MA4230 Matrix Computation

Chapter 1: Preliminaries

- 1.1 Matrices
- 1.2 Norms

1.1 Matrices

- Basic operations
- Connection to linear maps
- Range and nullspace
- Invertible matrices
- Orthogonality

Definition (Matrices and vectors)

For $m, n \in \mathbb{N} = \{1, 2, \dots\}$, define the set of real $m \times n$ matrices by

$$\mathbb{R}^{m \times n} := \left\{ \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \middle| a_{ij} \in \mathbb{R} \ \forall \ 1 \le i \le m, 1 \le j \le n \right\}.$$

Define $\mathbb{R}^m := \mathbb{R}^{m \times 1}$, the set of real (column) *m*-vectors.

Notation:

• $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ with $a_{ij} \in \mathbb{R}$ denoting entry in row i, column j, • $A = (a_1|a_2|\cdots|a_n) \in \mathbb{R}^{m \times n}$ with $a_1, \ldots, a_n \in \mathbb{R}^m$ the columns of A. Example: $A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$. $A = (a_{ij})$ with entries $a_{11} = 1, a_{12} = 3, a_{13} = 5, a_{21} = 2, a_{22} = 4, a_{23} = 6$ and $A = (a_1|a_2|a_3)$ with columns $a_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, a_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, a_3 = \begin{pmatrix} 5 \\ 6 \end{pmatrix}$.

1.1.1 Basic operations

For $A = (a_{ij}) \in \mathbb{R}^{m \times n}$, $B = (b_{ij}) \in \mathbb{R}^{m \times n}$, $C = (c_{ij}) \in \mathbb{R}^{n \times l}$, and $\alpha \in \mathbb{R}$:

• addition:
$$A+B\in \mathbb{R}^{m imes n}$$
,

$$(A+B)_{ij} := a_{ij} + b_{ij},$$

• scalar multiplication: $\alpha A \in \mathbb{R}^{m \times n}$,

$$(\alpha A)_{ij} := \alpha \, a_{ij},$$

• transposition:
$$A^{\mathrm{T}} \in \mathbb{R}^{n imes m}$$

$$(A^{\mathrm{T}})_{ij} := a_{ji},$$

• matrix multiplication: $AC \in \mathbb{R}^{m \times l}$,

$$(AC)_{ij} := \sum_{k=1}^{n} a_{ik} c_{kj}.$$

Matrix-vector product of $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and $x = (x_1, \dots, x_n)^{\mathrm{T}} \in \mathbb{R}^n$: $Ax \in \mathbb{R}^m$ with entries $(Ax)_i = \sum_{k=1}^n a_{ik} x_k$.

Matrix-vector and matrix-matrix products

(i) For
$$A = (a_1 | \cdots | a_n) \in \mathbb{R}^{m \times n}$$
 and $x = (x_1, \dots, x_n)^{\mathrm{T}} \in \mathbb{R}^n$:

$$Ax = (a_1|\cdots|a_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{k=1}^n x_k a_k \in \operatorname{span}(a_1,\ldots,a_n) \subseteq \mathbb{R}^m.$$

 \implies Regard Ax not only as "A acts on x", but also as "x acts on A".

(ii) For
$$A = (a_1 | \cdots | a_n) \in \mathbb{R}^{m \times n}$$
 and $C = (c_1 | \cdots | c_l) \in \mathbb{R}^{n \times l}$:
 $AC = A(c_1 | \cdots | c_n) = (Ac_1 | \cdots | Ac_l) \in \mathbb{R}^{m \times l}.$

Note colmuns of AC belong to $\operatorname{span}(a_1,\ldots,a_n) \subseteq \mathbb{R}^m$.

1.1.2 Connection to linear maps

Definition (Linear maps)

Let $m, n \in \mathbb{N}$. A map $f : \mathbb{R}^n \to \mathbb{R}^m$ is called linear iff

 $f(\alpha x + y) = \alpha f(x) + f(y) \qquad \forall x, y \in \mathbb{R}^n, \alpha \in \mathbb{R}.$

We denote the set of all linear maps from \mathbb{R}^n to \mathbb{R}^m by $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

For $A \in \mathbb{R}^{m \times n}$, define $L_A : \mathbb{R}^n \to \mathbb{R}^m, x \mapsto Ax$ (associated linear map). Note for $A, B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{n \times l}$ and $\alpha \in \mathbb{R}$:

 $L_{A+B} = L_A + L_B, \quad L_{\alpha A} = \alpha L_A, \quad L_{AC} = L_A \circ L_C.$

Theorem (Characterization of linear maps)

There holds $\mathscr{L}(\mathbb{R}^n, \mathbb{R}^m) = \{L_A : A \in \mathbb{R}^{m \times n}\}.$

" \supseteq ": Associated linear maps are indeed linear. " \subseteq ": Let $f \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m)$. For any $x = \sum_{i=1}^n x_i e_i \in \mathbb{R}^n$, have $f(x) = \sum_{i=1}^n x_i f(e_i) = Ax$ with $A = (f(e_1)|\cdots|f(e_n)) \in \mathbb{R}^{m \times n}$.

1.1.3 Range and nullspace

Let
$$A = (a_1 | \cdots | a_n) \in \mathbb{R}^{m \times n}$$
. We define its
(i) range (or column space)
 $\mathfrak{R}(A) := \{y \in \mathbb{R}^m | \exists x \in \mathbb{R}^n : y = Ax\} = \operatorname{span}(a_1, \ldots, a_n),$
(ii) nullspace $\mathcal{N}(A) := \{x \in \mathbb{R}^n | Ax = 0\},$
(iii) rank $\operatorname{rk}(A) := \dim(\mathfrak{R}(A)),$
(iv) nullity nullity $(A) := \dim(\mathcal{N}(A)).$

Theorem (Properties of rank)

Let $A, B \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times l}$. Then the following assertions hold. (i) $0 \leq \operatorname{rk}(A) = \operatorname{rk}(A^{\mathrm{T}}) \leq \min\{m, n\}$ ("column rank equals row rank"), (ii) $\operatorname{rk}(A) + \operatorname{nullity}(A) = n$ (rank-nullity theorem), (iii) $\operatorname{rk}(A) + \operatorname{rk}(C) - n \leq \operatorname{rk}(AC) \leq \min\{\operatorname{rk}(A), \operatorname{rk}(C)\}$ (Sylvester ineqy), (iv) $\operatorname{rk}(A + B) \leq \operatorname{rk}(A) + \operatorname{rk}(B)$, (v) $\operatorname{rk}(A^{\mathrm{T}}A) = \operatorname{rk}(A) = \operatorname{rk}(AA^{\mathrm{T}})$.

We say $A \in \mathbb{R}^{m \times n}$ has full rank iff $rk(A) = min\{m, n\}$ (otherwise rank-deficient).

Theorem (Characterization of full-rank tall matrices)

Let $A = (a_1 | \cdots | a_n) \in \mathbb{R}^{m \times n}$, $m \ge n$. Then, the following are equivalent: (i) A is of full rank, i.e., $\operatorname{rk}(A) = n$. (ii) a_1, \ldots, a_n are linearly independent. (iii) L_A is injective.

Proof: (i) \Rightarrow (ii): If $rk(A) = dim(span(a_1, ..., a_n)) = n$, then clearly $a_1, ..., a_n$ are linearly independent.

(ii) \Rightarrow (iii): Suppose a_1, \ldots, a_n are linearly independent, and let $x = (x_1, \ldots, x_n)^T, y = (y_1, \ldots, y_n)^T \in \mathbb{R}^n$ such that $L_A(x) = L_A(y)$, i.e., Ax = Ay. Then $A(x - y) = \sum_{i=1}^n (x_i - y_i)a_i = 0 \in \mathbb{R}^m$ and hence, $x_i - y_i = 0$ for all $1 \le i \le n$, i.e., x = y.

 $\neg(i) \Rightarrow \neg(iii)$: Suppose that A is not of full rank. Then, $\operatorname{rk}(A) = \dim(\operatorname{span}(a_1, \ldots, a_n)) < n$ and hence, a_1, \ldots, a_n are linearly dependent. Then, there exists $c = (c_1, \ldots, c_n)^{\mathrm{T}} \in \mathbb{R}^n \setminus \{0\}$ such that $L_A(c) = \sum_{i=1}^n c_i a_i = 0$ and we conclude that L_A is not injective.

1.1.4 Invertible matrices

Definition (Invertible matrix)

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be **invertible** (or **non-singular**) iff there exists a matrix $A^{-1} \in \mathbb{R}^{n \times n}$, called the inverse of A, such that

$$AA^{-1} = A^{-1}A = I_n.$$

Here, I_n denotes the $n \times n$ identity matrix

$$I_n := (e_1|e_2|\cdots|e_n) := \begin{pmatrix} 1 & 0 & \cdots & 0\\ 0 & 1 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & 1 \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

Note that for $A = (a_1 | \cdots | a_n) \in \mathbb{R}^{n \times n}$ invertible, $b \in \mathbb{R}^n$:

Writing
$$x = A^{-1}b = (x_1, \dots, x_n)^{\mathrm{T}}$$
: $b = Ax = \sum_{k=1}^n x_k a_k, \ A^{-1}b = \sum_{k=1}^n x_k e_k$.

 \implies Left-multiplication by A^{-1} is a change of basis operation.

Characterization of invertible matrices:

Theorem (Characterization of invertibility) For $A \in \mathbb{R}^{n \times n}$, the following are equivalent: (i) A is invertible. (ii) L_A is an invertible linear map. (iii) A has full rank, i.e., rk(A) = n. (iv) $\Re(A) = \mathbb{R}^n$ (or equivalently, L_A is surjective). (v) $\mathcal{N}(A) = \{0\}$ (or equivalently, L_A is injective). (vi) $det(A) \neq 0$. (vii) $0 \notin \Lambda(A)$.

Here, $\Lambda(A) := \{\lambda \in \mathbb{C} : \det(A - \lambda I_n) = 0\}$ is the spectrum of $A \in \mathbb{R}^{n \times n}$.

Theorem (Properties for inverse)

Let $A, C \in \mathbb{R}^{n \times n}$ invertible, $\alpha \in \mathbb{R} \setminus \{0\}$. Then, $A^{-1}, AC, \alpha A, A^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ are invertible and we have

(i)
$$(A^{-1})^{-1} = A$$
, $(AC)^{-1} = C^{-1}A^{-1}$, $(\alpha A)^{-1} = \frac{1}{\alpha}A^{-1}$,
 $(A^{T})^{-1} = (A^{-1})^{T}$.
(ii) $\operatorname{rk}(A^{-1}) = \operatorname{rk}(A) = n$, $\det(A^{-1}) = \frac{1}{\det(A)}$.

Compare with transposition: For $A, B \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{n \times l}$, $\alpha \in \mathbb{R}$: (i) $(A^{\mathrm{T}})^{\mathrm{T}} = A$, $(AC)^{\mathrm{T}} = C^{\mathrm{T}}A^{\mathrm{T}}$, $(\alpha A)^{\mathrm{T}} = \alpha A^{\mathrm{T}}$. (ii) $\mathrm{rk}(A^{\mathrm{T}}) = \mathrm{rk}(A)$, $\det(A^{\mathrm{T}}) = \det(A)$.

Important classes of matrices:

Definition (Symmetric matrix, orthogonal matrix)

- (i) A matrix $A \in \mathbb{R}^{n \times n}$ is said to be symmetric iff $A^{\mathrm{T}} = A$.
- (ii) A matrix $Q \in \mathbb{R}^{n \times n}$ is said to be **orthogonal** iff $QQ^{\mathrm{T}} = Q^{\mathrm{T}}Q = I_n$, i.e., iff Q is invertible and $Q^{-1} = Q^{\mathrm{T}}$.

1.1.5 Orthogonality

Definition (Euclidean inner product and Euclidean norm)

Let $x, y \in \mathbb{R}^n$. We define

(i) the Euclidean inner product $\langle x,y\rangle:=x^{\mathrm{T}}y\in\mathbb{R}$, and

(ii) the Euclidean norm $||x||_2 := \sqrt{\langle x, x \rangle} \in \mathbb{R}$.

Properties:

•
$$\langle x, y \rangle = \|x\|_2 \|y\|_2 \cos(\theta_{x,y})$$
 with $\theta_{x,y}$ angle between x and y .

• $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is bilinear (linear in both arguments) and symmetric ($\langle x, y \rangle = \langle y, x \rangle \ \forall x, y \in \mathbb{R}^n$)

Definition (Orthogonal vectors and subsets)

(i) $x, y \in \mathbb{R}^n$ are orthogonal $(x \perp y)$, iff $\langle x, y \rangle = 0$.

(ii) $X, Y \subseteq \mathbb{R}^n$ are orthogonal $(X \perp Y)$, iff $x \perp y \ \forall x \in X, y \in Y$.

(iii) $S \subseteq \mathbb{R}^n \setminus \{0\}$ is orthogonal iff $\forall x, y \in S : x \neq y \Longrightarrow x \perp y$.

(iv) $S \subseteq \mathbb{R}^n \setminus \{0\}$ is orthonormal iff S is orthogonal and $||x||_2 = 1 \ \forall x \in S$.

Theorem (Vectors in orthogonal set linearly independent)

The vectors in an orthogonal set $S \subseteq \mathbb{R}^n \setminus \{0\}$ are linearly independent. In particular, any orthogonal set $S \subseteq \mathbb{R}^n \setminus \{0\}$ containing n vectors is a basis for \mathbb{R}^n .

Proof.

Let $S = \{v_1, \ldots, v_N\} \subseteq \mathbb{R}^n \setminus \{0\}$ orthogonal set, and suppose its elements were linearly dependent. Then, $\exists v_k \in S : v_k = \sum_{i \in \{1,\ldots,N\} \setminus \{k\}} c_i v_i$ for some $\{c_i\} \subseteq \mathbb{R}$. Have

$$||v_k||_2^2 = \langle v_k, v_k \rangle = \sum_{i \in \{1, \dots, N\} \setminus \{k\}} c_i \langle v_i, v_k \rangle = 0.$$

 $\implies v_k = 0$, contradicting $v_k \in S \subseteq \mathbb{R}^n \setminus \{0\}$.

Decomposing a vector into orthogonal components

Given $x \in \mathbb{R}^n$, orthonormal set $\{q_1, q_2, \ldots, q_N\} \subseteq \mathbb{R}^n \setminus \{0\}$, $N \leq n$. Write

$$x = \sum_{k=1}^{N} \langle x, q_k \rangle q_k + r = \sum_{k=1}^{N} (q_k q_k^{\mathrm{T}}) x + r.$$

Then $\{r\} \perp \{q_1, \ldots, q_N\}$ as

$$\langle r, q_i \rangle = \langle x, q_i \rangle - \sum_{k=1}^N \langle x, q_k \rangle \langle q_k, q_i \rangle = \langle x, q_i \rangle - \langle x, q_i \rangle = 0 \qquad \forall 1 \le i \le N,$$

 $\implies r$ is the part of x orthogonal to the subspace $\operatorname{span}(q_1, \ldots, q_N) \subseteq \mathbb{R}^n$, and $(q_k q_k^{\mathrm{T}})x$ is the part of x in direction q_k for $1 \le k \le N$.

Later: $P_q := qq^T$ orthogonal projector onto $\operatorname{span}(q)$. Observation: if N = n, have $\{q_1, \ldots, q_n\}$ is basis of \mathbb{R}^n and hence r = 0. Let $Q = (q_1|\cdots|q_n) \in \mathbb{R}^{n imes n}$ orthogonal matrix. Then,

- $\{q_1, \ldots, q_n\} \subseteq \mathbb{R}^n$ orthonormal basis $(Q_i^T Q = I_n \text{ yields } q_i^T q_j = \delta_{ij}).$
- $\forall x, y \in \mathbb{R}^n : \langle Qx, Qy \rangle = x^T Q^T Qy = x^T y = \langle x, y \rangle$ and $||Qx||_2 = ||x||_2$. "Euclidean inner product is invariant under orthogonal transformations".
- $|\det(Q)| = 1$ $(1 = \det(I_n) = \det(Q^T Q) = \det(Q^T) \det(Q) = (\det(Q))^2)$
- L_Q is an orthogonal transformation preserving the inner product on \mathbb{R}^n , and corresponds to a rigid rotation (when $\det(Q) = 1$) or a reflection (when $\det(Q) = -1$) of the space.
- 2D: An orthogonal matrix $Q \in \mathbb{R}^{2 imes 2}$ with $\det(Q) = 1$ can be written as

$$Q = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}, \quad \theta \in [0, 2\pi),$$

with L_Q rotating plane anticlockwise by the angle θ . An orthogonal matrix $Q \in \mathbb{R}^{2 \times 2}$ with $\det(Q) = -1$ can be written as

$$Q = \begin{pmatrix} \cos(\beta) & \sin(\beta) \\ \sin(\beta) & -\cos(\beta) \end{pmatrix}, \quad \beta \in [0, 2\pi),$$

with L_Q reflecting plane across $y = \tan(\frac{\beta}{2})x$ if $\beta \neq \pi$ (else, across x = 0).

1.2 Norms

- Vector norms
- Induced matrix norms
- Frobenius norm
- Orthogonal invariance

What is a norm?

Definition (Norm)

Let V be a vector space over $\mathbb R.$ A map $\|\cdot\|:V\to [0,\infty)$ is called a norm on V iff there holds

- (i) definiteness: $\forall v \in V : ||v|| = 0 \Longrightarrow v = 0$,
- (ii) absolute homogeneity: $\|\alpha v\| = |\alpha| \|v\| \quad \forall v \in V, \alpha \in \mathbb{R}$,
- (iii) triangle inequality: $||v_1 + v_2|| \le ||v_1|| + ||v_2|| \quad \forall v_1, v_2 \in V.$

If $V = \mathbb{R}^n$, say $\|\cdot\|$ is a vector norm. If $V = \mathbb{R}^{m \times n}$, say $\|\cdot\|$ is a matrix norm.

Important vector norms: the *p*-norms $\|\cdot\|_p$ (Euclidean norm for p=2).

1.2.1 Vector norms

Definition (The *p*-norms)

For $p \in [1,\infty)$, define the **p-norm** $\|\cdot\|_p : \mathbb{R}^n \to [0,\infty)$,

$$||x||_p := \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \qquad x = (x_1, \dots, x_n)^{\mathrm{T}} \in \mathbb{R}^n.$$

Define the ∞ -norm (or maximum norm) $\|\cdot\|_{\infty}:\mathbb{R}^n o [0,\infty)$,

$$||x||_{\infty} := \max_{1 \le i \le n} |x_i|, \qquad x = (x_1, \dots, x_n)^{\mathrm{T}} \in \mathbb{R}^n.$$

Observation: In 1D (n = 1) have $\|\cdot\|_p = |\cdot| \quad \forall p \in [1, \infty) \cup \{\infty\}$.

Theorem (Hölder's inequality)

Let
$$p,q \in (1,\infty)$$
 with $\frac{1}{p} + \frac{1}{q} = 1$. Then, for any $x,y \in \mathbb{R}^n$:

$$|\langle x, y \rangle| = \left| \sum_{i=1}^{n} x_i y_i \right| \le \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}} = \|x\|_p \|y\|_q.$$

The case p = q = 2 is also known as the Cauchy–Schwarz inequality.

Lemma (Young's inequality)

For
$$p,q \in (1,\infty)$$
 with $\frac{1}{p} + \frac{1}{q} = 1$ have $\forall a, b \ge 0$: $ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$.

Pf: Assume a, b > 0 (claim trivial if a = 0 or b = 0). Key observation: exp: $\mathbb{R} \to \mathbb{R}$ is convex, i.e., for any $\alpha \in [0, 1]$ and $x, y \in \mathbb{R}$ we have $e^{\alpha x + (1-\alpha)y} \leq \alpha e^x + (1-\alpha)e^y$. Hence,

$$ab = e^{\log(ab)} = e^{\frac{1}{p}(p\log(a)) + (1 - \frac{1}{p})(q\log(b))} \le \frac{1}{p}e^{p\log(a)} + (1 - \frac{1}{p})e^{q\log(b)}$$

$$\implies ab \le \frac{1}{p}a^p + \frac{1}{q}b^q.$$

Let us now prove Hölder's inequality $|\langle x, y \rangle| \le ||x||_p ||y||_q$:

Proof of Hölder's inequality.

Assume $x, y \in \mathbb{R}^n \setminus \{0\}$ (claim trivial if x = 0 or y = 0). Then,

$$\frac{|\langle x, y \rangle|}{\|x\|_p \|y\|_q} \le \sum_{i=1}^n \frac{|x_i|}{\|x\|_p} \frac{|y_i|}{\|y\|_q} \le \frac{1}{p} \frac{\sum_{i=1}^n |x_i|^p}{\|x\|_p^p} + \frac{1}{q} \frac{\sum_{i=1}^n |y_i|^q}{\|y\|_q^q} = \frac{1}{p} + \frac{1}{q} = 1.$$

Rk: We also have $|\langle x,y
angle|\leq \|x\|_1\|y\|_\infty$ for any $x,y\in\mathbb{R}^n$ as

$$|\langle x, y \rangle| = \left| \sum_{i=1}^{n} x_i y_i \right| \le \sum_{i=1}^{n} |x_i| \, |y_i| \le \|y\|_{\infty} \sum_{i=1}^{n} |x_i| = \|y\|_{\infty} \|x\|_1.$$

Are the p-norms really norms? Yes:

Theorem (p-norms are norms)

The map $\|\cdot\|_p : \mathbb{R}^n \to [0,\infty)$ is indeed a norm for any $p \in [1,\infty) \cup \{\infty\}$.

Proof.

Let us only show the triangle inequality for $p \in (1, \infty)$. Key: Hölder. Let $p \in (1, \infty)$. Set $q := \frac{p}{p-1}$ (then $\frac{1}{p} + \frac{1}{q} = 1$). For any $x, y \in \mathbb{R}^n$:

$$\begin{split} \|x+y\|_{p}^{p} &= \sum_{i=1}^{n} |x_{i}+y_{i}| |x_{i}+y_{i}|^{p-1} \\ &\leq \sum_{i=1}^{n} |x_{i}| |x_{i}+y_{i}|^{p-1} + \sum_{i=1}^{n} |y_{i}| |x_{i}+y_{i}|^{p-1} \\ &\leq (\|x\|_{p} + \|y\|_{p}) \left(\sum_{i=1}^{n} |x_{i}+y_{i}|^{(p-1)q}\right)^{\frac{1}{q}} \\ &= (\|x\|_{p} + \|y\|_{p}) \|x+y\|_{(p-1)q}^{p-1} = (\|x\|_{p} + \|y\|_{p}) \|x+y\|_{p}^{p-1}, \end{split}$$
 and hence, $\|x+y\|_{p} \leq \|x\|_{p} + \|y\|_{p}.$

Equivalence of vector norms

Theorem (Equivalence of vector norms)

Let $\|\cdot\|, \|\cdot\| : \mathbb{R}^n \to [0, \infty)$ be norms on \mathbb{R}^n . Then, $\|\cdot\|$ and $\|\cdot\|$ are equivalent, that is, there exist constants $C_1, C_2 > 0$ such that

$$C_1 \|x\| \le \|x\| \le C_2 \|x\| \qquad \forall x \in \mathbb{R}^n.$$

Actually, any two norms on a finite dimensional space are equivalent.

1.2.2 Induced matrix norms

First observation: note that for $A = (a_1 | \cdots | a_n) \in \mathbb{R}^{m \times n}$, we have

$$\operatorname{vec}(A) := \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{R}^{mn}, \quad (\text{note } a_i \in \mathbb{R}^m \; \forall 1 \le i \le n)$$

and we can use the aforementioned vector norms to measure its size. However, it is more useful to view $A \in \mathbb{R}^{m \times n}$ in terms of the associated linear operator $L_A \in \mathscr{L}(\mathbb{R}^n, \mathbb{R}^m)$ and use the operator norm induced by given vector norms on \mathbb{R}^n and \mathbb{R}^m .

Definition (induced matrix norm)

Consider the normed vector spaces $(\mathbb{R}^n, \|\cdot\|_{(n)})$ and $(\mathbb{R}^m, \|\cdot\|_{(m)})$. Then we define the **induced matrix norm** $\|\cdot\|_{(m,n)} : \mathbb{R}^{m \times n} \to [0, \infty)$ by

$$||A||_{(m,n)} := \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Ax||_{(m)}}{||x||_{(n)}} = \sup_{\substack{x \in \mathbb{R}^n \\ ||x||_{(n)} = 1}} ||Ax||_{(m)}, \qquad A \in \mathbb{R}^{m \times n}.$$

In the case that $\|\cdot\|_{(n)} = \|\cdot\|_{(m)} = \|\cdot\|_p$ for $p \in [1,\infty) \cup \{\infty\}$, we call

$$||A||_p := \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{||Ax||_p}{||x||_p} = \sup_{\substack{x \in \mathbb{R}^n \\ ||x||_p = 1}} ||Ax||_p, \qquad A \in \mathbb{R}^{m \times n}$$

the p-norm of A.

Theorem (induced norm is a norm) The map $\|\cdot\|_{(m,n)} : \mathbb{R}^{m \times n} \to [0,\infty)$ is a norm on $\mathbb{R}^{m \times n}$ for any choice of vector norms $\|\cdot\|_{(n)}$ on \mathbb{R}^n and $\|\cdot\|_{(m)}$ on \mathbb{R}^m .

Proof: Exercise.

Observe: The number $||A||_{(m,n)}$ is the smallest constant $C \ge 0$ such that

$$||L_A(x)||_{(m)} = ||Ax||_{(m)} \le C||x||_{(n)} \qquad \forall x \in \mathbb{R}^n,$$

i.e., it is the greatest factor by which L_A can stretch a vector in \mathbb{R}^n .

Induced matrix norms are submultiplicative

For $n_1, n_2, n_3 \in \mathbb{N}$ let $\|\cdot\|_{(n_k)}$ be a norm on \mathbb{R}^{n_k} , and let $A \in \mathbb{R}^{n_1 \times n_2}$ and $C \in \mathbb{R}^{n_2 \times n_3}$. Then,

$$\begin{split} \|AC\|_{(n_1,n_3)} &\leq \|A\|_{(n_1,n_2)} \|C\|_{(n_2,n_3)}, \text{ i.e.,} \\ \sup_{x \in \mathbb{R}^{n_3} \setminus \{0\}} \frac{\|ACx\|_{(n_1)}}{\|x\|_{(n_3)}} &\leq \left[\sup_{x \in \mathbb{R}^{n_2} \setminus \{0\}} \frac{\|Ax\|_{(n_1)}}{\|x\|_{(n_2)}}\right] \left[\sup_{x \in \mathbb{R}^{n_3} \setminus \{0\}} \frac{\|Cx\|_{(n_2)}}{\|x\|_{(n_3)}}\right] \end{split}$$

(Warning: not every matrix norm is submultiplicative! (exercise))

Proof: For any $x \in \mathbb{R}^{n_3}$:

$$\|A\underbrace{Cx}_{\in\mathbb{R}^{n_2}}\|_{(n_1)} \le \|A\|_{(n_1,n_2)}\|Cx\|_{(n_2)} \le \|A\|_{(n_1,n_2)}\|C\|_{(n_2,n_3)}\|x\|_{(n_3)}.$$

Let's do some examples for computing matrix norms:

Example 1: p-norms of a diagonal matrix

$$A := \operatorname{diag}(\alpha_1, \alpha_2, \dots, \alpha_n) := \begin{pmatrix} \alpha_1 & 0 & \cdots & 0 \\ 0 & \alpha_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_n \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

Then, $||A||_p = \max_{1 \le i \le n} |\alpha_i|$ for all $p \in [1, \infty) \cup \{\infty\}$.

<u>Proof for $p \in [1, \infty)$ </u>: Write $m := \max_{1 \le i \le n} |\alpha_i|$. For any $x \in \mathbb{R}^n$:

$$\|Ax\|_{p}^{p} = \sum_{i=1}^{n} |\alpha_{i}x_{i}|^{p} \le \left(\max_{1 \le i \le n} |\alpha_{i}|^{p}\right) \sum_{i=1}^{n} |x_{i}|^{p} = m^{p} \|x\|_{p}^{p}, \quad \|Ax\|_{p} \le m \|x\|_{p},$$

 $\implies \|A\|_p \le m$. Converse inequality:

$$\|A\|_{p} = \sup_{x \in \mathbb{R}^{n} \setminus \{0\}} \frac{\|Ax\|_{p}}{\|x\|_{p}} \ge \frac{\|Ae_{i}\|_{p}}{\|e_{i}\|_{p}} = \frac{\|\alpha_{i}e_{i}\|_{p}}{\|e_{i}\|_{p}} = |\alpha_{i}| \qquad \forall 1 \le i \le n,$$

$$\implies \|A\|_{p} \ge m.$$

$$A := \operatorname{diag}(\alpha_1, \alpha_2, \dots, \alpha_n) := \begin{pmatrix} \alpha_1 & 0 & \cdots & 0 \\ 0 & \alpha_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_n \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

Then, $||A||_p = \max_{1 \le i \le n} |\alpha_i|$ for all $p \in [1, \infty) \cup \{\infty\}$.

Proof for $p = \infty$: Write $m := \max_{1 \le i \le n} |\alpha_i|$. For any $x \in \mathbb{R}^n$:

$$\|Ax\|_{\infty} = \max_{1 \le i \le n} |\alpha_i x_i| \le \left(\max_{1 \le i \le n} |\alpha_i|\right) \left(\max_{1 \le i \le n} |x_i|\right) = m \|x\|_{\infty},$$

 $\implies \|A\|_{\infty} \leq m$. Converse inequality:

$$\|A\|_{\infty} = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} \ge \frac{\|Ae_i\|_{\infty}}{\|e_i\|_{\infty}} = \frac{\|\alpha_i e_i\|_{\infty}}{\|e_i\|_{\infty}} = |\alpha_i| \qquad \forall 1 \le i \le n,$$

 $\implies \|A\|_{\infty} \ge m.$

Example 2: ∞ -norm and 1-norm of a matrix For $A = (a_1|\cdots|a_n) = (b_1|\cdots|b_m)^T \in \mathbb{R}^{m \times n}$: $\|A\|_{\infty} = \max_{1 \le i \le m} \|b_i\|_1, \quad \|A\|_1 = \max_{1 \le j \le n} \|a_j\|_1,$ i.e., $\|A\|_{\infty}$ is "maximum row sum", $\|A\|_1$ "maximum column sum" of A.

<u>Proof for 1-norm</u>: Write $m := \max_{1 \le j \le n} ||a_j||_1$. For any $x \in \mathbb{R}^n$:

$$||Ax||_1 = \left\|\sum_{i=1}^n x_i a_i\right\|_1 \le \sum_{i=1}^n |x_i| ||a_i||_1 \le m \sum_{i=1}^n |x_i| = m ||x||_1$$

 $\implies \|A\|_1 \le m$. Converse inequality:

$$\|A\|_{1} = \sup_{x \in \mathbb{R}^{n} \setminus \{0\}} \frac{\|Ax\|_{1}}{\|x\|_{1}} \ge \frac{\|Ae_{i}\|_{1}}{\|e_{i}\|_{1}} = \frac{\|a_{i}\|_{1}}{1} = \|a_{i}\|_{1} \qquad \forall 1 \le i \le n,$$

 $\implies ||A||_1 \ge m.$

<u>Proof for ∞ -norm</u>: Exercise.

Example 3: Matrix 2-norm of a row vector

Consider a row vector

$$A := a^{\mathrm{T}} \in \mathbb{R}^{1 \times n} \qquad (a \in \mathbb{R}^n).$$

Then, $||A||_2 = ||a||_2$ (lhs: matrix 2-norm, rhs: vector 2-norm).

<u>Proof:</u> For any $x \in \mathbb{R}^n$:

$$||Ax||_2 = ||a^{\mathrm{T}}x||_2 = |\langle a, x \rangle| \le ||a||_2 ||x||_2$$

 $\implies \|A\|_2 \le \|a\|_2.$ Converse inequality: If $a = 0 \in \mathbb{R}^n$, then $\|A\|_2 \le 0$ which yields $\|A\|_2 = 0 = \|a\|_2$. If $a \ne 0 \in \mathbb{R}^n$, then

$$||A||_2 \ge \frac{||Aa||_2}{||a||_2} = \frac{|\langle a, a \rangle|}{||a||_2} = ||a||_2.$$

 $\implies \|A\|_2 \ge \|a\|_2.$

Example 4: Matrix 2-norm of outer product

Let $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$. Consider the **outer product**

$$A := uv^{\mathrm{T}} \in \mathbb{R}^{m \times n}.$$

Then, $||A||_2 = ||u||_2 ||v||_2$.

<u>Proof</u>: For any $x \in \mathbb{R}^n$:

$$||Ax||_{2} = ||uv^{\mathrm{T}}x||_{2} = ||u||_{2}|\langle v, x\rangle| \le ||u||_{2}||v||_{2}||x||_{2}$$

 $\implies \|A\|_2 \le \|u\|_2 \|v\|_2.$ Converse inequality: If v = 0, then $\|A\|_2 \le 0$ which yields $\|A\|_2 = 0 = \|u\|_2 \|v\|_2.$ If $v \ne 0$, then

$$\|A\|_{2} \ge \frac{\|Av\|_{2}}{\|v\|_{2}} = \frac{\|uv^{\mathrm{T}}v\|_{2}}{\|v\|_{2}} = \frac{\|u\|_{2}|\langle v, v\rangle|}{\|v\|_{2}} = \|u\|_{2}\|v\|_{2}$$

> $\|A\|_{2} \ge \|u\|_{2}\|v\|_{2}.$

The matrix 2-norm is also called the **spectral norm**.

Later: For $A \in \mathbb{R}^{m \times n}$:

$$|A||_2 = \sqrt{\lambda_{\max}(A^{\mathrm{T}}A)},$$

where $\lambda_{\max}(A^{\mathrm{T}}A)$ largest eigenvalue of $A^{\mathrm{T}}A$.

Next: Most important example of a norm which is not induced by vector norms: the Frobenius norm.

1.2.3 Frobenius norm

Definition (Frobenius norm)

The map $\|\cdot\|_F: \mathbb{R}^{m imes n} \to [0,\infty)$ given by

$$||A||_F := \sqrt{\operatorname{tr}(A^{\mathrm{T}}A)} = \sqrt{\operatorname{tr}(AA^{\mathrm{T}})} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}, \quad A = (a_{ij}) \in \mathbb{R}^{m \times n}$$

is called the Frobenius norm.

 $\operatorname{tr}(B)$ denotes the trace of a square matrix B, i.e., sum of diagonal entries.

Theorem (submultiplicativity of Frobenius norm) The map $\|\cdot\|_F$ is a norm on $\mathbb{R}^{m \times n}$. Further, it is submultiplicative: $\|AC\|_F \leq \|A\|_F \|C\|_F \quad \forall A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{n \times l}.$

Proof: Exercise.

Frobenius inner product

 $\|\cdot\|_F$ is induced by **Frobenius inner product** $\langle\cdot,\cdot\rangle_F: \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \to \mathbb{R}$:

$$\langle A, B \rangle_F := \operatorname{tr}(A^{\mathrm{T}}B) = \operatorname{tr}(BA^{\mathrm{T}}) = \sum_{i=1}^m \sum_{j=1}^n a_{ij} b_{ij}, \qquad A, B \in \mathbb{R}^{m \times n},$$

i.e., $||A||_F = \sqrt{\langle A, A \rangle_F}$ for any $A \in \mathbb{R}^{m \times n}$.

We have

$$|\langle A, B \rangle_F| \le ||A||_F ||B||_F \qquad \forall A, B \in \mathbb{R}^{m \times n}.$$

(Cauchy-Schwarz inequality for inner product spaces)

Equivalence of matrix norms

Theorem (equivalence of matrix norms)

Let $\|\cdot\|, \|\|\cdot\|\| : \mathbb{R}^{m \times n} \to [0, \infty)$ be norms on $\mathbb{R}^{m \times n}$. Then, $\|\cdot\|$ and $\|\|\cdot\|\|$ are equivalent, that is, there exist constants $C_1, C_2 > 0$ such that

 $C_1 \|A\| \le \|A\| \le C_2 \|A\| \qquad \forall A \in \mathbb{R}^{m \times n}.$

(recall: any two norms on a finite dimensional space are equivalent)

1.2.4 Orthogonal invariance

The spectral norm $\|\cdot\|_2$ and the Frobenius norm $\|\cdot\|_F$ are invariant under multiplication by orthogonal matrices:

Theorem (Orthogonal invariance of spectral norm and Frobenius norm)

Let $A \in \mathbb{R}^{m \times n}$. Let $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ orthogonal matrices. Then, (i) $||UA||_2 = ||A||_2$, $||AV||_2 = ||A||_2$, (ii) $||UA||_F = ||A||_F$, $||AV||_F = ||A||_F$.

Proof of (i): Note $||Vx||_2 = ||x||_2$, $||Uy||_2 = ||y||_2 \ \forall x \in \mathbb{R}^n, y \in \mathbb{R}^m$. Have

$$\|UA\|_{2} = \sup_{x \in \mathbb{R}^{n} \setminus \{0\}} \frac{\|UAx\|_{2}}{\|x\|_{2}} = \sup_{x \in \mathbb{R}^{n} \setminus \{0\}} \frac{\|Ax\|_{2}}{\|x\|_{2}} = \|A\|_{2}.$$

Also,

 $\|AV\|_{2} = \sup_{x \in \mathbb{R}^{n} \setminus \{0\}} \frac{\|AVx\|_{2}}{\|x\|_{2}} = \sup_{x \in \mathbb{R}^{n} \setminus \{0\}} \frac{\|AVx\|_{2}}{\|Vx\|_{2}} = \sup_{\tilde{x} \in \mathbb{R}^{n} \setminus \{0\}} \frac{\|A\tilde{x}\|_{2}}{\|\tilde{x}\|_{2}} = \|A\|_{2}$ using that $L_{V} : \mathbb{R}^{n} \to \mathbb{R}^{n}$ is a bijection (as V is invertible). Theorem (Orthogonal invariance of spectral norm and Frobenius norm)

Let $A \in \mathbb{R}^{m \times n}$. Let $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ orthogonal matrices. Then, (i) $||UA||_2 = ||A||_2$, $||AV||_2 = ||A||_2$, (ii) $||UA||_F = ||A||_F$, $||AV||_F = ||A||_F$.

Proof of (ii): Recall that

$$||B||_F^2 = \operatorname{tr}(B^{\mathrm{T}}B) = \operatorname{tr}(BB^{\mathrm{T}}) \qquad \forall B \in \mathbb{R}^{m \times n}.$$

Hence,

$$||UA||_F^2 = \operatorname{tr}((UA)^{\mathrm{T}}(UA)) = \operatorname{tr}(A^{\mathrm{T}}U^{\mathrm{T}}UA) = \operatorname{tr}(A^{\mathrm{T}}A) = ||A||_F^2,$$

and

$$\|AV\|_{F}^{2} = \operatorname{tr}((AV)(AV)^{\mathrm{T}}) = \operatorname{tr}(AVV^{\mathrm{T}}A^{\mathrm{T}}) = \operatorname{tr}(AA^{\mathrm{T}}) = \|A\|_{F}^{2}$$

End of "Chapter 1: Preliminaries".