MA4255: Problem Sheet 1

AY 2022/23

Q1 Surrounding Picard's theorem

(i) Show that the IVP $y^{\prime}(x)=e^{-x^{2}} \arctan (y(x)), y(1)=5$ has a unique continuously differentiable solution $y:[1, \infty) \rightarrow \mathbb{R}$.
(ii) Let $x_{0}, y_{0} \in \mathbb{R}$ be fixed. Show that the IVP $y^{\prime}(x)=2\left(1+e^{-|x|}\right) \frac{y(x)}{1+(y(x))^{2}}, y\left(x_{0}\right)=y_{0}$ has a unique continuously differentiable solution $y:\left[x_{0}, \infty\right) \rightarrow \mathbb{R}$.
(iii) Let $m \in \mathbb{N}$ be fixed and write $d:=\frac{2 m}{2 m+1}$. For any $X_{M}>0$, show that the IVP $y^{\prime}(x)=(y(x))^{d}$, $y(0)=0$ has infinitely many continuously differentiable solutions defined on $\left[0, X_{M}\right]$. Show that this does not contradict Picard's theorem.

Q 2 Error analysis of a one-step method

We consider the IVP

$$
\begin{equation*}
y^{\prime}(x)=f(x, y(x)) \quad \text { for } x \in(0,1), \quad y(0)=0, \tag{1}
\end{equation*}
$$

where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, z):=\frac{1}{2 \pi} \arctan (x)-\ln \left(1+z^{2}\right)$. For a fixed $N \in \mathbb{N}_{\geq 2}$, we set $h:=\frac{1}{N}$ and define $x_{n}:=n h$ for $n \in\{0,1, \ldots, N\}$. We consider the one-step method

$$
\begin{equation*}
y_{n+1}=y_{n}+h \Phi\left(x_{n}, y_{n}, h\right) \quad \text { for } n \in\{0,1, \ldots, N-1\}, \quad y_{0}=0, \tag{2}
\end{equation*}
$$

where $\Phi: \mathbb{R} \times \mathbb{R} \times(0,1) \rightarrow \mathbb{R}, \Phi(x, z, h):=\frac{1}{2} f(x, z)+\frac{1}{2} f(x+h, z+h f(x, z))$.
(i) Show that the IVP (11) has a unique continuously differentiable solution $y:[0,1] \rightarrow \mathbb{R}$.
(ii) Write (2) as a Runge-Kutta method and define the corresponding consistency error T_{n} for $n \in\{0,1, \ldots, N-1\}$. Show that $\left|T_{n}\right|=\mathcal{O}\left(h^{2}\right)$.
(iii) Assume that $C>0$ is a known constant such that $\max _{n \in\{0,1, \ldots, N-1\}}\left|T_{n}\right| \leq C h^{2}$. First, prove

$$
\left|\Phi\left(x, z_{1}, h\right)-\Phi\left(x, z_{2}, h\right)\right| \leq \frac{3}{2}\left|z_{1}-z_{2}\right| \quad \forall\left(x, z_{1}, h\right),\left(x, z_{2}, h\right) \in \mathbb{R} \times \mathbb{R} \times(0,1)
$$

and use this result to show that

$$
\left|e_{n}\right| \leq \frac{2 C}{3}\left(e^{\frac{3}{2}}-1\right) h^{2} \quad \forall n \in\{0,1, \ldots, N\}, \quad \text { where } \quad e_{n}:=y\left(x_{n}\right)-y_{n} .
$$

Find $N_{0} \in \mathbb{N}$, expressed in terms of C, such that $\max _{n \in\{0,1, \ldots, N-1\}}\left|e_{n}\right| \leq 10^{-6}$ if $N \geq N_{0}$.

Q 3 Accuracy of an implicit one-step method

For $\alpha, \beta \in \mathbb{R}$, consider the one-step method

$$
y_{n+1}=y_{n}+\frac{h}{3}\left(\alpha f\left(x_{n}, y_{n}\right)+\beta f\left(x_{n+1}, y_{n+1}\right)+\frac{h}{2} f_{x}\left(x_{n}, y_{n}\right)+\frac{h}{2} f\left(x_{n}, y_{n}\right) f_{z}\left(x_{n}, y_{n}\right)\right),
$$

where f_{x}, f_{z} denote the first-order partial derivatives of $f=f(x, z)$. Show that there exist $\alpha, \beta \in \mathbb{R}$ such that the order of accuracy of this method is at least 3 .
(Optional: Can $\alpha, \beta \in \mathbb{R}$ be chosen such that the method is fourth-order accurate?)

Q4 MATLAB: one-step methods in practice

Write a MATLAB program which approximates the solution of the IVP $y^{\prime}(x)=\sin \left(x^{2}\right) y(x)$ for $x \in[0,10], y(0)=1$ (optional: show that this IVP has a unique solution) using
(i) the explicit Euler method with $h=\frac{1}{10}$,
(ii) the implicit Euler method with $h=\frac{1}{10}$,
(ii) the implicit midpoint rule with $h=\frac{1}{10}$.
(You may find it helpful to first perform one step of each of these methods by hand.)

Q5 Surrounding Runge-Kutta methods

(i) Show that the explicit Euler, implicit Euler, and implicit midpoint rule methods are RungeKutta methods.
(ii) We have seen in the lectures that when a two-stage second-order explicit Runge-Kutta method is applied to the IVP $y^{\prime}(x)=\lambda y(x), y(0)=y_{0}$, where $\lambda<0$ and $y_{0} \neq 0$, we have that $y_{n}=\left(1+\lambda h+\frac{1}{2} \lambda^{2} h^{2}\right)^{n} y_{0}$ for $n \in \mathbb{N}_{0}$. Show that if $\lambda h \in(-2,0)$, then

$$
\left|y\left(x_{n}\right)-y_{n}\right| \leq \frac{1}{6}(-\lambda)^{3} h^{2} x_{n}\left|y_{0}\right| \quad \forall n \in \mathbb{N}_{0}
$$

where $x_{n}:=n h$ for $n \in \mathbb{N}_{0}$. (Hint: First, show that $\left|a^{n}-b^{n}\right| \leq n|a-b|$ for any $a, b \in[-1,1]$ and $n \in \mathbb{N}_{0}$.)

Q6 Accuracy of Runge-Kutta methods

(i) For $\alpha, \beta, \gamma \in \mathbb{R}$, consider the Runge-Kutta method $y_{n+1}=y_{n}+h \gamma k_{3}$ with

$$
k_{1}=f\left(x_{n}, y_{n}\right), \quad k_{2}=f\left(x_{n}+h \alpha, y_{n}+h \alpha k_{1}\right), \quad k_{3}=f\left(x_{n}+h \beta, y_{n}+h \beta k_{2}\right) .
$$

Show that there exist $\alpha, \beta, \gamma \in \mathbb{R}$ such that the order of accuracy of this method is at least 2 . (Optional: Can $\alpha, \beta, \gamma \in \mathbb{R}$ be chosen such that the method is third-order accurate?)
(ii) Consider the Runge-Kutta method $y_{n+1}=y_{n}+\frac{h}{6}\left(k_{1}+4 k_{2}+k_{3}\right)$ with

$$
k_{1}=f\left(x_{n}, y_{n}\right), \quad k_{2}=f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{1}\right), \quad k_{3}=f\left(x_{n}+h, y_{n}-h k_{1}+2 h k_{2}\right)
$$

Show that the order of accuracy of this method is at least 3 .

