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Notation: upper-triangular matrix

Note: In this chapter, we restrict ourselves to “tall” matrices A ∈ Rm×n

with m ≥ n.

Let m,n ∈ N with m ≥ n. A matrix R = (rij) ∈ Rm×n is called
upper-triangular iff rij = 0 whenever i > j, i.e., iff

R =

(
R̂

0(m−n)×n

)
∈ Rm×n, where R̂ =


r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .
. . .

...
0 · · · 0 rnn

 ∈ Rn×n.
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Examples of upper-triangular matrices

an upper-triangular 4× 4 matrix looks like


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

,

an upper-triangular 5× 3 matrix looks like


∗ ∗ ∗
0 ∗ ∗
0 0 ∗
0 0 0
0 0 0

,

an upper-triangular 2× 1 matrix looks like

(
∗
0

)
.
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3.1 Definition of full and reduced QR factorization
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Definition of QR factorization

Definition (QR factorization)

Let m,n ∈ N with m ≥ n, and let A ∈ Rm×n. If there exist

Q = (q1| · · · |qm) ∈ Rm×m orthogonal,

R =

(
R̂

0(m−n)×n

)
∈ Rm×n upper-triangular,

such that there holds

A = QR,

then we call this a (full) QR factorization of A.
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Reduced QR factorization

Suppose A ∈ Rm×n, m ≥ n, has a QR factorization A = QR with

Q = (q1| · · · |qm) ∈ Rm×m orthogonal,

R =

(
R̂

0(m−n)×n

)
∈ Rm×n upper-triangular.

Observe:

A = QR = (q1| · · · |qm)

(
R̂

0(m−n)×n

)
= (q1| · · · |qn)R̂ =: Q̂R̂.

This is a reduced QR factorization of A in the sense of the following defn:

Definition: Given A ∈ Rm×n, m ≥ n, we call a factorization A = Q̂R̂ with
Q̂ ∈ Rm×n having orthonormal columns and R̂ ∈ Rn×n being
upper-triangular a reduced QR factorization of A.
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Example

An example of a QR factorization is
1 1
−1 1
1 1
0 0

 =


1√
3

1√
6

1√
2

0

− 1√
3

2√
6

0 0
1√
3

1√
6

− 1√
2

0

0 0 0 1



√
3 1√

3

0 4√
6

0 0
0 0


with corresponding reduced QR factorization

1 1
−1 1
1 1
0 0

 =


1√
3

1√
6

− 1√
3

2√
6

1√
3

1√
6

0 0


(√

3 1√
3

0 4√
6

)
.
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3.2 Existence and uniqueness
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Towards a reduced QR factorization: an observation

Let A ∈ Rm×n, m ≥ n. Finding a reduced QR factorization A = Q̂R̂ with
Q̂ ∈ Rm×n having orthonormal columns and R̂ ∈ Rn×n upper-triangular,

A = (a1| · · · |an) = (q1| · · · |qn)


r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .
. . .

...
0 · · · 0 rnn

 = Q̂R̂,

is equivalent to finding n orthonormal vectors q1, . . . , qn ∈ Rm and n(n+1)
2

real numbers {rij}1≤i≤j≤n ⊆ R such that
a1 = r11q1,

a2 = r12q1 + r22q2,
...

an = r1nq1 + r2nq2 + · · ·+ rnnqn.

⇒ find orthonormal q1, . . . , qn ∈ Rm s.t. ai ∈ span(q1, . . . , qi) ∀1 ≤ i ≤ n.
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Towards reduced QR: Gram–Schmidt orthogonalization

⇒ find orthonormal q1, . . . , qn ∈ Rm s.t. ai ∈ span(q1, . . . , qi) ∀1 ≤ i ≤ n.

Now focus on the case A = (a1| · · · |an) ∈ Rm×n, m ≥ n, with rk(A) = n.

Gram–Schmidt orthogonalization is a method to find orthonormal
vectors q1, . . . , qn ∈ Rm s.t.

span(q1, . . . , qi) = span(a1, . . . , ai) ∀1 ≤ i ≤ n.

First step is easy: Find a unit vector q1 ∈ Rm s.t. span(q1) = span(a1).

q1 :=
a1

∥a1∥2
=⇒ a1 = r11q1 with r11 := ∥a1∥2.

(Note rk(A) = n =⇒ a1 ̸= 0 ∈ Rm =⇒ ∥a1∥2 > 0.)

If n = 1, done. If n ≥ 2:
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Let A = (a1| · · · |an) ∈ Rm×n, m ≥ n ≥ 2, rk(A) = n.

Suppose we have found orthonormal q1, . . . , qk−1 ∈ Rm (2 ≤ k ≤ n) s.t.

span(q1, . . . , qi) = span(a1, . . . , ai) ∀1 ≤ i ≤ k − 1.

Then, define

qk := ± q̃k
∥q̃k∥2

, where q̃k := ak −
k−1∑
l=1

⟨ql, ak⟩ql.

Note

q̃k ̸= 0 ∈ Rm (Pf: q̃k = 0 =⇒ ak ∈ span(q1, . . . , qk−1) =⇒
ak ∈ span(a1, . . . , ak−1), contradiction to rk(A) = n.)

∥qk∥2 = 1, {qk} ⊥ {q1, . . . , qk−1}.

qk ∈ span(a1, . . . , ak), ak ∈ span(q1, . . . , qk) =⇒
span(q1, . . . , qk) = span(a1, . . . , ak).

=⇒ Have q1, . . . , qk ∈ Rm orthonormal and
span(q1, . . . , qi) = span(a1, . . . , ai) ∀1 ≤ i ≤ k. Done (iterate)!
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Recall from previous slide:

qk := ± q̃k
∥q̃k∥2

, where q̃k := ak −
k−1∑
l=1

⟨ql, ak⟩ql.

This allows us to write

ak =

k∑
l=1

rlkql, rlk :=

{
⟨ql, ak⟩ , if 1 ≤ l ≤ k − 1,

±∥q̃k∥2 , if l = k.
.

=⇒ Found orthonormal vectors q1, . . . , qn ∈ Rm and numbers
{rij}1≤i≤j≤n ⊆ R s.t. A = Q̂R̂ with Q̂ = (q1| · · · |qn) and R̂ = (rij):

∀ 1 ≤ k ≤ n : qk =
1

rkk

(
ak −

k−1∑
l=1

rlkql

)
,

∀ 1 ≤ i ≤ j ≤ n : rij =

{
⟨qi, aj⟩ , if i ≤ j − 1,

±∥aj −
∑j−1

l=1 rljql∥2 , if i = j.

The sign of the values rjj , 1 ≤ j ≤ n, is not determined and we use the
convention to choose rjj > 0 for all j.
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Algorithm: Gram–Schimdt orthogonalization

Let m,n ∈ N, m ≥ n, and A = (a1| · · · |an) ∈ Rm×n with rk(A) = n.
Then, A has the reduced QR factorization A = Q̂R̂ with

Q̂ := (q1| · · · |qn) ∈ Rm×n, R̂ :=


r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .
. . .

...
0 · · · 0 rnn

 ∈ Rn×n

determined as follows:
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1) Compute

q̃1 := a1 ∈ Rm, r11 := ∥q̃1∥2 > 0, q1 :=
1

r11
q̃1 ∈ Rm.

If n = 1, we stop. If n ≥ 2, we continue as follows.
2) Compute r12 := ⟨q1, a2⟩ ∈ R. Then, compute

q̃2 := a2 − r12q1 ∈ Rm, r22 := ∥q̃2∥2 > 0, q2 :=
1

r22
q̃2 ∈ Rm.

...
j) Compute rij := ⟨qi, aj⟩ ∈ R for i ∈ {1, . . . , j − 1}. Then, compute

q̃j := aj −
j−1∑
l=1

rljql ∈ Rm, rjj := ∥q̃j∥2 > 0, qj :=
1

rjj
q̃j ∈ Rm.

...
n) Compute rin := ⟨qi, an⟩ ∈ R for i ∈ {1, . . . , n− 1}. Then, compute

q̃n := an−
n−1∑
l=1

rlnql ∈ Rm, rnn := ∥q̃n∥2 > 0, qn :=
1

rnn
q̃n ∈ Rm.

14 / 68



Example

Consider A := (a1|a2|a3) :=


1 0 1
−1 1 1
1 1 −1
1 2 1

 ∈ R4×3. (Note rk(A) = 3.)

1) q̃1 := a1 = (1,−1, 1, 1)T. Then, r11 := ∥q̃1∥2 = 2 and we set
q1 := r−1

11 q̃1 = 1
2 (1,−1, 1, 1)T.

2) r12 := ⟨q1, a2⟩ = 1, q̃2 := a2 − r12q1 = 1
2 (−1, 3, 1, 3)T. Then,

r22 := ∥q̃2∥2 =
√
5 and we set q2 := r−1

22 q̃2 = 1
2
√
5
(−1, 3, 1, 3)T.

3) r13 := ⟨q1, a3⟩ = 0, r23 := ⟨q2, a3⟩ = 2√
5
,

q̃3 := a3 − r13q1 − r23q2 = 2
5 (3, 1,−3, 1)T. Then, r33 := ∥q̃3∥2 = 4√

5
and

we set q3 := r−1
33 q̃3 = 1

2
√
5
(3, 1,−3, 1)T.

=⇒ A = Q̂R̂ with Q̂ :=


1
2 − 1

2
√
5

3
2
√
5

− 1
2

3
2
√
5

1
2
√
5

1
2

1
2
√
5

− 3
2
√
5

1
2

3
2
√
5

1
2
√
5

, R̂ :=

2 1 0

0
√
5 2√

5

0 0 4√
5

.
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=⇒ A = Q̂R̂ with

Q̂ :=


1
2 − 1

2
√
5

3
2
√
5

−1
2

3
2
√
5

1
2
√
5

1
2

1
2
√
5

− 3
2
√
5

1
2

3
2
√
5

1
2
√
5

 , R̂ :=

2 1 0

0
√
5 2√

5

0 0 4√
5


is a reduced QR factorization of A. How to obtain a full QR factorization?

“Fill up” Q̂ with additional orthonormal column and R̂ with additional row
of zeros: can take, e.g.,

Q :=


1
2 − 1

2
√
5

3
2
√
5

1
2

−1
2

3
2
√
5

1
2
√
5

1
2

1
2

1
2
√
5

− 3
2
√
5

1
2

1
2

3
2
√
5

1
2
√
5

−1
2

 , R :=


2 1 0

0
√
5 2√

5

0 0 4√
5

0 0 0


to find that A = QR is a (full) QR factorization of A.
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From reduced to full QR

From a reduced QR factorization, we can always obtain a full QR
factorization:

Let A ∈ Rm×n, m ≥ n, and suppose A = Q̂R̂ is a reduced QR factn.

• If m = n, this is already a full QR factorization.

• If m > n, choose arbitrary orthonormal vectors qn+1, . . . , qm ∈ Rm

satisfying {qn+1, . . . , qm} ⊥ {q1, . . . , qn}, and obtain

A = (Q̂|qn+1| · · · |qm)

(
R̂

0(m−n)×n

)
=: QR

is a (full) QR factorization of A.
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Existence

Theorem (Existence result for QR)

Let m,n ∈ N with m ≥ n. Then, every A ∈ Rm×n has a QR factorization.

Proof: We know every full-rank matrix A ∈ Rm×n, m ≥ n, has a reduced
QR factorization (Gram–Schmidt Algorithm) and hence, also a full QR
factorization.

It remains to consider the case of rank-deficient matrices: To this end, let
A ∈ Rm×n, m ≥ n, with 0 ≤ rk(A) < n.

Then, running the Gram–Schmidt Algorithm, there will be at least one step
j, where q̃j = 0. Whenever this happens, set rjj = 0 and take qj ∈ Rm,
∥qj∥2 = 1, satisfying {qj} ⊥ {q1, . . . , qj−1}, and continue the Algorithm.

This yields a reduced QR factorization for A, from which we can then
obtain a full QR factorization.
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=⇒ We now have a way to compute reduced and full QR factorizations to
arbitrary real m× n matrices with m ≥ n.

Exercises can be found on the problem sheets.

Next: Uniqueness?
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Is the QR factorization unique?

No. • In 1D: Let A = (a) ∈ R1×1. Then, A has the QR factorizations

(a) = (1)︸︷︷︸
Q

(a)︸︷︷︸
R

, (a) = (−1)︸︷︷︸
Q

(−a)︸ ︷︷ ︸
R

.

• Let A ∈ Rm×n, m ≥ n, and suppose A = QR is a QR factorization of
A. Then, A = (−Q)(−R) is also a QR factorization of A.

• Let A ∈ Rm×n, m ≥ n, and suppose A = QR is a QR factorization of
A (recall Q ∈ Rm×m orthogonal and R ∈ Rm×n upper-triangular). Write
Q = (q1| · · · |qm), RT = (b1| · · · |bm), and let s1, . . . , sm ∈ {−1, 1}. Then,

A = QR = (q1| · · · |qm)

bT1
...

bTm

 = (s1q1| · · · |smqm)

 s1b
T
1

...

smbTm

 =: Q̃R̃.

=⇒ Given a QR factorization, we can construct new QR factorizations by
multiplying the i-th column of Q and the i-th row of R by si ∈ {−1, 1}.
=⇒ There is hope: we only used signs to construct new factorizations.
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Uniqueness result for QR

Theorem (Uniqueness result for QR)

Let m,n ∈ N with m ≥ n. Then, every A ∈ Rm×n with rk(A) = n has a
unique reduced QR factn A = Q̂R̂ with R̂ having positive diagonal entries.

Proof: Let A ∈ Rm×n, m ≥ n, be a matrix of full rank, i.e., rk(A) = n.

For any reduced QR factorization A = Q̂R̂ with Q̂ = (q1| · · · |qn) ∈ Rm×n

having orthonormal columns and R̂ = (rij) ∈ Rn×n upper-triangular, have
a1 = r11q1,

a2 = r12q1 + r22q2,...
an = r1nq1 + r2nq2 + · · ·+ rnnqn.

=⇒ qj =
aj −

∑j−1
l=1 rljql

rjj
∀ 1 ≤ j ≤ n

Note rjj ̸= 0 ∀j (rk(A) = n). Left-multiply by qTi , i < j: 0 =
⟨qi,aj⟩−rij

rjj
.

∀ 1 ≤ i ≤ j ≤ n : rij =

{
⟨qi, aj⟩ , if i < j,

±∥aj −
∑j−1

l=1 rljql∥2 , if i = j.

=⇒ Requiring rjj > 0 ∀j makes Q̂, R̂ uniquely determined.
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Application of QR: solving linear systems

The QR factorization provides a method to solve linear systems.

Given A ∈ Rm×n, m ≥ n, and b ∈ Rm. Problem: find x ∈ Rn s.t.

Ax = b.

If we have a QR factorization A = QR, we have

Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = QTb.

=⇒ compute b̃ := QTb ∈ Rm and then solve the upper-triangular system

Rx = b̃.

(solve by backward substitution, cheap!)
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3.3 Projectors
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What is a projector?

Definition (Projector/projection matrix)

A square matrix P ∈ Rn×n is called a projector, or a projection matrix,
iff

P 2 = P

(i.e., iff P ∈ Rn×n is idempotent).

Note that for P ∈ Rn×n:

P 2 = P ⇐⇒ LP ◦ LP = LP

(recall defn of associated linear map: LP : Rn → Rn, x 7→ Px).

=⇒ So, why are those matrices named projectors?
24 / 68



Why is a square matrix P with P 2 = P called projector?

Two crucial observations: If P ∈ Rn×n is a projector (i.e., P 2 = P ), then

there holds

Py = y ∀y ∈ R(P ).

Proof: Let y ∈ R(P ). Then, y = Px for some x ∈ Rn. Hence,
Py = P 2x = Px = y.
there holds

Px− x ∈ N(P ) ∀x ∈ Rn.

Proof: ∀x ∈ Rn: P (Px− x) = P 2x− Px = Px− Px = 0.

We say the projector P projects onto R(P ) along N(P ).

“oblique projector” “orthogonal projector”
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The complementary projector

Let P ∈ Rn×n be a projector. Then,

(In − P )2 = I2n − 2P + P 2 = In − 2P + P = In − P,

i.e., In − P ∈ Rn×n is a projector.

Definition (Complementary projector)

Let P ∈ Rn×n be a projector. Then, In − P ∈ Rn×n is called the
complementary projector to P .

We are going to see that the complementary projector to P is the
projector onto N(P ) along R(P ).

Before we prove this, let’s introduce the following:

Definition (Complementary subspaces)

Let S1, S2 ⊆ Rn be subspaces of Rn. Then, S1 and S2 are called
complementary subspaces of Rn iff

S1 + S2 = Rn and S1 ∩ S2 = {0}.
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Projectors separate Rn into two complementary subspaces

Theorem (A fundamental result for projectors)

Let P ∈ Rn×n be a projector. Then,

(i) R(In − P ) = N(P ) and N(In − P ) = R(P ).

(ii) R(P ) and N(P ) are complementary subspaces of Rn. Further, for
any x ∈ Rn,

x = Px+ (In − P )x ∈ R(P ) +N(P )

is the unique way of writing x = x1+x2 with x1 ∈ R(P ),x2 ∈ N(P ).

Proof of (i): Start by showing R(In − P ) = N(P ).
“⊆” Let y ∈ R(In − P ). Then, ∃x ∈ Rn: y = x− Px. We find
Py = Px− P 2x = Px− Px = 0, i.e., y ∈ N(P ).
“⊇”: Let x ∈ N(P ). Then, Px = 0 and hence, x = x− Px ∈ R(In − P ).

Next, show N(In − P ) = R(P ). We know that P̃ := In − P ∈ Rn×n is a
projector. Hence, R(In − P̃ ) = N(P̃ ) , i.e., R(P ) = N(In − P ).
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Claim (ii): R(P ) and N(P ) are complementary subspaces of Rn. Further,
for any x ∈ Rn,

x = Px+ (In − P )x ∈ R(P ) +N(P )

is the unique way of writing x = x1 + x2 with x1 ∈ R(P ),x2 ∈ N(P ).
Proof of (ii): We only show R(P ) and N(P ) are complementary
subspaces of Rn as the second part is a consequence by a later result.

First, note R(P ) and N(P ) are subspaces of Rn.

Let us show that R(P ) +N(P ) = Rn:
“⊆”
“⊇” Let x ∈ Rn. Then,

x = Px+ (In − P )x ∈ R(P ) +R(In − P ) = R(P ) +N(P ).

Next, let us show that R(P ) ∩N(P ) = {0}:
“⊇”
“⊇” Let x ∈ R(P ) ∩N(P ). Then, x = Px̃ for some x̃ ∈ Rn, and
Px = 0. Hence, 0 = Px = P 2x̃ = Px̃ = x.
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=⇒ A projector P ∈ Rn×n separates Rn into two complementary
subspaces, namely R(P ) and N(P ).

=⇒ What about the converse? Given two complementary subspaces S1, S2

of Rn, can we find a projector P ∈ Rn×n s.t. R(P ) = S1, N(P ) = S2?

Yes!

Theorem (Projector onto S1 along S2)

Let S1, S2 ⊆ Rn be two complementary subspaces of Rn. Then, there
exists a unique projector P ∈ Rn×n such that R(P ) = S1 and
N(P ) = S2. We call this projector the projector onto S1 along S2.
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Claim: Let S1, S2 ⊆ Rn be two complementary subspaces of Rn. Then,
there exists a unique projector P ∈ Rn×n s.t. R(P ) = S1, N(P ) = S2.

Proof: Step 1 : We show any x ∈ Rn has a unique decomposition

x = x1 + x2 with x1 ∈ S1, x2 ∈ S2.

Existence: , since S1 + S2 = Rn.

Uniqueness: Suppose ∃x1, x̃1 ∈ S1, x2, x̃2 ∈ S2 s.t.

x = x1 + x2 = x̃1 + x̃2.

=⇒ x1 − x̃1︸ ︷︷ ︸
∈S1

= x̃2 − x2︸ ︷︷ ︸
∈S2

∈ S1 ∩ S2 = {0}.

=⇒ x1 = x̃1 and x2 = x̃2.
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Claim: Let S1, S2 ⊆ Rn be two complementary subspaces of Rn. Then,
there exists a unique projector P ∈ Rn×n s.t. R(P ) = S1, N(P ) = S2.

Proof: Step 2 : Existence (construction) of P .

Define map

L : Rn → Rn, x = x1︸︷︷︸
∈S1

+ x2︸︷︷︸
∈S2

7→ x1.

(well-defined by Step 1.)
• Claim: L is linear.

• Proof: Given x = x1 + x2 ∈ Rn, y = y1 + y2 ∈ Rn with x1, y1 ∈ S1,
x2, y2 ∈ S2, and α ∈ R, we have

L(αx+ y) = L((αx1 + y1)︸ ︷︷ ︸
∈S1

+(αx2 + y2)︸ ︷︷ ︸
∈S2

) = αx1 + y1 = αL(x) + L(y).

=⇒ ∃ P ∈ Rn×n s.t. L = LP (i.e., L(x) = Px for all x ∈ Rn).
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P is a projector: For any x = x1 + x2 ∈ Rn with x1 ∈ S1, x2 ∈ S2:

P 2x = L(L(x)) = L(x1) = L(x1 + 0) = x1 = L(x) = Px.

=⇒ P 2 = P

R(P ) = S1: Note R(P ) = {L(x) |x ∈ Rn} ⊆ S1 (recall L(x) = x1).
Conversely, for y ∈ S1: y = y︸︷︷︸

∈S1

+ 0︸︷︷︸
∈S2

, thus y = L(y) = Py ∈ R(P ).

N(P ) = S2: For any x = x1 + x2 ∈ Rn with x1 ∈ S1, x2 ∈ S2:
Px = 0 ⇐⇒ L(x) = 0 ⇐⇒ x1 = 0 ⇐⇒ x ∈ S2.

=⇒ We have found a projector P ∈ Rn×n with R(P ) = S1, N(P ) = S2.

Remains to show uniqueness.
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Claim: Let S1, S2 ⊆ Rn be two complementary subspaces of Rn. Then,
there exists a unique projector P ∈ Rn×n s.t. R(P ) = S1, N(P ) = S2.

Proof: Step 3 : Uniqueness of P .

Suppose ∃ another projector P̃ ∈ Rn×n with R(P̃ ) = S1, N(P̃ ) = S2.

Then, must have P̃ y = y for any y ∈ R(P̃ ) = S1.

=⇒ For any x ∈ Rn with x = x1 + x2 where x1 ∈ S1, x2 ∈ S2:

P̃ x = P̃ x1 + P̃ x2 = x1 + 0 = x1 = L(x) = Px.

=⇒ P̃ = P .
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Orthogonal projectors

Definition (Orthogonal projector)

A projector P ∈ Rn×n is called an orthogonal projector iff it projects
onto S1 along S2 for some subspaces S1, S2 of Rn with S1 ⊥ S2. A
projector which is not an orthogonal projector is called oblique projector.

=⇒ P ∈ Rn×n is orthogonal projector iff P 2 = P and R(P ) ⊥ N(P ).

Theorem (Characterization of orthogonal projectors)

A matrix P ∈ Rn×n is an orthogonal projector iff P 2 = P = PT.

WARNING: Orthogonal projectors do not need to be orthogonal
matrices. Actually, In is the only matrix in Rn×n that is orthogonal and an
orthogonal projector. (Pf: P 2 = P = PT = P−1 ⇐⇒ P = In.) 34 / 68



P ∈ Rn×n is orthogonal projector ⇐⇒ P 2 = P = PT.

Proof: “⇐=”: Let P ∈ Rn×n with P 2 = P = PT. Then,

• P is a projector

• R(P ) ⊥ N(P ): Let y ∈ R(P ), x ∈ N(P ). Need to show ⟨y, x⟩ = 0.

y ∈ R(P ) =⇒ ∃v ∈ Rn : y = Pv,

x ∈ N(P ) =⇒ Px = 0.

Then,
⟨y, x⟩ = ⟨Pv, x⟩ = ⟨v, PTx⟩ = ⟨v, Px⟩ = 0.

=⇒ P is an orthogonal projector.
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P ∈ Rn×n is orthogonal projector ⇐⇒ P 2 = P = PT.

Proof: “=⇒”: Let P ∈ Rn×n orthogonal projector, i.e.,

P 2 = P, R(P ) ⊥ N(P ).

Need to prove PT = P . If P = 0n×n, done. So, suppose P ̸= 0n×n.

Write r := rk(P ) = dim(R(P )) ∈ {1, . . . , n}. Note dim(N(P )) = n− r.

Let {q1, . . . , qr} ONB of R(P ). Note Pqi = qi ∀1 ≤ i ≤ r.

Let {qr+1, . . . , qn} ONB of N(P ). Note Pqi = 0 ∀r + 1 ≤ i ≤ n.

=⇒ As R(P ) ⊥ N(P ), have {q1, . . . , qn} is orthonormal basis (ONB) of Rn.

Set Q := (q1| · · · |qn) ∈ Rn×n and note Q is orthogonal. Then,

PQ = QΣ, where Σ := diagn×n(1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0︸ ︷︷ ︸
(n-r) times

).

=⇒ P = QΣQT. We found a SVD and an eigval decomposition of P !

=⇒ PT = QΣTQT = QΣQT = P .
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Singular values of projectors

Theorem (Singular values of projectors)

Let P ∈ Rn×n\{0} be a projector with rank r := rk(P ) and singular
values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Then,

(i) σi ≥ 1 for all i ∈ {1, . . . , r}.
(ii) P is an orthogonal projector ⇐⇒ σ1 = ∥P∥2 = 1.

Proof of (ii): (proof of (i) is an exercise)

“=⇒”: If P is an orthogonal projector, σi = 1 ∀ 1 ≤ i ≤ r =⇒ σ1 = 1.
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Singular values of projectors

Theorem (Singular values of projectors)

Let P ∈ Rn×n\{0} be a projector with rank r := rk(P ) and singular
values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Then,

(i) σi ≥ 1 for all i ∈ {1, . . . , r}.
(ii) P is an orthogonal projector ⇐⇒ σ1 = ∥P∥2 = 1.

Proof of (ii): “⇐=”: Suppose P ∈ Rn×n\{0} is a projector with σ1 = 1.

Let P = UΣV T = (u1| · · · |un)diagn×n(σ1, . . . , σn)(v1| · · · |vn)T SVD.

By (i), 1 = σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 1 =⇒ σi = 1 ∀ 1 ≤ i ≤ r.

=⇒ P =
∑r

i=1 σiuiv
T
i =

∑r
i=1 uiv

T
i , PT =

∑r
i=1 viu

T
i .

Note ∀1 ≤ j ≤ r: Puj = uj =⇒
∑r

i=1⟨vi, uj⟩ui = uj =⇒ ⟨vj , uj⟩ = 1.

=⇒ vj = uj ∀1 ≤ j ≤ r as ∥vj − uj∥22 = ∥vj∥22 + ∥uj∥22 − 2⟨vj , uj⟩ = 0.

=⇒ P =
∑r

i=1 uiu
T
i = PT, i.e., P is an orthogonal projector.
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Projection with orthonormal basis

Let {q1, . . . , qn} orthonormal basis of Rn, and consider the complementary
subspaces S1 := span(q1, . . . , qr) and S2 := span(qr+1, . . . , qn) of Rn,
where 1 ≤ r ≤ n− 1.

Then, the unique projector P ∈ Rn×n onto S1 along S2 is given by

P = Q̂Q̂T =

r∑
i=1

qiq
T
i , where Q̂ := (q1| · · · |qr) ∈ Rn×r,

and P is actually an orthogonal projector.
Indeed, R(P ) = R(Q̂) = S1, N(P ) = N(Q̂T) = S2, and P 2 = P = PT.

The corresponding linear map

LP : Rn → Rn, x 7→
r∑

i=1

qiq
T
i x =

r∑
i=1

⟨x, qi⟩qi

projects the vector space Rn orthogonally onto S1 along S2, i.e., it isolates
the components of a vector in directions q1, . . . , qr.
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The complementary projector In − P is also an orthogonal projector: it is
the projector onto S2 = span(qr+1, . . . , qn) along S1 = span(q1, . . . , qr),
i.e., it isolates the components of a vector in directions qr+1, . . . , qn. The
corresponding linear map is

LIn−P : Rn → Rn, x 7→ (In − Q̂Q̂T)x =

n∑
i=r+1

qiq
T
i x =

n∑
i=r+1

⟨x, qi⟩qi.

Observe that we can decompose any x ∈ Rn uniquely into x = x1 + x2
with x1 ∈ S1, x2 ∈ S2, where x1 = Q̂Q̂Tx and x2 = (In − Q̂Q̂T)x.
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Projection with arbitrary basis

Let S1 be a subspace of Rm spanned by n ≤ m linearly independent
vectors a1, . . . , an ∈ Rm. We set A := (a1| · · · |an) ∈ Rm×n so that
S1 = R(A), and construct an orthogonal projector P ∈ Rm×m onto S1.

For x ∈ Rm we must have Px ∈ S1, i.e., Px = Ay for some y ∈ Rn, and
{Px− x} ⊥ S1, i.e.,

0n×1 =

⟨a1, Px− x⟩
...

⟨an, Px− x⟩

 = AT(Px− x) = ATAy −ATx.

Note that rk(ATA) = rk(A) = n =⇒ ATA ∈ Rn×n is invertible.

=⇒ y = (ATA)−1ATx =⇒ Px = Ay = A(ATA)−1ATx.

The orthogonal projector onto S1 = R(A) is given by

P = A(ATA)−1AT ∈ Rm×m.

Rk: if A = Q̂ has orthonormal columns, this reduces to P = Q̂Q̂T.
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Some remarks regarding orthogonal projectors

Let S be a subspace of Rn.

The orthogonal projector onto S is unique.

Proof: Suppose P1, P2 ∈ Rn×n are orthogonal projectors with
R(P1) = R(P2) = S. Then, we have

P1x︸︷︷︸
∈S

− P2x︸︷︷︸
∈S

= (In − P2)x︸ ︷︷ ︸
∈S⊥

− (In − P1)x︸ ︷︷ ︸
∈S⊥

∈ S ∩ S⊥ = {0} ∀x ∈ Rn,

i.e., P1x = P2x ∀x ∈ Rn and thus, P1 = P2. Here, we have used that

R(In − Pi) = N(Pi) ⊥ R(Pi) = S ∀i ∈ {1, 2}.

(Recall definition of orthogonal complement: S⊥ := {x ∈ Rn| ⟨x, s⟩ = 0 ∀s ∈ S}.)

The orthogonal projector onto S is the projector onto S along S⊥.

Proof: Let P ∈ Rn×n be the orthogonal projector onto S = R(P ).
Then, using R(A)⊥ = N(AT) ∀A ∈ Rm×n (exercise) and PT = P ,
we find N(P ) = R(PT)⊥ = R(P )⊥ = S⊥.
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3.4 QR via Gram–Schmidt orthogonalization
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Let A = (a1| · · · |an) ∈ Rm×n, m ≥ n, and assume rk(A) = n.

1) Compute

q̃1 := a1 ∈ Rm, r11 := ∥q̃1∥2 > 0, q1 :=
1

r11
q̃1 ∈ Rm.

If n = 1, we stop. If n ≥ 2, we continue as follows.
2) Compute r12 := ⟨q1, a2⟩ ∈ R. Then, compute

q̃2 := a2 − r12q1 ∈ Rm, r22 := ∥q̃2∥2 > 0, q2 :=
1

r22
q̃2 ∈ Rm.

...
j) Compute rij := ⟨qi, aj⟩ ∈ R for i ∈ {1, . . . , j − 1}. Then, compute

q̃j := aj −
j−1∑
l=1

rljql ∈ Rm, rjj := ∥q̃j∥2 > 0, qj :=
1

rjj
q̃j ∈ Rm.

...
n) Compute rin := ⟨qi, an⟩ ∈ R for i ∈ {1, . . . , n− 1}. Then, compute

q̃n := an−
n−1∑
l=1

rlnql ∈ Rm, rnn := ∥q̃n∥2 > 0, qn :=
1

rnn
q̃n ∈ Rm.
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Gram–Schmidt and projectors

Let A = (a1| · · · |an) ∈ Rm×n, m ≥ n, and assume rk(A) = n. Let
q1, . . . , qn ∈ Rm be the orthonormal vectors obtained through
Gram–Schmidt and define

P1 := Im

Pi := Im − Q̂i−1Q̂
T
i−1, where Q̂i−1 := (q1| · · · |qi−1) ∈ Rm×(i−1), 2 ≤ i ≤ n.

Note that Pi ∈ Rm×m projects the vector space Rm onto the space
orthogonal to span(q1, . . . , qi−1). Then,

q1 =
P1a1

∥P1a1∥2
, q2 =

P2a2
∥P2a2∥2

, · · · , qn =
Pnan

∥Pnan∥2
,

i.e., qi is precisely the normalized orthogonal projection of ai onto the
space orthogonal to span(q1, . . . , qi−1).
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Classical Gram–Schmidt iteration

Let A = (a1| · · · |an) ∈ Rm×n, m ≥ n, and rk(A) = n.

for j = 1, . . . , n do
q̃j = aj
for i = 1, . . . , j − 1 do

rij = ⟨qi, aj⟩
q̃j = q̃j − rijqi

end for
rjj = ∥q̃j∥2
qj =

1
rjj

q̃j
end for

Drawback: numerically unstable. However, a simple modification leads to
improved stability.

Key observation: projector Pi = Im − Q̂i−1Q̂
T
i−1 ∈ Rm×m of rank

m− (i− 1) can be decomposed as product of i− 1 rank m− 1 projectors:

Pi = (Im − qi−1q
T
i−1)(Im − qi−2q

T
i−2) · · · (Im − q1q

T
1 ), 2 ≤ i ≤ n.
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Modified Gram–Schmidt

Let A = (a1| · · · |an) ∈ Rm×n, m ≥ n, and rk(A) = n. The modified
Gram–Schmidt iteration does the following:

for i = 1, . . . , n do
q̃i = ai

end for
for i = 1, . . . , n do

rii = ∥q̃i∥2
qi =

1
rii
q̃i

for j = i+ 1, . . . , n do
rij = ⟨qi, q̃j⟩
q̃j = q̃j − rijqi

end for
end for

Theorem

This algorithm requires ∼ 2mn2 flops, i.e., limm,n→∞
#flops
2mn2 = 1.

47 / 68



Gram–Schmidt = triangular orthogonalization

Schematically, (modified) Gram–Schmidt does the following:

1. AR1 = (a1| · · · |an)


1

r11
− r12

r11
− r13

r11
· · · − r1n

r11
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1

 = (q1| ∗ | · · · |∗),

2. AR1R2 = (q1| ∗ | · · · |∗)



1 0 · · · · · · 0
0 1

r22
− r23

r22
· · · − r2n

r22
0 0 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1


= (q1|q2| ∗ | · · · |∗),

...

n. AR1R2 · · ·Rn = (q1|q2| · · · |qn) = Q̂, i.e., A = Q̂R̂ with R̂ = (R1 · · ·Rn)
−1.

Gram–Schmidt is a triangular orthogonalization method.
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3.5 QR via Householder triangularization
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Two different ideologies

As before, consider “tall” matrices A ∈ Rm×n, m ≥ n.

Gram–Schmidt: triangular orthogonalization, i.e., construct
R1, . . . , Rn ∈ Rn×n upper-triangular s.t.

AR1R2 · · ·Rn = Q̂ ∈ Rm×n

is matrix with orthonormal columns.

=⇒ yields reduced QR factorization A = Q̂R̂ with R̂ := (R1R2 · · ·Rn)
−1.

Householder: orthogonal triangularization, i.e., construct
Q1, . . . , Qn ∈ Rm×m orthogonal s.t.

Qn · · ·Q2Q1A = R ∈ Rm×n

is upper-triangular.

=⇒ yields (full) QR factorization A = QR with Q := QT
1 Q

T
2 · · ·QT

n .

So, how do we find such orthogonal matrices Qi?
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The idea

We construct orthogonal matrices Q1, . . . , Qn in a way so that A ∈ Rm×n,
m ≥ n is transformed as follows: (illustration for m = 4, n = 3)

A =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 =⇒ Q1A =


r11 r12 r13
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗



=⇒ Q2Q1A =


r11 r12 r13
0 r22 r23
0 0 ∗
0 0 ∗

 =⇒ Q3Q2Q1A =


r11 r12 r13
0 r22 r23
0 0 r33
0 0 0

 .

So, left-multiplication by Qi should leave the first (i− 1) rows and
columns unchanged and introduce zeros below the i-th main diagonal
entry, thus leading to an upper-triangular matrix R = Qn · · ·Q2Q1A after
n such steps.
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A =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 =⇒ Q1A =


r11 r12 r13
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗



=⇒ Q2Q1A =


r11 r12 r13
0 r22 r23
0 0 ∗
0 0 ∗

 =⇒ Q3Q2Q1A =


r11 r12 r13
0 r22 r23
0 0 r33
0 0 0

 .

We choose Qi, i ∈ {1, . . . , n}, to be an orthogonal matrix of the form

Qi =

(
Ii−1 0(i−1)×(m−i+1)

0(m−i+1)×(i−1) F

)
∈ Rm×m,

with F ∈ {F−, F+} ∈ R(m−i+1)×(m−i+1) s.t.

x =


∗
∗
...
∗

 ∈ Rm−i+1 =⇒ F±x =


±∥x∥2

0
...
0

 = ±∥x∥2e1.
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Geometric illustration of F±
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Householder reflectors

Note Im−i+1 − vvT

∥v∥22
is the orthogonal projector onto the hyperplane

orthogonal to v ∈ Rm−i+1. Therefore,

F = Im−i+1 − 2
vvT

∥v∥22
is as required. We call F a Householder reflector.
For numerical stability, choose reflector which moves x the larger distance:

v = sign(⟨x, e1⟩)∥x∥2e1 + x,

where sign(α) = 1 for α ≥ 0 and sign(α) = −1 otherwise.
(Rk: If ⟨x, e1⟩ ≥ 0, then v = −v−. If ⟨x, e1⟩ < 0, then v = −v+.) 54 / 68



Example: QR via Householder triangularization

Task: Compute a QR factorization of A :=


1 0 1
−1 1 1
1 1 −1
1 2 1

.

Step 1: Set x1 :=


1
−1
1
1

 and v1 := sign(⟨x1, e1⟩)∥x1∥2e1 + x1 =


3
−1
1
1

.

Take Q1 := I4 − 2
v1vT1
∥v1∥22

= 1
6


−3 3 −3 −3
3 5 1 1
−3 1 5 −1
−3 1 −1 5

. Then,

Q1A =


−2 −1 0
0 4/3 4/3
0 2/3 −4/3
0 5/3 2/3

 .
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Q1A =


−2 −1 0
0 4/3 4/3
0 2/3 −4/3
0 5/3 2/3

 .

Step 2: x2 :=

4/3
2/3
5/3

, v2 := sign(⟨x2, e1⟩)∥x2∥2e1 + x2 =

√
5 + 4

3
2/3
5/3

.

Take

Q2 :=

(
1 01×3

03×1 I3 − 2
v2v

T
2

∥v2∥22

)
=

√
5

435


435√

5
0 0 0

0 −116 −58 −145

0 −58 75
√
5 + 16 −(30

√
5− 40)

0 −145 −(30
√
5− 40) 12

√
5 + 100

.

Then,

Q2Q1A =


−2 −1 0

0 −
√
5 − 2√

5

0 0 −24
√
5+200
145

0 0 −12
√
5−16
29

 .
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Q2Q1A =


−2 −1 0

0 −
√
5 − 2√

5

0 0 −24
√
5+200
145

0 0 −12
√
5−16
29

 .

Step 3: x3 :=

(
− 24

√
5+200
145

− 12
√
5−16
29

)
, v3 := sign(⟨x3, e1⟩)∥x3∥2e1 + x3 = − 4

29

(
7
√
5 + 10

3
√
5− 4

)
.

Take

Q3 :=

(
I2 02×2

02×2 I2 − 2
v3vT3
∥v3∥22

)
= 1

29


29 0 0 0
0 29 0 0

0 0 −10
√
5− 6 4

√
5− 15

0 0 4
√
5− 15 10

√
5 + 6

.

Then,

Q3Q2Q1A =


−2 −1 0

0 −
√
5 − 2√

5

0 0 4√
5

0 0 0

 =: R.
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Q3Q2Q1A =


−2 −1 0

0 −
√
5 − 2√

5

0 0 4√
5

0 0 0

 =: R.

Noting that Q1, Q2, Q3 are symmetric orthogonal matrices, we find that
A = QR with

Q := Q1Q2Q3 =


−1

2
1

2
√
5

3
2
√
5

−1
2

1
2 − 3

2
√
5

1
2
√
5

−1
2

−1
2 − 1

2
√
5

− 3
2
√
5

−1
2

−1
2 − 3

2
√
5

1
2
√
5

1
2

 , R :=


−2 −1 0

0 −
√
5 − 2√

5

0 0 4√
5

0 0 0


is a QR factorization of A.
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Algorithm

For a matrix A ∈ Rm×n, m ≥ n, the Householder triangularization
produces the factor R of a QR factorization A = QR and goes as follows:

for i = 1, . . . , n do
x = Ai:m,i

vi = sign(x1)∥x∥2e1 + x (x1 denotes the first entry of x)
vi =

1
∥vi∥2 vi

Ai:m,i:n = Ai:m,i:n − 2vi(v
T
i Ai:m,i:n)

end for

This algorithm stores the result R in place of A. The reflection vectors
v1, . . . , vn are stored for applying and forming Q.

Theorem

The above algorithm requires ∼ 2mn2 − 2
3n

3 flops.
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What about Q?

For practical applications, there is often no need to construct Q explicitly.
However, e.g. to solve linear systems Ax = b using QR, we need to be
able to compute matrix-vector products QTb.

Noting QT = Qn · · ·Q2Q1 (recall Q = Q1Q2 · · ·Qn and that the Qi are
symmetric and orthogonal), a product QTb with a given b ∈ Rm can be
calculated via:

for i = 1, . . . , n do
bi:m = bi:m − 2vi(v

T
i bi:m)

end for,

leaving the result QTb in place of b.

If it is required to explicitly form Q = Q1Q2 · · ·Qn, compute
Qe1, . . . Qem. A product Qx with a given x ∈ Rm can be calculated via:

for i = n, n− 1, . . . , 1 do
xi:m = xi:m − 2vi(v

T
i xi:m)

end for,

leaving the result Qx in place of x. 60 / 68



3.6 QR via Givens rotations
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Givens rotations: the idea

Givens rotations is a good alternative method for sparse matrices.

Key observation: Recall any orthogonal matrix Q ∈ R2×2 with det(Q) = 1
is of the form

Q(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ [0, 2π),

and that LQ(θ) rotates the plane R2 anticlockwise by the angle θ.

Given x ∈ R2, we can find a θ s.t.

x =

(
x1
x2

)
=⇒ Q(θ)x =

(
∥x∥2
0

)
.

Indeed, take θ ∈ [0, 2π) s.t.

cos(θ) =
x1
∥x∥2

, sin(θ) = − x2
∥x∥2

.

Then,

Q(θ)x =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
x1
x2

)
=

(√
x21 + x22
0

)
=

(
∥x∥2
0

)
.
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Illustration of the method at an explicit example

Consider A :=

−2 −1 1
3 2 −1
4 1 4

. Givens rotations in 3D:

G1(θ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 , LG1(θ) :

x1

x2

x3

 7→

x1

x̃2

x̃3

 where

(
x̃2

x̃3

)
= Q(θ)

(
x2

x3

)
,

G2(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 , LG2(θ) :

x1

x2

x3

 7→

x̃1

x2

x̃3

 where

(
x̃1

x̃3

)
= Q(θ)

(
x1

x3

)
,

G3(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 , LG3(θ) :

x1

x2

x3

 7→

x̃1

x̃2

x3

 where

(
x̃1

x̃2

)
= Q(θ)

(
x1

x2

)
.

Note that the matrices Gi(θ), i ∈ {1, 2, 3}, are orthogonal.
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A =

−2 −1 1
3 2 −1
4 1 4

.

Step 1: Let us eliminate the entry a31 = 4 by using the entry a21 = 3,
thus leaving the first row of A unchanged.
=⇒ use the Givens rotation G1(θ) with θ such that

Q(θ)

(
3
4

)
=

(
∗
0

)
.

Take θ ∈ [0, 2π) such that cos(θ) = 3
5 and sin(θ) = −4

5 (recall
cos(θ) = x1

∥x∥2 , sin(θ) = − x2
∥x∥2 ). Then,

G1 :=

1 0 0
0 3

5
4
5

0 −4
5

3
5

 , G1A =

−2 −1 1
5 2 13

5
0 −1 16

5

 .
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G1A =

−2 −1 1
5 2 13

5
0 −1 16

5

.

Step 2: Let us eliminate the (2,1)-entry using the (1,1)-entry, thus leaving
the third row of A unchanged.
=⇒ use the Givens rotation G3(θ) with θ such that

Q(θ)

(
−2
5

)
=

(
∗
0

)
.

Take θ ∈ [0, 2π) such that cos(θ) = −2√
29

and sin(θ) = − 5√
29
. Then,

G3 :=

− 2√
29

5√
29

0

− 5√
29

− 2√
29

0

0 0 1

 , G3G1A =


√
29 12√

29
11√
29

0 1√
29

− 51
5
√
29

0 −1 16
5

 .
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G3G1A =


√
29 12√

29
11√
29

0 1√
29

− 51
5
√
29

0 −1 16
5

.

Step 3: Let us eliminate the (3,2)-entry using the (2,2)-entry, thus leaving
the first row of A unchanged.
=⇒ use the Givens rotation G1(θ) with θ such that

Q(θ)

(
1√
29

−1

)
=

(
∗
0

)
.

Take θ ∈ [0, 2π) s.t. cos(θ) =
1/

√
29√

30/
√
29

= 1√
30
, sin(θ) = − −1√

30/
√
29

=
√

29
30 .

Then,

G̃1 :=


1 0 0

0 1√
30

−
√

29
30

0
√

29
30

1√
30

 , G̃1G3G1A =


√
29 12√

29
11√
29

0
√

30
29 − 103√

870

0 0 − 7√
30

 =: R.
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=⇒ We have

G̃1G3G1A =


√
29 12√

29
11√
29

0
√

30
29 − 103√

870

0 0 − 7√
30

 =: R.

Noting that G1, G3, G̃1 ∈ R3×3 are orthogonal, we have obtained the
following QR factorization: A = QR with R as above and

Q := GT
1 G

T
3 G̃

T
1 =


− 2√

29
−

√
5√

174
−

√
5√
6

3√
29

11
√
2√

435
−

√
2√
15

4√
29

− 19√
870

− 1√
30

 .
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End of “Chapter 3: QR Factorization”.
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