MA4255: Problem Sheet 2

AY 2022/23

Q 1 Adams-Bashforth and Adams-Moulton methods

(i) For $k \in\{1,2\}$, derive the k-step Adams-Moulton method from (40) of the lecture notes (Hint: truncate after the $(k+1)$-th term).
(ii) For $k \in\{1,2,3,4\}$, derive the k-step Adams-Bashforth method from (41) of the lecture notes (Hint: truncate the series after the k-th term).
(iii) For the two-step Adams-Moulton method, compute the order of accuracy, the error constant, and the interval of absolute stability.
(iv) For the four-step Adams-Bashforth method, compute the order of accuracy, the error constant, and the interval of absolute stability.

MATLAB: Test the performance of the various Adams-Bashforth methods at the IVP from PS1 Q4 (use a one-step method to obtain the starting values).

Q 2 Properties of the θ-method

For which values of $\theta \in[0,1]$ is the θ-method (i) zero-stable? (ii) A-stable? (iii) $A(\alpha)$-stable for some $\alpha \in\left(0, \frac{\pi}{2}\right)$?

Q 3 Surrounding absolute stability

(i) Find the interval of absolute stability and the region of absolute stability of the trapezium rule method and the Simpson rule method.
(ii) Show that the BDF method $3 y_{n+2}-4 y_{n+1}+y_{n}=2 h f_{n+2}$ is A-stable.

Q4 LMMs: Order of accuracy, zero-stability, convergence
(i) Construct a linear 1-step method of maximum order of accuracy. Is the method zero-stable?
(ii) Find the order of accuracy of the linear 3-step method

$$
11 y_{n+3}+27 y_{n+2}-27 y_{n+1}-11 y_{n}=3 h\left(f_{n+3}+9 f_{n+2}+9 f_{n+1}+f_{n}\right)
$$

Is the method convergent?
(iii) For $a, b \in \mathbb{R}$ fixed, consider a LMM with $\rho(z)=(z-1)(a z+1-a)$ and $\sigma(z)=(z-1)^{2} b+$ $(z-1) a+\frac{1}{2}(z+1)$. Find the order or accuracy of the method. For which values of a, b is the method zero-stable?
(iv) Show that a linear explicit three-step method cannot be both fourth-order accurate and convergent.

Q 5 Order of accuracy of LMMs

(i) For $i \in \mathbb{N}_{0}$ define $g_{i}: \mathbb{R} \rightarrow \mathbb{R}$ by $g_{i}(x):=x^{i}$. Show that a LMM with $\sigma(1) \neq 0$ has order of accuracy $p \in \mathbb{N}$ iff

$$
L_{h} g_{i} \equiv 0 \quad \forall i \in\{0,1, \ldots, p\}, \quad \text { and } \quad L_{h} g_{p+1} \not \equiv 0
$$

where L_{h} is the operator which maps a continuously differentiable function $u: \mathbb{R} \rightarrow \mathbb{R}$ to the function $L_{h} u: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\left[L_{h} u\right](x):=\sum_{j=0}^{k}\left(\alpha_{j} u(x+j h)-h \beta_{j} u^{\prime}(x+j h)\right)
$$

(Hint: First, show that $\left[L_{h} g_{i}\right](x)=\sum_{q=0}^{\infty} C_{q} h^{q} g_{i}^{(q)}(x)$ for any $i \in \mathbb{N}_{0}$. Then, carefully prove both directions of the "iff" statement.)
(ii) Show that a LMM with $\sigma(1) \neq 0$ has order of accuracy of at least p iff

$$
\rho\left(e^{h}\right)-h \sigma\left(e^{h}\right)=\mathcal{O}\left(h^{p+1}\right)
$$

Q 6 Stiff IVPs

Solve the following IVPs and decide whether they are stiff.
(i) $y^{\prime}(x)=\left(10^{5} e^{-10^{4} x}+1\right)(1-y(x)), x \in[0,1], y(0)=2$.
(ii) $\mathbf{y}^{\prime}(x)=\left(\begin{array}{cc}-0.5 & 0.501 \\ 0.501 & -0.5\end{array}\right) \mathbf{y}(x), x \in[0,1], \mathbf{y}(0)=\binom{1.1}{-0.9} .\left(\right.$ Here, $\left.\mathbf{y}:[0,1] \rightarrow \mathbb{R}^{2}.\right)$

Q 7 Convergence, order of accuracy, and A-stability of LMMs
We consider the linear 2-step method

$$
y_{n+2}-y_{n}=h\left(-\gamma f_{n+2}+2(1+\gamma) f_{n+1}-\gamma f_{n}\right)
$$

where $\gamma \in \mathbb{R}$ is some parameter.
(i) Show that the method is convergent for any $\gamma \in \mathbb{R}$.
(ii) For each $\gamma \in \mathbb{R}$, determine the order of accuracy of the method and the error constant.
(iii) Find all values of $\gamma \in \mathbb{R}$ for which the method is A-stable.

