I, — P).



Proof of (iii)
Need to show: Solution to LS unique iff A has full rank.

By (ii), LS has a unique soln iff AT Az = ATb has a unique soln = € R”,
i.e., iff ATA € R™" is invertible, i.e., iff tk(ATA) = n, i.e., iff rk(A) = n.

(Recall R(ATA) = R(AT) = 1k(ATA)=1k(A") =1k(A).)

O]
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Solution of the full-rank least squares problem

Let A € R™*"™ m > n, and assume that rk(A) = n. Then, the unique
solution to LS is given by

ATAz = ATh  —  2=(ATA)1A".
We find that
r=ATbeR", where AT:=(ATA)71AT c RP™,
The matrix Af is the Moore—Penrose inverse (or pseudoinverse) of A.

The Moore—Penrose inverse is a generalization of the matrix inverse and is
being discussed extensively on the problem sheets.
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Solution Algorithm 1: via normal eqn & Cholesky
Let A€ R™*"™ m >n, b€ R™ and assume rk(A) = n. Then,
ATA e R™™ s symmetric positive definite.
Indeed, we have (ATA)T = ATA and
(x,ATAz) = (Ax, Az) = ||Az||3 >0  Va € R"\{0}.
Here, we have used that Az € R"™\{0} for z € R"\{0} since rk(A) = n.
Therefore, AT A has a unique Cholesky factn ATA = RTR and we have
ATAz =A™ <= R"Rz= A"

Algorithm:

1) Compute A:= ATA € R™" and b := ATh € R".
2) Compute the Cholesky factorization A= RTR of A.
3) Solve the lower-triangular system RTz = b for z € R".
4) Solve the upper-triangular system Rx = z for x € R".
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1) Compute A := ATA € R and b:= ATb € R".

2) Compute the Cholesky factorization A= RTR of A.

3) Solve the lower-triangular system RTz = b for z € R™.
)

4) Solve the upper-triangular system Rx = z for x € R™.

3

Theorem
This algorithm requires ~ mn® + in’ J

flops.
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Solution Algorithm 2: via reduced QR

Let A € R™*"™ m >n, b € R™, and assume A = QR reduced QR factn.
Then, z € R™ is soln to LS iff AT Az = ATb iff

RYQTQRz = R'Q™ — RTRx=RTQ"n.
Observe: If A is of full rank, then R is invertible and thus,
Rz = QTb.

Assume rk(A) = n. Do the following:

1) Compute a reduced QR factorization A = QR of A.

2) Compute b=QTheR".

3) Solve the upper-triangular system Rz = for z € R™.
Using Householder find:

Theorem

This algorithm requires ~ 2mn? — %nd flops. J
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Solution Algorithm 3: via reduced SVD
Let A € R™*"™ m >n, b € R™, and assume A = USVT reduced SVD.
Then, € R™ is a solution to LS iff AT Az = AT iff
vTOTosvTe =veToThy — vETSvTe = veToT.
Observe: If A is of full rank, then VT € R™ " is invertible and thus,
SVTe =07,

Assume rk(A) = n. Do the following:

1) Compute a reduced SVD A = USVT of A.

2) Compute b= U"Tb e R".

3) Solve the diagonal system Sz =10 for z € R".
)

4) Compute x = Vz € R™.
Theorem
This algorithm requires ~ 2mn? + 11n> flops. J
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End of “Chapter 4: Linear Systems and Least Squares Problems”.
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