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Definition (Matrices and vectors)

For m,n ∈ N = {1, 2, . . . }, define the set of real m× n matrices by

Rm×n :=



a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


∣∣∣∣∣∣∣∣∣ aij ∈ R ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n

 .

Define Rm := Rm×1, the set of real (column) m-vectors.

Notation:

A = (aij) ∈ Rm×n with aij ∈ R denoting entry in row i, column j,
A = (a1|a2| · · · |an) ∈ Rm×n with a1, . . . , an ∈ Rm the columns of A.

Example: A =

(
1 3 5
2 4 6

)
∈ R2×3. A = (aij) with entries

a11 = 1, a12 = 3, a13 = 5, a21 = 2, a22 = 4, a23 = 6

and A = (a1|a2|a3) with columns a1 =

(
1
2

)
, a2 =

(
3
4

)
, a3 =

(
5
6

)
.
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1.1.1 Basic operations

For A = (aij) ∈ Rm×n, B = (bij) ∈ Rm×n, C = (cij) ∈ Rn×l, and α ∈ R:

addition: A+B ∈ Rm×n,

(A+B)ij := aij + bij ,

scalar multiplication: αA ∈ Rm×n,

(αA)ij := αaij ,

transposition: AT ∈ Rn×m,

(AT)ij := aji,

matrix multiplication: AC ∈ Rm×l,

(AC)ij :=

n∑
k=1

aikckj .

Matrix-vector product of A = (aij) ∈ Rm×n and x = (x1, . . . , xn)T ∈ Rn:
Ax ∈ Rm with entries (Ax)i =

∑n
k=1 aikxk.
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Matrix-vector and matrix-matrix products

(i) For A = (a1| · · · |an) ∈ Rm×n and x = (x1, . . . , xn)T ∈ Rn:

Ax = (a1| · · · |an)

x1...
xn

 =

n∑
k=1

xkak ∈ span(a1, . . . , an) ⊆ Rm.

=⇒ Regard Ax not only as “A acts on x”, but also as “x acts on A”.

(ii) For A = (a1| · · · |an) ∈ Rm×n and C = (c1| · · · |cl) ∈ Rn×l:

AC = A(c1| · · · |cn) = (Ac1| · · · |Acl) ∈ Rm×l.

Note colmuns of AC belong to span(a1, . . . , an) ⊆ Rm.
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1.1.2 Connection to linear maps

Definition (Linear maps)

Let m,n ∈ N. A map f : Rn → Rm is called linear iff

f(αx+ y) = αf(x) + f(y) ∀x, y ∈ Rn, α ∈ R.

We denote the set of all linear maps from Rn to Rm by L(Rn,Rm).

For A ∈ Rm×n, define LA : Rn → Rm, x 7→ Ax (associated linear map).
Note for A,B ∈ Rm×n, C ∈ Rn×l and α ∈ R:

LA+B = LA + LB, LαA = αLA, LAC = LA ◦ LC .

Theorem (Characterization of linear maps)

There holds L(Rn,Rm) = {LA : A ∈ Rm×n}.

“⊇”: Associated linear maps are indeed linear.
“⊆”: Let f ∈ L(Rn,Rm). For any x =

∑n
i=1 xiei ∈ Rn, have

f(x) =
∑n

i=1 xif(ei) = Ax with A = (f(e1)| · · · |f(en)) ∈ Rm×n.
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1.1.3 Range and nullspace

Let A = (a1| · · · |an) ∈ Rm×n. We define its

(i) range (or column space)
R(A) := {y ∈ Rm| ∃x ∈ Rn : y = Ax} = span(a1, . . . , an),

(ii) nullspace N(A) := {x ∈ Rn |Ax = 0},
(iii) rank rk(A) := dim(R(A)),
(iv) nullity nullity(A) := dim(N(A)).

Theorem (Properties of rank)

Let A,B ∈ Rm×n and C ∈ Rn×l. Then the following assertions hold.

(i) 0 ≤ rk(A) = rk(AT) ≤ min{m,n} (“column rank equals row rank”),

(ii) rk(A) + nullity(A) = n (rank-nullity theorem),

(iii) rk(A) + rk(C)−n ≤ rk(AC) ≤ min{rk(A), rk(C)} (Sylvester ineqy),
(iv) rk(A+B) ≤ rk(A) + rk(B),

(v) rk(ATA) = rk(A) = rk(AAT).

We say A ∈ Rm×n has full rank iff rk(A) = min{m,n} (otherwise
rank-deficient). 7 / 37



Theorem (Characterization of full-rank tall matrices)

Let A = (a1| · · · |an) ∈ Rm×n, m ≥ n. Then, the following are equivalent:

(i) A is of full rank, i.e., rk(A) = n.

(ii) a1, . . . , an are linearly independent.

(iii) LA is injective.

Proof: (i)⇒(ii): If rk(A) = dim(span(a1, . . . , an)) = n, then clearly
a1, . . . , an are linearly independent.

(ii)⇒(iii): Suppose a1, . . . , an are linearly independent, and let
x = (x1, . . . , xn)T, y = (y1, . . . , yn)T ∈ Rn such that LA(x) = LA(y), i.e.,
Ax = Ay. Then A(x− y) =

∑n
i=1(xi − yi)ai = 0 ∈ Rm and hence,

xi − yi = 0 for all 1 ≤ i ≤ n, i.e., x = y.

¬(i)⇒ ¬(iii): Suppose that A is not of full rank. Then,
rk(A) = dim(span(a1, . . . , an)) < n and hence, a1, . . . , an are linearly
dependent. Then, there exists c = (c1, . . . , cn)T ∈ Rn\{0} such that
LA(c) =

∑n
i=1 ciai = 0 and we conclude that LA is not injective.
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1.1.4 Invertible matrices

Definition (Invertible matrix)

A matrix A ∈ Rn×n is said to be invertible (or non-singular) iff there
exists a matrix A−1 ∈ Rn×n, called the inverse of A, such that

AA−1 = A−1A = In.

Here, In denotes the n× n identity matrix

In := (e1|e2| · · · |en) :=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ∈ Rn×n.

Note that for A = (a1| · · · |an) ∈ Rn×n invertible, b ∈ Rn:

Writing x = A−1b = (x1, . . . , xn)T : b = Ax =

n∑
k=1

xkak, A
−1b =

n∑
k=1

xkek.

=⇒ Left-multiplication by A−1 is a change of basis operation. 9 / 37



Characterization of invertible matrices:

Theorem (Characterization of invertibility)

For A ∈ Rn×n, the following are equivalent:

(i) A is invertible.

(ii) LA is an invertible linear map.

(iii) A has full rank, i.e., rk(A) = n.

(iv) R(A) = Rn (or equivalently, LA is surjective).

(v) N(A) = {0} (or equivalently, LA is injective).

(vi) det(A) 6= 0.

(vii) 0 6∈ Λ(A).

Here, Λ(A) := {λ ∈ C : det(A− λIn) = 0} is the spectrum of A ∈ Rn×n.
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Theorem (Properties for inverse)

Let A,C ∈ Rn×n invertible, α ∈ R\{0}. Then, A−1, AC, αA,AT ∈ Rn×n
are invertible and we have

(i) (A−1)−1 = A , (AC)−1 = C−1A−1 , (αA)−1 = 1
αA
−1 ,

(AT)−1 = (A−1)T .

(ii) rk(A−1) = rk(A) = n, det(A−1) = 1
det(A) .

Compare with transposition: For A,B ∈ Rm×n, C ∈ Rn×l, α ∈ R:

(i) (AT)T = A, (AC)T = CTAT, (αA)T = αAT.

(ii) rk(AT) = rk(A), det(AT) = det(A).

Important classes of matrices:

Definition (Symmetric matrix, orthogonal matrix)

(i) A matrix A ∈ Rn×n is said to be symmetric iff AT = A.

(ii) A matrix Q ∈ Rn×n is said to be orthogonal iff QQT = QTQ = In,
i.e., iff Q is invertible and Q−1 = QT.
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1.1.5 Orthogonality

Definition (Euclidean inner product and Euclidean norm)

Let x, y ∈ Rn. We define

(i) the Euclidean inner product 〈x, y〉 := xTy ∈ R, and

(ii) the Euclidean norm ‖x‖2 :=
√
〈x, x〉 ∈ R.

Properties:

〈x, y〉 = ‖x‖2‖y‖2 cos(θx,y) with θx,y angle between x and y.

〈·, ·〉 : Rn × Rn → R is bilinear (linear in both arguments) and
symmetric (〈x, y〉 = 〈y, x〉 ∀x, y ∈ Rn)

Definition (Orthogonal vectors and subsets)

(i) x, y ∈ Rn are orthogonal (x ⊥ y), iff 〈x, y〉 = 0.

(ii) X,Y ⊆ Rn are orthogonal (X ⊥ Y ), iff x ⊥ y ∀x ∈ X, y ∈ Y .

(iii) S ⊆ Rn\{0} is orthogonal iff ∀x, y ∈ S : x 6= y =⇒ x ⊥ y.

(iv) S ⊆ Rn\{0} is orthonormal iff S is orthogonal and ‖x‖2 = 1 ∀x ∈ S.

12 / 37



Theorem (Vectors in orthogonal set linearly independent)

The vectors in an orthogonal set S ⊆ Rn\{0} are linearly independent. In
particular, any orthogonal set S ⊆ Rn\{0} containing n vectors is a basis
for Rn.

Proof.

Let S = {v1, . . . , vN} ⊆ Rn\{0} orthogonal set, and suppose its elements
were linearly dependent. Then, ∃ vk ∈ S : vk =

∑
i∈{1,...,N}\{k} civi for

some {ci} ⊆ R. Have

‖vk‖22 = 〈vk, vk〉 =
∑

i∈{1,...,N}\{k}

ci〈vi, vk〉 = 0.

=⇒ vk = 0, contradicting vk ∈ S ⊆ Rn\{0}.
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Decomposing a vector into orthogonal components

Given x ∈ Rn, orthonormal set {q1, q2, . . . , qN} ⊆ Rn\{0}, N ≤ n. Write

x =

N∑
k=1

〈x, qk〉qk + r =

N∑
k=1

(qkq
T
k )x+ r.

Then {r} ⊥ {q1, . . . , qN} as

〈r, qi〉 = 〈x, qi〉 −
N∑
k=1

〈x, qk〉〈qk, qi〉 = 〈x, qi〉 − 〈x, qi〉 = 0 ∀1 ≤ i ≤ N,

=⇒ r is the part of x orthogonal to the subspace span(q1, . . . , qN ) ⊆ Rn,
and (qkq

T
k )x is the part of x in direction qk for 1 ≤ k ≤ N .

Later: Pq := qqT orthogonal projector onto span(q).

Observation: if N = n, have {q1, . . . , qn} is basis of Rn and hence r = 0.
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Let Q = (q1| · · · |qn) ∈ Rn×n orthogonal matrix. Then,

{q1, . . . , qn} ⊆ Rn orthonormal basis (QTQ = In yields qTi qj = δij).
∀x, y ∈ Rn : 〈Qx,Qy〉 = xTQTQy = xTy = 〈x, y〉 and
‖Qx‖2 = ‖x‖2. “Euclidean inner product is invariant under
orthogonal transformations”.
|det(Q)| = 1 (1 = det(In) = det(QTQ) = det(QT) det(Q) = (det(Q))2)
LQ is an orthogonal transformation preserving the inner product on
Rn, and corresponds to a rigid rotation (when det(Q) = 1) or a
reflection (when det(Q) = −1) of the space.

2D: An orthogonal matrix Q ∈ R2×2 with det(Q) = 1 can be written as

Q =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ [0, 2π),

with LQ rotating plane anticlockwise by the angle θ.
An orthogonal matrix Q ∈ R2×2 with det(Q) = −1 can be written as

Q =

(
cos(β) sin(β)
sin(β) − cos(β)

)
, β ∈ [0, 2π),

with LQ reflecting plane across y = tan(β2 )x if β 6= π (else, across x = 0).
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1.2 Norms

Vector norms

Induced matrix norms

Frobenius norm

Orthogonal invariance
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What is a norm?

Definition (Norm)

Let V be a vector space over R. A map ‖ · ‖ : V → [0,∞) is called a
norm on V iff there holds

(i) definiteness: ∀v ∈ V : ‖v‖ = 0 =⇒ v = 0,

(ii) absolute homogeneity: ‖αv‖ = |α|‖v‖ ∀v ∈ V, α ∈ R,

(iii) triangle inequality: ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖ ∀v1, v2 ∈ V .

If V = Rn, say ‖ · ‖ is a vector norm. If V = Rm×n, say ‖ · ‖ is a matrix
norm.

Important vector norms: the p-norms ‖ · ‖p (Euclidean norm for p = 2).
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1.2.1 Vector norms

Definition (The p-norms)

For p ∈ [1,∞), define the p-norm ‖ · ‖p : Rn → [0,∞),

‖x‖p :=

(
n∑
i=1

|xi|p
) 1

p

, x = (x1, . . . , xn)T ∈ Rn.

Define the ∞-norm (or maximum norm) ‖ · ‖∞ : Rn → [0,∞),

‖x‖∞ := max
1≤i≤n

|xi|, x = (x1, . . . , xn)T ∈ Rn.

Observation: In 1D (n = 1) have ‖ · ‖p = | · | ∀p ∈ [1,∞) ∪ {∞}.
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Theorem (Hölder’s inequality)

Let p, q ∈ (1,∞) with 1
p + 1

q = 1. Then, for any x, y ∈ Rn:

|〈x, y〉| =

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

= ‖x‖p‖y‖q.

The case p = q = 2 is also known as the Cauchy–Schwarz inequality.

Lemma (Young’s inequality)

For p, q ∈ (1,∞) with 1
p + 1

q = 1 have ∀a, b ≥ 0: ab ≤ 1
pa

p + 1
q b
q.

Pf: Assume a, b > 0 (claim trivial if a = 0 or b = 0). Key observation:
exp : R→ R is convex, i.e., for any α ∈ [0, 1] and x, y ∈ R we have
eαx+(1−α)y ≤ αex + (1− α)ey. Hence,

ab = elog(ab) = e
1
p
(p log(a))+(1− 1

p
)(q log(b)) ≤ 1

pe
p log(a) + (1− 1

p)eq log(b)

=⇒ ab ≤ 1
pa

p + 1
q b
q.
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Let us now prove Hölder’s inequality |〈x, y〉| ≤ ‖x‖p‖y‖q:

Proof of Hölder’s inequality.

Assume x, y ∈ Rn\{0} (claim trivial if x = 0 or y = 0). Then,

|〈x, y〉|
‖x‖p‖y‖q

≤
n∑
i=1

|xi|
‖x‖p

|yi|
‖y‖q

≤ 1

p

∑n
i=1|xi|p

‖x‖pp
+

1

q

∑n
i=1|yi|q

‖y‖qq
=

1

p
+

1

q
= 1.

Rk: We also have |〈x, y〉| ≤ ‖x‖1‖y‖∞ for any x, y ∈ Rn as

|〈x, y〉| =

∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ ≤
n∑
i=1

|xi| |yi| ≤ ‖y‖∞
n∑
i=1

|xi| = ‖y‖∞‖x‖1.

Are the p-norms really norms? Yes:
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Theorem (p-norms are norms)

The map ‖ · ‖p : Rn → [0,∞) is indeed a norm for any p ∈ [1,∞) ∪ {∞}.

Proof.

Let us only show the triangle inequality for p ∈ (1,∞). Key: Hölder.
Let p ∈ (1,∞). Set q := p

p−1 (then 1
p + 1

q = 1). For any x, y ∈ Rn:

‖x+ y‖pp =

n∑
i=1

|xi + yi||xi + yi|p−1

≤
n∑
i=1

|xi||xi + yi|p−1 +

n∑
i=1

|yi||xi + yi|p−1

≤ (‖x‖p + ‖y‖p)

(
n∑
i=1

|xi + yi|(p−1)q
) 1

q

= (‖x‖p + ‖y‖p)‖x+ y‖p−1(p−1)q = (‖x‖p + ‖y‖p)‖x+ y‖p−1p ,

and hence, ‖x+ y‖p ≤ ‖x‖p + ‖y‖p.
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Equivalence of vector norms

Theorem (Equivalence of vector norms)

Let ‖ · ‖, ||| · ||| : Rn → [0,∞) be norms on Rn. Then, ‖ · ‖ and ||| · ||| are
equivalent, that is, there exist constants C1, C2 > 0 such that

C1‖x‖ ≤ |||x||| ≤ C2‖x‖ ∀x ∈ Rn.

Actually, any two norms on a finite dimensional space are equivalent.
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1.2.2 Induced matrix norms

First observation: note that for A = (a1| · · · |an) ∈ Rm×n, we have

vec(A) :=

a1...
an

 ∈ Rmn, (note ai ∈ Rm ∀1 ≤ i ≤ n)

and we can use the aforementioned vector norms to measure its size.
However, it is more useful to view A ∈ Rm×n in terms of the associated
linear operator LA ∈ L(Rn,Rm) and use the operator norm induced by
given vector norms on Rn and Rm.

Definition (induced matrix norm)

Consider the normed vector spaces (Rn, ‖ · ‖(n)) and (Rm, ‖ · ‖(m)). Then
we define the induced matrix norm ‖ · ‖(m,n) : Rm×n → [0,∞) by

‖A‖(m,n) := sup
x∈Rn\{0}

‖Ax‖(m)

‖x‖(n)
= sup

x∈Rn

‖x‖(n)=1

‖Ax‖(m), A ∈ Rm×n.
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In the case that ‖ · ‖(n) = ‖ · ‖(m) = ‖ · ‖p for p ∈ [1,∞) ∪ {∞}, we call

‖A‖p := sup
x∈Rn\{0}

‖Ax‖p
‖x‖p

= sup
x∈Rn

‖x‖p=1

‖Ax‖p, A ∈ Rm×n

the p-norm of A.

Theorem (induced norm is a norm)

The map ‖ · ‖(m,n) : Rm×n → [0,∞) is a norm on Rm×n for any choice of
vector norms ‖ · ‖(n) on Rn and ‖ · ‖(m) on Rm.

Proof: Exercise.

Observe: The number ‖A‖(m,n) is the smallest constant C ≥ 0 such that

‖LA(x)‖(m) = ‖Ax‖(m) ≤ C‖x‖(n) ∀x ∈ Rn,

i.e., it is the greatest factor by which LA can stretch a vector in Rn.
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Induced matrix norms are submultiplicative

For n1, n2, n3 ∈ N let ‖ · ‖(nk) be a norm on Rnk , and let A ∈ Rn1×n2 and
C ∈ Rn2×n3 . Then,

‖AC‖(n1,n3) ≤ ‖A‖(n1,n2)‖C‖(n2,n3), i.e.,

sup
x∈Rn3\{0}

‖ACx‖(n1)

‖x‖(n3)
≤

[
sup

x∈Rn2\{0}

‖Ax‖(n1)

‖x‖(n2)

][
sup

x∈Rn3\{0}

‖Cx‖(n2)

‖x‖(n3)

]
.

(Warning: not every matrix norm is submultiplicative! (exercise))

Proof: For any x ∈ Rn3 :

‖A Cx︸︷︷︸
∈Rn2

‖(n1) ≤ ‖A‖(n1,n2)‖Cx‖(n2) ≤ ‖A‖(n1,n2)‖C‖(n2,n3)‖x‖(n3).

Let’s do some examples for computing matrix norms:
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Example 1: p-norms of a diagonal matrix

A := diag(α1, α2, . . . , αn) :=


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn

 ∈ Rn×n.

Then, ‖A‖p = max1≤i≤n|αi| for all p ∈ [1,∞) ∪ {∞}.

Proof for p ∈ [1,∞): Write m := max1≤i≤n|αi|. For any x ∈ Rn:

‖Ax‖pp =

n∑
i=1

|αixi|p ≤
(

max
1≤i≤n

|αi|p
) n∑
i=1

|xi|p = mp‖x‖pp, ‖Ax‖p ≤ m‖x‖p,

=⇒ ‖A‖p ≤ m. Converse inequality:

‖A‖p = sup
x∈Rn\{0}

‖Ax‖p
‖x‖p

≥ ‖Aei‖p
‖ei‖p

=
‖αiei‖p
‖ei‖p

= |αi| ∀1 ≤ i ≤ n,

=⇒ ‖A‖p ≥ m.
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A := diag(α1, α2, . . . , αn) :=


α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn

 ∈ Rn×n.

Then, ‖A‖p = max1≤i≤n|αi| for all p ∈ [1,∞) ∪ {∞}.

Proof for p =∞: Write m := max1≤i≤n|αi|. For any x ∈ Rn:

‖Ax‖∞ = max
1≤i≤n

|αixi| ≤
(

max
1≤i≤n

|αi|
)(

max
1≤i≤n

|xi|
)

= m‖x‖∞,

=⇒ ‖A‖∞ ≤ m. Converse inequality:

‖A‖∞ = sup
x∈Rn\{0}

‖Ax‖∞
‖x‖∞

≥ ‖Aei‖∞
‖ei‖∞

=
‖αiei‖∞
‖ei‖∞

= |αi| ∀1 ≤ i ≤ n,

=⇒ ‖A‖∞ ≥ m.
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Example 2: ∞-norm and 1-norm of a matrix

For A = (a1| · · · |an) = (b1| · · · |bm)T ∈ Rm×n:

‖A‖∞ = max
1≤i≤m

‖bi‖1, ‖A‖1 = max
1≤j≤n

‖aj‖1,

i.e., ‖A‖∞ is “maximum row sum”, ‖A‖1 “maximum column sum” of A.

Proof for 1-norm: Write m := max1≤j≤n ‖aj‖1. For any x ∈ Rn:

‖Ax‖1 =

∥∥∥∥∥
n∑
i=1

xiai

∥∥∥∥∥
1

≤
n∑
i=1

|xi|‖ai‖1 ≤ m
n∑
i=1

|xi| = m‖x‖1

=⇒ ‖A‖1 ≤ m. Converse inequality:

‖A‖1 = sup
x∈Rn\{0}

‖Ax‖1
‖x‖1

≥ ‖Aei‖1
‖ei‖1

=
‖ai‖1

1
= ‖ai‖1 ∀1 ≤ i ≤ n,

=⇒ ‖A‖1 ≥ m.

Proof for ∞-norm: Exercise.
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Example 3: Matrix 2-norm of a row vector

Consider a row vector

A := aT ∈ R1×n (a ∈ Rn).

Then, ‖A‖2 = ‖a‖2 (lhs: matrix 2-norm, rhs: vector 2-norm).

Proof: For any x ∈ Rn:

‖Ax‖2 = ‖aTx‖2 = |〈a, x〉| ≤ ‖a‖2‖x‖2

=⇒ ‖A‖2 ≤ ‖a‖2. Converse inequality:

If a = 0 ∈ Rn, then ‖A‖2 ≤ 0 which yields ‖A‖2 = 0 = ‖a‖2.
If a 6= 0 ∈ Rn, then

‖A‖2 ≥
‖Aa‖2
‖a‖2

=
|〈a, a〉|
‖a‖2

= ‖a‖2.

=⇒ ‖A‖2 ≥ ‖a‖2.
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Example 4: Matrix 2-norm of outer product

Let u ∈ Rm, v ∈ Rn. Consider the outer product

A := uvT ∈ Rm×n.

Then, ‖A‖2 = ‖u‖2‖v‖2.

Proof: For any x ∈ Rn:

‖Ax‖2 = ‖uvTx‖2 = ‖u‖2|〈v, x〉| ≤ ‖u‖2‖v‖2‖x‖2

=⇒ ‖A‖2 ≤ ‖u‖2‖v‖2. Converse inequality:

If v = 0, then ‖A‖2 ≤ 0 which yields ‖A‖2 = 0 = ‖u‖2‖v‖2.
If v 6= 0, then

‖A‖2 ≥
‖Av‖2
‖v‖2

=
‖uvTv‖2
‖v‖2

=
‖u‖2|〈v, v〉|
‖v‖2

= ‖u‖2‖v‖2

=⇒ ‖A‖2 ≥ ‖u‖2‖v‖2.
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The matrix 2-norm is also called the spectral norm.

Later: For A ∈ Rm×n:

‖A‖2 =
√
λmax(ATA),

where λmax(ATA) largest eigenvalue of ATA.

Next: Most important example of a norm which is not induced by vector
norms: the Frobenius norm.
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1.2.3 Frobenius norm

Definition (Frobenius norm)

The map ‖ · ‖F : Rm×n → [0,∞) given by

‖A‖F :=
√

tr(ATA) =
√

tr(AAT) =

√√√√ m∑
i=1

n∑
j=1

|aij |2, A = (aij) ∈ Rm×n

is called the Frobenius norm.

tr(B) denotes the trace of a square matrix B, i.e., sum of diagonal entries.

Theorem (submultiplicativity of Frobenius norm)

The map ‖ · ‖F is a norm on Rm×n. Further, it is submultiplicative:

‖AC‖F ≤ ‖A‖F ‖C‖F ∀A ∈ Rm×n, C ∈ Rn×l.

Proof: Exercise.
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Frobenius inner product

‖ · ‖F is induced by Frobenius inner product 〈·, ·〉F : Rm×n×Rm×n → R:

〈A,B〉F := tr(ATB) = tr(BAT) =

m∑
i=1

n∑
j=1

aijbij , A,B ∈ Rm×n,

i.e., ‖A‖F =
√
〈A,A〉F for any A ∈ Rm×n.

We have

|〈A,B〉F | ≤ ‖A‖F ‖B‖F ∀A,B ∈ Rm×n.

(Cauchy–Schwarz inequality for inner product spaces)

33 / 37



Equivalence of matrix norms

Theorem (equivalence of matrix norms)

Let ‖ · ‖, ||| · ||| : Rm×n → [0,∞) be norms on Rm×n. Then, ‖ · ‖ and ||| · |||
are equivalent, that is, there exist constants C1, C2 > 0 such that

C1‖A‖ ≤ |||A||| ≤ C2‖A‖ ∀A ∈ Rm×n.

(recall: any two norms on a finite dimensional space are equivalent)
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1.2.4 Orthogonal invariance

The spectral norm ‖ · ‖2 and the Frobenius norm ‖ · ‖F are invariant under
multiplication by orthogonal matrices:

Theorem (Orthogonal invariance of spectral norm and Frobenius norm)

Let A ∈ Rm×n. Let U ∈ Rm×m, V ∈ Rn×n orthogonal matrices. Then,

(i) ‖UA‖2 = ‖A‖2, ‖AV ‖2 = ‖A‖2,
(ii) ‖UA‖F = ‖A‖F , ‖AV ‖F = ‖A‖F .

Proof of (i): Note ‖V x‖2 = ‖x‖2, ‖Uy‖2 = ‖y‖2 ∀x ∈ Rn, y ∈ Rm. Have

‖UA‖2 = sup
x∈Rn\{0}

‖UAx‖2
‖x‖2

= sup
x∈Rn\{0}

‖Ax‖2
‖x‖2

= ‖A‖2.

Also,

‖AV ‖2 = sup
x∈Rn\{0}

‖AV x‖2
‖x‖2

= sup
x∈Rn\{0}

‖AV x‖2
‖V x‖2

= sup
x̃∈Rn\{0}

‖Ax̃‖2
‖x̃‖2

= ‖A‖2

using that LV : Rn → Rn is a bijection (as V is invertible).
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Theorem (Orthogonal invariance of spectral norm and Frobenius norm)

Let A ∈ Rm×n. Let U ∈ Rm×m, V ∈ Rn×n orthogonal matrices. Then,

(i) ‖UA‖2 = ‖A‖2, ‖AV ‖2 = ‖A‖2,
(ii) ‖UA‖F = ‖A‖F , ‖AV ‖F = ‖A‖F .

Proof of (ii): Recall that

‖B‖2F = tr(BTB) = tr(BBT) ∀B ∈ Rm×n.

Hence,

‖UA‖2F = tr((UA)T(UA)) = tr(ATUTUA) = tr(ATA) = ‖A‖2F ,

and

‖AV ‖2F = tr((AV )(AV )T) = tr(AV V TAT) = tr(AAT) = ‖A‖2F .
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End of “Chapter 1: Preliminaries”.
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