MA4255: Problem Sheet 3

AY 2022/23

Q1 Sobolev spaces

(i) Set $\Omega:=(-2,2)$ and consider the function $u: \bar{\Omega} \rightarrow \mathbb{R}, u(x):=\left|1-x^{2}\right|$.

- Find all $k \in \mathbb{N}_{0}$ for which $u \in C^{k}(\Omega)$. Find all $k \in \mathbb{N}_{0}$ for which $u \in C^{k}(\bar{\Omega})$.
- Find the first weak derivative of u. Show that $u \in H^{1}(\Omega)$ and compute $\|u\|_{H^{1}(\Omega)}$.
(ii) Set $\Omega:=(0,1)$. Let $\alpha \in\left(0, \frac{1}{2}\right]$ be fixed. Define the function $u: \Omega \rightarrow \mathbb{R}, u(x):=x^{\alpha}$. Show that $u \in C^{\infty}(\Omega)$, but $u \notin H^{1}(\Omega)$.

Q 2 Existence and uniqueness of weak solutions via Lax-Milgram
(i) Let $\Omega:=(0,1)$ and let $f \in L^{2}(\Omega)$. Let $p: \bar{\Omega} \rightarrow \mathbb{R}, p(x):=x+1$. Consider the problem

$$
-\left(p u^{\prime}\right)^{\prime}+5 u=f \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega .
$$

Show that there exists a unique weak solution $u \in H_{0}^{1}(\Omega)$ to this problem.
(ii) Let $\Omega \subset \mathbb{R}^{n}$ be bounded and open, and let $f \in L^{2}(\Omega)$. Consider the problem

$$
-\Delta u=f \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega .
$$

Show that there exists a unique weak solution $u \in H_{0}^{1}(\Omega)$ to this problem.

Q 3 Construction of divided difference operators

(i) Find a second-order accurate one-sided divided difference operator of the form

$$
D_{x}^{-, 2} u\left(x_{i}\right)=\frac{c_{1} u\left(x_{i}\right)+c_{2} u\left(x_{i}-h\right)+c_{3} u\left(x_{i}-2 h\right)}{h}
$$

to approximate $u^{\prime}\left(x_{i}\right)$, i.e., $D_{x}^{-, 2} u\left(x_{i}\right)=u^{\prime}\left(x_{i}\right)+\mathcal{O}\left(h^{2}\right)$ for any sufficiently smooth function $u: \mathbb{R} \rightarrow \mathbb{R}$.
(ii) Find a fourth-order accurate central divided difference operator of the form

$$
D_{x}^{0,4} u\left(x_{i}\right)=\frac{c_{1} u\left(x_{i}-2 h\right)+c_{2} u\left(x_{i}-h\right)+c_{3} u\left(x_{i}\right)+c_{4} u\left(x_{i}+h\right)+c_{5} u\left(x_{i}+2 h\right)}{h}
$$

to approximate $u^{\prime}\left(x_{i}\right)$, i.e., $D_{x}^{0,4} u\left(x_{i}\right)=u^{\prime}\left(x_{i}\right)+\mathcal{O}\left(h^{4}\right)$ for any sufficiently smooth function $u: \mathbb{R} \rightarrow \mathbb{R}$.

Q4 Analyzing a FD scheme for a $1 D B V P$

Let $\Omega:=(0,1) \subset \mathbb{R}$. We consider the problem

$$
\begin{equation*}
-u^{\prime \prime}+p u^{\prime}+q u=f \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega, \tag{1}
\end{equation*}
$$

where $f \in C(\bar{\Omega})$, and $p, q: \bar{\Omega} \rightarrow \mathbb{R}$ are given by $p(x):=\cos (x)$ and $q(x):=\exp (x)$ for $x \in \bar{\Omega}$. For a fixed $N \in \mathbb{N}_{\geq 2}$, we define $x_{i}:=i h, i \in\{0,1, \ldots, N\}$, where $h:=\frac{1}{N}$. We consider the FD scheme

$$
\begin{equation*}
-D_{x}^{+} D_{x}^{-} U_{i}+p\left(x_{i}\right) D_{x}^{0} U_{i}+q\left(x_{i}\right) U_{i}=f\left(x_{i}\right) \quad \text { for } i \in\{1, \ldots, N-1\}, \quad U_{0}=U_{N}=0 \tag{2}
\end{equation*}
$$

where $D_{x}^{+} D_{x}^{-}$denotes the symmetric second divided difference operator and D_{x}^{0} the central first divided difference operator.
(i) Show that (1) has a unique weak solution, i.e., there exists a unique $u \in H_{0}^{1}(\Omega)$ such that

$$
\int_{\Omega} u^{\prime} v^{\prime} \mathrm{d} x+\int_{\Omega} p u^{\prime} v \mathrm{~d} x+\int_{\Omega} q u v \mathrm{~d} x=\int_{\Omega} f v \mathrm{~d} x \quad \forall v \in H_{0}^{1}(\Omega)
$$

(Hint: Use that $v^{\prime} v=\frac{1}{2}\left(v^{2}\right)^{\prime} \forall v \in H_{0}^{1}(\Omega)$ to show that $\int_{\Omega} p v^{\prime} v \mathrm{~d} x \geq 0 \forall v \in H_{0}^{1}(\Omega)$.)
(ii) Find $A \in \mathbb{R}^{(N-1) \times(N-1)}$ and $F \in \mathbb{R}^{N-1}$ such that 2 can be written as $A U=F, U_{0}=U_{N}=0$, where $U=\left(U_{1}, \ldots, U_{N-1}\right)^{\mathrm{T}}$.
(iii) Show that (2) has a unique solution. (Hint: Show that A is strictly diagonally dominant.)
(iv) For the consistency error $\varphi_{i}:=-D_{x}^{+} D_{x}^{-} u\left(x_{i}\right)+p\left(x_{i}\right) D_{x}^{0} u\left(x_{i}\right)+q\left(x_{i}\right) u\left(x_{i}\right)-f\left(x_{i}\right)$ show that $\left|\varphi_{i}\right|=\mathcal{O}\left(h^{2}\right)$, assuming that u is sufficiently smooth.

MATLAB (optional): For f chosen such that the true solution to (1) is $u(x)=x^{2}(1-x)^{2}$, implement (2) and compute the error $\max _{i \in\{0,1, \ldots, N\}}\left|U_{i}-u\left(x_{i}\right)\right|$ for various values of N. What order of convergence do you observe?

Q 5 9-point difference operator for 2D Laplacian

We consider the 9-point difference operator

$$
\begin{aligned}
\Delta_{h}^{(9)} u\left(x_{i}, y_{j}\right):= & -\frac{u\left(x_{i}-2 h, y_{j}\right)-16 u\left(x_{i}-h, y_{j}\right)+30 u\left(x_{i}, y_{j}\right)-16 u\left(x_{i}+h, y_{j}\right)+u\left(x_{i}+2 h, y_{j}\right)}{12 h^{2}} \\
& -\frac{u\left(x_{i}, y_{j}-2 h\right)-16 u\left(x_{i}, y_{j}-h\right)+30 u\left(x_{i}, y_{j}\right)-16 u\left(x_{i}, y_{j}+h\right)+u\left(x_{i}, y_{j}+2 h\right)}{12 h^{2}}
\end{aligned}
$$

for the approximation of $\Delta u\left(x_{i}, y_{j}\right)$. Show that

$$
\Delta_{h}^{(9)} u\left(x_{i}, y_{j}\right)=\Delta u\left(x_{i}, y_{j}\right)-\frac{1}{90} h^{4}\left[u_{x x x x x x}+u_{\text {yyyyyy }}\right]\left(x_{i}, y_{j}\right)+\mathcal{O}\left(h^{6}\right)
$$

for any sufficiently smooth function $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Q 6 Application of the maximum principle for elliptic PDEs

Let $\Omega \subseteq(0, \pi)^{2}$ be an open region with smooth boundary. Set $f: \bar{\Omega} \rightarrow \mathbb{R}, f(x, y):=\sin (x)+\sin (y)$. Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is such that $-\Delta u=f$ in Ω and $u=0$ on $\partial \Omega$. Prove $0 \leq u \leq 2$ in $\bar{\Omega}$. (Hint: Consider $w:=u-f$.)

