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Q1 Surrounding Picard’s theorem

(i) Show that the IVP y′(x) = e−x2

arctan(y(x)), y(1) = 5 has a unique continuously differentiable
solution y : [1,∞) → R.

(ii) Let x0, y0 ∈ R be fixed. Show that the IVP y′(x) = 2(1 + e−|x|) y(x)
1+(y(x))2 , y(x0) = y0 has a

unique continuously differentiable solution y : [x0,∞) → R.

(iii) Let m ∈ N be fixed and write d := 2m
2m+1 . For any XM > 0, show that the IVP y′(x) = (y(x))d,

y(0) = 0 has infinitely many continuously differentiable solutions defined on [0, XM ]. Show
that this does not contradict Picard’s theorem.

Q2 Error analysis of a one-step method

We consider the IVP

y′(x) = f(x, y(x)) for x ∈ (0, 1), y(0) = 0, (1)

where f : R2 → R, f(x, z) := 1
2π arctan(x) − ln(1 + z2). For a fixed N ∈ N≥2, we set h := 1

N and
define xn := nh for n ∈ {0, 1, . . . , N}. We consider the one-step method

yn+1 = yn + hΦ(xn, yn, h) for n ∈ {0, 1, . . . , N − 1}, y0 = 0, (2)

where Φ : R× R× (0, 1) → R, Φ(x, z, h) := 1
2f(x, z) +

1
2f(x+ h, z + hf(x, z)).

(i) Show that the IVP (1) has a unique continuously differentiable solution y : [0, 1] → R.

(ii) Write (2) as a Runge–Kutta method and define the corresponding consistency error Tn for
n ∈ {0, 1, . . . , N − 1}. Show that |Tn| = O(h2).

(iii) Assume that C > 0 is a known constant such that maxn∈{0,1,...,N−1}|Tn| ≤ Ch2. First, prove

|Φ(x, z1, h)− Φ(x, z2, h)| ≤
3

2
|z1 − z2| ∀(x, z1, h), (x, z2, h) ∈ R× R× (0, 1),

and use this result to show that

|en| ≤
2C

3

(
e

3
2 − 1

)
h2 ∀n ∈ {0, 1, . . . , N}, where en := y(xn)− yn.

Find N0 ∈ N, expressed in terms of C, such that maxn∈{0,1,...,N−1}|en| ≤ 10−6 if N ≥ N0.

Q3 Accuracy of an implicit one-step method

For α, β ∈ R, consider the one-step method

yn+1 = yn +
h

3

(
αf(xn, yn) + βf(xn+1, yn+1) +

h

2
fx(xn, yn) +

h

2
f(xn, yn)fz(xn, yn)

)
,

where fx, fz denote the first-order partial derivatives of f = f(x, z). Show that there exist α, β ∈ R
such that the order of accuracy of this method is at least 3.
(Optional: Can α, β ∈ R be chosen such that the method is fourth-order accurate?)



2

Q4 MATLAB: one-step methods in practice

Write a MATLAB program which approximates the solution of the IVP y′(x) = sin(x2)y(x) for
x ∈ [0, 10], y(0) = 1 (optional: show that this IVP has a unique solution) using

(i) the explicit Euler method with h = 1
10 ,

(ii) the implicit Euler method with h = 1
10 ,

(ii) the implicit midpoint rule with h = 1
10 .

(You may find it helpful to first perform one step of each of these methods by hand.)

Q5 Surrounding Runge–Kutta methods

(i) Show that the explicit Euler, implicit Euler, and implicit midpoint rule methods are Runge–
Kutta methods.

(ii) We have seen in the lectures that when a two-stage second-order explicit Runge–Kutta method
is applied to the IVP y′(x) = λy(x), y(0) = y0, where λ < 0 and y0 ̸= 0, we have that
yn = (1 + λh+ 1

2λ
2h2)ny0 for n ∈ N0. Show that if λh ∈ (−2, 0), then

|y(xn)− yn| ≤
1

6
(−λ)3h2xn|y0| ∀n ∈ N0,

where xn := nh for n ∈ N0. (Hint: First, show that |an − bn| ≤ n|a− b| for any a, b ∈ [−1, 1]
and n ∈ N0.)

Q6 Accuracy of Runge–Kutta methods

(i) For α, β, γ ∈ R, consider the Runge–Kutta method yn+1 = yn + hγk3 with

k1 = f(xn, yn), k2 = f(xn + hα, yn + hαk1), k3 = f(xn + hβ, yn + hβk2).

Show that there exist α, β, γ ∈ R such that the order of accuracy of this method is at least 2.

(Optional: Can α, β, γ ∈ R be chosen such that the method is third-order accurate?)

(ii) Consider the Runge–Kutta method yn+1 = yn + h
6 (k1 + 4k2 + k3) with

k1 = f(xn, yn), k2 = f

(
xn +

h

2
, yn +

h

2
k1

)
, k3 = f(xn + h, yn − hk1 + 2hk2).

Show that the order of accuracy of this method is at least 3.
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