MA4230 Matrix Computation

Chapter 2: Singular Value Decomposition (SVD)

2.1 Definition and geometric interpretation
2.2 Existence and uniqueness

2.3 Computation

2.4 Matrix properties

2.5 Low-rank approximation



Notation: diagonal matrix

A matrix A € R™*" is called diagonal iff A = diag,,,,.,(a1,...,ap) for
., 0p € R, where p := min(m,n).

some aj, ..
(i) When m > n:
a; O 0
0 a9 0
diag,, (a1, ...,an) =1 0 0 -+ «,| € R™"™
0 0 0
0 0 0
(i) When m < n:
ai7 0 -~ 0 0 --- 0
0 o 0O 0 --- 0
diag,, (a1, ... ) == _ e R"™*™,
0 0 am 0 0



Examples of diagonal matrices

a 0 0
° |0 b 0] =diagzs(a,b,c).
0 0 c
a 0
0 b
° 0 0f= diag5><2(a’7 b)
0 0
0 0
a 00 0 0O
0b0000| .
°lo 0 ¢ 0 0 of=de8ixeabcd).
00 0doOoO



2.1 Definition and geometric interpretation



Definition (Singular Value Decomposition (SVD))

Let A € R™*™ and write p := min(m,n). If there exist

U= (u1]--|um) € R™*™ orthogonal,
V= (v1] -+ |vn) € R™™  orthogonal,
Y =diag,,«n(01,...,0p) ER™™  with oy > 09>+ >0, >0,
such that
A=UzVT,

then we call this a (full) singular value decomposition (SVD) of A with

e singular values o1,...,0, € [0,00),
o left singular vectors u,...,u,, € R™,
@ right singular vectors vy, ...,v, € R™.

Note: Since U and V are orthogonal matrices (U~! = U™, V-1 = VT):
A=UsV! = AV=US <= UTAv=x.
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Reduced SVD

We can simplify the SVD of rectangular matrices (m # n):

(i) Suppose A € R™*™, m > n (tall), and that it has a SVD

= T _ /diaann(O'l,...,O'n)\ T
4 m[jmmEXn ’V‘L/Xn - (ul‘ |un‘un+l‘ ‘um) \ O(m—n)Xn / v

Can simplify:
A= (u1]---|up) diag, (01, ...,00) VT = ULV,

(ii) Suppose A € R™*™ 'm < n (wide), and that it has a SVD
A=USV=U (diagxm (01, - - - 0m) | Omxc(nom)) (V1] -+ [Un[Umgt] - - o)
Can simplify:

A=U diag,,.,.(01,...,0m) (v1]--|om)T = USVT.



— The SVD can be simplified to

A=Uxv"
with (write p := min(m,n))
U= (u]---|uy) € R™*P
V= (v1]--|vp) € RP¥P
3= diag,y,(01,...,0p).

Note that,
oifm>n UecR™"isa rectangular tall matrix with orthonormal
columns, and V =V € R™*" is orthogonal.
oifm<n U=UecR™™is orthogonal, and V e R is a
rectangular tall matrix with orthonormal columns.

o (ifm=n:U=U,V=VadE=2x)

A decomposition A = USVT with U € R™*P and V € R"*? having
orthonormal columns, and ¥ € RP*P being diagonal with non-negative and
non-increasing diagonal entries, is called a reduced SVD of A.



Some fundamental questions

@ Existence: Does every matrix have a SVD? If not, do certain special
matrices have a SVD?

@ Uniqueness: s the SVD, if it exists, unique? l.e., are the matrices
U, V., unique, or equivalently, are the left singular vectors, the right
singular vectors, and the singular values unique? If not, what can we
say about them?

o Computation: If we know that there is a SVD for some matrix, how
can we actually compute a SVD?

@ Geometric interpretation: |s there a geometric motivation behind this
decomposition?

Spoiler: Every matrix has a SVD. We start by discussing the geometric
interpretation and then proceed to proving this existence result.

First of all, some explicit examples:



Examples of SVDs
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Examples of SVDs

(if)
11 75 00 =5\ /2 0 X T
-1 1| [0 10 o0 0 V2| (B ~»»
L 1 |5 00 0 0 - =
2 V2 V2 V2
0 0 0 01 0 0 0

Corresponding reduced SVD:

11 7 0 1 \T
—11_(1)1(2())@12

1 1 7 0 0\/53—2

0 0 0 0

|
at
S-Sk
N——
=
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Geometric interpretation of the SVD

The geometric interpretation of the SVD is that the image of the
2-norm unit sphere {z € R"|||z||2 = 1} under any m x n matrix is a
hyperellipse.

A hyperellipse in R is m-dimensional generalization of an ellipse: surface
obtained by stretching the 2-norm unit sphere in R™ by factors
01,...,0m > 0 in the directions of orthonormal vectors uq, ..., u, € R™.

Indeed, observe that a SVD A = USVT of a matrix A € R™*™ yields
AV =UE = (a1]---|an)(vi] -+ |vn) = (w1] - - - |um)diag,, (01, . . ., 0p)
(recall that p := min(m,n)). Therefore,
ifm>n: Av,=ou; V1 <i<n,
and
ifm<n: Avy=o0mu; V1<i<m, Av;=0 Vm<j<n.

(Note if m < n (wide): the j-th column of UX is 0 € R™ for j > m)



Example:

T
2 11 R AN U, -5 & T
A= 0 —5)= A X 0 3./10 AR =UXV".
Vi V3 ‘ Vi VB

Have singular values o1 = 410, 02 = 3v/10, left singular vectors
1 1 _1 2
ur=( V2 |, ua= Y2 |, right singular vectors v; = | &5 |, va= | % |.
V2 V2 V5 V5
Compute image of unit circle S under L4: La(S) = [Ly o Ly o Ly](S).

VIS = {Vix|x e 8}

§={reR?|||z]. =1}

Step 1: Ly is reflection of plane across the line y = 1+—2‘/5:L“



Example:

T
sy (&m0 (- & .
A=l 5)= 4 X o svig) |l L x| =UEV.
VIR 3v 5

Have singular values o1 = 410, 02 = 3v/10, left singular vectors
1 1 _1 2
ur=( V2 |, ua= Y2 |, right singular vectors v; = | &5 |, va= | % |.
V2 V2 V5 V5
Compute image of unit circle S under L4: La(S) = [Ly o Ly o Ly](S).

TVTS = {(EVTz|x € 5}

§={zreB|[af. =1}

Step 2: Ly stretches scales z-coordinate by o1 and y-coordinate by g0,



Example:

T
sy (&m0 (- & .
A=l 5)= 4 X o svig) |l L x| =UEV.
VIR 3v 5

Have singular values o1 = 410, 02 = 3v/10, left singular vectors
1 1 _1 2
ur=( V2 |, ua= Y2 |, right singular vectors v; = | &5 |, va= | % |.
V2 V2 V5 V5
Compute image of unit circle S under L4: La(S) = [Ly o Ly o Ly](S).

USVIS = {UsV 2|z € §} = {Ax |z € §} = AS

§={zreB|[af. =1}

_ . : . x
Step 3: Ly is rotation of plane clockwise by the angle 7. S



= L4(S) is ellipse with principal semiaxes are oju; and oaus.
For any A € R?*2 with SVD A =UXVT:

LA(S) == [LU o} LE e} LVT](S)

1) Lyt is either rotation or reflection of plane = Ly+(S) = S.

2) Ly stretches z-coordinate by o1 and y-coordinate by o9 =
[Ls; o Ly,7|(S) = Lx(5) is ellipse aligned with coordinate axes.

3) Ly is either rotation or reflection of plane = L4(S) = Ly (Lx(S5))
is ellipse with principal semiaxes ogi1u1, oous.
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2.2 Existence and uniqueness
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Existence theorem for SVD
Theorem (Every matrix has a SVD)

Let A € R™*"™ for some m,n € N. Then, there exists a SVD of A.

Proof: We need to show that 3 orthogonal matrices U € R™*",
V € R™", and a matrix ¥ = diag,,,,,(o1,...,0p) with
o1 > 09 > -+ >0, >0 (recall p=min(m,n)) such that
UTAV =%, (= A=UxV"is SVD of A.)
Note: AV = UX requires Av; = o;u; V1 < i <p and thus, for 1 <7 < p:
7i = llowulla = | Avills < sup |14z = 1Al
zcR™
llzlla=1
Step 1. Construct o1, vy, uq.
Set 01 := || A||2 = sup,cg [[Az||2, where S := {z € R" : ||z|]2 = 1}.
S is compact subset of R™, the map S 3 z +— ||Az||2 € R is continuous:

Jvy € S ||Avyilla = o1, i.e., Avy = oquy for some unit vector u; € R™.

17 / 63



Step 2. Construct orthogonal matrices V4 € R™*", Uy € R™*™ such that

U;A‘/l — ( 01 ‘ 01><(B7L1)> e R™*"™  for some B € R(mfl)x(nfl).

\O@m-1)x1 |
Extend v; to orthonormal basis {v1,...,v,} € R"™ and u; to orthonormal
basis {u1,...,un} C R™, and set
V1= (v1] - |on) € R™™ Up = (ug] -+ Jupm) € R™X™,

Then, Vi and U; are orthogonal matrices. By Step 1,
Avi = o1uq = Av = U1(01€1) — UiI‘Avl =o01e; € R™.

Hence,

T

L [ w —: A; € R
T 0m—nyxa | B !

for some w € R" ! and B € R(m=1)x(n-1),
We are done with Step 2 if we can show that w = 0 € R"~!.



Recall from previous slide:
T
g1 ‘

(
\O@m-1)x1 |

for some w € R" 1 and B € R(M=D*(n=1) \We will show w =0 € R" 1.
Key is the observation

Ul AV, = 5) = Ae R

|A1]l2 = |U AVAl2 = ||A]l2 = o1.

We claim that ||A;]|2 > \/0? + wTw. Once shown, this yields w = 0.

. o
For w := @ € R™ we have

[w™ (o

2 T
o] tww
41l = H\Om x| B)

’ Bw

2 (0? + wrw)

2

2= (oF +whw)|wl3

= || A1l > /o7 + wTw. Since ||A1]]2 = o1, we must have w = 0.



Step 2 is done: we have found orthogonal matrices 1, € R™*"™,
U; € R™™ such that

UFA‘/I = ( g1 ‘ le(”*l)\ c R™*"  for some B € R(Wlfl)x(nfl)_
\()(mfl)xl ‘ B /

Step 3. We conclude the proof using induction on the dimension of A.

Note
UL AV = % = diag,,«1(01) ifn=1,
O(m—l)xl

ULAVy = (01|01 x(n—1)) = diag)y,(01) ifm=1,

i.e., every A € R™*™ with m =1 or n = 1 has a SVD. Now, assume
m,n > 2 and that B € RO"~1)*x(=1) has a SVD B = Uy, V,". Then,

T AV, — [ o1 | Oixmen)
Uran \Ogn—1)x1 | U2X2V5' )

AR S VTS AR KV WA B N IPTTA
\Om—vx1 | U2 ) \Om-nx1| B2 ) Om-nx1| V2

Bring first and third matrix from right-hand side to left-hand side:




01

0
UTAV — / ‘ 1><(n71)\ — ¥ c Rmxn’
\Om-1yx1 | 22 )

1 [ 0imn) (1 |0
U::U/ Ix(m=1) ) .=V (n=1) )
! \Opm—1)x1 | U2 ) ! Opm-n)x1 | Vo

Done:
e X € R™*™ is diagonal with non-increasing non-negative entries.

o U e R™™ V e R™™ are orthogonal matrices.

Next question: Is the SVD unique?
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Is the SVD unique?

No: let's consider the simplest possible case, A = (a) € R*!. Observe
Q = (q) € R™! is orthogonal <= ¢e {-1,1}.

So, if we look for a SVD
A= (@) =USVT = (@) (o) @) [= (uorv) ],

we need u,v € {—1,1} and o1 > 0. Hence, must have

o1 = |al.

We can list all SVDs of A = (a):

o Ifa>0: (a) = (1)(o1)(1)T and (a) = (~1)(o1)(—1)T.

@ Ifa=0: (a) = ()(o1)()T = (~)(e1)(-)T = (=1)(e1)())T = (1) (o1)(-1)".

o Ifa<0: (a)=(—1)(o1)(1)T and (a) = (1)(o1)(—1)T.
—> SVD not unique. However, in this example, the singular values are
unique, and the left & right singular vectors are unique up to signs.
= There is hope: we might have uniqueness of singular values and/or
uniqueness up to signs for left & right singular vectors.



A first uniqueness result: oy is unique

Claim: For any matrix A € R™*™ its largest singular value o1 is uniquely
determined and given by

o1 = ||A]f2.

Proof: Suppose A = UXV ™ is a SVD of A. Then, (recall p := min(m,n))

1All2 = JUSVT|l2 = ||Z]|2 = ||diag,,xn (01, - - -, 0p)]l2 = [nax |oi| = o1.

O
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Uniqueness theorem for singular values and singular vectors
Theorem (Uniqueness result for SVD)

The singular values {o;} of any given matrix A € R™*" are unique and
A(ATA) | ifm>n

2 2 ) = Ity

07,.--,0-F = 1

to1 o) {A(AAT) . ifm < n. (L)

If A € R"™"™ js square and the singular values are positive and distinct,
then the left singular vectors {u;} and right singular vectors {v;} are
unique up to signs.

Proof: 1) We show (1). (= singular values are uniquely determined)

Let A€ R™ " and let A= UXV" be a SVD of A. Then,
ATA=vxTUTusvT = v(ETe) vt e R — AT A similar to 2T%,
AAT = UsvTvytut = u(esTu—t e R™™ — AAT similar to x0T,



= A(ATA) = A(ZTY) and A(AAT) = A(ZET),

Let's compute the matrices T and £X7:

_ {diaann(Ul, . ,Un)\

e If m > n: Have ¥ = diag,,,,,,(01,...,00) 0
(m—n)xn

Hence,

ETE _ (diaann(Ul, o ,O'n) ‘ Onx(m_n)) (diagnxn(ala . ,O'n)\

O(m—n)xn
= diag,, .., (0%,...,02),
and
ST _ /dlagnxn(m, . ,Un)\ (diagnxn(ala o) ‘ Onx(mfn)>

O(mfn)xn }

_ /diagnxn(cr%,...,(f%) ‘ Onx(m—n) \
O(m—n)xn ‘ O(m—n)x(m—n)

= diag,, (0%, ...,02,0,...,0).

— {02,...,02} = A(XTS) = A(AT A).



o If m < n: Have
Y = diag,,xp (01, ..., on) = (diag,,m (01, ..., om) ‘ OmX(n—m))-
Hence,

di
ETE { lagmg(:r: :)Xm ) (dlagmxm Ol .- ’Um) ‘ Omx(n—m))
m) |
X

{dlagmxm 01’ A OmX(n ™m) \
= diagnxn(af,...,ai,o, . ,O).

and

ZET = (diagmxm(o'la SRR Um) ‘ Omx(nfm)) (diangm(fﬁ, S ’Um)\

O(n—m)xm
= diag,, (0%, ..., 02%).

= {02,...,02} = A(ZXT) = A(4A4T).

— Altogether, o7, ...,05 uniquely determined. As singular values

non-negative and non-increasing, find o1, ..., 0, are uniquely determined.



2) Remains to show: If A € R™*™ and singular values are positive and
distinct, then the left and right singular vectors are unique up to signs.

(What do we mean by “unique up to signs’? Recall SVD is equivalent to

ifmZn: Avi:(nui Vlgiﬁn,
ifm<n: Avy,=omu; V1<i<m, Av;=0 Vm<j<n.

So, one can always find another SVD by replacing a chosen v; by —v;
when also replacing u; by —u;. We claim that this is the only way of
obtaining another SVD.)

We do not give a rigorous proof, but argue geometrically:

If the lengths of the semiaxes of a hyperellipse (i.e., the singular values o;)
are distinct, then the semiaxes (i.e., the vectors o;u;) are determined
uniquely up to signs from the geometry of the hyperellipse. (Note that if
> and U is uniquely determined, then also V' must be uniquely determined
from A = UXVT as U and ¥ are invertible (recall assumption

o; > 0)) L]



SVD as a tool for transformation into diagonal form

A brief summary of what we have achieved:

@ Every matrix has a SVD. In geometric terms: the image of the
2-norm unit sphere in R™ under any m X n matrix is a hyperellipse.

@ The singular values are uniquely determined. For square matrices with
positive distinct singular values, the left & right singular vectors are
uniquely determined up to signs.

= Can transform any matrix into a diagonal matrix via change of bases:

For any x € R™ and b € R™:
Ar=b — UZVTz=b — xVTz=U"p — 3xi/'=V,

where 2’ = V'z (& 2 = V') coordinate vector for expansion of  in
basis of right singular vectors and &' = U'b (< b = Ub') coordinate vector
for expansion of b in basis of left singular vectors.



Comparison with eigenvalue decomposition
If A € R"" is diagonalizable with eigenvalue decomposition
A=XDX!

for some invertible X € R™ " and a diagonal matrix D € C"*™ containing
the eigenvalues of A, then for any z,b € C™:

Ar=b < XDX '2=b «— DX '2=X"1 — D' =V,

where 2/ = X 12,1/ = X~ 'b coordinate vectors for expansions of z, b in
the basis of columns of X (eigenvectors).

SVD vs. eigenvalue decomposition: (A =UXVT vs. A= XDX™1)
@ SVD uses two orthonormal bases (left and right singular vectors).
Eigenvalue decomposition uses only one — not necessarily orthogonal
— basis (eigenvectors).
@ The huge advantage of the SVD: Every matrix has one. An
eigenvalue decomposition only exists for certain square matrices
(geometric multiplicity = algebraic multiplicity for all eigenvalues).



2.3 Computation
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Observation: can restrict to tall matrices

For any A € R™*":

A = Uldiag,,x, (01, .., 0,)]VT is a SVD for A
— AT = V[diag,y (01, ..,0,)]UT is a SVD for AT,

=—> We can restrict to the case m > n when thinking about how to
compute SVDs.

If we know how to compute a SVD of an arbitrary given “tall” matrix, we
know how to compute a SVD of any given matrix.
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|dea for computing a SVD

Let A = (aq]---|an) € R™™ with m > n.
Idea: If A =UXVT isa SVD of A, then
ATA=vxTuTusvT = vyuTeyT.

So, (firstly ignoring the question if the following is all possible)

e first, find decomposition ATA = VDV with V€ R™*" orthogonal
and D € R™*™ diagonal.

@ then, find ¥ € R”*" such that ¥ = diag,,,,, (01, ..., 0p) with
o1>09> >0, >0, and 2TY = D.

o finally, find U € R™*™ orthogonal from AV = UX. Then,
A=UxV"is SVD.

Let's discuss this in detail:
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Algorithm for computing SVD

Let A= (a1|---|an) € R™*™ with m > n.

1) Compute the so-called Gram matrix of aq,...,a, € R™ for the
Euclidean inner product on R™

(a1,a1) (a1,a2) -+ (a1,an)
ATA _ <a27:a1> <a27: a2> : <a2’:an> c R,
(an,a1) (an,a2) -+ (an,an)

Observe:

» AT A is symmetric = Each eigenvalue of AT A is real, and there are n
orthonormal real eigenvectors (= AT A is orthogonally diagonalizable).
» All eigenvalues of AT A are non-negative: If A € A(ATA) and
x € R™\{0} is eigenvector corresponding to this eigenvalue, have

ATAz = a = 2TAT Az = Mo = ||Az|)3 = \|z]|3 = A >0.
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2) Compute an eigenvalue decomposition
ATA=vDV?"
with

V = (v1]---|vs) € R™*" orthogonal,
D = diag,, ., (A1,...,\p) € R™*™,
Al""aAneA(ATA)a AlZAQZZ)\nEO

3) Set 0; :=+/\; fori € {1,...,n}, and set
Y :=diag,, (01, ..,0n) € RTX™.

Then, XTY = D. Indeed:

Ty _ . /diaann(O'l, e ’Jn)\ =
Ty = (dlaann(017""0n)‘Onx(m_n))\ Om—mpn /)

diag, ., (0,...,02) = D.

rn
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4) Find an orthogonal matrix U = (uq|- - |um) € R™*™ such that
UX=AV, ie., ou;=Av; V1 <i<n.
Then, we have that
A=Usv?t

is a SVD of A.

An example will make things more clear:
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Example for computing a SVD
We compute a SVD of

L 1 0 -1 1 94
M'_(—l 1 0 1>6R .

0) Set A:= M"T € R**2. Now start with our Algorithm applied to A.

1) CompumAATA-_AJAJT_-(g g).

2) Eigenvalues of ATA: N\ =3, \y:=3.
. . . 1 0
Corresponding normalized eigenvectors: vy := <O> Vg 1= <1)

1 0 . 30
Set V := (v1|ve) = (0 1) and D := diagy, 5 (A1, A2) = <0 3>.

Then, V is orthogonal, D is diagonal with A1 > Xy > 0, and
ATA=vDVT.



V3 0
. . 0 V3
3) Set ¥ :=diag,,5(01,02) := diag,o(V A1, VA2) = 0 0
0 0
4) Find U = (u|ug|usluy) € R*** orthogonal with
Avy = oquq, Avy = o9us.
So, must have
1 —1
Avl 1 0 A’UQ 1 1
U = — = — 5 U = — = ——
! 01 \/§ —1 2 ()] \/§ 0
1 1
Extend to an orthonormal basis w1, us, u3, us of R Can take
1 1 1 1
V3 V3 V6 V6
o L -2 0
WL
V3 V3 V6 V6
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MGV

—: We have obtained the following SVD of 4= MT = | é
1 1
1 1 1 1
VB VB s VG V3 0 .
P L s B R WO
v L 0o < 0 0 01
13 1 1 \{6 0 0
V3 V3 V6 V6
. . 1 0 -1 1
Now, transpose the equation to obtain a SVD of M = (_1 1 0 1):
1 1 1N\ T
3 V6 V6
1 -2 9
V3 NG
0 0 %
U W o
V6
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Further examples/exercises will be on problem sheets.
Alternative computation of SVDs for square matrices A € R™*™:
based on an eigenvalue decomposition of the symmetric matrix

0n><n AT

2nx2n
eR .
A | Opxn
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Question to SVD example: Given an orthonormal set {uy,us} € R*, how
to find ug, us € R* such that U := (uq|ua|usluy) € R*** is orthogonal?

Observe that for z € R*:
T

(2} L {ur,us} < (urlus)e = (:jifi) _ (8) — z e N((u]ug)).

So, need to find an orthonormal basis {u3,us} of N ((u1|uz)T).

— Compute a basis {ws, ws} of N ((ur|uz)’) and transform this into an
orthonormal basis {ug,us} of N ((u1|uz)™) using the Gram-Schmidt
algorithm (Chapter 3).
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A way without using things we didn't cover yet: Let's consider our explicit

example, i.e., uy := %(1,0,—17 DT, ug = %(—17 1,0,1)T.

Compute
Wtk =G (200 3 =4 Y )
1
(R IR

-2
) 0 )
1
Take u3 to be a unit vector in W ((u1]ug)?), say us = %(—1, -2,0,1)7T.

O = =

Now we have a set of three orthonormal vectors {uy,us,u3}. Remains to
find an orthonormal basis {us} of W ((u1|ua|u3)T). Then, {u1, us, uz, us}
is an orthonormal basis of R*.

41 / 63



Compute

1 1 1
./V((U1IUQ|U3> ):./V( _ﬁ % 0 % ):./V( 0 1 0 0 )
1 _ 2 0 1 0 01 -2

V6 V6 V6
1
0

= span( 5 ).

1

Take 1y to be a unit vector in W ((ug|ug|us)?), say ug := %(1,0,2, nT.

4 -1 1 1
V3 V3 V6 V6
o L -2 0
Done: U := (u1|ug|us|uyg) = 1 \(/)g 6/6 o | is orthogonal.
V3 V6
1 1 1 1
V3 V3 V6 VB
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2.4 Matrix properties
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Connection of the SVD to matrix properties
Theorem (Matrix properties via SVD)
Let A € R™*" set p := min(m,n), and let
A=USVT = (ug] - Jum)[diag,, xn (01, - - -, 0p)] (V1] - - [vn) T

be a SVD for A. Let 0 < r < p denote the number of non-zero singular
values of A, so that o1,...,0, >0 and o; =0 Vr < i <p. Then,

(i) tk(A) =r.
R(A) = span(uy,...,u,) and N(A) = span(vyy1,..., ).

(ii
(i) | Allz = o1 and ||Allr = /3211 07

)
)
(iv) {o1,...,00} = {VA| X € A(ATAN{0} = {VA]| X € A(AAT)}\{0}.
(v) If m =n, then |det(A)| =[], 0.

(vi) If m=n and A= A", then {o1,...,0,} = {|M|| A € A(A)}.

(Define {z;,...,x;} := 0 for i, j € Ny with ¢ > j. Define span(0) := {0}.)



This theorem lays the foundation for many practical algorithms.

In particular, from a computational point of view,
@ the standard way to compute the rank of a matrix is via (i)
(rk(A) = r, in practice: count the number of singular values greater
than some very small tolerance),
@ the most accurate method for computing orthonormal bases of the
range and the nullspace of a matrix is via (ii)

(R(A) = span(uy,...,u,) and N(A) = span(vy41,...,0,)),

@ the standard way to compute the spectral norm of a matrix A is via
(i) ([[All2 = o).

Now, let's prove the theorem:
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Proof of (i)
Recall set-up: A € R"*" p := min(m,n),
A= UEVT - (Ul‘ e |UTYL)[diagm><'n,(O—17 <o 70_1))}(01‘ e ‘/UTL)T

a SVD for A. Let 0 < r < p denote the number of non-zero singular
values of A, so that 1,...,0, >0 and 0,41,...,0, =0.

Claim: rk(A) = r.
Proof: First, two observations:

@ For any invertible matrices M,, € R™*™ and M,, € R"*"™:
rk(M,, A) = rk(A) = rk(AM,,).

o rk(X) =r.
Hence,
rk(A) = tk(UZVT) = k(%) = r.
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Proof of (ii)
Recall set-up: A € R"*" p := min(m,n),
A= UZVT - (Ul‘ o |u'm/)[diagm><n(o—17 o 70—[))}(1]1‘ co ‘U'n,)T

a SVD for A. Let 0 < r < p denote the number of non-zero singular
values of A, so that 01,...,0, >0 and o,41,...,0, =0.

Claim: R(A) =span(uq,...,u,), N(A)=span(vy41,...,0,).
Proof: Note that R(A) = R(UXVT) =
{(USVTz |z e R") = {USy |y e R} = {Uz| 2z € R(D)},
and N(A) = NUSVT) = {z e R | USV Tz = 0} =
{reR"|2VTz =0 ={z cR"|VIiz e N(X)} = {Vy|yc N¥(D)}.
Observing
R(X) = span(eq,...,e,) CR™, N(X) = span(ep41,...,e,) C R,

it follows R (A) = span(uq,...,u,) and N(A) = span(vy41,...,0,). [



Proof of (iii)
Recall set-up: A € R"*" p:= min(m,n),
A=USVT = (ug] - Jum)[diag,, xn (o1, - - s 0p)] (1] - - - [on) T

a SVD for A. Let 0 < r < p denote the number of non-zero singular
values of A, so that 01,...,0, >0 and o,41,...,0, = 0.

Claim: ||All2 = o1 and [[Allp = /3 i, 0F.

Proof: Have already shown that [|Al|2 = 0.

For second equality, recall that the Frobenius norm is invariant under
multiplication by orthogonal matrices. Hence,

1Allr = IUSVEF = [Sllr =
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Proof of (iv)

Recall set-up: A € R"*" p := min(m,n),
A=USV" = (w]- - [um)[diag,, ., (1, - ., 0p)|(vi] - - [vn) "
a SVD for A. Let 0 < r < p denote the number of non-zero singular

values of A, so that 01,...,0, >0 and o,41,...,0, =0.

Claim:

{01, s00} = (VA X € A(ATA) {0} = {VA| A € A(AAT)}\ {0}
Proof: Recall from proof of uniqueness of singular values that
AATA) = AETY), AAAY) = A(EZDT)
and
YUY = diag,, ., (01,...,02), X1 =diag,, ,n(0},...,02,0,...,0) ifm >n,

) n

YTY = diag, ., (07,...,02,0,...,0), ¥2T =diag,, . (0%,...,02) ifm<n.

»Ymo

Done. (note {o1,...,0,} = {o1,...,0,}\{0}). O



Proof of (v)
Recall set-up: A € R"*" p := min(m,n),
A=USV" = (w] - [um)[diag, ., (01, - -, 0p)|(vi] - - [on) "

a SVD for A. Let 0 < r < p denote the number of non-zero singular
values of A, so that 01,...,0, >0 and 041,...,0, =0.

Claim: If m = n, then |det(A)| =[]}, 0.

Proof: Compute
det(A) = det(USVT) = det(U) det(2) det(VT) = det(U) det(X) det(V).

Recall |det(Q)| = 1 for any orthogonal matrix @ € R™"*". Thus,

|det(A)| = [det(Z)| = [] o
=1
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Proof of (vi)

Recall set-up: A € R"*" p := min(m,n),
A= UEVT - (U’l‘ e |um)[diagmxn(o—lv o 70—7))}(7}1‘ c ‘/U'n,)T

a SVD for A. Let 0 < r < p denote the number of non-zero singular
values of A, so that 01,...,0, >0 and o,41,...,0, =0.

Claim: If m =n and A = A", then {o1,...,0,} = {|]A|| A € A(A)}.

Proof: Since A is symmetric, 3 orthogonal matrix () € R™*", a diagonal
matrix D = diag,, ., (A1,...,A\n) € R with {A1,..., A} = A(4) s.t.

A=QDQ".
Assume that entries of D are ordered s.t. |A1]| > |A2| > -+ > |\,|. Define
> = diag, ., (M1, -+ [Anl), = diag,, ., (sign(\1), . .., sign(\,)),
and note D = 25T, Setting U := Q and V := Q8,
A=QusTQT =UxvT.
This is a SVD of Al Singular values unique = {|\;|} singular values of A.



Short alternative proof of (vi)
Recall singular values {o;} of any A € R™*" are unique and

{02 2) A(ATA) | ifm>n,

Ofyee, 00 =

! P A(AAT) | ifm<n.

Claim: If A € R™" is symmetric, then {o1,...,00,} = {|A\|| X € A(A)}.

Proof:

{oF,..., 00} = AM(ATA) = A(4?) = {N}| X e A(A)}.

Proof of A(A%) = {A?| X € A(A)} for A symmetric:

A =QDQT for some Q € R™ ™ orthogonal, D = diag,,,,,(A1,..., )
with {\1,..., A} = A(4) CR.

= A*=QDQTQDQ" = QD*QT = A(A?) = A(D?) = {M\,.... 7 }.



2.5 Low-rank approximation
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The problem of low-rank approximation

Given: some matrix A € R™*™\{0} and some v € Ny with 0 < v < rk(A).

Goal: find the best approximation to A from {B € R™*" |rk(B) < v}.
= question: what do we mean by “best” approximation?

Low-rank approximation problem:

minimize ||A — B,
subject to B € R™*" rk(B) < v,

for some given matrix norm || - || : R™*" — [0, 00).

Practical application: image compression.
This section: solve this problem for spectral and Frobenius norms.

Key tool: SVD.



A crucial observation

Using SVD, any matrix A can be written as the sum of r := rk(A)
rank-one matrices.

Let A € R™*™ set p := min(m,n), and let
A=USVT = (w - [um)[diagy (01, .., 0p)] (1] - [va) T
be a SVD of A. Setting r :=rk(A), we have

.
A= g aiui'UZT.
i=1

This follows from the fact that we can write X as the sum of the r matrices
diag,, v, (01,0,...,0), diag,,,(0,02,0,...,0), ..., diag,,,(0,...,0,0.).

Exercise: find other, more simple, ways to express A € R™*" as a sum of
rank-one matrices.

So, why is this SVD-based rank-one decomposition more useful?

= its v-th partial sum captures largest possible amount of “energy” of A.



Solution of the low-rank approximation problem
Theorem (Eckart—Young—Mirsky theorem)
Let A € R™*™\{0}, set p := min(m,n), and let

A=UsV" = (w] - [um)[diagymn (01, .-, 0p)](v1] - [vn) "

be a SVD for A. Further, let v € Ng with 0 < v < rk(A), and set

1%
A, = E UiuiviT.
i=1

Then,

inf [|A=Bl2=[4-All2=o0v41,
BeRan
rk(B)<v

inf A= Bllr=[|A—A|r=
BeR™Xn
rk(B)<v




Proof of Eckart—Young—Mirsky theorem for spectral norm
Let A € R™*™\{0}, set p := min(m,n), r := rk(A), and let
A = UEVI = (U] | o |u'”1r)[diag7n><n(o-1?‘ s 70-11)}(1/71 | e ‘UN)T

be a SVD for A. Further, let v € No with 0 < v < rk(A), and set A, = Y7, oyuv; .

Claim: inf 5 _pmxn |A = Bll2 = [|[A = Ayll2 = 0v41.
rk(B)<v

Step 1: Show ||[A — A,|l2 = op41.
Compute

T
E Uiuiv?

i=v+1

A= Ayl2 =

- UV+17

§ O Uiy § O Uiy
2 2

where we have used in the last step that the the largest singular value of
the matrix >0 | oqu;v; vl is given by 0,4 1.

As tk(A,) <wv:

[A=Bl2 < [[A=Aufls = o1
BE]R X"
rk(B)<v
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Proof of Eckart—Young—Mirsky theorem for spectral norm

Let A € R™*™\{0}, set p := min(m,n), r := rk(A4), and let

A=USVT = (ur] -+ fum) it (01, 0p)] (01 - [0m)
be a SVD for A. Further, let v € No with 0 < v < rk(A), and set 4, = >_"_, ou;v; .
Claim: inf g _pmxn |JA—=Bl2=||A— A2 = 0v41.

rk(B)<v

Step 2: Remains to prove inf gcpmxn ||A — Bll2 > 0y41.
rk(B)<v
Suppose 3 B € R"™*" with rk(B) < v and ||A — Bl|2 < g,+1. Then,

o dim(WN(B))=n—1k(B)>n—v.

o Vo e N(B)\{0}: [|[Az]2 = [[(A = B)zlls < [|A = Bl2llz]l2 < oviallle.
o Vo =" v €span(vy,...,v,01):

(use Av; = oju; forall 1 <i<v+1 (noterv+1<r<p), and
Pythagorean theorem: Va,b € R" :a L b= ||a + b||3 = ||a]|3 + ||b]|3)

2 v+1 v+1 2

o 2 2~ 2 2 2
= Q;0; 2 Opqq QO = Opyq1
i=1 i=1

v+1

E Q;0;U;

i=1

v+1

E Q;Vq
i=1

| Av]3 = = oy llvll3.

2

2
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Proof of Eckart—Young—Mirsky theorem for spectral norm

Let A € R™*™\{0}, set p := min(m,n), r := rk(A4), and let
A = UEVT = (U1| e |u777f)[diagm,><n(o-17 te ,O'p)}(/01| e "Un)T

v

be a SVD for A. Further, let v € Ng with 0 < v < rk(A), and set A, =>""_,

Claim: infBGRan ||A - BHQ = HA - AyHQ = Ov+1-
rk(B)<v

Write N := N (B), S := span(v1,...,v,+1). Have shown:
o dim(N)>n—uv.
o Vo N\{0}: [|4zlls < o1l

o VreS: ||Ax|2 > opi1]z]e-
We have

dim(N N S) > dim(N) + dim(S) — dim(N + S) > 1.
>n— >v+1 <

= 3 non-zero vector which is contained in N N S. Contradiction.

aiui’z}?.

59 / 63



Application: image compression

=)
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of Singapore

low-rank approximation: v = 10
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Application: image compression
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low-rank approximation: v = 50
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Application: image compression

low-rank appraximation: v = 100

B2 ®

95
NUS  NUS

National University National University
of Singapore of Singapore

= Try yourself in MATLAB. To transform an image into a matrix, do
image = imread(['filename.jpg’]); A = im2double(rgb2gray(image));
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End of “Chapter 2: Singular Value Decomposition”.
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