MA4230 Matrix Computation

Chapter 3: QR factorization

3.1 Definition of full and reduced QR factorization
3.2 Existence and uniqueness
3.3 Projectors
3.4 QR via Gram-Schmidt orthogonalization
3.5 QR via Householder triangularization
3.6 QR via Givens rotations

Notation: upper-triangular matrix

Note: In this chapter, we restrict ourselves to "tall" matrices $A \in \mathbb{R}^{m \times n}$ with $m \geq n$.

Let $m, n \in \mathbb{N}$ with $m \geq n$. A matrix $R=\left(r_{i j}\right) \in \mathbb{R}^{m \times n}$ is called upper-triangular iff $r_{i j}=0$ whenever $i>j$, i.e., iff
$R=\binom{\hat{R}}{0_{(m-n) \times n}} \in \mathbb{R}^{m \times n}, \quad$ where $\quad \hat{R}=\left(\begin{array}{cccc}r_{11} & r_{12} & \cdots & r_{1 n} \\ 0 & r_{22} & \cdots & r_{2 n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & r_{n n}\end{array}\right) \in \mathbb{R}^{n \times n}$.

Examples of upper-triangular matrices

- an upper-triangular 4×4 matrix looks like $\left(\begin{array}{cccc}* & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & *\end{array}\right)$,
- an upper-triangular 5×3 matrix looks like $\left(\begin{array}{ccc}* & * & * \\ 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
- an upper-triangular 2×1 matrix looks like $\binom{*}{0}$.

3.1 Definition of full and reduced QR factorization

Definition of QR factorization

Definition (QR factorization)

Let $m, n \in \mathbb{N}$ with $m \geq n$, and let $A \in \mathbb{R}^{m \times n}$. If there exist

$$
\begin{aligned}
Q & =\left(q_{1}|\cdots| q_{m}\right) \in \mathbb{R}^{m \times m} \text { orthogonal } \\
R & =\left(\frac{\hat{R}}{0_{(m-n) \times n}}\right) \in \mathbb{R}^{m \times n} \quad \text { upper-triangular }
\end{aligned}
$$

such that there holds

$$
A=Q R
$$

then we call this a (full) QR factorization of A.

Reduced QR factorization

Suppose $A \in \mathbb{R}^{m \times n}, m \geq n$, has a $Q R$ factorization $A=Q R$ with

$$
\begin{aligned}
& Q=\left(q_{1}|\cdots| q_{m}\right) \in \mathbb{R}^{m \times m} \text { orthogonal } \\
& R=\left(\frac{\hat{R}}{0_{(m-n) \times n}}\right) \in \mathbb{R}^{m \times n} \text { upper-triangular. }
\end{aligned}
$$

Observe:

$$
A=Q R=\left(q_{1}|\cdots| q_{m}\right)\left(\frac{\hat{R}}{0_{(m-n) \times n}}\right)=\left(q_{1}|\cdots| q_{n}\right) \hat{R}=: \hat{Q} \hat{R} .
$$

This is a reduced QR factorization of A in the sense of the following defn:
Definition: Given $A \in \mathbb{R}^{m \times n}, m \geq n$, we call a factorization $A=\hat{Q} \hat{R}$ with $\hat{Q} \in \mathbb{R}^{m \times n}$ having orthonormal columns and $\hat{R} \in \mathbb{R}^{n \times n}$ being upper-triangular a reduced QR factorization of A.

Example

An example of a QR factorization is

$$
\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cc}
\sqrt{3} & \frac{1}{\sqrt{3}} \\
0 & \frac{4}{\sqrt{6}} \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

with corresponding reduced QR factorization

$$
\left(\begin{array}{cc}
1 & 1 \\
-1 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\sqrt{3} & \frac{1}{\sqrt{3}} \\
0 & \frac{4}{\sqrt{6}}
\end{array}\right) .
$$

3.2 Existence and uniqueness

Towards a reduced QR factorization: an observation

Let $A \in \mathbb{R}^{m \times n}, m \geq n$. Finding a reduced $Q R$ factorization $A=\hat{Q} \hat{R}$ with $\hat{Q} \in \mathbb{R}^{m \times n}$ having orthonormal columns and $\hat{R} \in \mathbb{R}^{n \times n}$ upper-triangular,

$$
A=\left(a_{1}|\cdots| a_{n}\right)=\left(q_{1}|\cdots| q_{n}\right)\left(\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
0 & r_{22} & \cdots & r_{2 n} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & r_{n n}
\end{array}\right)=\hat{Q} \hat{R}
$$

is equivalent to finding n orthonormal vectors $q_{1}, \ldots, q_{n} \in \mathbb{R}^{m}$ and $\frac{n(n+1)}{2}$ real numbers $\left\{r_{i j}\right\}_{1 \leq i \leq j \leq n} \subseteq \mathbb{R}$ such that

$$
\left\{\begin{aligned}
a_{1} & =r_{11} q_{1} \\
a_{2} & =r_{12} q_{1}+r_{22} q_{2} \\
& \vdots \\
a_{n} & =r_{1 n} q_{1}+r_{2 n} q_{2}+\cdots+r_{n n} q_{n}
\end{aligned}\right.
$$

\Rightarrow find orthonormal $q_{1}, \ldots, q_{n} \in \mathbb{R}^{m}$ s.t. $a_{i} \in \operatorname{span}\left(q_{1}, \ldots, q_{i}\right) \forall 1 \leq i \leq n$.

Towards reduced QR: Gram-Schmidt orthogonalization

\Rightarrow find orthonormal $q_{1}, \ldots, q_{n} \in \mathbb{R}^{m}$ s.t. $a_{i} \in \operatorname{span}\left(q_{1}, \ldots, q_{i}\right) \forall 1 \leq i \leq n$.
Now focus on the case $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}, m \geq n$, with $\operatorname{rk}(A)=n$.
Gram-Schmidt orthogonalization is a method to find orthonormal vectors $q_{1}, \ldots, q_{n} \in \mathbb{R}^{m}$ s.t.

$$
\operatorname{span}\left(q_{1}, \ldots, q_{i}\right)=\operatorname{span}\left(a_{1}, \ldots, a_{i}\right) \quad \forall 1 \leq i \leq n
$$

First step is easy: Find a unit vector $q_{1} \in \mathbb{R}^{m}$ s.t. $\operatorname{span}\left(q_{1}\right)=\operatorname{span}\left(a_{1}\right)$.

$$
q_{1}:=\frac{a_{1}}{\left\|a_{1}\right\|_{2}} \quad \Longrightarrow \quad a_{1}=r_{11} q_{1} \quad \text { with } \quad r_{11}:=\left\|a_{1}\right\|_{2} .
$$

$\left(\operatorname{Note} \operatorname{rk}(A)=n \Longrightarrow a_{1} \neq 0 \in \mathbb{R}^{m} \Longrightarrow\left\|a_{1}\right\|_{2}>0\right.$.)
If $n=1$, done. If $n \geq 2$:

Let $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}, m \geq n \geq 2, \operatorname{rk}(A)=n$.
Suppose we have found orthonormal $q_{1}, \ldots, q_{k-1} \in \mathbb{R}^{m}(2 \leq k \leq n)$ s.t.

$$
\operatorname{span}\left(q_{1}, \ldots, q_{i}\right)=\operatorname{span}\left(a_{1}, \ldots, a_{i}\right) \quad \forall 1 \leq i \leq k-1
$$

Then, define

$$
q_{k}:= \pm \frac{\tilde{q}_{k}}{\left\|\tilde{q}_{k}\right\|_{2}}, \quad \text { where } \quad \tilde{q}_{k}:=a_{k}-\sum_{l=1}^{k-1}\left\langle q_{l}, a_{k}\right\rangle q_{l} .
$$

Note

- $\tilde{q}_{k} \neq 0 \in \mathbb{R}^{m}$ (Pf: $\tilde{q}_{k}=0 \Longrightarrow a_{k} \in \operatorname{span}\left(q_{1}, \ldots, q_{k-1}\right) \Longrightarrow$ $a_{k} \in \operatorname{span}\left(a_{1}, \ldots, a_{k-1}\right)$, contradiction to $\operatorname{rk}(A)=n$.)
- $\left\|q_{k}\right\|_{2}=1, \quad\left\{q_{k}\right\} \perp\left\{q_{1}, \ldots, q_{k-1}\right\}$.
- $q_{k} \in \operatorname{span}\left(a_{1}, \ldots, a_{k}\right), a_{k} \in \operatorname{span}\left(q_{1}, \ldots, q_{k}\right)$ $\operatorname{span}\left(q_{1}, \ldots, q_{k}\right)=\operatorname{span}\left(a_{1}, \ldots, a_{k}\right)$.
\Longrightarrow Have $q_{1}, \ldots, q_{k} \in \mathbb{R}^{m}$ orthonormal and
$\operatorname{span}\left(q_{1}, \ldots, q_{i}\right)=\operatorname{span}\left(a_{1}, \ldots, a_{i}\right) \quad \forall 1 \leq i \leq k$. Done (iterate)!

Recall from previous slide:

$$
q_{k}:= \pm \frac{\tilde{q}_{k}}{\left\|\tilde{q}_{k}\right\|_{2}}, \quad \text { where } \quad \tilde{q}_{k}:=a_{k}-\sum_{l=1}^{k-1}\left\langle q_{l}, a_{k}\right\rangle q_{l} .
$$

This allows us to write

$$
a_{k}=\sum_{l=1}^{k} r_{l k} q_{l}, \quad r_{l k}:=\left\{\begin{array}{ll}
\left\langle q_{l}, a_{k}\right\rangle & , \text { if } 1 \leq l \leq k-1, \\
\pm\left\|\tilde{q}_{k}\right\|_{2} & , \text { if } l=k .
\end{array} .\right.
$$

\Longrightarrow Found orthonormal vectors $q_{1}, \ldots, q_{n} \in \mathbb{R}^{m}$ and numbers $\left\{r_{i j}\right\}_{1 \leq i \leq j \leq n} \subseteq \mathbb{R}$ s.t. $A=\hat{Q} \hat{R}$ with $\hat{Q}=\left(q_{1}|\cdots| q_{n}\right)$ and $\hat{R}=\left(r_{i j}\right)$:

$$
\begin{aligned}
\forall 1 \leq k \leq n: \quad q_{k}=\frac{1}{r_{k k}}\left(a_{k}-\sum_{l=1}^{k-1} r_{l k} q_{l}\right), \\
\forall 1 \leq i \leq j \leq n: \quad r_{i j}= \begin{cases}\left\langle q_{i}, a_{j}\right\rangle & \text { if } i \leq j-1, \\
\pm\left\|a_{j}-\sum_{l=1}^{j-1} r_{l j} q_{l}\right\|_{2} & , \text { if } i=j .\end{cases}
\end{aligned}
$$

The sign of the values $r_{j j}, 1 \leq j \leq n$, is not determined and we use the convention to choose $r_{j j}>0$ for all j.

Algorithm: Gram-Schimdt orthogonalization

Let $m, n \in \mathbb{N}, m \geq n$, and $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}$ with $\operatorname{rk}(A)=n$.
Then, A has the reduced QR factorization $A=\hat{Q} \hat{R}$ with

$$
\hat{Q}:=\left(q_{1}|\cdots| q_{n}\right) \in \mathbb{R}^{m \times n}, \quad \hat{R}:=\left(\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
0 & r_{22} & \cdots & r_{2 n} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & r_{n n}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

determined as follows:

1) Compute

$$
\tilde{q}_{1}:=a_{1} \in \mathbb{R}^{m}, \quad r_{11}:=\left\|\tilde{q}_{1}\right\|_{2}>0, \quad q_{1}:=\frac{1}{r_{11}} \tilde{q}_{1} \in \mathbb{R}^{m} .
$$

If $n=1$, we stop. If $n \geq 2$, we continue as follows.
2) Compute $r_{12}:=\left\langle q_{1}, a_{2}\right\rangle \in \mathbb{R}$. Then, compute

$$
\tilde{q}_{2}:=a_{2}-r_{12} q_{1} \in \mathbb{R}^{m}, \quad r_{22}:=\left\|\tilde{q}_{2}\right\|_{2}>0, \quad q_{2}:=\frac{1}{r_{22}} \tilde{q}_{2} \in \mathbb{R}^{m}
$$

j) Compute $r_{i j}:=\left\langle q_{i}, a_{j}\right\rangle \in \mathbb{R}$ for $i \in\{1, \ldots, j-1\}$. Then, compute $\tilde{q}_{j}:=a_{j}-\sum_{l=1}^{j-1} r_{l j} q_{l} \in \mathbb{R}^{m}, \quad r_{j j}:=\left\|\tilde{q}_{j}\right\|_{2}>0, \quad q_{j}:=\frac{1}{r_{j j}} \tilde{q}_{j} \in \mathbb{R}^{m}$.
n) Compute $r_{i n}:=\left\langle q_{i}, a_{n}\right\rangle \in \mathbb{R}$ for $i \in\{1, \ldots, n-1\}$. Then, compute

$$
\tilde{q}_{n}:=a_{n}-\sum_{l=1}^{n-1} r_{l n} q_{l} \in \mathbb{R}^{m}, \quad r_{n n}:=\left\|\tilde{q}_{n}\right\|_{2}>0, \quad q_{n}:=\frac{1}{r_{n n}} \tilde{q}_{n} \in \mathbb{R}^{m}
$$

Example

Consider $A:=\left(a_{1}\left|a_{2}\right| a_{3}\right):=\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 2 & 1\end{array}\right) \in \mathbb{R}^{4 \times 3} .(\operatorname{Note} \operatorname{rk}(A)=3$.)

1) $\tilde{q}_{1}:=a_{1}=(1,-1,1,1)^{\mathrm{T}}$. Then, $r_{11}:=\left\|\tilde{q}_{1}\right\|_{2}=2$ and we set $q_{1}:=r_{11}^{-1} \tilde{q}_{1}=\frac{1}{2}(1,-1,1,1)^{\mathrm{T}}$.
2) $r_{12}:=\left\langle q_{1}, a_{2}\right\rangle=1, \quad \tilde{q}_{2}:=a_{2}-r_{12} q_{1}=\frac{1}{2}(-1,3,1,3)^{\mathrm{T}}$. Then, $r_{22}:=\left\|\tilde{q}_{2}\right\|_{2}=\sqrt{5}$ and we set $q_{2}:=r_{22}^{-1} \tilde{q}_{2}=\frac{1}{2 \sqrt{5}}(-1,3,1,3)^{\mathrm{T}}$.
3) $r_{13}:=\left\langle q_{1}, a_{3}\right\rangle=0, r_{23}:=\left\langle q_{2}, a_{3}\right\rangle=\frac{2}{\sqrt{5}}$,
$\tilde{q}_{3}:=a_{3}-r_{13} q_{1}-r_{23} q_{2}=\frac{2}{5}(3,1,-3,1)^{\mathrm{T}}$. Then, $r_{33}:=\left\|\tilde{q}_{3}\right\|_{2}=\frac{4}{\sqrt{5}}$ and we set $q_{3}:=r_{33}^{-1} \tilde{q}_{3}=\frac{1}{2 \sqrt{5}}(3,1,-3,1)^{\mathrm{T}}$.
$\Longrightarrow A=\hat{Q} \hat{R}$ with $\hat{Q}:=\left(\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2 \sqrt{5}} & \frac{3}{2 \sqrt{5}} \\ -\frac{1}{2} & \frac{3}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} \\ \frac{1}{2} & \frac{1}{2 \sqrt{5}} & -\frac{3}{2 \sqrt{5}} \\ \frac{1}{2} & \frac{3}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}}\end{array}\right), \quad \hat{R}:=\left(\begin{array}{ccc}2 & 1 & 0 \\ 0 & \sqrt{5} & \frac{2}{\sqrt{5}} \\ 0 & 0 & \frac{4}{\sqrt{5}}\end{array}\right)$.
$\Longrightarrow A=\hat{Q} \hat{R}$ with

$$
\hat{Q}:=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2 \sqrt{5}} & \frac{3}{2 \sqrt{5}} \\
-\frac{1}{2} & \frac{3}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{1}{2 \sqrt{5}} & -\frac{3}{2 \sqrt{5}} \\
\frac{1}{2} & \frac{3}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}}
\end{array}\right), \quad \hat{R}:=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & \sqrt{5} & \frac{2}{\sqrt{5}} \\
0 & 0 & \frac{4}{\sqrt{5}}
\end{array}\right)
$$

is a reduced QR factorization of A. How to obtain a full QR factorization?
"Fill up" \hat{Q} with additional orthonormal column and \hat{R} with additional row of zeros: can take, e.g.,

$$
Q:=\left(\begin{array}{cccc}
\frac{1}{2} & -\frac{1}{2 \sqrt{5}} & \frac{3}{2 \sqrt{5}} & \frac{1}{2} \\
-\frac{1}{2} & \frac{3}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2 \sqrt{5}} & -\frac{3}{2 \sqrt{5}} & \frac{1}{2} \\
\frac{1}{2} & \frac{3}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & -\frac{1}{2}
\end{array}\right), \quad R:=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & \sqrt{5} & \frac{2}{\sqrt{5}} \\
0 & 0 & \frac{4}{\sqrt{5}} \\
0 & 0 & 0
\end{array}\right)
$$

to find that $A=Q R$ is a (full) QR factorization of A.

From reduced to full QR

From a reduced $Q R$ factorization, we can always obtain a full QR factorization:

Let $A \in \mathbb{R}^{m \times n}, m \geq n$, and suppose $A=\hat{Q} \hat{R}$ is a reduced QR factn.

- If $m=n$, this is already a full QR factorization.
- If $m>n$, choose arbitrary orthonormal vectors $q_{n+1}, \ldots, q_{m} \in \mathbb{R}^{m}$ satisfying $\left\{q_{n+1}, \ldots, q_{m}\right\} \perp\left\{q_{1}, \ldots, q_{n}\right\}$, and obtain

$$
A=\left(\hat{Q}\left|q_{n+1}\right| \cdots \mid q_{m}\right)\left(\frac{\hat{R}}{0_{(m-n) \times n}}\right)=: Q R
$$

is a (full) QR factorization of A.

Existence

Theorem (Existence result for QR)

Let $m, n \in \mathbb{N}$ with $m \geq n$. Then, every $A \in \mathbb{R}^{m \times n}$ has a $Q R$ factorization.
Proof: We know every full-rank matrix $A \in \mathbb{R}^{m \times n}, m \geq n$, has a reduced QR factorization (Gram-Schmidt Algorithm) and hence, also a full QR factorization.

It remains to consider the case of rank-deficient matrices: To this end, let $A \in \mathbb{R}^{m \times n}, m \geq n$, with $0 \leq \operatorname{rk}(A)<n$.

Then, running the Gram-Schmidt Algorithm, there will be at least one step j, where $\tilde{q}_{j}=0$. Whenever this happens, set $r_{j j}=0$ and take $q_{j} \in \mathbb{R}^{m}$, $\left\|q_{j}\right\|_{2}=1$, satisfying $\left\{q_{j}\right\} \perp\left\{q_{1}, \ldots, q_{j-1}\right\}$, and continue the Algorithm.

This yields a reduced $Q R$ factorization for A, from which we can then obtain a full QR factorization.
\Longrightarrow We now have a way to compute reduced and full QR factorizations to arbitrary real $m \times n$ matrices with $m \geq n$.

Exercises can be found on the problem sheets.

Next: Uniqueness?

Is the QR factorization unique?

No. - In 1D: Let $A=(a) \in \mathbb{R}^{1 \times 1}$. Then, A has the QR factorizations

$$
(a)=\underbrace{(1)}_{Q} \underbrace{(a)}_{R}, \quad(a)=\underbrace{(-1)}_{Q} \underbrace{(-a)}_{R} .
$$

- Let $A \in \mathbb{R}^{m \times n}, m \geq n$, and suppose $A=Q R$ is a $Q R$ factorization of A. Then, $A=(-Q)(-R)$ is also a QR factorization of A.
- Let $A \in \mathbb{R}^{m \times n}, m \geq n$, and suppose $A=Q R$ is a $Q R$ factorization of A (recall $Q \in \mathbb{R}^{m \times m}$ orthogonal and $R \in \mathbb{R}^{m \times n}$ upper-triangular). Write $Q=\left(q_{1}|\cdots| q_{m}\right), R^{\mathrm{T}}=\left(b_{1}|\cdots| b_{m}\right)$, and let $s_{1}, \ldots, s_{m} \in\{-1,1\}$. Then,

$$
A=Q R=\left(q_{1}|\cdots| q_{m}\right)\left(\begin{array}{c}
b_{1}^{\mathrm{T}} \\
\vdots \\
b_{m}^{\mathrm{T}}
\end{array}\right)=\left(s_{1} q_{1}|\cdots| s_{m} q_{m}\right)\binom{\frac{s_{1} b_{1}^{\mathrm{T}}}{\vdots}}{s_{m} b_{m}^{\mathrm{T}}}=: \tilde{Q} \tilde{R}
$$

\Longrightarrow Given a QR factorization, we can construct new QR factorizations by multiplying the i-th column of Q and the i-th row of R by $s_{i} \in\{-1,1\}$.
\Longrightarrow There is hope: we only used signs to construct new factorizations.

Uniqueness result for QR

Theorem (Uniqueness result for QR)

Let $m, n \in \mathbb{N}$ with $m \geq n$. Then, every $A \in \mathbb{R}^{m \times n}$ with $\operatorname{rk}(A)=n$ has a unique reduced $Q R$ factn $A=\hat{Q} \hat{R}$ with \hat{R} having positive diagonal entries.

Proof: Let $A \in \mathbb{R}^{m \times n}, m \geq n$, be a matrix of full rank, i.e., $\operatorname{rk}(A)=n$. For any reduced QR factorization $A=\hat{Q} \hat{R}$ with $\hat{Q}=\left(q_{1}|\cdots| q_{n}\right) \in \mathbb{R}^{m \times n}$ having orthonormal columns and $\hat{R}=\left(r_{i j}\right) \in \mathbb{R}^{n \times n}$ upper-triangular, have

$$
\left\{\begin{array}{rl}
a_{1} & =r_{11} q_{1}, \\
a_{2} & =r_{12} q_{1}+r_{22} q_{2}, \\
& \vdots \\
a_{n} & =r_{1 n} q_{1}+r_{2 n} q_{2}+\cdots+r_{n n} q_{n} .
\end{array} \quad \Longrightarrow q_{j}=\frac{a_{j}-\sum_{l=1}^{j-1} r_{l j} q_{l}}{r_{j j}} \quad \forall 1 \leq j \leq n\right.
$$

Note $r_{j j} \neq 0 \forall j(\operatorname{rk}(A)=n)$. Left-multiply by $q_{i}^{\mathrm{T}}, i<j: 0=\frac{\left\langle q_{i}, a_{j}\right\rangle-r_{i j}}{r_{j j}}$.

$$
\forall 1 \leq i \leq j \leq n: \quad r_{i j}= \begin{cases}\left\langle q_{i}, a_{j}\right\rangle & \text { if } i<j, \\ \pm\left\|a_{j}-\sum_{l=1}^{j-1} r_{l j} q_{l}\right\|_{2} & \text {, if } i=j .\end{cases}
$$

\Longrightarrow Requiring $r_{j j}>0 \forall j$ makes \hat{Q}, \hat{R} uniquely determined.

Application of QR: solving linear systems

The QR factorization provides a method to solve linear systems.
Given $A \in \mathbb{R}^{m \times n}, m \geq n$, and $b \in \mathbb{R}^{m}$. Problem: find $x \in \mathbb{R}^{n}$ s.t.

$$
A x=b
$$

If we have a QR factorization $A=Q R$, we have

$$
A x=b \quad \Longleftrightarrow \quad Q R x=b \quad \Longleftrightarrow \quad R x=Q^{\mathrm{T}} b
$$

\Longrightarrow compute $\tilde{b}:=Q^{\mathrm{T}} b \in \mathbb{R}^{m}$ and then solve the upper-triangular system

$$
R x=\tilde{b}
$$

(solve by backward substitution, cheap!)

3.3 Projectors

What is a projector?

Definition (Projector/projection matrix)

A square matrix $P \in \mathbb{R}^{n \times n}$ is called a projector, or a projection matrix, iff

$$
P^{2}=P
$$

(i.e., iff $P \in \mathbb{R}^{n \times n}$ is idempotent).

Note that for $P \in \mathbb{R}^{n \times n}$:

$$
P^{2}=P \quad \Longleftrightarrow \quad L_{P} \circ L_{P}=L_{P}
$$

(recall defn of associated linear map: $L_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto P x$).
\Longrightarrow So, why are those matrices named projectors?

Why is a square matrix P with $P^{2}=P$ called projector?
Two crucial observations: If $P \in \mathbb{R}^{n \times n}$ is a projector (i.e., $P^{2}=P$), then

- there holds

$$
P y=y \quad \forall y \in \mathscr{R}(P)
$$

Proof: Let $y \in \mathscr{R}(P)$. Then, $y=P x$ for some $x \in \mathbb{R}^{n}$. Hence, $P y=P^{2} x=P x=y$.

- there holds

$$
\begin{gather*}
P x-x \in \mathcal{N}(P) \quad \forall x \in \mathbb{R}^{n} . \\
\text { Proof: } \forall x \in \mathbb{R}^{n}: P(P x-x)=P^{2} x-P x=P x-P x=0 .
\end{gather*}
$$

We say the projector P projects onto $\mathscr{R}(P)$ along $\mathcal{N}(P)$.

"oblique projector"

"orthogonal projector"

The complementary projector

Let $P \in \mathbb{R}^{n \times n}$ be a projector. Then,

$$
\left(I_{n}-P\right)^{2}=I_{n}^{2}-2 P+P^{2}=I_{n}-2 P+P=I_{n}-P,
$$

i.e., $I_{n}-P \in \mathbb{R}^{n \times n}$ is a projector.

Definition (Complementary projector)

Let $P \in \mathbb{R}^{n \times n}$ be a projector. Then, $I_{n}-P \in \mathbb{R}^{n \times n}$ is called the complementary projector to P.

We are going to see that the complementary projector to P is the projector onto $\mathcal{N}(P)$ along $\mathscr{R}(P)$.

Before we prove this, let's introduce the following:

Definition (Complementary subspaces)

Let $S_{1}, S_{2} \subseteq \mathbb{R}^{n}$ be subspaces of \mathbb{R}^{n}. Then, S_{1} and S_{2} are called complementary subspaces of \mathbb{R}^{n} iff

$$
S_{1}+S_{2}=\mathbb{R}^{n} \quad \text { and } \quad S_{1} \cap S_{2}=\{0\} .
$$

Projectors separate \mathbb{R}^{n} into two complementary subspaces

Theorem (A fundamental result for projectors)
Let $P \in \mathbb{R}^{n \times n}$ be a projector. Then,
(i) $\mathscr{R}\left(I_{n}-P\right)=\mathcal{N}(P)$ and $\mathcal{N}\left(I_{n}-P\right)=\mathscr{R}(P)$.
(ii) $\mathscr{R}(P)$ and $\mathcal{N}(P)$ are complementary subspaces of \mathbb{R}^{n}. Further, for any $x \in \mathbb{R}^{n}$,

$$
x=P x+\left(I_{n}-P\right) x \in \mathscr{R}(P)+\mathcal{N}(P)
$$

is the unique way of writing $x=x_{1}+x_{2}$ with $x_{1} \in \mathscr{R}(P), x_{2} \in \mathcal{N}(P)$.
Proof of (i): Start by showing $\mathscr{R}\left(I_{n}-P\right)=\mathcal{N}(P)$.
" \subseteq " Let $y \in \mathscr{R}\left(I_{n}-P\right)$. Then, $\exists x \in \mathbb{R}^{n}: y=x-P x$. We find
$P y=P x-P^{2} x=P x-P x=0$, i.e., $y \in \mathcal{N}(P)$.
" \supseteq ": Let $x \in \mathcal{N}(P)$. Then, $P x=0$ and hence, $x=x-P x \in \mathscr{R}\left(I_{n}-P\right)$.
Next, show $\mathcal{N}\left(I_{n}-P\right)=\mathscr{R}(P)$. We know that $\tilde{P}:=I_{n}-P \in \mathbb{R}^{n \times n}$ is a projector. Hence, $\mathscr{R}\left(I_{n}-\tilde{P}\right)=\mathcal{N}(\tilde{P})$, i.e., $\mathscr{R}(P)=\mathcal{N}\left(I_{n}-P\right)$.

Claim (ii): $\mathscr{R}(P)$ and $\mathcal{N}(P)$ are complementary subspaces of \mathbb{R}^{n}. Further, $\overline{\text { for any } x} \in \mathbb{R}^{n}$,

$$
x=P x+\left(I_{n}-P\right) x \in \mathscr{R}(P)+\mathcal{N}(P)
$$

is the unique way of writing $x=x_{1}+x_{2}$ with $x_{1} \in \mathscr{R}(P), x_{2} \in \mathcal{N}(P)$.
Proof of (ii): We only show $\mathscr{R}(P)$ and $\mathcal{N}(P)$ are complementary subspaces of \mathbb{R}^{n} as the second part is a consequence by a later result.

First, note $\mathscr{R}(P)$ and $\mathcal{N}(P)$ are subspaces of \mathbb{R}^{n}.
Let us show that $\mathscr{R}(P)+\mathcal{N}(P)=\mathbb{R}^{n}$:
$" \subseteq "$ "
"
" Let $x \in \mathbb{R}^{n}$. Then,

$$
x=P x+\left(I_{n}-P\right) x \in \mathscr{R}(P)+\mathscr{R}\left(I_{n}-P\right)=\mathscr{R}(P)+\mathcal{N}(P) .
$$

Next, let us show that $\mathscr{R}(P) \cap \mathcal{N}(P)=\{0\}$:
"〇"
" \supseteq " Let $x \in \mathscr{R}(P) \cap \mathcal{N}(P)$. Then, $x=P \tilde{x}$ for some $\tilde{x} \in \mathbb{R}^{n}$, and $P x=0$. Hence, $0=P x=P^{2} \tilde{x}=P \tilde{x}=x$.
\Longrightarrow A projector $P \in \mathbb{R}^{n \times n}$ separates \mathbb{R}^{n} into two complementary subspaces, namely $\mathscr{R}(P)$ and $\mathcal{N}(P)$.
\Longrightarrow What about the converse? Given two complementary subspaces S_{1}, S_{2} of \mathbb{R}^{n}, can we find a projector $P \in \mathbb{R}^{n \times n}$ s.t. $\mathscr{R}(P)=S_{1}, \mathcal{N}(P)=S_{2}$? Yes!

Theorem (Projector onto S_{1} along S_{2})
Let $S_{1}, S_{2} \subseteq \mathbb{R}^{n}$ be two complementary subspaces of \mathbb{R}^{n}. Then, there exists a unique projector $P \in \mathbb{R}^{n \times n}$ such that $\mathscr{R}(P)=S_{1}$ and $\mathcal{N}(P)=S_{2}$. We call this projector the projector onto S_{1} along S_{2}.

Claim: Let $S_{1}, S_{2} \subseteq \mathbb{R}^{n}$ be two complementary subspaces of \mathbb{R}^{n}. Then, there exists a unique projector $P \in \mathbb{R}^{n \times n}$ s.t. $\mathscr{R}(P)=S_{1}, \mathcal{N}(P)=S_{2}$.

Proof: Step 1: We show any $x \in \mathbb{R}^{n}$ has a unique decomposition

$$
x=x_{1}+x_{2} \quad \text { with } \quad x_{1} \in S_{1}, x_{2} \in S_{2}
$$

Existence: \checkmark, since $S_{1}+S_{2}=\mathbb{R}^{n}$.
Uniqueness: Suppose $\exists x_{1}, \tilde{x}_{1} \in S_{1}, x_{2}, \tilde{x}_{2} \in S_{2}$ s.t.

$$
x=x_{1}+x_{2}=\tilde{x}_{1}+\tilde{x}_{2} .
$$

$\Longrightarrow \underbrace{x_{1}-\tilde{x}_{1}}_{\in S_{1}}=\underbrace{\tilde{x}_{2}-x_{2}}_{\in S_{2}} \in S_{1} \cap S_{2}=\{0\}$.
$\Longrightarrow x_{1}=\tilde{x}_{1}$ and $x_{2}=\tilde{x}_{2}$.

Claim: Let $S_{1}, S_{2} \subseteq \mathbb{R}^{n}$ be two complementary subspaces of \mathbb{R}^{n}. Then, there exists a unique projector $P \in \mathbb{R}^{n \times n}$ s.t. $\mathscr{R}(P)=S_{1}, \mathcal{N}(P)=S_{2}$.

Proof: Step 2: Existence (construction) of P.
Define map

$$
L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad x=\underbrace{x_{1}}_{\in S_{1}}+\underbrace{x_{2}}_{\in S_{2}} \mapsto x_{1}
$$

(well-defined by Step 1.)

- Claim: L is linear.
- Proof: Given $x=x_{1}+x_{2} \in \mathbb{R}^{n}, y=y_{1}+y_{2} \in \mathbb{R}^{n}$ with $x_{1}, y_{1} \in S_{1}$, $x_{2}, y_{2} \in S_{2}$, and $\alpha \in \mathbb{R}$, we have

$$
\begin{aligned}
& L(\alpha x+y)=L(\underbrace{\left(\alpha x_{1}+y_{1}\right)}_{\in S_{1}}+\underbrace{\left(\alpha x_{2}+y_{2}\right)}_{\in S_{2}})=\alpha x_{1}+y_{1}=\alpha L(x)+L(y) . \\
& \Longrightarrow \exists P \in \mathbb{R}^{n \times n} \text { s.t. } L=L_{P}\left(\text { i.e., } L(x)=P x \text { for all } x \in \mathbb{R}^{n}\right) .
\end{aligned}
$$

P is a projector: For any $x=x_{1}+x_{2} \in \mathbb{R}^{n}$ with $x_{1} \in S_{1}, x_{2} \in S_{2}$:

$$
P^{2} x=L(L(x))=L\left(x_{1}\right)=L\left(x_{1}+0\right)=x_{1}=L(x)=P x .
$$

$\Longrightarrow P^{2}=P \checkmark$
$\mathscr{R}(P)=S_{1}$: Note $\mathscr{R}(P)=\left\{L(x) \mid x \in \mathbb{R}^{n}\right\} \subseteq S_{1}$ (recall $L(x)=x_{1}$).
Conversely, for $y \in S_{1}: y=\underbrace{y}_{\in S_{1}}+\underbrace{0}_{\in S_{2}}$, thus $y=L(y)=P y \in \mathscr{R}(P)$.
$\mathcal{N}(P)=S_{2}$: For any $x=x_{1}+x_{2} \in \mathbb{R}^{n}$ with $x_{1} \in S_{1}, x_{2} \in S_{2}$:
$P x=0 \Longleftrightarrow L(x)=0 \Longleftrightarrow x_{1}=0 \Longleftrightarrow x \in S_{2}$.
\Longrightarrow We have found a projector $P \in \mathbb{R}^{n \times n}$ with $\mathscr{R}(P)=S_{1}, \mathcal{N}(P)=S_{2}$.

Remains to show uniqueness.

Claim: Let $S_{1}, S_{2} \subseteq \mathbb{R}^{n}$ be two complementary subspaces of \mathbb{R}^{n}. Then, there exists a unique projector $P \in \mathbb{R}^{n \times n}$ s.t. $\mathscr{R}(P)=S_{1}, \mathcal{N}(P)=S_{2}$.

Proof: Step 3: Uniqueness of P.
Suppose \exists another projector $\tilde{P} \in \mathbb{R}^{n \times n}$ with $\mathscr{R}(\tilde{P})=S_{1}, \mathcal{N}(\tilde{P})=S_{2}$.
Then, must have $\tilde{P} y=y$ for any $y \in \mathscr{R}(\tilde{P})=S_{1}$.
\Longrightarrow For any $x \in \mathbb{R}^{n}$ with $x=x_{1}+x_{2}$ where $x_{1} \in S_{1}, x_{2} \in S_{2}$:

$$
\tilde{P} x=\tilde{P} x_{1}+\tilde{P} x_{2}=x_{1}+0=x_{1}=L(x)=P x
$$

$\Longrightarrow \tilde{P}=P$.

Orthogonal projectors

Definition (Orthogonal projector)

A projector $P \in \mathbb{R}^{n \times n}$ is called an orthogonal projector iff it projects onto S_{1} along S_{2} for some subspaces S_{1}, S_{2} of \mathbb{R}^{n} with $S_{1} \perp S_{2}$. A projector which is not an orthogonal projector is called oblique projector.
$\Longrightarrow P \in \mathbb{R}^{n \times n}$ is orthogonal projector iff $P^{2}=P$ and $\mathscr{R}(P) \perp \mathcal{N}(P)$.
Theorem (Characterization of orthogonal projectors)
A matrix $P \in \mathbb{R}^{n \times n}$ is an orthogonal projector iff $P^{2}=P=P^{T}$.
WARNING: Orthogonal projectors do not need to be orthogonal matrices. Actually, I_{n} is the only matrix in $\mathbb{R}^{n \times n}$ that is orthogonal and an orthogonal projector. (Pf: $P^{2}=P=P^{\mathrm{T}}=P^{-1} \Longleftrightarrow P=I_{n}$.)
$P \in \mathbb{R}^{n \times n}$ is orthogonal projector $\Longleftrightarrow P^{2}=P=P^{\mathrm{T}}$. Proof: " \Longleftarrow ": Let $P \in \mathbb{R}^{n \times n}$ with $P^{2}=P=P^{\mathrm{T}}$. Then,

- P is a projector
- $\mathscr{R}(P) \perp \mathcal{N}(P)$: Let $y \in \mathscr{R}(P), x \in \mathcal{N}(P)$. Need to show $\langle y, x\rangle=0$.

$$
\begin{aligned}
& y \in \mathscr{R}(P) \Longrightarrow \exists v \in \mathbb{R}^{n}: y=P v, \\
& x \in \mathcal{N}(P) \Longrightarrow P x=0 .
\end{aligned}
$$

Then,

$$
\langle y, x\rangle=\langle P v, x\rangle=\left\langle v, P^{\mathrm{T}} x\right\rangle=\langle v, P x\rangle=0 .
$$

$\Longrightarrow P$ is an orthogonal projector.
$P \in \mathbb{R}^{n \times n}$ is orthogonal projector $\Longleftrightarrow P^{2}=P=P^{T}$.
Proof: " \Longrightarrow ": Let $P \in \mathbb{R}^{n \times n}$ orthogonal projector, i.e.,

$$
P^{2}=P, \quad \mathscr{R}(P) \perp \mathcal{N}(P) .
$$

Need to prove $P^{\mathrm{T}}=P$. If $P=0_{n \times n}$, done. So, suppose $P \neq 0_{n \times n}$.
Write $r:=\operatorname{rk}(P)=\operatorname{dim}(\mathscr{R}(P)) \in\{1, \ldots, n\}$. Note $\operatorname{dim}(\mathcal{N}(P))=n-r$.

- Let $\left\{q_{1}, \ldots, q_{r}\right\}$ ONB of $\mathscr{R}(P)$. Note $P q_{i}=q_{i} \forall 1 \leq i \leq r$.
- Let $\left\{q_{r+1}, \ldots, q_{n}\right\}$ ONB of $\mathcal{N}(P)$. Note $P q_{i}=0 \forall r+1 \leq i \leq n$. \Longrightarrow As $\mathscr{R}(P) \perp \mathcal{N}(P)$, have $\left\{q_{1}, \ldots, q_{n}\right\}$ is orthonormal basis (ONB) of \mathbb{R}^{n}.

Set $Q:=\left(q_{1}|\cdots| q_{n}\right) \in \mathbb{R}^{n \times n}$ and note Q is orthogonal. Then,

$$
P Q=Q \Sigma, \quad \text { where } \quad \Sigma:=\operatorname{diag}_{n \times n}(\underbrace{1, \ldots, 1}_{r \text { times }}, \underbrace{0, \ldots, 0}_{(n-r) \text { times }}) .
$$

$\Longrightarrow P=Q \Sigma Q^{\mathrm{T}}$. We found a SVD and an eigval decomposition of P ! $\Longrightarrow P^{\mathrm{T}}=Q \Sigma^{\mathrm{T}} Q^{\mathrm{T}}=Q \Sigma Q^{\mathrm{T}}=P$.

Singular values of projectors

Theorem (Singular values of projectors)
Let $P \in \mathbb{R}^{n \times n} \backslash\{0\}$ be a projector with rank $r:=\operatorname{rk}(P)$ and singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$. Then,
(i) $\sigma_{i} \geq 1$ for all $i \in\{1, \ldots, r\}$.
(ii) P is an orthogonal projector $\Longleftrightarrow \sigma_{1}=\|P\|_{2}=1$.

Proof of (ii): (proof of (i) is an exercise)
" \Longrightarrow ": If P is an orthogonal projector, $\sigma_{i}=1 \forall 1 \leq i \leq r \Longrightarrow \sigma_{1}=1$.

Singular values of projectors

Theorem (Singular values of projectors)

Let $P \in \mathbb{R}^{n \times n} \backslash\{0\}$ be a projector with rank $r:=\operatorname{rk}(P)$ and singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$. Then,
(i) $\sigma_{i} \geq 1$ for all $i \in\{1, \ldots, r\}$.
(ii) P is an orthogonal projector $\Longleftrightarrow \sigma_{1}=\|P\|_{2}=1$.

Proof of (ii): " \Longleftarrow ": Suppose $P \in \mathbb{R}^{n \times n} \backslash\{0\}$ is a projector with $\sigma_{1}=1$. Let $P=U \Sigma V^{\mathrm{T}}=\left(u_{1}|\cdots| u_{n}\right) \operatorname{diag}_{n \times n}\left(\sigma_{1}, \ldots, \sigma_{n}\right)\left(v_{1}|\cdots| v_{n}\right)^{\mathrm{T}}$ SVD.

By (i), $1=\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r} \geq 1 \Longrightarrow \sigma_{i}=1 \forall 1 \leq i \leq r$.
$\Longrightarrow P=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\mathrm{T}}=\sum_{i=1}^{r} u_{i} v_{i}^{\mathrm{T}}, \quad P^{\mathrm{T}}=\sum_{i=1}^{r} v_{i} u_{i}^{\mathrm{T}}$.
Note $\forall 1 \leq j \leq r: P u_{j}=u_{j} \Longrightarrow \sum_{i=1}^{r}\left\langle v_{i}, u_{j}\right\rangle u_{i}=u_{j} \Longrightarrow\left\langle v_{j}, u_{j}\right\rangle=1$.
$\Longrightarrow v_{j}=u_{j} \forall 1 \leq j \leq r$ as $\left\|v_{j}-u_{j}\right\|_{2}^{2}=\left\|v_{j}\right\|_{2}^{2}+\left\|u_{j}\right\|_{2}^{2}-2\left\langle v_{j}, u_{j}\right\rangle=0$.
$\Longrightarrow P=\sum_{i=1}^{r} u_{i} u_{i}^{\mathrm{T}}=P^{\mathrm{T}}$, i.e., P is an orthogonal projector.

Projection with orthonormal basis

Let $\left\{q_{1}, \ldots, q_{n}\right\}$ orthonormal basis of \mathbb{R}^{n}, and consider the complementary subspaces $S_{1}:=\operatorname{span}\left(q_{1}, \ldots, q_{r}\right)$ and $S_{2}:=\operatorname{span}\left(q_{r+1}, \ldots, q_{n}\right)$ of \mathbb{R}^{n}, where $1 \leq r \leq n-1$.

Then, the unique projector $P \in \mathbb{R}^{n \times n}$ onto S_{1} along S_{2} is given by

$$
P=\hat{Q} \hat{Q}^{\mathrm{T}}=\sum_{i=1}^{r} q_{i} q_{i}^{\mathrm{T}}, \quad \text { where } \quad \hat{Q}:=\left(q_{1}|\cdots| q_{r}\right) \in \mathbb{R}^{n \times r},
$$

and P is actually an orthogonal projector. Indeed, $\mathscr{R}(P)=\mathscr{R}(\hat{Q})=S_{1}, \mathcal{N}(P)=\mathcal{N}\left(\hat{Q}^{\mathrm{T}}\right)=S_{2}$, and $P^{2}=P=P^{\mathrm{T}}$.

The corresponding linear map

$$
L_{P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad x \mapsto \sum_{i=1}^{r} q_{i} q_{i}^{\mathrm{T}} x=\sum_{i=1}^{r}\left\langle x, q_{i}\right\rangle q_{i}
$$

projects the vector space \mathbb{R}^{n} orthogonally onto S_{1} along S_{2}, i.e., it isolates the components of a vector in directions q_{1}, \ldots, q_{r}.

The complementary projector $I_{n}-P$ is also an orthogonal projector: it is the projector onto $S_{2}=\operatorname{span}\left(q_{r+1}, \ldots, q_{n}\right)$ along $S_{1}=\operatorname{span}\left(q_{1}, \ldots, q_{r}\right)$, i.e., it isolates the components of a vector in directions q_{r+1}, \ldots, q_{n}. The corresponding linear map is

$$
L_{I_{n}-P}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad x \mapsto\left(I_{n}-\hat{Q} \hat{Q}^{\mathrm{T}}\right) x=\sum_{i=r+1}^{n} q_{i} q_{i}^{\mathrm{T}} x=\sum_{i=r+1}^{n}\left\langle x, q_{i}\right\rangle q_{i} .
$$

Observe that we can decompose any $x \in \mathbb{R}^{n}$ uniquely into $x=x_{1}+x_{2}$ with $x_{1} \in S_{1}, x_{2} \in S_{2}$, where $x_{1}=\hat{Q} \hat{Q}^{\mathrm{T}} x$ and $x_{2}=\left(I_{n}-\hat{Q} \hat{Q}^{\mathrm{T}}\right) x$.

Projection with arbitrary basis

Let S_{1} be a subspace of \mathbb{R}^{m} spanned by $n \leq m$ linearly independent vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$. We set $A:=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}$ so that $S_{1}=\mathscr{R}(A)$, and construct an orthogonal projector $P \in \mathbb{R}^{m \times m}$ onto S_{1}.

For $x \in \mathbb{R}^{m}$ we must have $P x \in S_{1}$, i.e., $P x=A y$ for some $y \in \mathbb{R}^{n}$, and $\{P x-x\} \perp S_{1}$, i.e.,

$$
0_{n \times 1}=\left(\begin{array}{c}
\left\langle a_{1}, P x-x\right\rangle \\
\vdots \\
\left\langle a_{n}, P x-x\right\rangle
\end{array}\right)=A^{\mathrm{T}}(P x-x)=A^{\mathrm{T}} A y-A^{\mathrm{T}} x
$$

Note that $\operatorname{rk}\left(A^{\mathrm{T}} A\right)=\operatorname{rk}(A)=n \Longrightarrow A^{\mathrm{T}} A \in \mathbb{R}^{n \times n}$ is invertible.

$$
\Longrightarrow y=\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} x \quad \Longrightarrow \quad P x=A y=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} x
$$

The orthogonal projector onto $S_{1}=\mathscr{R}(A)$ is given by

$$
P=A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}} \in \mathbb{R}^{m \times m}
$$

Rk: if $A=\hat{Q}$ has orthonormal columns, this reduces to $P=\hat{Q} \hat{Q}^{\mathrm{T}}$.

Some remarks regarding orthogonal projectors

Let S be a subspace of \mathbb{R}^{n}.

- The orthogonal projector onto S is unique.

Proof: Suppose $P_{1}, P_{2} \in \mathbb{R}^{n \times n}$ are orthogonal projectors with $\mathscr{R}\left(P_{1}\right)=\mathscr{R}\left(P_{2}\right)=S$. Then, we have
$\underbrace{P_{1} x}_{\in S}-\underbrace{P_{2} x}_{\in S}=\underbrace{\left(I_{n}-P_{2}\right) x}_{\in S^{\perp}}-\underbrace{\left(I_{n}-P_{1}\right) x}_{\in S^{\perp}} \in S \cap S^{\perp}=\{0\} \quad \forall x \in \mathbb{R}^{n}$,
i.e., $P_{1} x=P_{2} x \forall x \in \mathbb{R}^{n}$ and thus, $P_{1}=P_{2}$. Here, we have used that

$$
\mathscr{R}\left(I_{n}-P_{i}\right)=\mathcal{N}\left(P_{i}\right) \perp \mathscr{R}\left(P_{i}\right)=S \quad \forall i \in\{1,2\} .
$$

(Recall definition of orthogonal complement: $S^{\perp}:=\left\{x \in \mathbb{R}^{n} \mid\langle x, s\rangle=0 \forall s \in S\right\}$.)

- The orthogonal projector onto S is the projector onto S along S^{\perp}.

Proof: Let $P \in \mathbb{R}^{n \times n}$ be the orthogonal projector onto $S=\mathscr{R}(P)$. Then, using $\mathscr{R}(A)^{\perp}=\mathcal{N}\left(A^{\mathrm{T}}\right) \forall A \in \mathbb{R}^{m \times n}$ (exercise) and $P^{\mathrm{T}}=P$, we find $\mathcal{N}(P)=\mathscr{R}\left(P^{\mathrm{T}}\right)^{\perp}=\mathscr{R}(P)^{\perp}=S^{\perp}$.

3.4 QR via Gram-Schmidt orthogonalization

Let $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}, m \geq n$, and assume $\operatorname{rk}(A)=n$.

1) Compute

$$
\tilde{q}_{1}:=a_{1} \in \mathbb{R}^{m}, \quad r_{11}:=\left\|\tilde{q}_{1}\right\|_{2}>0, \quad q_{1}:=\frac{1}{r_{11}} \tilde{q}_{1} \in \mathbb{R}^{m} .
$$

If $n=1$, we stop. If $n \geq 2$, we continue as follows.
2) Compute $r_{12}:=\left\langle q_{1}, a_{2}\right\rangle \in \mathbb{R}$. Then, compute

$$
\tilde{q}_{2}:=a_{2}-r_{12} q_{1} \in \mathbb{R}^{m}, \quad r_{22}:=\left\|\tilde{q}_{2}\right\|_{2}>0, \quad q_{2}:=\frac{1}{r_{22}} \tilde{q}_{2} \in \mathbb{R}^{m}
$$

j) Compute $r_{i j}:=\left\langle q_{i}, a_{j}\right\rangle \in \mathbb{R}$ for $i \in\{1, \ldots, j-1\}$. Then, compute

$$
\tilde{q}_{j}:=a_{j}-\sum_{l=1}^{j-1} r_{l j} q_{l} \in \mathbb{R}^{m}, \quad r_{j j}:=\left\|\tilde{q}_{j}\right\|_{2}>0, \quad q_{j}:=\frac{1}{r_{j j}} \tilde{q}_{j} \in \mathbb{R}^{m}
$$

n) Compute $r_{i n}:=\left\langle q_{i}, a_{n}\right\rangle \in \mathbb{R}$ for $i \in\{1, \ldots, n-1\}$. Then, compute $\tilde{q}_{n}:=a_{n}-\sum_{l=1}^{n-1} r_{l n} q_{l} \in \mathbb{R}^{m}, \quad r_{n n}:=\left\|\tilde{q}_{n}\right\|_{2}>0, \quad q_{n}:=\frac{1}{r_{n n}} \tilde{q}_{n} \in \mathbb{R}^{m}$.

Gram-Schmidt and projectors

Let $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}, m \geq n$, and assume $\operatorname{rk}(A)=n$. Let $q_{1}, \ldots, q_{n} \in \mathbb{R}^{m}$ be the orthonormal vectors obtained through Gram-Schmidt and define
$P_{1}:=I_{m}$
$P_{i}:=I_{m}-\hat{Q}_{i-1} \hat{Q}_{i-1}^{\mathrm{T}}$, where $\hat{Q}_{i-1}:=\left(q_{1}|\cdots| q_{i-1}\right) \in \mathbb{R}^{m \times(i-1)}, 2 \leq i \leq n$.
Note that $P_{i} \in \mathbb{R}^{m \times m}$ projects the vector space \mathbb{R}^{m} onto the space orthogonal to $\operatorname{span}\left(q_{1}, \ldots, q_{i-1}\right)$. Then,

$$
q_{1}=\frac{P_{1} a_{1}}{\left\|P_{1} a_{1}\right\|_{2}}, \quad q_{2}=\frac{P_{2} a_{2}}{\left\|P_{2} a_{2}\right\|_{2}}, \quad \cdots \quad, \quad q_{n}=\frac{P_{n} a_{n}}{\left\|P_{n} a_{n}\right\|_{2}},
$$

i.e., q_{i} is precisely the normalized orthogonal projection of a_{i} onto the space orthogonal to $\operatorname{span}\left(q_{1}, \ldots, q_{i-1}\right)$.

Classical Gram-Schmidt iteration

Let $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}, m \geq n$, and $\operatorname{rk}(A)=n$.

$$
\begin{aligned}
& \text { for } j=1, \ldots, n \text { do } \\
& \quad \tilde{q}_{j}=a_{j} \\
& \quad \text { for } i=1, \ldots, j-1 \text { do } \\
& r_{i j}=\left\langle q_{i}, a_{j}\right\rangle \\
& \tilde{q}_{j}=\tilde{q}_{j}-r_{i j} q_{i}
\end{aligned}
$$

end for

$$
\begin{aligned}
& r_{j j}=\left\|\tilde{q}_{j}\right\|_{2} \\
& q_{j}=\frac{1}{r_{j j}} \tilde{q}_{j}
\end{aligned}
$$

end for
Drawback: numerically unstable. However, a simple modification leads to improved stability.

Key observation: projector $P_{i}=I_{m}-\hat{Q}_{i-1} \hat{Q}_{i-1}^{\mathrm{T}} \in \mathbb{R}^{m \times m}$ of rank $m-(i-1)$ can be decomposed as product of $i-1$ rank $m-1$ projectors:

$$
P_{i}=\left(I_{m}-q_{i-1} q_{i-1}^{\mathrm{T}}\right)\left(I_{m}-q_{i-2} q_{i-2}^{\mathrm{T}}\right) \cdots\left(I_{m}-q_{1} q_{1}^{\mathrm{T}}\right), \quad 2 \leq i \leq n
$$

Modified Gram-Schmidt

Let $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}, m \geq n$, and $\operatorname{rk}(A)=n$. The modified Gram-Schmidt iteration does the following:

$$
\text { for } i=1, \ldots, n \text { do }
$$

$$
\tilde{q}_{i}=a_{i}
$$

end for

$$
\begin{aligned}
& \text { for } i=1, \ldots, n \text { do } \\
& \quad r_{i i}=\left\|\tilde{q}_{i}\right\|_{2} \\
& q_{i}=\frac{1}{r_{i i}} \tilde{q}_{i} \\
& \text { for } j=i+1, \ldots, n \text { do } \\
& r_{i j}=\left\langle q_{i}, \tilde{q}_{j}\right\rangle \\
& \tilde{q}_{j}=\tilde{q}_{j}-r_{i j} q_{i}
\end{aligned}
$$

end for
end for

Theorem

This algorithm requires $\sim 2 m n^{2}$ flops, i.e., $\lim _{m, n \rightarrow \infty} \frac{\# \text { flops }}{2 m n^{2}}=1$.

Gram-Schmidt $=$ triangular orthogonalization

Schematically, (modified) Gram-Schmidt does the following:

$$
\begin{aligned}
& \text { 1. } A R_{1}=\left(a_{1}|\cdots| a_{n}\right)\left(\begin{array}{ccccc}
\frac{1}{r_{11}} & -\frac{r_{12}}{r_{11}} & -\frac{r_{13}}{r_{11}} & \cdots & -\frac{r_{1 n}}{r_{11}} \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0 \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right)=\left(q_{1}|*| \cdots \mid *\right) \text {, }\left(\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
0 & \frac{1}{r_{22}} & -\frac{r_{23}}{r_{22}} & \cdots & -\frac{r_{2 n}}{r_{22}} \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0 \\
0 & \cdots & \cdots & 0 & 1
\end{array}\right)=\left(q_{1}\left|q_{2}\right| *|\cdots| *\right),
\end{aligned}
$$

n. $A R_{1} R_{2} \cdots R_{n}=\left(q_{1}\left|q_{2}\right| \cdots \mid q_{n}\right)=\hat{Q}$, i.e., $A=\hat{Q} \hat{R}$ with $\hat{R}=\left(R_{1} \cdots R_{n}\right)^{-1}$.

Gram-Schmidt is a triangular orthogonalization method.
3.5 QR via Householder triangularization

Two different ideologies

As before, consider "tall" matrices $A \in \mathbb{R}^{m \times n}, m \geq n$.
Gram-Schmidt: triangular orthogonalization, i.e., construct $R_{1}, \ldots, R_{n} \in \mathbb{R}^{n \times n}$ upper-triangular s.t.

$$
A R_{1} R_{2} \cdots R_{n}=\hat{Q} \in \mathbb{R}^{m \times n}
$$

is matrix with orthonormal columns.
\Longrightarrow yields reduced $Q \mathrm{R}$ factorization $A=\hat{Q} \hat{R}$ with $\hat{R}:=\left(R_{1} R_{2} \cdots R_{n}\right)^{-1}$.
Householder: orthogonal triangularization, i.e., construct $Q_{1}, \ldots, Q_{n} \in \mathbb{R}^{m \times m}$ orthogonal s.t.

$$
Q_{n} \cdots Q_{2} Q_{1} A=R \in \mathbb{R}^{m \times n}
$$

is upper-triangular.
\Longrightarrow yields (full) QR factorization $A=Q R$ with $Q:=Q_{1}^{\mathrm{T}} Q_{2}^{\mathrm{T}} \cdots Q_{n}^{\mathrm{T}}$.

So, how do we find such orthogonal matrices Q_{i} ?

The idea

We construct orthogonal matrices Q_{1}, \ldots, Q_{n} in a way so that $A \in \mathbb{R}^{m \times n}$, $m \geq n$ is transformed as follows: (illustration for $m=4, n=3$)

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right) \Longrightarrow Q_{1} A=\left(\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right) \\
\Longrightarrow Q_{2} Q_{1} A=\left(\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & * \\
0 & 0 & *
\end{array}\right) \Longrightarrow Q_{3} Q_{2} Q_{1} A=\left(\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & r_{33} \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

So, left-multiplication by Q_{i} should leave the first $(i-1)$ rows and columns unchanged and introduce zeros below the i-th main diagonal entry, thus leading to an upper-triangular matrix $R=Q_{n} \cdots Q_{2} Q_{1} A$ after n such steps.

$$
\begin{gathered}
A=\left(\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right) \Longrightarrow Q_{1} A=\left(\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right) \\
\Longrightarrow Q_{2} Q_{1} A=\left(\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & * \\
0 & 0 & *
\end{array}\right) \Longrightarrow Q_{3} Q_{2} Q_{1} A=\left(\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & r_{33} \\
0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

We choose $Q_{i}, i \in\{1, \ldots, n\}$, to be an orthogonal matrix of the form

$$
Q_{i}=\left(\begin{array}{c|c}
I_{i-1} & 0_{(i-1) \times(m-i+1)} \\
\hline 0_{(m-i+1) \times(i-1)} & F
\end{array}\right) \in \mathbb{R}^{m \times m}
$$

with $F \in\left\{F_{-}, F_{+}\right\} \in \mathbb{R}^{(m-i+1) \times(m-i+1)}$ s.t.

$$
x=\left(\begin{array}{c}
* \\
* \\
\vdots \\
*
\end{array}\right) \in \mathbb{R}^{m-i+1} \quad \Longrightarrow \quad F_{ \pm} x=\left(\begin{array}{c}
\pm\|x\|_{2} \\
0 \\
\vdots \\
0
\end{array}\right)= \pm\|x\|_{2} e_{1} .
$$

Geometric illustration of $F_{ \pm}$

Householder reflectors

Note $I_{m-i+1}-\frac{v v^{\mathrm{T}}}{\|v\|_{2}^{2}}$ is the orthogonal projector onto the hyperplane orthogonal to $v \in \mathbb{R}^{m-i+1}$. Therefore,

$$
F=I_{m-i+1}-2 \frac{v v^{\mathrm{T}}}{\|v\|_{2}^{2}}
$$

is as required. We call F a Householder reflector.
For numerical stability, choose reflector which moves x the larger distance:

$$
v=\operatorname{sign}\left(\left\langle x, e_{1}\right\rangle\right)\|x\|_{2} e_{1}+x
$$

where $\operatorname{sign}(\alpha)=1$ for $\alpha \geq 0$ and $\operatorname{sign}(\alpha)=-1$ otherwise.
(Rk: If $\left\langle x, e_{1}\right\rangle \geq 0$, then $v=-v_{-}$. If $\left\langle x, e_{1}\right\rangle<0$, then $v=-v_{+}$.)

Example: QR via Householder triangularization

Task: Compute a QR factorization of $A:=\left(\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \\ 1 & 2 & 1\end{array}\right)$.
Step 1: Set $x_{1}:=\left(\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right)$ and $v_{1}:=\operatorname{sign}\left(\left\langle x_{1}, e_{1}\right\rangle\right)\left\|x_{1}\right\|_{2} e_{1}+x_{1}=\left(\begin{array}{c}3 \\ -1 \\ 1 \\ 1\end{array}\right)$.
Take $Q_{1}:=I_{4}-2 \frac{v_{1} v_{1}^{\mathrm{T}}}{\left\|v_{1}\right\|_{2}^{2}}=\frac{1}{6}\left(\begin{array}{cccc}-3 & 3 & -3 & -3 \\ 3 & 5 & 1 & 1 \\ -3 & 1 & 5 & -1 \\ -3 & 1 & -1 & 5\end{array}\right)$. Then,

$$
Q_{1} A=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
0 & 4 / 3 & 4 / 3 \\
0 & 2 / 3 & -4 / 3 \\
0 & 5 / 3 & 2 / 3
\end{array}\right) .
$$

$$
Q_{1} A=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
0 & 4 / 3 & 4 / 3 \\
0 & 2 / 3 & -4 / 3 \\
0 & 5 / 3 & 2 / 3
\end{array}\right)
$$

Step 2: $x_{2}:=\left(\begin{array}{l}4 / 3 \\ 2 / 3 \\ 5 / 3\end{array}\right), \quad v_{2}:=\operatorname{sign}\left(\left\langle x_{2}, e_{1}\right\rangle\right)\left\|x_{2}\right\|_{2} e_{1}+x_{2}=\left(\begin{array}{c}\sqrt{5}+\frac{4}{3} \\ 2 / 3 \\ 5 / 3\end{array}\right)$.
Take
$Q_{2}:=\left(\begin{array}{c|c}1 & 0_{1 \times 3} \\ \hline 0_{3 \times 1} & I_{3}-2 \frac{2 v_{2}^{T}}{\left\|v_{2}\right\|_{2}^{2}}\end{array}\right)=\frac{\sqrt{5}}{435}\left(\begin{array}{cccc}\frac{435}{\sqrt{5}} & 0 & 0 & 0 \\ 0 & -116 & -58 & -145 \\ 0 & -58 & 75 \sqrt{5}+16 & -(30 \sqrt{5}-40) \\ 0 & -145 & -(30 \sqrt{5}-40) & 12 \sqrt{5}+100\end{array}\right)$.
Then,

$$
Q_{2} Q_{1} A=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
0 & -\sqrt{5} & -\frac{2}{\sqrt{5}} \\
0 & 0 & -\frac{24 \sqrt{5}+200}{145} \\
0 & 0 & -\frac{12 \sqrt{5}-16}{29}
\end{array}\right)
$$

$$
Q_{2} Q_{1} A=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
0 & -\sqrt{5} & -\frac{2}{\sqrt{5}} \\
0 & 0 & -\frac{24 \sqrt{5}+200}{145} \\
0 & 0 & -\frac{12 \sqrt{5}-16}{29}
\end{array}\right)
$$

Step 3: $x_{3}:=\binom{-\frac{24 \sqrt{5}+200}{145}}{-\frac{12 \sqrt{5}-16}{29}}, v_{3}:=\operatorname{sign}\left(\left\langle x_{3}, e_{1}\right\rangle\right)\left\|x_{3}\right\|_{2} e_{1}+x_{3}=-\frac{4}{29}\binom{7 \sqrt{5}+10}{3 \sqrt{5}-4}$. Take

$$
Q_{3}:=\left(\begin{array}{c|c}
I_{2} & 0_{2 \times 2} \\
\hline 0_{2 \times 2} & I_{2}-2 \frac{v_{3} v_{3}^{T}}{\left\|v_{3}\right\|_{2}^{2}}
\end{array}\right)=\frac{1}{29}\left(\begin{array}{cccc}
29 & 0 & 0 & 0 \\
0 & 29 & 0 & 0 \\
0 & 0 & -10 \sqrt{5}-6 & 4 \sqrt{5}-15 \\
0 & 0 & 4 \sqrt{5}-15 & 10 \sqrt{5}+6
\end{array}\right) .
$$

Then,

$$
Q_{3} Q_{2} Q_{1} A=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
0 & -\sqrt{5} & -\frac{2}{\sqrt{5}} \\
0 & 0 & \frac{4}{\sqrt{5}} \\
0 & 0 & 0
\end{array}\right)=: R .
$$

$$
Q_{3} Q_{2} Q_{1} A=\left(\begin{array}{ccc}
-2 & -1 & 0 \\
0 & -\sqrt{5} & -\frac{2}{\sqrt{5}} \\
0 & 0 & \frac{4}{\sqrt{5}} \\
0 & 0 & 0
\end{array}\right)=: R .
$$

Noting that Q_{1}, Q_{2}, Q_{3} are symmetric orthogonal matrices, we find that $A=Q R$ with
$Q:=Q_{1} Q_{2} Q_{3}=\left(\begin{array}{cccc}-\frac{1}{2} & \frac{1}{2 \sqrt{5}} & \frac{3}{2 \sqrt{5}} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{3}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2 \sqrt{5}} & -\frac{3}{2 \sqrt{5}} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{3}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & \frac{1}{2}\end{array}\right), \quad R:=\left(\begin{array}{ccc}-2 & -1 & 0 \\ 0 & -\sqrt{5} & -\frac{2}{\sqrt{5}} \\ 0 & 0 & \frac{4}{\sqrt{5}} \\ 0 & 0 & 0\end{array}\right)$
is a QR factorization of A.

Algorithm

For a matrix $A \in \mathbb{R}^{m \times n}, m \geq n$, the Householder triangularization produces the factor R of a QR factorization $A=Q R$ and goes as follows:

```
for \(i=1, \ldots, n\) do
    \(x=A_{i: m, i}\)
    \(v_{i}=\operatorname{sign}\left(x_{1}\right)\|x\|_{2} e_{1}+x \quad\left(x_{1}\right.\) denotes the first entry of \(\left.x\right)\)
    \(v_{i}=\frac{1}{\left\|v_{i}\right\|_{2}} v_{i}\)
    \(A_{i: m, i: n}=A_{i: m, i: n}-2 v_{i}\left(v_{i}^{\mathrm{T}} A_{i: m, i: n}\right)\)
```


end for

This algorithm stores the result R in place of A. The reflection vectors v_{1}, \ldots, v_{n} are stored for applying and forming Q.

Theorem

The above algorithm requires $\sim 2 m n^{2}-\frac{2}{3} n^{3}$ flops.

What about Q ?

For practical applications, there is often no need to construct Q explicitly. However, e.g. to solve linear systems $A x=b$ using QR , we need to be able to compute matrix-vector products $Q^{\mathrm{T}} b$.

Noting $Q^{\mathrm{T}}=Q_{n} \cdots Q_{2} Q_{1}$ (recall $Q=Q_{1} Q_{2} \cdots Q_{n}$ and that the Q_{i} are symmetric and orthogonal), a product $Q^{\mathrm{T}} b$ with a given $b \in \mathbb{R}^{m}$ can be calculated via:

$$
\begin{aligned}
& \text { for } i=1, \ldots, n \text { do } \\
& \quad b_{i: m}=b_{i: m}-2 v_{i}\left(v_{i}^{\mathrm{T}} b_{i: m}\right)
\end{aligned}
$$

end for,
leaving the result $Q^{\mathrm{T}} b$ in place of b.
If it is required to explicitly form $Q=Q_{1} Q_{2} \cdots Q_{n}$, compute $Q e_{1}, \ldots Q e_{m}$. A product $Q x$ with a given $x \in \mathbb{R}^{m}$ can be calculated via:
for $i=n, n-1, \ldots, 1$ do

$$
x_{i: m}=x_{i: m}-2 v_{i}\left(v_{i}^{\mathrm{T}} x_{i: m}\right)
$$

end for,
leaving the result $Q x$ in place of x.

3.6 QR via Givens rotations

Givens rotations: the idea

Givens rotations is a good alternative method for sparse matrices.
Key observation: Recall any orthogonal matrix $Q \in \mathbb{R}^{2 \times 2}$ with $\operatorname{det}(Q)=1$ is of the form

$$
Q(\theta)=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right), \quad \theta \in[0,2 \pi)
$$

and that $L_{Q(\theta)}$ rotates the plane \mathbb{R}^{2} anticlockwise by the angle θ.
Given $x \in \mathbb{R}^{2}$, we can find a θ s.t.

$$
x=\binom{x_{1}}{x_{2}} \quad \Longrightarrow \quad Q(\theta) x=\binom{\|x\|_{2}}{0}
$$

Indeed, take $\theta \in[0,2 \pi)$ s.t.

$$
\cos (\theta)=\frac{x_{1}}{\|x\|_{2}}, \quad \sin (\theta)=-\frac{x_{2}}{\|x\|_{2}}
$$

Then,

$$
Q(\theta) x=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{\sqrt{x_{1}^{2}+x_{2}^{2}}}{0}=\binom{\|x\|_{2}}{0} .
$$

Illustration of the method at an explicit example

Consider $A:=\left(\begin{array}{ccc}-2 & -1 & 1 \\ 3 & 2 & -1 \\ 4 & 1 & 4\end{array}\right)$. Givens rotations in 3D:
$G_{1}(\theta)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right), L_{G_{1}(\theta)}:\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \mapsto\left(\begin{array}{l}x_{1} \\ \tilde{x}_{2} \\ \tilde{x}_{3}\end{array}\right)$ where $\binom{\tilde{x}_{2}}{\tilde{x}_{3}}=Q(\theta)\binom{x_{2}}{x_{3}}$
$G_{2}(\theta)=\left(\begin{array}{ccc}\cos (\theta) & 0 & -\sin (\theta) \\ 0 & 1 & 0 \\ \sin (\theta) & 0 & \cos (\theta)\end{array}\right), L_{G_{2}(\theta)}:\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \mapsto\left(\begin{array}{l}\tilde{x}_{1} \\ x_{2} \\ \tilde{x}_{3}\end{array}\right)$ where $\binom{\tilde{x}_{1}}{\tilde{x}_{3}}=Q(\theta)\binom{x_{1}}{x_{3}}$
$G_{3}(\theta)=\left(\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right), L_{G_{3}(\theta)}:\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right) \mapsto\left(\begin{array}{l}\tilde{x}_{1} \\ \tilde{x}_{2} \\ x_{3}\end{array}\right)$ where $\binom{\tilde{x}_{1}}{\tilde{x}_{2}}=Q(\theta)\binom{x_{1}}{x_{2}}$
Note that the matrices $G_{i}(\theta), i \in\{1,2,3\}$, are orthogonal.
$A=\left(\begin{array}{ccc}-2 & -1 & 1 \\ 3 & 2 & -1 \\ 4 & 1 & 4\end{array}\right)$.
Step 1: Let us eliminate the entry $a_{31}=4$ by using the entry $a_{21}=3$, thus leaving the first row of A unchanged.
\Longrightarrow use the Givens rotation $G_{1}(\theta)$ with θ such that

$$
Q(\theta)\binom{3}{4}=\binom{*}{0} .
$$

Take $\theta \in\left[0,2 \pi\right.$) such that $\cos (\theta)=\frac{3}{5}$ and $\sin (\theta)=-\frac{4}{5}$ (recall $\left.\cos (\theta)=\frac{x_{1}}{\|x\|_{2}}, \sin (\theta)=-\frac{x_{2}}{\|x\|_{2}}\right)$. Then,

$$
G_{1}:=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{3}{5} & \frac{4}{5} \\
0 & -\frac{4}{5} & \frac{3}{5}
\end{array}\right), \quad G_{1} A=\left(\begin{array}{ccc}
-2 & -1 & 1 \\
5 & 2 & \frac{13}{5} \\
0 & -1 & \frac{16}{5}
\end{array}\right) .
$$

$G_{1} A=\left(\begin{array}{ccc}-2 & -1 & 1 \\ 5 & 2 & \frac{13}{5} \\ 0 & -1 & \frac{16}{5}\end{array}\right)$.
Step 2: Let us eliminate the (2,1)-entry using the (1,1)-entry, thus leaving the third row of A unchanged.
\Longrightarrow use the Givens rotation $G_{3}(\theta)$ with θ such that

$$
Q(\theta)\binom{-2}{5}=\binom{*}{0} .
$$

Take $\theta \in[0,2 \pi)$ such that $\cos (\theta)=\frac{-2}{\sqrt{29}}$ and $\sin (\theta)=-\frac{5}{\sqrt{29}}$. Then,

$$
G_{3}:=\left(\begin{array}{ccc}
-\frac{2}{\sqrt{29}} & \frac{5}{\sqrt{29}} & 0 \\
-\frac{5}{\sqrt{29}} & -\frac{2}{\sqrt{29}} & 0 \\
0 & 0 & 1
\end{array}\right), \quad G_{3} G_{1} A=\left(\begin{array}{ccc}
\sqrt{29} & \frac{12}{\sqrt{29}} & \frac{11}{\sqrt{29}} \\
0 & \frac{1}{\sqrt{29}} & -\frac{51}{5 \sqrt{29}} \\
0 & -1 & \frac{16}{5}
\end{array}\right) .
$$

$G_{3} G_{1} A=\left(\begin{array}{ccc}\sqrt{29} & \frac{12}{\sqrt{29}} & \frac{11}{\sqrt{29}} \\ 0 & \frac{1}{\sqrt{29}} & -\frac{51}{5 \sqrt{29}} \\ 0 & -1 & \frac{16}{5}\end{array}\right)$.
Step 3: Let us eliminate the (3,2)-entry using the (2,2)-entry, thus leaving the first row of A unchanged.
\Longrightarrow use the Givens rotation $G_{1}(\theta)$ with θ such that

$$
Q(\theta)\binom{\frac{1}{\sqrt{29}}}{-1}=\binom{*}{0}
$$

Take $\theta \in[0,2 \pi)$ s.t. $\cos (\theta)=\frac{1 / \sqrt{29}}{\sqrt{30} / \sqrt{29}}=\frac{1}{\sqrt{30}}, \sin (\theta)=-\frac{-1}{\sqrt{30} / \sqrt{29}}=\sqrt{\frac{29}{30}}$. Then,
$\tilde{G}_{1}:=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{30}} & -\sqrt{\frac{29}{30}} \\ 0 & \sqrt{\frac{29}{30}} & \frac{1}{\sqrt{30}}\end{array}\right), \quad \tilde{G}_{1} G_{3} G_{1} A=\left(\begin{array}{ccc}\sqrt{29} & \frac{12}{\sqrt{29}} & \frac{11}{\sqrt{29}} \\ 0 & \sqrt{\frac{30}{29}} & -\frac{103}{\sqrt{870}} \\ 0 & 0 & -\frac{7}{\sqrt{30}}\end{array}\right)=: R$.
\Longrightarrow We have

$$
\tilde{G}_{1} G_{3} G_{1} A=\left(\begin{array}{ccc}
\sqrt{29} & \frac{12}{\sqrt{29}} & \frac{11}{\sqrt{29}} \\
0 & \sqrt{\frac{30}{29}} & -\frac{103}{\sqrt{870}} \\
0 & 0 & -\frac{7}{\sqrt{30}}
\end{array}\right)=: R .
$$

Noting that $G_{1}, G_{3}, \tilde{G}_{1} \in \mathbb{R}^{3 \times 3}$ are orthogonal, we have obtained the following QR factorization: $A=Q R$ with R as above and

$$
Q:=G_{1}^{\mathrm{T}} G_{3}^{\mathrm{T}} \tilde{G}_{1}^{\mathrm{T}}=\left(\begin{array}{ccc}
-\frac{2}{\sqrt{29}} & -\frac{\sqrt{5}}{\sqrt{174}} & -\frac{\sqrt{5}}{\sqrt{6}} \\
\frac{3}{\sqrt{29}} & \frac{11 \sqrt{2}}{\sqrt{435}} & -\frac{\sqrt{2}}{\sqrt{15}} \\
\frac{4}{\sqrt{29}} & -\frac{19}{\sqrt{870}} & -\frac{1}{\sqrt{30}}
\end{array}\right) .
$$

End of "Chapter 3: QR Factorization".

