MA4230 Matrix Computation

Chapter 1: Preliminaries

1.1 Matrices
1.2 Norms

1.1 Matrices

- Basic operations
- Connection to linear maps
- Range and nullspace
- Invertible matrices
- Orthogonality

Definition (Matrices and vectors)

For $m, n \in \mathbb{N}=\{1,2, \ldots\}$, define the set of real $m \times n$ matrices by

Define $\mathbb{R}^{m}:=\mathbb{R}^{m \times 1}$, the set of real (column) m-vectors.
Notation:

- $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ with $a_{i j} \in \mathbb{R}$ denoting entry in row i, column j,
- $A=\left(a_{1}\left|a_{2}\right| \cdots \mid a_{n}\right) \in \mathbb{R}^{m \times n}$ with $a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$ the columns of A.

Example: $A=\left(\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right) \in \mathbb{R}^{2 \times 3} . \quad A=\left(a_{i j}\right)$ with entries

$$
a_{11}=1, a_{12}=3, a_{13}=5, a_{21}=2, a_{22}=4, a_{23}=6
$$

and $A=\left(a_{1}\left|a_{2}\right| a_{3}\right)$ with columns $a_{1}=\binom{1}{2}, a_{2}=\binom{3}{4}, a_{3}=\binom{5}{6}$.

1.1.1 Basic operations

For $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}, B=\left(b_{i j}\right) \in \mathbb{R}^{m \times n}, C=\left(c_{i j}\right) \in \mathbb{R}^{n \times l}$, and $\alpha \in \mathbb{R}$:

- addition: $A+B \in \mathbb{R}^{m \times n}$,

$$
(A+B)_{i j}:=a_{i j}+b_{i j}
$$

- scalar multiplication: $\alpha A \in \mathbb{R}^{m \times n}$,

$$
(\alpha A)_{i j}:=\alpha a_{i j}
$$

- transposition: $A^{\mathrm{T}} \in \mathbb{R}^{n \times m}$,

$$
\left(A^{\mathrm{T}}\right)_{i j}:=a_{j i}
$$

- matrix multiplication: $A C \in \mathbb{R}^{m \times l}$,

$$
(A C)_{i j}:=\sum_{k=1}^{n} a_{i k} c_{k j}
$$

Matrix-vector product of $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ and $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}$: $A x \in \mathbb{R}^{m}$ with entries $(A x)_{i}=\sum_{k=1}^{n} a_{i k} x_{k}$.

Matrix-vector and matrix-matrix products

(i) For $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}$ and $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}$:

$$
A x=\left(a_{1}|\cdots| a_{n}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\sum_{k=1}^{n} x_{k} a_{k} \in \operatorname{span}\left(a_{1}, \ldots, a_{n}\right) \subseteq \mathbb{R}^{m}
$$

\Longrightarrow Regard $A x$ not only as " A acts on x ", but also as " x acts on A ".
(ii) For $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}$ and $C=\left(c_{1}|\cdots| c_{l}\right) \in \mathbb{R}^{n \times l}$:

$$
A C=A\left(c_{1}|\cdots| c_{n}\right)=\left(A c_{1}|\cdots| A c_{l}\right) \in \mathbb{R}^{m \times l}
$$

Note colmuns of $A C$ belong to $\operatorname{span}\left(a_{1}, \ldots, a_{n}\right) \subseteq \mathbb{R}^{m}$.

1.1.2 Connection to linear maps

Definition (Linear maps)

Let $m, n \in \mathbb{N}$. A map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called linear iff

$$
f(\alpha x+y)=\alpha f(x)+f(y) \quad \forall x, y \in \mathbb{R}^{n}, \alpha \in \mathbb{R} .
$$

We denote the set of all linear maps from \mathbb{R}^{n} to \mathbb{R}^{m} by $\mathscr{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$.
For $A \in \mathbb{R}^{m \times n}$, define $L_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, x \mapsto A x$ (associated linear map). Note for $A, B \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{n \times l}$ and $\alpha \in \mathbb{R}$:

$$
L_{A+B}=L_{A}+L_{B}, \quad L_{\alpha A}=\alpha L_{A}, \quad L_{A C}=L_{A} \circ L_{C} .
$$

Theorem (Characterization of linear maps)
There holds $\mathscr{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)=\left\{L_{A}: A \in \mathbb{R}^{m \times n}\right\}$.
" \supseteq ": Associated linear maps are indeed linear.
" \subseteq ": Let $f \in \mathscr{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. For any $x=\sum_{i=1}^{n} x_{i} e_{i} \in \mathbb{R}^{n}$, have
$f(x)=\sum_{i=1}^{n} x_{i} f\left(e_{i}\right)=A x$ with $A=\left(f\left(e_{1}\right)|\cdots| f\left(e_{n}\right)\right) \in \mathbb{R}^{m \times n}$.

1.1.3 Range and nullspace

Let $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}$. We define its
(i) range (or column space)
$\mathscr{R}(A):=\left\{y \in \mathbb{R}^{m} \mid \exists x \in \mathbb{R}^{n}: y=A x\right\}=\operatorname{span}\left(a_{1}, \ldots, a_{n}\right)$,
(ii) nullspace $\mathcal{N}(A):=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}$,
(iii) $\boldsymbol{r a n k} \operatorname{rk}(A):=\operatorname{dim}(\mathscr{R}(A))$,
(iv) nullity nullity $(A):=\operatorname{dim}(\mathcal{N}(A))$.

Theorem (Properties of rank)

Let $A, B \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times l}$. Then the following assertions hold.
(i) $0 \leq \operatorname{rk}(A)=\operatorname{rk}\left(A^{\mathrm{T}}\right) \leq \min \{m, n\}$ ("column rank equals row rank"),
(ii) $\operatorname{rk}(A)+\operatorname{nullity}(A)=n$ (rank-nullity theorem),
(iii) $\operatorname{rk}(A)+\operatorname{rk}(C)-n \leq \operatorname{rk}(A C) \leq \min \{\operatorname{rk}(A), \operatorname{rk}(C)\}$ (Sy/vester ineqy),
(iv) $\operatorname{rk}(A+B) \leq \operatorname{rk}(A)+\operatorname{rk}(B)$,
(v) $\operatorname{rk}\left(A^{\mathrm{T}} A\right)=\operatorname{rk}(A)=\operatorname{rk}\left(A A^{\mathrm{T}}\right)$.

We say $A \in \mathbb{R}^{m \times n}$ has full rank iff $\operatorname{rk}(A)=\min \{m, n\}$ (otherwise rank-deficient).

Theorem (Characterization of full-rank tall matrices)

Let $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}, m \geq n$. Then, the following are equivalent:
(i) A is of full rank, i.e., $\operatorname{rk}(A)=n$.
(ii) a_{1}, \ldots, a_{n} are linearly independent.
(iii) L_{A} is injective.

Proof: $(\mathrm{i}) \Rightarrow$ (ii): If $\operatorname{rk}(A)=\operatorname{dim}\left(\operatorname{span}\left(a_{1}, \ldots, a_{n}\right)\right)=n$, then clearly a_{1}, \ldots, a_{n} are linearly independent.
(ii) \Rightarrow (iii): Suppose a_{1}, \ldots, a_{n} are linearly independent, and let $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}, y=\left(y_{1}, \ldots, y_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}$ such that $L_{A}(x)=L_{A}(y)$, i.e., $A x=A y$. Then $A(x-y)=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right) a_{i}=0 \in \mathbb{R}^{m}$ and hence, $x_{i}-y_{i}=0$ for all $1 \leq i \leq n$, i.e., $x=y$.
$\neg(\mathrm{i}) \Rightarrow \neg$ (iii): Suppose that A is not of full rank. Then, $\operatorname{rk}(A)=\operatorname{dim}\left(\operatorname{span}\left(a_{1}, \ldots, a_{n}\right)\right)<n$ and hence, a_{1}, \ldots, a_{n} are linearly dependent. Then, there exists $c=\left(c_{1}, \ldots, c_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n} \backslash\{0\}$ such that $L_{A}(c)=\sum_{i=1}^{n} c_{i} a_{i}=0$ and we conclude that L_{A} is not injective.

1.1.4 Invertible matrices

Definition (Invertible matrix)

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be invertible (or non-singular) iff there exists a matrix $A^{-1} \in \mathbb{R}^{n \times n}$, called the inverse of A, such that

$$
A A^{-1}=A^{-1} A=I_{n} .
$$

Here, I_{n} denotes the $n \times n$ identity matrix

$$
I_{n}:=\left(e_{1}\left|e_{2}\right| \cdots \mid e_{n}\right):=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

Note that for $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{n \times n}$ invertible, $b \in \mathbb{R}^{n}$:
Writing $x=A^{-1} b=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}: b=A x=\sum_{k=1}^{n} x_{k} a_{k}, A^{-1} b=\sum_{k=1}^{n} x_{k} e_{k}$.
\Longrightarrow Left-multiplication by A^{-1} is a change of basis operation.

Characterization of invertible matrices:

Theorem (Characterization of invertibility)

For $A \in \mathbb{R}^{n \times n}$, the following are equivalent:
(i) A is invertible.
(ii) L_{A} is an invertible linear map.
(iii) A has full rank, i.e., $\operatorname{rk}(A)=n$.
(iv) $\mathscr{R}(A)=\mathbb{R}^{n}$ (or equivalently, L_{A} is surjective).
(v) $\mathcal{N}(A)=\{0\}$ (or equivalently, L_{A} is injective).
(vi) $\operatorname{det}(A) \neq 0$.
(vii) $0 \notin \Lambda(A)$.

Here, $\Lambda(A):=\left\{\lambda \in \mathbb{C}: \operatorname{det}\left(A-\lambda I_{n}\right)=0\right\}$ is the spectrum of $A \in \mathbb{R}^{n \times n}$.

Theorem (Properties for inverse)

Let $A, C \in \mathbb{R}^{n \times n}$ invertible, $\alpha \in \mathbb{R} \backslash\{0\}$. Then, $A^{-1}, A C, \alpha A, A^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ are invertible and we have

$$
\begin{aligned}
& \text { (i) }\left(A^{-1}\right)^{-1}=A, \quad(A C)^{-1}=C^{-1} A^{-1}, \quad(\alpha A)^{-1}=\frac{1}{\alpha} A^{-1}, \\
& \left(A^{\mathrm{T}}\right)^{-1}=\left(A^{-1}\right)^{\mathrm{T}} . \\
& \text { (ii) } \operatorname{rk}\left(A^{-1}\right)=\operatorname{rk}(A)=n, \quad \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)} \text {. }
\end{aligned}
$$

Compare with transposition: For $A, B \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{n \times l}, \alpha \in \mathbb{R}$:
(i) $\left(A^{\mathrm{T}}\right)^{\mathrm{T}}=A, \quad(A C)^{\mathrm{T}}=C^{\mathrm{T}} A^{\mathrm{T}}, \quad(\alpha A)^{\mathrm{T}}=\alpha A^{\mathrm{T}}$.
(ii) $\operatorname{rk}\left(A^{\mathrm{T}}\right)=\operatorname{rk}(A), \quad \operatorname{det}\left(A^{\mathrm{T}}\right)=\operatorname{det}(A)$.

Important classes of matrices:
Definition (Symmetric matrix, orthogonal matrix)
(i) A matrix $A \in \mathbb{R}^{n \times n}$ is said to be symmetric iff $A^{\mathrm{T}}=A$.
(ii) A matrix $Q \in \mathbb{R}^{n \times n}$ is said to be orthogonal iff $Q Q^{\mathrm{T}}=Q^{\mathrm{T}} Q=I_{n}$, i.e., iff Q is invertible and $Q^{-1}=Q^{\mathrm{T}}$.

1.1.5 Orthogonality

Definition (Euclidean inner product and Euclidean norm)

Let $x, y \in \mathbb{R}^{n}$. We define
(i) the Euclidean inner product $\langle x, y\rangle:=x^{\mathrm{T}} y \in \mathbb{R}$, and
(ii) the Euclidean norm $\|x\|_{2}:=\sqrt{\langle x, x\rangle} \in \mathbb{R}$.

Properties:

- $\langle x, y\rangle=\|x\|_{2}\|y\|_{2} \cos \left(\theta_{x, y}\right)$ with $\theta_{x, y}$ angle between x and y.
- $\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is bilinear (linear in both arguments) and symmetric $\left(\langle x, y\rangle=\langle y, x\rangle \forall x, y \in \mathbb{R}^{n}\right)$

Definition (Orthogonal vectors and subsets)

(i) $x, y \in \mathbb{R}^{n}$ are orthogonal $(x \perp y)$, iff $\langle x, y\rangle=0$.
(ii) $X, Y \subseteq \mathbb{R}^{n}$ are orthogonal $(X \perp Y)$, iff $x \perp y \forall x \in X, y \in Y$.
(iii) $S \subseteq \mathbb{R}^{n} \backslash\{0\}$ is orthogonal iff $\forall x, y \in S: x \neq y \Longrightarrow x \perp y$.
(iv) $S \subseteq \mathbb{R}^{n} \backslash\{0\}$ is orthonormal iff S is orthogonal and $\|x\|_{2}=1 \forall x \in S$.

Theorem (Vectors in orthogonal set linearly independent)

The vectors in an orthogonal set $S \subseteq \mathbb{R}^{n} \backslash\{0\}$ are linearly independent. In particular, any orthogonal set $S \subseteq \mathbb{R}^{n} \backslash\{0\}$ containing n vectors is a basis for \mathbb{R}^{n}.

Proof.

Let $S=\left\{v_{1}, \ldots, v_{N}\right\} \subseteq \mathbb{R}^{n} \backslash\{0\}$ orthogonal set, and suppose its elements were linearly dependent. Then, $\exists v_{k} \in S: v_{k}=\sum_{i \in\{1, \ldots, N\} \backslash\{k\}} c_{i} v_{i}$ for some $\left\{c_{i}\right\} \subseteq \mathbb{R}$. Have

$$
\left\|v_{k}\right\|_{2}^{2}=\left\langle v_{k}, v_{k}\right\rangle=\sum_{i \in\{1, \ldots, N\} \backslash\{k\}} c_{i}\left\langle v_{i}, v_{k}\right\rangle=0
$$

$\Longrightarrow v_{k}=0$, contradicting $v_{k} \in S \subseteq \mathbb{R}^{n} \backslash\{0\}$.

Decomposing a vector into orthogonal components

Given $x \in \mathbb{R}^{n}$, orthonormal set $\left\{q_{1}, q_{2}, \ldots, q_{N}\right\} \subseteq \mathbb{R}^{n} \backslash\{0\}, N \leq n$. Write

$$
x=\sum_{k=1}^{N}\left\langle x, q_{k}\right\rangle q_{k}+r=\sum_{k=1}^{N}\left(q_{k} q_{k}^{\mathrm{T}}\right) x+r .
$$

Then $\{r\} \perp\left\{q_{1}, \ldots, q_{N}\right\}$ as
$\left\langle r, q_{i}\right\rangle=\left\langle x, q_{i}\right\rangle-\sum_{k=1}^{N}\left\langle x, q_{k}\right\rangle\left\langle q_{k}, q_{i}\right\rangle=\left\langle x, q_{i}\right\rangle-\left\langle x, q_{i}\right\rangle=0 \quad \forall 1 \leq i \leq N$,
$\Longrightarrow r$ is the part of x orthogonal to the subspace $\operatorname{span}\left(q_{1}, \ldots, q_{N}\right) \subseteq \mathbb{R}^{n}$, and $\left(q_{k} q_{k}^{\mathrm{T}}\right) x$ is the part of x in direction q_{k} for $1 \leq k \leq N$.

Later: $P_{q}:=q q^{\mathrm{T}}$ orthogonal projector onto $\operatorname{span}(q)$.
Observation: if $N=n$, have $\left\{q_{1}, \ldots, q_{n}\right\}$ is basis of \mathbb{R}^{n} and hence $r=0$.

Let $Q=\left(q_{1}|\cdots| q_{n}\right) \in \mathbb{R}^{n \times n}$ orthogonal matrix. Then,

- $\left\{q_{1}, \ldots, q_{n}\right\} \subseteq \mathbb{R}^{n}$ orthonormal basis $\left(Q^{\mathrm{T}} Q=I_{n}\right.$ yields $\left.q_{i}^{\mathrm{T}} q_{j}=\delta_{i j}\right)$.
- $\forall x, y \in \mathbb{R}^{n}:\langle Q x, Q y\rangle=x^{\mathrm{T}} Q^{\mathrm{T}} Q y=x^{\mathrm{T}} y=\langle x, y\rangle$ and $\|Q x\|_{2}=\|x\|_{2}$. "Euclidean inner product is invariant under orthogonal transformations".
- $|\operatorname{det}(Q)|=1\left(1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}\left(Q^{\mathrm{T}} Q\right)=\operatorname{det}\left(Q^{\mathrm{T}}\right) \operatorname{det}(Q)=(\operatorname{det}(Q))^{2}\right)$
- L_{Q} is an orthogonal transformation preserving the inner product on \mathbb{R}^{n}, and corresponds to a rigid rotation (when $\operatorname{det}(Q)=1$) or a reflection (when $\operatorname{det}(Q)=-1$) of the space.
2D: An orthogonal matrix $Q \in \mathbb{R}^{2 \times 2}$ with $\operatorname{det}(Q)=1$ can be written as

$$
Q=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right), \quad \theta \in[0,2 \pi)
$$

with L_{Q} rotating plane anticlockwise by the angle θ.
An orthogonal matrix $Q \in \mathbb{R}^{2 \times 2}$ with $\operatorname{det}(Q)=-1$ can be written as

$$
Q=\left(\begin{array}{cc}
\cos (\beta) & \sin (\beta) \\
\sin (\beta) & -\cos (\beta)
\end{array}\right), \quad \beta \in[0,2 \pi)
$$

with L_{Q} reflecting plane across $y=\tan \left(\frac{\beta}{2}\right) x$ if $\beta \neq \pi$ (else, across $x=0$).

1.2 Norms

- Vector norms
- Induced matrix norms
- Frobenius norm
- Orthogonal invariance

What is a norm?

Definition (Norm)

Let V be a vector space over \mathbb{R}. A map $\|\cdot\|: V \rightarrow[0, \infty)$ is called a norm on V iff there holds
(i) definiteness: $\forall v \in V:\|v\|=0 \Longrightarrow v=0$,
(ii) absolute homogeneity: $\|\alpha v\|=|\alpha|\|v\| \quad \forall v \in V, \alpha \in \mathbb{R}$,
(iii) triangle inequality: $\left\|v_{1}+v_{2}\right\| \leq\left\|v_{1}\right\|+\left\|v_{2}\right\| \quad \forall v_{1}, v_{2} \in V$.

If $V=\mathbb{R}^{n}$, say $\|\cdot\|$ is a vector norm. If $V=\mathbb{R}^{m \times n}$, say $\|\cdot\|$ is a matrix norm.

Important vector norms: the p-norms $\|\cdot\|_{p}$ (Euclidean norm for $p=2$).

1.2.1 Vector norms

Definition (The p-norms)

For $p \in[1, \infty)$, define the \mathbf{p}-norm $\|\cdot\|_{p}: \mathbb{R}^{n} \rightarrow[0, \infty)$,

$$
\|x\|_{p}:=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \quad x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}
$$

Define the ∞-norm (or maximum norm) $\|\cdot\|_{\infty}: \mathbb{R}^{n} \rightarrow[0, \infty$),

$$
\|x\|_{\infty}:=\max _{1 \leq i \leq n}\left|x_{i}\right|, \quad x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}
$$

Observation: In 1D $(n=1)$ have $\|\cdot\|_{p}=|\cdot| \quad \forall p \in[1, \infty) \cup\{\infty\}$.

Theorem (Hölder's inequality)

Let $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$. Then, for any $x, y \in \mathbb{R}^{n}$:

$$
|\langle x, y\rangle|=\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{\frac{1}{q}}=\|x\|_{p}\|y\|_{q} .
$$

The case $p=q=2$ is also known as the Cauchy-Schwarz inequality.

Lemma (Young's inequality)

For $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$ have $\forall a, b \geq 0: a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q}$.
Pf: Assume $a, b>0$ (claim trivial if $a=0$ or $b=0$). Key observation: $\exp : \mathbb{R} \rightarrow \mathbb{R}$ is convex, i.e., for any $\alpha \in[0,1]$ and $x, y \in \mathbb{R}$ we have $e^{\alpha x+(1-\alpha) y} \leq \alpha e^{x}+(1-\alpha) e^{y}$. Hence,

$$
a b=e^{\log (a b)}=e^{\frac{1}{p}(p \log (a))+\left(1-\frac{1}{p}\right)(q \log (b))} \leq \frac{1}{p} e^{p \log (a)}+\left(1-\frac{1}{p}\right) e^{q \log (b)}
$$

$\Longrightarrow a b \leq \frac{1}{p} a^{p}+\frac{1}{q} b^{q}$.

Let us now prove Hölder's inequality $|\langle x, y\rangle| \leq\|x\|_{p}\|y\|_{q}$:

Proof of Hölder's inequality.

Assume $x, y \in \mathbb{R}^{n} \backslash\{0\}$ (claim trivial if $x=0$ or $y=0$). Then,

$$
\frac{|\langle x, y\rangle|}{\|x\|_{p}\|y\|_{q}} \leq \sum_{i=1}^{n} \frac{\left|x_{i}\right|}{\|x\|_{p}} \frac{\left|y_{i}\right|}{\|y\|_{q}} \leq \frac{1}{p} \frac{\sum_{i=1}^{n}\left|x_{i}\right|^{p}}{\|x\|_{p}^{p}}+\frac{1}{q} \frac{\sum_{i=1}^{n}\left|y_{i}\right|^{q}}{\|y\|_{q}^{q}}=\frac{1}{p}+\frac{1}{q}=1 .
$$

Rk: We also have $|\langle x, y\rangle| \leq\|x\|_{1}\|y\|_{\infty}$ for any $x, y \in \mathbb{R}^{n}$ as

$$
|\langle x, y\rangle|=\left|\sum_{i=1}^{n} x_{i} y_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|\left|y_{i}\right| \leq\|y\|_{\infty} \sum_{i=1}^{n}\left|x_{i}\right|=\|y\|_{\infty}\|x\|_{1}
$$

Are the p-norms really norms? Yes:

Theorem (p-norms are norms)
The map $\|\cdot\|_{p}: \mathbb{R}^{n} \rightarrow[0, \infty)$ is indeed a norm for any $p \in[1, \infty) \cup\{\infty\}$.

Proof.

Let us only show the triangle inequality for $p \in(1, \infty)$. Key: Hölder. Let $p \in(1, \infty)$. Set $q:=\frac{p}{p-1}$ (then $\left.\frac{1}{p}+\frac{1}{q}=1\right)$. For any $x, y \in \mathbb{R}^{n}$:

$$
\begin{aligned}
\|x+y\|_{p}^{p} & =\sum_{i=1}^{n}\left|x_{i}+y_{i} \| x_{i}+y_{i}\right|^{p-1} \\
& \leq \sum_{i=1}^{n}\left|x _ { i } \left\|x_{i}+\left.y_{i}\right|^{p-1}+\sum_{i=1}^{n}\left|y_{i} \| x_{i}+y_{i}\right|^{p-1}\right.\right. \\
& \leq\left(\|x\|_{p}+\|y\|_{p}\right)\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{(p-1) q}\right)^{\frac{1}{q}} \\
& =\left(\|x\|_{p}+\|y\|_{p}\right)\|x+y\|_{(p-1) q}^{p-1}=\left(\|x\|_{p}+\|y\|_{p}\right)\|x+y\|_{p}^{p-1}
\end{aligned}
$$

and hence, $\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}$.

Equivalence of vector norms

Theorem (Equivalence of vector norms)
Let $\|\cdot\|,\left\||\cdot \|| \mathbb{R}^{n} \rightarrow[0, \infty)\right.$ be norms on \mathbb{R}^{n}. Then, $\| \cdot \|$ and $\|\|\cdot\| \mid$ are equivalent, that is, there exist constants $C_{1}, C_{2}>0$ such that

$$
C_{1}\|x\| \leq\|x\| \leq C_{2}\|x\| \quad \forall x \in \mathbb{R}^{n} .
$$

Actually, any two norms on a finite dimensional space are equivalent.

1.2.2 Induced matrix norms

First observation: note that for $A=\left(a_{1}|\cdots| a_{n}\right) \in \mathbb{R}^{m \times n}$, we have

$$
\operatorname{vec}(A):=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \in \mathbb{R}^{m n}, \quad\left(\text { note } a_{i} \in \mathbb{R}^{m} \forall 1 \leq i \leq n\right)
$$

and we can use the aforementioned vector norms to measure its size. However, it is more useful to view $A \in \mathbb{R}^{m \times n}$ in terms of the associated linear operator $L_{A} \in \mathscr{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ and use the operator norm induced by given vector norms on \mathbb{R}^{n} and \mathbb{R}^{m}.

Definition (induced matrix norm)

Consider the normed vector spaces $\left(\mathbb{R}^{n},\|\cdot\|_{(n)}\right)$ and $\left(\mathbb{R}^{m},\|\cdot\|_{(m)}\right)$. Then we define the induced matrix norm $\|\cdot\|_{(m, n)}: \mathbb{R}^{m \times n} \rightarrow[0, \infty)$ by

$$
\|A\|_{(m, n)}:=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A x\|_{(m)}}{\|x\|_{(n)}}=\sup _{\substack{x \in \mathbb{R}^{n} \\\|x\|_{(n)}=1}}\|A x\|_{(m)}, \quad A \in \mathbb{R}^{m \times n}
$$

In the case that $\|\cdot\|_{(n)}=\|\cdot\|_{(m)}=\|\cdot\|_{p}$ for $p \in[1, \infty) \cup\{\infty\}$, we call

$$
\|A\|_{p}:=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A x\|_{p}}{\|x\|_{p}}=\sup _{\substack{x \in \mathbb{R}^{n} \\\|x\|_{p}=1}}\|A x\|_{p}, \quad A \in \mathbb{R}^{m \times n}
$$

the p-norm of A.
Theorem (induced norm is a norm)
The map $\|\cdot\|_{(m, n)}: \mathbb{R}^{m \times n} \rightarrow[0, \infty)$ is a norm on $\mathbb{R}^{m \times n}$ for any choice of vector norms $\|\cdot\|_{(n)}$ on \mathbb{R}^{n} and $\|\cdot\|_{(m)}$ on \mathbb{R}^{m}.

Proof: Exercise.

Observe: The number $\|A\|_{(m, n)}$ is the smallest constant $C \geq 0$ such that

$$
\left\|L_{A}(x)\right\|_{(m)}=\|A x\|_{(m)} \leq C\|x\|_{(n)} \quad \forall x \in \mathbb{R}^{n}
$$

i.e., it is the greatest factor by which L_{A} can stretch a vector in \mathbb{R}^{n}.

Induced matrix norms are submultiplicative

For $n_{1}, n_{2}, n_{3} \in \mathbb{N}$ let $\|\cdot\|_{\left(n_{k}\right)}$ be a norm on $\mathbb{R}^{n_{k}}$, and let $A \in \mathbb{R}^{n_{1} \times n_{2}}$ and $C \in \mathbb{R}^{n_{2} \times n_{3}}$. Then,

$$
\begin{aligned}
\|A C\|_{\left(n_{1}, n_{3}\right)} & \leq\|A\|_{\left(n_{1}, n_{2}\right)}\|C\|_{\left(n_{2}, n_{3}\right)} \text {, i.e., } \\
\sup _{x \in \mathbb{R}^{n_{3}} \backslash\{0\}} \frac{\|A C x\|_{\left(n_{1}\right)}}{\|x\|_{\left(n_{3}\right)}} & \leq\left[\sup _{x \in \mathbb{R}^{n_{2}} \backslash\{0\}} \frac{\|A x\|_{\left(n_{1}\right)}}{\|x\|_{\left(n_{2}\right)}}\right]\left[\sup _{x \in \mathbb{R}^{n_{3}} \backslash\{0\}} \frac{\|C x\|_{\left(n_{2}\right)}}{\|x\|_{\left(n_{3}\right)}}\right] .
\end{aligned}
$$

(Warning: not every matrix norm is submultiplicative! (exercise))
Proof: For any $x \in \mathbb{R}^{n_{3}}$:

$$
\|A \underbrace{C x}_{\in \mathbb{R}^{n_{2}}}\|_{\left(n_{1}\right)} \leq\|A\|_{\left(n_{1}, n_{2}\right)}\|C x\|_{\left(n_{2}\right)} \leq\|A\|_{\left(n_{1}, n_{2}\right)}\|C\|_{\left(n_{2}, n_{3}\right)}\|x\|_{\left(n_{3}\right)}
$$

Let's do some examples for computing matrix norms:

Example 1: p-norms of a diagonal matrix

$$
A:=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right):=\left(\begin{array}{cccc}
\alpha_{1} & 0 & \cdots & 0 \\
0 & \alpha_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{n}
\end{array}\right) \in \mathbb{R}^{n \times n} .
$$

Then, $\|A\|_{p}=\max _{1 \leq i \leq n}\left|\alpha_{i}\right|$ for all $p \in[1, \infty) \cup\{\infty\}$.
$\underline{\text { Proof for } p \in[1, \infty)}$: Write $m:=\max _{1 \leq i \leq n}\left|\alpha_{i}\right|$. For any $x \in \mathbb{R}^{n}$:

$$
\|A x\|_{p}^{p}=\sum_{i=1}^{n}\left|\alpha_{i} x_{i}\right|^{p} \leq\left(\max _{1 \leq i \leq n}\left|\alpha_{i}\right|^{p}\right) \sum_{i=1}^{n}\left|x_{i}\right|^{p}=m^{p}\|x\|_{p}^{p}, \quad\|A x\|_{p} \leq m\|x\|_{p},
$$

$\Longrightarrow\|A\|_{p} \leq m$. Converse inequality:

$$
\begin{aligned}
& \|A\|_{p}=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A x\|_{p}}{\|x\|_{p}} \geq \frac{\left\|A e_{i}\right\|_{p}}{\left\|e_{i}\right\|_{p}}=\frac{\left\|\alpha_{i} e_{i}\right\|_{p}}{\left\|e_{i}\right\|_{p}}=\left|\alpha_{i}\right| \quad \forall 1 \leq i \leq n, \\
& \Longrightarrow\|A\|_{p} \geq m
\end{aligned}
$$

$$
A:=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right):=\left(\begin{array}{cccc}
\alpha_{1} & 0 & \cdots & 0 \\
0 & \alpha_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \alpha_{n}
\end{array}\right) \in \mathbb{R}^{n \times n} .
$$

Then, $\|A\|_{p}=\max _{1 \leq i \leq n}\left|\alpha_{i}\right|$ for all $p \in[1, \infty) \cup\{\infty\}$.
Proof for $p=\infty$: Write $m:=\max _{1 \leq i \leq n}\left|\alpha_{i}\right|$. For any $x \in \mathbb{R}^{n}$:

$$
\|A x\|_{\infty}=\max _{1 \leq i \leq n}\left|\alpha_{i} x_{i}\right| \leq\left(\max _{1 \leq i \leq n}\left|\alpha_{i}\right|\right)\left(\max _{1 \leq i \leq n}\left|x_{i}\right|\right)=m\|x\|_{\infty}
$$

$\Longrightarrow\|A\|_{\infty} \leq m$. Converse inequality:

$$
\|A\|_{\infty}=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A x\|_{\infty}}{\|x\|_{\infty}} \geq \frac{\left\|A e_{i}\right\|_{\infty}}{\left\|e_{i}\right\|_{\infty}}=\frac{\left\|\alpha_{i} e_{i}\right\|_{\infty}}{\left\|e_{i}\right\|_{\infty}}=\left|\alpha_{i}\right| \quad \forall 1 \leq i \leq n
$$

$$
\Longrightarrow\|A\|_{\infty} \geq m
$$

Example 2: ∞-norm and 1-norm of a matrix

For $A=\left(a_{1}|\cdots| a_{n}\right)=\left(b_{1}|\cdots| b_{m}\right)^{\mathrm{T}} \in \mathbb{R}^{m \times n}$:

$$
\|A\|_{\infty}=\max _{1 \leq i \leq m}\left\|b_{i}\right\|_{1}, \quad\|A\|_{1}=\max _{1 \leq j \leq n}\left\|a_{j}\right\|_{1}
$$

i.e., $\|A\|_{\infty}$ is "maximum row sum", $\|A\|_{1}$ "maximum column sum" of A.

Proof for 1-norm: Write $m:=\max _{1 \leq j \leq n}\left\|a_{j}\right\|_{1}$. For any $x \in \mathbb{R}^{n}$:

$$
\|A x\|_{1}=\left\|\sum_{i=1}^{n} x_{i} a_{i}\right\|_{1} \leq \sum_{i=1}^{n}\left|x_{i}\right|\left\|a_{i}\right\|_{1} \leq m \sum_{i=1}^{n}\left|x_{i}\right|=m\|x\|_{1}
$$

$\Longrightarrow\|A\|_{1} \leq m$. Converse inequality:

$$
\|A\|_{1}=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A x\|_{1}}{\|x\|_{1}} \geq \frac{\left\|A e_{i}\right\|_{1}}{\left\|e_{i}\right\|_{1}}=\frac{\left\|a_{i}\right\|_{1}}{1}=\left\|a_{i}\right\|_{1} \quad \forall 1 \leq i \leq n
$$

$\Longrightarrow\|A\|_{1} \geq m$.
Proof for ∞-norm: Exercise.

Example 3: Matrix 2-norm of a row vector

Consider a row vector

$$
A:=a^{\mathrm{T}} \in \mathbb{R}^{1 \times n} \quad\left(a \in \mathbb{R}^{n}\right)
$$

Then, $\|A\|_{2}=\|a\|_{2}$ (lhs: matrix 2-norm, rhs: vector 2-norm).
Proof: For any $x \in \mathbb{R}^{n}$:

$$
\|A x\|_{2}=\left\|a^{\mathrm{T}} x\right\|_{2}=|\langle a, x\rangle| \leq\|a\|_{2}\|x\|_{2}
$$

$\Longrightarrow\|A\|_{2} \leq\|a\|_{2}$. Converse inequality:
If $a=0 \in \mathbb{R}^{n}$, then $\|A\|_{2} \leq 0$ which yields $\|A\|_{2}=0=\|a\|_{2}$.
If $a \neq 0 \in \mathbb{R}^{n}$, then

$$
\|A\|_{2} \geq \frac{\|A a\|_{2}}{\|a\|_{2}}=\frac{|\langle a, a\rangle|}{\|a\|_{2}}=\|a\|_{2}
$$

$\Longrightarrow\|A\|_{2} \geq\|a\|_{2}$.

Example 4: Matrix 2-norm of outer product

Let $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$. Consider the outer product

$$
A:=u v^{\mathrm{T}} \in \mathbb{R}^{m \times n}
$$

Then, $\|A\|_{2}=\|u\|_{2}\|v\|_{2}$.
Proof: For any $x \in \mathbb{R}^{n}$:

$$
\|A x\|_{2}=\left\|u v^{\mathrm{T}} x\right\|_{2}=\|u\|_{2}|\langle v, x\rangle| \leq\|u\|_{2}\|v\|_{2}\|x\|_{2}
$$

$\Longrightarrow\|A\|_{2} \leq\|u\|_{2}\|v\|_{2}$. Converse inequality:
If $v=0$, then $\|A\|_{2} \leq 0$ which yields $\|A\|_{2}=0=\|u\|_{2}\|v\|_{2}$.
If $v \neq 0$, then

$$
\|A\|_{2} \geq \frac{\|A v\|_{2}}{\|v\|_{2}}=\frac{\left\|u v^{\mathrm{T}} v\right\|_{2}}{\|v\|_{2}}=\frac{\|u\|_{2}|\langle v, v\rangle|}{\|v\|_{2}}=\|u\|_{2}\|v\|_{2}
$$

$\Longrightarrow\|A\|_{2} \geq\|u\|_{2}\|v\|_{2}$.

The matrix 2 -norm is also called the spectral norm.
Later: For $A \in \mathbb{R}^{m \times n}$:

$$
\|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{\mathrm{T}} A\right)}
$$

where $\lambda_{\max }\left(A^{\mathrm{T}} A\right)$ largest eigenvalue of $A^{\mathrm{T}} A$.

Next: Most important example of a norm which is not induced by vector norms: the Frobenius norm.

1.2.3 Frobenius norm

Definition (Frobenius norm)

The map $\|\cdot\|_{F}: \mathbb{R}^{m \times n} \rightarrow[0, \infty)$ given by
$\|A\|_{F}:=\sqrt{\operatorname{tr}\left(A^{\mathrm{T}} A\right)}=\sqrt{\operatorname{tr}\left(A A^{\mathrm{T}}\right)}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}, \quad A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$
is called the Frobenius norm.
$\operatorname{tr}(B)$ denotes the trace of a square matrix B, i.e., sum of diagonal entries.
Theorem (submultiplicativity of Frobenius norm)
The map $\|\cdot\|_{F}$ is a norm on $\mathbb{R}^{m \times n}$. Further, it is submultiplicative:

$$
\|A C\|_{F} \leq\|A\|_{F}\|C\|_{F} \quad \forall A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{n \times l}
$$

Proof: Exercise.

Frobenius inner product

$\|\cdot\|_{F}$ is induced by Frobenius inner product $\langle\cdot, \cdot\rangle_{F}: \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$:

$$
\langle A, B\rangle_{F}:=\operatorname{tr}\left(A^{\mathrm{T}} B\right)=\operatorname{tr}\left(B A^{\mathrm{T}}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} b_{i j}, \quad A, B \in \mathbb{R}^{m \times n}
$$

i.e., $\|A\|_{F}=\sqrt{\langle A, A\rangle_{F}}$ for any $A \in \mathbb{R}^{m \times n}$.

We have

$$
\left|\langle A, B\rangle_{F}\right| \leq\|A\|_{F}\|B\|_{F} \quad \forall A, B \in \mathbb{R}^{m \times n}
$$

(Cauchy-Schwarz inequality for inner product spaces)

Equivalence of matrix norms

Theorem (equivalence of matrix norms)
Let $\|\cdot\|,\| \| \cdot \|: \mathbb{R}^{m \times n} \rightarrow[0, \infty)$ be norms on $\mathbb{R}^{m \times n}$. Then, $\|\cdot\|$ and $\|\|\cdot\|$ are equivalent, that is, there exist constants $C_{1}, C_{2}>0$ such that

$$
C_{1}\|A\| \leq\|A\| \leq C_{2}\|A\| \quad \forall A \in \mathbb{R}^{m \times n}
$$

(recall: any two norms on a finite dimensional space are equivalent)

1.2.4 Orthogonal invariance

The spectral norm $\|\cdot\|_{2}$ and the Frobenius norm $\|\cdot\|_{F}$ are invariant under multiplication by orthogonal matrices:

Theorem (Orthogonal invariance of spectral norm and Frobenius norm)
Let $A \in \mathbb{R}^{m \times n}$. Let $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$ orthogonal matrices. Then,
(i) $\|U A\|_{2}=\|A\|_{2}, \quad\|A V\|_{2}=\|A\|_{2}$,
(ii) $\|U A\|_{F}=\|A\|_{F}, \quad\|A V\|_{F}=\|A\|_{F}$.

$$
\|U A\|_{2}=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|U A x\|_{2}}{\|x\|_{2}}=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A x\|_{2}}{\|x\|_{2}}=\|A\|_{2} .
$$

Also,
$\|A V\|_{2}=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A V x\|_{2}}{\|x\|_{2}}=\sup _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A V x\|_{2}}{\|V x\|_{2}}=\sup _{\tilde{x} \in \mathbb{R}^{n} \backslash\{0\}} \frac{\|A \tilde{x}\|_{2}}{\|\tilde{x}\|_{2}}=\|A\|_{2}$ using that $L_{V}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a bijection (as V is invertible).

Theorem (Orthogonal invariance of spectral norm and Frobenius norm)
Let $A \in \mathbb{R}^{m \times n}$. Let $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$ orthogonal matrices. Then,
(i) $\|U A\|_{2}=\|A\|_{2}, \quad\|A V\|_{2}=\|A\|_{2}$,
(ii) $\|U A\|_{F}=\|A\|_{F}, \quad\|A V\|_{F}=\|A\|_{F}$.

Proof of (ii): Recall that

$$
\|B\|_{F}^{2}=\operatorname{tr}\left(B^{\mathrm{T}} B\right)=\operatorname{tr}\left(B B^{\mathrm{T}}\right) \quad \forall B \in \mathbb{R}^{m \times n}
$$

Hence,

$$
\|U A\|_{F}^{2}=\operatorname{tr}\left((U A)^{\mathrm{T}}(U A)\right)=\operatorname{tr}\left(A^{\mathrm{T}} U^{\mathrm{T}} U A\right)=\operatorname{tr}\left(A^{\mathrm{T}} A\right)=\|A\|_{F}^{2},
$$

and

$$
\|A V\|_{F}^{2}=\operatorname{tr}\left((A V)(A V)^{\mathrm{T}}\right)=\operatorname{tr}\left(A V V^{\mathrm{T}} A^{\mathrm{T}}\right)=\operatorname{tr}\left(A A^{\mathrm{T}}\right)=\|A\|_{F}^{2}
$$

End of "Chapter 1: Preliminaries".

