MA4255: Problem Sheet 4

AY 2022/23

Q1 Discrete Parseval's identity

Prove Lemma 9 of the lecture notes. (Hint: Note $|\hat{U}(k)|^{2}=\hat{U}(k) \hat{\hat{U}}(k)$.)
Q $2 F D$ schemes for the heat equation
Let us consider the IVP for the heat equation:

$$
\begin{align*}
\partial_{t} u(x, t) & =\partial_{x x}^{2} u(x, t) & & \text { for }(x, t) \in \mathbb{R} \times(0, T], \tag{1}\\
u(x, 0) & =u_{0}(x) & & \text { for } x \in \mathbb{R} .
\end{align*}
$$

For $M \in \mathbb{N}$ fixed, we consider a mesh with spacing $\Delta x>0$ in the x-direction and spacing $\Delta t:=\frac{T}{M}$ in the t-direction. Let $x_{j}:=j \Delta x$ for $j \in \mathbb{Z}$, and $t_{m}:=m \Delta t$ for $m \in\{0,1, \ldots, M\}$.
(i) State the explicit Euler FD scheme for this problem.
(ii) We seek another FD scheme for this problem based on approximating the time derivative $\partial_{t} u$ in a mesh point $\left(x_{j}, t_{m}\right)$ by $\partial_{t} u\left(x_{j}, t_{m}\right) \approx \frac{u\left(x_{j}, t_{m+1}\right)-u\left(x_{j}, t_{m}\right)}{\Delta t}$, and the second spatial derivative $\partial_{x x}^{2} u$ in a mesh point $\left(x_{j}, t_{m}\right)$ by a divided difference of the form

$$
\partial_{x x}^{2} u\left(x_{j}, t_{m}\right) \approx \frac{c_{1} u\left(x_{j+2}, t_{m}\right)+c_{2} u\left(x_{j}, t_{m}\right)+c_{3} u\left(x_{j-2}, t_{m}\right)}{(\Delta x)^{2}} .
$$

Determine appropriate values $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ and state the resulting FD scheme.
(iii) State a FD scheme for this problem obtained by combining the FD schemes from (i) and (ii), in the sense that you should add $\frac{1}{2}$ times the FD scheme from (i) to $\frac{1}{2}$ times the FD scheme from (ii).
(iv) Show that the FD scheme from (iii) is conditionally practically stable, with the stability condition being $\frac{\Delta t}{(\Delta x)^{2}} \leq 1$.
(Hint: the amplification factor can be written as $\lambda(k)=P(S(k))$, where P is a quadratic polynomial and $S(k):=\sin ^{2}\left(\frac{k \Delta x}{2}\right)$.)

Q 3 Practical stability of the θ-scheme

Consider the θ-scheme for the approximation of the IVP (11). Prove the following results:
(i) If $\theta \in\left[0, \frac{1}{2}\right)$, then the θ-scheme is conditionally practically stable, with the stability condition being $\frac{\Delta t}{(\Delta x)^{2}} \leq \frac{1}{2(1-2 \theta)}$.
(ii) If $\theta \in\left[\frac{1}{2}, 1\right]$, then the θ-scheme is unconditionally practically stable.

Q 4 Crandall's FD scheme

For the numerical solution of (1), consider the Crandall FD scheme

$$
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t}=\frac{1}{2}\left(1-\frac{\zeta}{\mu}\right) \frac{U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}}{(\Delta x)^{2}}+\frac{1}{2}\left(1+\frac{\zeta}{\mu}\right) \frac{U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta x)^{2}}
$$

for $j \in \mathbb{Z}$ and $m \in\{0,1, \ldots, M-1\}$, and $U_{j}^{0}=u_{0}\left(x_{j}\right)$ for $j \in \mathbb{Z}$. Here, $\zeta \in \mathbb{R}$ is a fixed real number, and $\mu:=\frac{\Delta t}{(\Delta x)^{2}}$. Show that the consistency error T_{j}^{m} satisfies $\left|T_{j}^{m}\right|=\mathcal{O}\left((\Delta x)^{2}\right)$ if $\zeta \neq \frac{1}{6}$, and $\left|T_{j}^{m}\right|=\mathcal{O}\left((\Delta x)^{4}\right)$ if $\zeta=\frac{1}{6}$, provided that μ is a fixed real number as $\Delta t, \Delta x \searrow 0$.

Q 5 FD approximation of the $P D E \partial_{t} u-\partial_{x x}^{2} u=\partial_{x} u$
We consider the IVP

$$
\begin{aligned}
\partial_{t} u(x, t)-\partial_{x x}^{2} u(x, t) & =\partial_{x} u(x, t) & \text { for }(x, t) \in \mathbb{R} \times(0, T], \\
u(x, 0) & =u_{0}(x) & \text { for } x \in \mathbb{R} .
\end{aligned}
$$

For $M \in \mathbb{N}_{\geq 2}$ fixed, we consider a mesh with spacing $0<\Delta x \leq 1$ in x-direction and spacing $\Delta t:=\frac{T}{M}$ in t-direction. Let $x_{j}:=j \Delta x$ for $j \in \mathbb{Z}$, and $t_{m}:=m \Delta t$ for $m \in\{0,1, \ldots, M\}$.
(i) We consider the FD scheme

$$
\begin{aligned}
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t}-\frac{U_{j+1}^{m}-2 U_{j}^{m}+U_{j-1}^{m}}{(\Delta x)^{2}} & =\frac{U_{j+1}^{m}-U_{j-1}^{m}}{2 \Delta x} & & \text { for } j \in \mathbb{Z}, m \in\{0,1, \ldots, M-1\} \\
U_{j}^{0} & =u_{0}\left(x_{j}\right) & & \text { for } j \in \mathbb{Z}
\end{aligned}
$$

1) Show that the FD scheme is conditionally practically stable, with the stability condition being $\frac{\Delta t}{(\Delta x)^{2}} \leq \frac{1}{2}$.
2) Show that the consistency error T_{j}^{m} satisfies $\left|T_{j}^{m}\right|=\mathcal{O}\left((\Delta x)^{2}+\Delta t\right)$.
(ii) We consider the FD scheme

$$
\begin{aligned}
\frac{U_{j}^{m+1}-U_{j}^{m}}{\Delta t}-\frac{U_{j+1}^{m+1}-2 U_{j}^{m+1}+U_{j-1}^{m+1}}{(\Delta x)^{2}} & =\frac{U_{j+1}^{m+1}-U_{j-1}^{m+1}}{2 \Delta x} & & \text { for } j \in \mathbb{Z}, m \in\{0,1, \ldots, M-1\} \\
U_{j}^{0} & =u_{0}\left(x_{j}\right) & & \text { for } j \in \mathbb{Z}
\end{aligned}
$$

Show that the FD scheme is unconditionally practically stable.

