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Part I

Ordinary Differential Equations (ODEs)

1 Preliminaries: Picard’s Theorem

Ordinary differential equations frequently occur as mathematical models in many branches of science,
engineering, and economics. Unfortunately it is seldom that these equations have solutions that can be
expressed in closed form, so it is common to seek approximate solutions by means of numerical methods;
nowadays this can usually be achieved very inexpensively to high accuracy and with a reliable bound on
the error between the analytical solution and its numerical approximation. We shall be concerned with
the construction and the analysis of numerical methods for first-order differential equations of the form

y′(x) = f(x, y(x)) (1)

for the real-valued function y of the variable x ∈ R, where y′ := dy
dx . In order to select a particular integral

(i.e., a particular solution) from the infinite family of solution curves that constitute the general solution
to (1), the differential equation will be considered in tandem with an initial condition (we sometimes
simply write i.c.): given two real numbers x0, y0 ∈ R, we seek a solution to (1) for x > x0 such that

y(x0) = y0. (2)

The differential equation (1) together with the initial condition (2) is called an initial-value problem
(IVP). The motivation for this terminology is that in applications the variable x usually plays the role
of time, and the initial value, y0, of the process whose evolution is modelled by the differential equation
over an interval of time x ∈ [x0, XM ] is then known at the initial time x = x0.

In general, even if f(·, ·) is a continuous function, there is no guarantee that the initial-value problem
(1)–(2) possesses a unique solution.1 Fortunately, under a further mild condition on f , the existence and
uniqueness of a solution to (1)–(2) can be ensured:

Theorem 1 (Picard’s Theorem2) Suppose that f(·, ·) is a continuous function of its arguments in a
region U ⊆ R2 which contains the rectangle

R := [x0, XM ]× [y0 − YM , y0 + YM ],

where XM > x0 and YM > 0 are constants. Suppose also, that there exists a constant L > 0 such that

|f(x, z)− f(x, z̃)| ≤ L|z − z̃| ∀(x, z), (x, z̃) ∈ R. (3)

Finally, suppose that
M(XM − x0) ≤ YM , where M := max

(x,z)∈R
|f(x, z)|.

Then, there exists a unique continuously differentiable function y : [x0, XM ] → R satisfying (1)–(2).

Remark 1 In the situation of Theorem 1, we have that the graph of the unique solution y lies in R, i.e.,
(x, y(x)) ∈ R for any x ∈ [x0, XM ].

Indeed, if this were not true, then by continuity of y there exists x∗ ∈ (x0, XM ) such that |y(x∗)−y0| =
YM and |y(x)− y0| < YM for all x ∈ [x0, x∗). But this implies

|y(x∗)− y0| ≤
∫ x∗

x0

|y′(x)|dx =

∫ x∗

x0

|f(x, y(x))|dx ≤ M(x∗ − x0) < M(XM − x0) ≤ YM ,

which contradicts |y(x∗)− y0| = YM .

1Example: y′(x) = (y(x))
2
3 for x > 0, and i.c. y(0) = 0; this has more than one solution: y1(x) := 0 and y2(x) :=

1
27
x3.

2Emile Picard (1856–1941)
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The condition (3) is called a Lipschitz condition3, and L is called a Lipschitz constant for f .
We shall not dwell on the proof of Picard’s Theorem; for details, see any good textbook on the theory of
ODEs (see, e.g., P. J. Collins, Differential and Integral Equations, Oxford University Press, 2006). The
essence of the proof is to consider the sequence of functions (yn)n∈N0 , defined recursively through what
is known as the Picard Iteration:

y0(x) ≡ y0,

yn(x) := y0 +

∫ x

x0

f(t, yn−1(t)) dt, n ∈ N = {1, 2, . . . }
(4)

and show, using the conditions of the theorem, that (yn)n∈N0 , as a sequence of continuous functions,
converges uniformly on the interval [x0, XM ] to a continuous function y : [x0, XM ] → R (that is,
supx∈[x0,XM ]|yn(x)− y(x)| −→ 0 as n → ∞), and that y satisfies

y(x) = y0 +

∫ x

x0

f(t, y(t)) dt.

This then implies that y is continuously differentiable on [x0, XM ] and it satisfies the differential equation
(1) and the initial condition (2). The uniqueness of the solution follows from the Lipschitz condition.

Picard’s Theorem has a natural extension to IVPs for systems of m differential equations of the form

y′(x) = f(x,y(x)), y(x0) = y0, (5)

where y0 ∈ Rm, f : [x0, XM ] × Rm → Rm, and we seek a solution y : [x0, XM ] → Rm. Introducing the
Euclidean norm ∥ · ∥ : Rm → [0,∞) on Rm by

∥u∥ :=

√√√√ m∑
i=1

|ui|2, for u = (u1, . . . , um)T ∈ Rm,

we can state the following result.

Theorem 2 (Picard’s Theorem (version for systems)) Suppose that f(·, ·) is a continuous function
of its arguments in a region U ⊆ R1+m which contains the set

R = {(x, z) ∈ R× Rm : x ∈ [x0, XM ], ∥z− y0∥ ≤ YM},

where XM > x0 and YM > 0 are constants. Suppose also that there exists a constant L > 0 such that

∥f(x, z)− f(x, z̃)∥ ≤ L∥z− z̃∥ ∀(x, z), (x, z̃) ∈ R. (6)

Finally, suppose that
M(XM − x0) ≤ YM , where M := max

(x,z)∈R
∥f(x, z)∥.

Then, there exists a unique continuously differentiable function y : [x0, XM ] → Rm which satisfies (5).

A sufficient condition for (6) is that f is continuous on R, differentiable at each point (x, z) in int(R),
the interior of R, and there exists an L > 0 such that

||∂zf(x, z)|| ≤ L for all (x, z) ∈ int(R), (7)

where ∂zf := ∂f
∂z denotes the m × m Jacobi matrix of the function Rm ∋ z 7→ f(x, z) ∈ Rm, and

∥ · ∥ : Rm×m → [0,∞) is the matrix norm induced by the Euclidean vector norm on Rm (i.e., for

3Rudolf Lipschitz (1832–1903)
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A ∈ Rm×m have ∥A∥ := supx∈Rm\{0}
∥Ax∥
∥x∥ – note the norms on the right-hand side are the Euclidean

vector norm on Rm). Indeed, when (7) holds, the Mean-Value Theorem implies that (6) is also valid.
The converse of this statement is not true: the function

f : R1+m → Rm, f(x, z) := f(x, z1, . . . , zm) :=

 |z1|
...

|zm|


with x0 = 0 and y0 = 0, satisfies (6) but violates (7) because z 7→ f(x, z) is not differentiable at z = 0.

As the counter-example in the footnote 1 on page 2 indicates, the expression |z−z̃| in (3) and ∥z−z̃∥ in
(6) cannot be replaced by expressions of the form |z− z̃|α and ∥z− z̃∥α, respectively, where 0 < α < 1, for
otherwise the uniqueness of the solution to the corresponding initial-value problem cannot be guaranteed.

We conclude this section by introducing the notion of stability.

Definition 1 We define the following notions of stability:

(i) A solution y = v(x) is said to be stable on the interval [x0, XM ] if for every ε > 0 there exists a
δ > 0 such that for all z ∈ Rm satisfying ∥v(x0)− z∥ < δ, a solution w to

w′(x) = f(x,w(x)), w(x0) = z (8)

is defined for all x ∈ [x0, XM ] and satisfies ∥v(x)−w(x)∥ < ε for all x in [x0, XM ].

(ii) A solution y = v(x) which is stable on [x0,∞) (i.e. stable on [x0, XM ] for each XM and with δ
independent of XM ) is said to be stable in the sense of Lyapunov.

(iii) If in addition to (ii) there holds
lim
x→∞

∥v(x)−w(x)∥ = 0,

then the solution y = v(x) is called asymptotically stable.

Using this definition, we can state the following theorem.

Theorem 3 Under the hypotheses of Picard’s Theorem, the (unique) solution y = v(x) to the initial-
value problem (5) is stable on the interval [x0, XM ], (where we assume that −∞ < x0 < XM < ∞).

Proof: For z ∈ Rm, let w be the solution to (8). First, note that integrating the DEs for v and w over
the interval [x0, x] yields

v(x) = v(x0) +

∫ x

x0

f(t,v(t)) dt, w(x) = z+

∫ x

x0

f(t,w(t)) dt ∀x ∈ [x0, XM ].

Using triangle inequality and the fact that ∥
∫ b
a g(t) dt∥ ≤

∫ b
a ∥g(t)∥dt for any g : [a, b] → Rm, we have

∥v(x)−w(x)∥ ≤ ∥v(x0)− z∥+
∫ x

x0

∥f(t,v(t))− f(t,w(t))∥dt

≤ ∥v(x0)− z∥+ L

∫ x

x0

∥v(t)−w(t)∥ dt (9)

for any x ∈ [x0, XM ]. Setting A(x) := ∥v(x)−w(x)∥ and a := ∥v(x0)− z∥, we can rewrite (9) as

A(x) ≤ a+ L

∫ x

x0

A(t) dt ∀x ∈ [x0, XM ]. (10)
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Multiplying (10) by e−Lx, we find that

d

dx

[
e−Lx

∫ x

x0

A(t) dt+
a

L
e−Lx

]
≤ 0 ∀x ∈ [x0, XM ], (11)

and hence,

e−Lx

∫ x

x0

A(t) dt+
a

L
e−Lx ≤ e−Lx0

∫ x0

x0

A(t) dt+
a

L
e−Lx0 =

a

L
e−Lx0 ∀x ∈ [x0, XM ],

i.e., (multiply by LeLx)

L

∫ x

x0

A(t) dt ≤ a
(
eL(x−x0) − 1

)
. (12)

Substituting (12) into (10) gives

A(x) ≤ a eL(x−x0) ∀x ∈ [x0, XM ]. (13)

The implication “(10) ⇒ (13)” is usually referred to as Gronwall Lemma. Returning to our original
notation, we deduce from (13) that

∥v(x)−w(x)∥ ≤ ∥v(x0)− z∥eL(x−x0) ≤ eL(XM−x0)∥v(x0)− z∥ ∀x ∈ [x0, XM ]. (14)

Thus, given ε > 0 as in Definition 1, we choose δ = ε e−L(XM−x0) to deduce stability. ⋄
To conclude this section, we observe that if either x0 = −∞ or XM = +∞, the statement of Theorem

3 is false. For example, the trivial solution y ≡ 0 to the differential equation y′ = y is unstable on [x0,∞)
for any x0 > −∞. Let us consider the IVP

y′(x) = λy(x), y(0) = 1, (15)

with λ ∈ R, which has the unique solution y(x) = eλx. Noting that for c ∈ R, the IVP w′ = λw, w(0) = c
has the unique solution w(x) = ceλx and hence, |y(x)− w(x)| = |1− c|eλx. We see that y is unstable on
[0,∞) when λ > 0; stable in the sense of Lyapunov when λ ≤ 0; and asymptotically stable for λ < 0.

Remark 2 The stability concepts can be extended to the complex case, i.e., when f is a complex-valued
function and y0 ∈ C, in which case the solution y to y′(x) = f(x, y(x)), y(x0) = y0 is a function from one
real variable into C (analogously for systems). For λ ∈ C, the solution to the IVP (15), which is given
by y(x) = eλx = e(Reλ)xei(Imλ)x, is unstable for Reλ > 0; stable in the sense of Lyapunov for Reλ ≤ 0
and asymptotically stable for Reλ < 0.

In the next section we shall consider numerical methods for the approximate solution of the IVP
(1)–(2). Since everything we shall say has a straightforward extension to the case of the system (5), for
the sake of notational simplicity we shall restrict ourselves to considering a single ODE (i.e., m = 1). We
shall suppose throughout that the function f satisfies the conditions of Picard’s Theorem on the rectangle
R and that the IVP has a unique solution defined on [x0, XM ], −∞ < x0 < XM < ∞. We begin by
discussing one-step methods; this will be followed in subsequent sections by multi-step methods.
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2 One-step methods

2.1 Euler’s method and its relatives: the θ-method

The simplest example of a one-step method for the numerical solution of the IVP (1)–(2) is Euler’s
method.4 Suppose that the IVP (1)–(2) is to be solved on the interval [x0, XM ]. For N ∈ N, we divide
this interval by the N + 1 mesh-points

x0, x1 = x0 + h, x2 = x0 + 2h, · · · , xN = x0 +Nh = XM ,

[
where h :=

XM − x0
N

]
.

The number h > 0 is called the step size. Now let us suppose that, for each n ∈ {0, 1, . . . , N}, we seek
a numerical approximation yn to y(xn), the value of the solution at the mesh point xn. As y(x0) = y0 is
known, let us suppose that we have already calculated yn, up to some n, 0 ≤ n ≤ N − 1; we define

yn+1 = yn + hf(xn, yn), n ∈ {0, 1, . . . , N − 1}, y0 = y(x0).

Thus, taking in succession n = 0, 1, . . . , N − 1, one step at a time, the approximate values yn at the mesh
points xn can be easily obtained. This numerical method is known as Euler’s method.

A simple derivation of Euler’s method proceeds by first integrating the differential equation (1) be-
tween two consecutive mesh points xn and xn+1 to deduce that

y(xn+1) = y(xn) +

∫ xn+1

xn

f(x, y(x)) dx, n ∈ {0, 1, . . . , N − 1}, (16)

and then applying the numerical integration rule∫ xn+1

xn

g(x) dx ≈ (xn+1 − xn)g(xn) = hg(xn),

called the rectangle rule, with g(x) = f(x, y(x)), to get

y(xn+1) ≈ y(xn) + hf(xn, y(xn)), n ∈ {0, 1, . . . , N − 1}, y(x0) = y0.

This then motivates the definition of Euler’s method.

The idea can be generalised by replacing the rectangle rule in the above derivation with a one-
parameter family of integration rules of the form∫ xn+1

xn

g(x) dx ≈ h [(1− θ)g(xn) + θg(xn+1)] , (17)

with θ ∈ [0, 1] a parameter. By applying this in (16) with g(x) = f(x, y(x)) we find that

y(xn+1) ≈ y(xn) + h [(1− θ)f(xn, y(xn)) + θf(xn+1, y(xn+1))] , n ∈ {0, 1, . . . , N − 1}, y(x0) = y0.

This motivates the following family of methods, called the θ-method: with y0 supplied by (2), define

yn+1 = yn + h [(1− θ)f(xn, yn) + θf(xn+1, yn+1)] , n ∈ {0, 1, . . . , N − 1}, y0 = y(x0), (18)

parametrised by θ ∈ [0, 1]. For θ = 0 we recover Euler’s method. For θ = 1, we obtain the method

yn+1 = yn + hf(xn+1, yn+1), n ∈ {0, 1, . . . , N − 1}, y0 = y(x0), (19)

4Leonard Euler (1707–1783)
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called the implicit Euler method since, unlike Euler’s method considered above, (19) requires the
solution of an implicit equation in order to determine yn+1, given yn. In order to emphasise this difference,
Euler’s method is sometimes termed the explicit Euler method. The scheme which results for the value
of θ = 1/2 is also of interest: y0 is supplied by (2) and subsequent values yn+1 are computed from

yn+1 = yn + h
f(xn, yn) + f(xn+1, yn+1)

2
, n ∈ {0, 1, . . . , N − 1}, y0 = y(x0);

this is called the trapezium rule method.

Remark 3 The trapezium rule method involves the arithmetic average of f(xn, yn) and f(xn+1, yn+1).
Another possibility would have been to evaluate f at the arithmetic averages of xn and xn+1 and yn and
yn+1 respectively. The resulting implicit one-step method:

yn+1 = yn + hf

(
xn + xn+1

2
,
yn + yn+1

2

)
, n ∈ {0, 1, . . . , N − 1}, y0 = y(x0),

is called the implicit midpoint rule.

The θ-method is an explicit method for θ = 0 and is an implicit method for 0 < θ ≤ 1, because
in the latter case (16) requires the solution of an implicit equation for yn+1. Further, for each value of
the parameter θ ∈ [0, 1], (16) is a one-step method in the sense that to compute yn+1 we only use one
previous value yn. Methods which require more than one previously computed value are referred to as
multi-step methods, and will be discussed later on in the notes.

In order to assess the accuracy of the θ-method for various values of the parameter θ in [0, 1], we
perform a numerical experiment on a simple model problem.

Example 1 Given the initial-value problem

y′(x) = x− [y(x)]2 for x ∈ (0, 0.4), y(0) = 0,

we compute an approximate solution using the θ-method, for θ = 0, θ = 1/2 and θ = 1, using the step
size h = 0.1. The results are shown in Table 1. In the case of the two implicit methods, corresponding to
θ = 1/2 and θ = 1, the nonlinear equations have been solved by a fixed-point iteration.

k xk yk for θ = 0 yk for θ = 1/2 yk for θ = 1

0 0 0 0 0

1 0.1 0 0.00500 0.00999

2 0.2 0.01000 0.01998 0.02990

3 0.3 0.02999 0.04486 0.05955

4 0.4 0.05990 0.07944 0.09857

Table 1: The values of the numerical solution at the mesh points

For comparison, we also compute the value of the true solution y(x) at the mesh points xn = n
10 ,

n ∈ {0, 1, 2, 3, 4}. Since the solution is not available in closed form, we use a Picard iteration to calculate
an accurate approximation to the true solution on [0, 0.4] and call this “exact solution”. Thus, we consider

y0(x) ≡ 0, yk(x) =

∫ x

0

(
t− [yk−1(t)]

2
)
dt, k ∈ N.

Hence,

y0(x) ≡ 0 y1(x) =
1

2
x2, y2(x) =

1

2
x2 − 1

20
x5, y3(x) =

1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11.
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By induction, one shows that

y(x) =
1

2
x2 − 1

20
x5 +

1

160
x8 − 1

4400
x11 +O

(
x14
)
,

Tabulating y3(x) on the interval [0, 0.4] with step size h = 0.1, we get the values of the “exact solution”
at the mesh points shown in Table 2.

k xk y(xk)

0 0 0

1 0.1 0.00500

2 0.2 0.01998

3 0.3 0.04488

4 0.4 0.07949

Table 2: Values of the “exact solution” at the mesh points

The “exact solution” is in good agreement with the results obtained with θ = 1/2: the error is ≤ 5·10−5.
For θ = 0 and θ = 1 the discrepancy between yk and y(xk) is larger: it is ≤ 2 · 10−2.

So, why is the gap between the analytical solution and its numerical approximation in this example
so much larger for θ ̸= 1/2 than for θ = 1/2? The answer is the subject of the next section.

2.2 Error analysis of the θ-method

First we have to explain what we mean by error. The exact solution of the IVP (1)–(2) is a function
of a continuously varying argument x ∈ [x0, XM ], while the numerical solution yn is only defined at
the mesh points xn, n ∈ {0, 1, . . . , N}, so it is a function of a “discrete” argument. We can compare
these two functions either by extending in some fashion the approximate solution from the mesh points
to the whole of the interval [x0, XM ] (say by interpolating between the values yn), or by restricting the
function y to the mesh points and comparing y(xn) with yn for n ∈ {0, 1, . . . , N}. Since the first of
these approaches is somewhat arbitrary because it does not correspond to any procedure performed in a
practical computation, we adopt the second approach, and we define the global error en by

en := y(xn)− yn for n ∈ {0, 1, . . . , N}.

We wish to investigate the decay of the global error for the θ-method with respect to the reduction of
the mesh size h. We shall show in detail how this is done in the case of Euler’s method (θ = 0) and then
quote the corresponding result in the general case (0 ≤ θ ≤ 1).

So let us consider the explicit Euler method:

yn+1 = yn + hf(xn, yn), n ∈ {0, 1, . . . , N − 1}, y0 = y(x0).

The quantity

Tn =
y(xn+1)− y(xn)

h
− f(xn, y(xn)), n ∈ {0, 1, . . . , N − 1}, (20)

obtained by inserting the true solution y into the numerical method and dividing by the mesh size is
referred to as the consistency error (or truncation error) of the explicit Euler method and will play
a key role in the analysis. Indeed, it measures the extent to which the true solution fails to satisfy the
difference equation for the explicit Euler method.
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By noting that f(xn, y(xn)) = y′(xn) and applying Taylor’s Theorem, it follows from (20) that there
exists a ξn ∈ (xn, xn+1) such that

|Tn| =
|y(xn+1)− y(xn)− hy′(xn)|

h
=

1
2h

2|y′′(ξn)|
h

≤ h

2
M2, where M2 := max

x∈[x0,XM ]
|y′′(x)|, (21)

where we have assumed that f is a sufficiently smooth function of two variables so as to ensure that
y′′(x) = d

dx [f(x, y(x))] exists and is bounded on the interval [x0, XM ]. Since from the definition of Euler’s
method

0 =
yn+1 − yn

h
− f(xn, yn),

By subtracting this from (20), we deduce that

en+1 = en + h[f(xn, y(xn))− f(xn, yn)] + hTn.

Thus, assuming that |yn − y0| ≤ YM , from the Lipschitz condition (3) we get

|en+1| ≤ |en|+ h|f(xn, y(xn))− f(xn, yn)|+ h|Tn| ≤ (1 + hL)|en|+ h|Tn|, n ∈ {0, 1, . . . , N − 1}.

Now, let T := maxn∈{0,1,...,N−1} |Tn| ; then,

|en+1| ≤ (1 + hL)|en|+ hT ∀n ∈ {0, 1, . . . , N − 1}.

This gives

|en| ≤ (1 + hL)|en−1|+ hT

≤ (1 + hL) ((1 + hL)|en−2|+ hT ) + hT

...

≤ (1 + hL)n|e0|+
T

L
[(1 + hL)n − 1] ,

(22)

which can be made rigorous using induction. Noting that 1+ x ≤ ex ∀x ∈ R, and nh = xn − x0, we have

|en| ≤ enhL|e0|+
T

L

[
enhL − 1

]
= eL(xn−x0)|e0|+

T

L

[
eL(xn−x0) − 1

]
∀n ∈ {0, 1, . . . , N}.

This estimate, together with the bound T ≤ h
2M2, which follows from (21), yields

|en| ≤ eL(xn−x0)|e0|+ h
M2

2L

[
eL(xn−x0) − 1

]
∀n ∈ {0, 1, . . . , N}. (23)

To conclude, we note that by an analogous argument it is possible to prove that, in the general case
of the θ-method (and assuming that h is sufficiently small, i.e. that h ∈ (0, h0] where

1
2 − θLh0 > 0)

|en| ≤ exp

(
L
xn − x0
1− θLh

)
|e0|+ h

(∣∣∣∣12 − θ

∣∣∣∣M2

L
+ h

1 + 3θ

6

M3

L

)[
exp

(
L
xn − x0
1− θLh

)
− 1

]
, (24)

for n ∈ {0, 1, . . . , N}, where M3 := maxx∈[x0,XM ] |y′′′(x)|. In the absence of rounding errors in the
imposition of the i.c. (2) we can suppose that e0 = y(x0)− y0 = 0. Then, we see from (24) that

max
n∈{0,1,...,N}

|en| = O(h2) when θ = 1
2 , max

n∈{0,1,...,N}
|en| = O(h) when θ ∈ [0, 1]\{1

2}.

This explains why in Tables 1 and 2 the values yn of the numerical solution computed with the trapezium-
rule method (θ = 1/2) were considerably closer to the true solution y(xn) at the mesh points than those
which were obtained with the explicit/implicit Euler methods (θ = 0/θ = 1).
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In particular, we see from this analysis, that each time the mesh size h is halved, the consistency error
and the global error are reduced by a factor of 2 when θ ̸= 1/2, and by a factor of 4 when θ = 1/2.

While the trapezium rule method leads to more accurate approximations than the explicit Euler
method, it is less convenient from the computational point of view because it requires the solution of
implicit equations at each mesh point xn+1 to compute yn+1. An attractive compromise is to use explicit
Euler to compute an initial crude approximation to y(xn+1) and then use this value within the trapezium
rule to obtain a more accurate approximation for y(xn+1): the resulting numerical method is

yn+1 = yn + h
f(xn, yn) + f(xn+1, yn + hf(xn, yn))

2
, n ∈ {0, 1, . . . , N − 1}, y0 = y(x0),

and is frequently referred to as the improved Euler method. Clearly, it is an explicit one-step scheme,
albeit of a more complicated form than the explicit Euler method. In the next section, we shall take this
idea further and consider a very general class of one-step methods.

2.3 General one-step methods

Definition 2 A one-step method is a function Ψ that takes the triplet (ξ, η;h) ∈ R × R × (0,∞) and
a function f(·, ·), and computes an approximation Ψ(ξ, η;h, f) ∈ R of y(ξ + h), which is the solution at
x = ξ + h of the IVP

y′(x) = f(x, y(x)), y(ξ) = η. (25)

Here, we tacitly assume that (25) has a unique solution, and therefore y(ξ + h) exists. Additionally, the
step size h may need to be assumed to be sufficiently small for Ψ to be well-defined.

To give two simple examples, let us consider the implicit Euler method and the explicit Euler method:

• In the case of the implicit Euler method the function Ψ is defined implicitly, by

Ψ(ξ, η;h, f) = η + hf(ξ + h,Ψ(ξ, η;h, f)).

Assuming that f satisfies a global Lipschitz condition with Lipschitz constant L (see Example 2 for
the definition), one can use the Contraction Mapping Theorem to show that, given a pair (ξ, η) ∈ R2,
and h ∈ (0, 1/L), there exists a unique Ψ(ξ, η;h, f) ∈ R satisfying this implicit relationship, and
therefore for such a “sufficiently small” h the function Ψ associated with the implicit Euler method
is well-defined.

• In the case of the explicit Euler method the function Ψ is defined explicitly, by

Ψ(ξ, η;h, f) = η + hf(ξ, η).

In the case of general explicit one-step methods, to be investigated in the next section, we have

Ψ(ξ, η;h, f) = η + hΦ(ξ, η;h, f),

where Φ(ξ, η;h, f) can be explicitly computed (without solving implicit equations) in terms of ξ, η, h,
and f . In what follows, for the sake of notational simplicity, we shall not indicate the dependence of
Φ(ξ, η;h, f) on f , and will write Φ(ξ, η;h) instead. For example, in the case of the explicit Euler method
Φ(ξ, η;h) = f(ξ, η), for all h.
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2.4 General explicit one-step methods

A general explicit one-step method may be written in the form:

yn+1 = yn + hΦ(xn, yn;h), n ∈ {0, 1, . . . , N − 1}, y0 = y(x0), (26)

where Φ(·, ·; ·) is a continuous function of its variables. For example, in the case of the explicit Euler
method, Φ(xn, yn;h) = f(xn, yn), while for the improved Euler method

Φ(xn, yn;h) =
f(xn, yn) + f(xn + h, yn + hf(xn, yn))

2
.

In order to assess the accuracy of the numerical method (26), we define the global error, en, by

en := y(xn)− yn, n ∈ {0, 1, . . . , N}.

We define the consistency error, Tn, of the method by

Tn =
y(xn+1)− y(xn)

h
− Φ(xn, y(xn);h), n ∈ {0, 1, . . . , N − 1}. (27)

Remark 4 For an implicit one-step method of the form yn+1 = yn+hΦ(xn, yn, yn+1;h), the consistency

error is analogously defined by Tn = y(xn+1)−y(xn)
h − Φ(xn, y(xn), y(xn+1);h) for n ∈ {0, 1, . . . , N − 1}.

The next theorem provides a bound on the global error in terms of the consistency error.

Theorem 4 Consider the general one-step method (26) where, in addition to being a continuous function
of its arguments, Φ is assumed to satisfy a Lipschitz condition with respect to its second argument; namely,
there exist constants LΦ, h0 > 0 such that, for h ∈ [0, h0] and for the same region R as in Picard’s Theorem,

|Φ(x, z;h)− Φ(x, z̃;h)| ≤ LΦ|z − z̃|, ∀(x, z), (x, z̃) ∈ R. (28)

Then, assuming that |yn − y0| ≤ YM for n ∈ {0, 1, . . . , N}, it follows that

|en| ≤ eLΦ(xn−x0)|e0|+
eLΦ(xn−x0) − 1

LΦ
T, n ∈ {0, 1, . . . , N}, (29)

where T := maxn∈{0,1,...,N−1} |Tn|.

Proof: First, note that by (26) and (27) we have that

yn+1 = yn + hΦ(xn, yn;h), y(xn+1) = y(xn) + hΦ(xn, y(xn);h) + hTn

for any n ∈ {0, 1, . . . , N − 1}. Subtracting the first equality from the second, we find that

en+1 = en + h[Φ(xn, y(xn);h)− Φ(xn, yn;h)] + hTn

for any n ∈ {0, 1, . . . , N − 1}. Since (xn, y(xn)), (xn, yn) ∈ R, the Lipschitz condition (28) implies that

|en+1| ≤ |en|+ hLΦ|en|+ h|Tn| ≤ (1 + hLΦ)|en|+ hT, n ∈ {0, 1, . . . , N − 1}.

Hence, analogously to (22), we find that

|en| ≤ (1 + hLΦ)
n|e0|+

(1 + hLΦ)
n − 1

LΦ
T, n ∈ {0, 1, . . . , N}.

Noting that 1 + x ≤ ex ∀x ∈ R, and nh = xn − x0, we have

|en| ≤ enhLΦ |e0|+
enhLΦ − 1

LΦ
T ≤ eLΦ(xn−x0)|e0|+

eLΦ(xn−x0) − 1

LΦ
T, n ∈ {0, 1, . . . , N},

which concludes the proof. ⋄
Let us note that the error bound (23) for Euler’s explicit method is a special case of (29). We highlight

the practical relevance of the error bound (29) by focusing on a particular example.
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Example 2 Consider the IVP

y′(x) = arctan(y(x)) for x ∈ (0, 1), y(0) = 1,

and suppose that this is solved by the explicit Euler method.

• First, let us show that this IVP has a unique (continuously differentiable) solution y : [0, 1] → R.
We define R := [x0, XM ]× [y0 − YM , y0 + YM ] with x0 := 0, XM := 1, y0 := 1, and YM > 0 chosen
later. The function f : R2 → R, f(x, z) := arctan(z) is continuous in R2 and satisfies

|f(x, z)− f(x, z̃)| ≤ L|z − z̃| ∀(x, z), (x, z̃) ∈ [x0, XM ]× R

with L := 1 (we say that f(·, ·) satisfies a global Lipschitz condition in its second argument).
This follows from |∂zf(x, z)| = 1

1+z2
≤ 1 ∀z ∈ R and the Mean-Value Theorem. Noting M :=

max(x,z)∈R|f(x, z)| ≤ π
2 , we choose YM := π

2 so that M(XM − x0) ≤ π
2 (1 − 0) = YM and deduce

from Picard’s theorem that there is a unique solution y : [0, 1] → R.

• We apply (29) to quantify the size of the global error (note that here, Φ(x, z;h) := f(x, z)). We take
LΦ := 1. Let us note that as Φ(·, ·; ·) satisfies a global Lipschitz condition in its second argument,
we see from the proof of Theorem 4 that the assumption |yn − y0| ≤ YM is not needed in this case.
By (29) and (21), and assuming e0 = 0, we have that

|en| ≤
exn − 1

2

(
max
x∈[0,1]

|y′′(x)|
)
h, n ∈ {0, 1, . . . , N}.

To find a bound for maxx∈[0,1]|y′′(x)|, we differentiate the DE to find

y′′(x) =
d

dx
(arctan(y(x))) =

y′(x)

1 + [y(x)]2
=

arctan(y(x))

1 + [y(x)]2
.

We see that |y′′(x)| ≤ |arctan(x)| ≤ π
2 for any x ∈ [0, 1] and hence, maxx∈[0,1]|y′′(x)| ≤ π

2 . We find

|en| ≤
π(exn − 1)

4
h ≤ π(e− 1)

4
h, n ∈ {0, 1, . . . , N}

(note xn ≤ XM = 1). Thus, given a tolerance TOL > 0 specified beforehand, we can ensure that the
error between the (unknown) true solution and its numerical approximation does not exceed TOL by
choosing a step size h > 0 such that

h ≤ 4

π(e− 1)
TOL.

For such h we shall have |y(xn)− yn| = |en| ≤ TOL for each n ∈ {0, 1, . . . , N}, as required. Thus, at
least in principle, we can calculate the numerical solution to arbitrarily high accuracy by choosing
a sufficiently small step size. In practice, because digital computers use finite-precision arithmetic,
there will always be small (but not infinitely small) pollution effects because of rounding errors; how-
ever, these can also be bounded by performing an analysis similar to the one above where f(xn, yn)
is replaced by its finite-precision representation.

Returning to the general one-step method (26), we consider the choice of the function Φ. Theorem 4
suggests that if the consistency error ‘approaches zero’ as h → 0 then the global error ‘converges to zero’
also (as long as |e0| → 0 when h → 0). This observation motivates the following definition.

Definition 3 The numerical method (26) is consistent with the ODE (1) if the consistency error defined
by (27) is such that for any ε > 0 there exists hε > 0 for which |Tn| < ε for all h ∈ (0, hε) and any pair
of points (xn, y(xn)), (xn+1, y(xn+1)) on the graph of y.
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For the general one-step method (26) we have assumed that the function Φ(·, ·; ·) is continuous; also
y′ is a continuous function on [x0, XM ]. Therefore, from (27),

lim
h → 0, n → ∞

xn → x ∈ [x0, XM ]

Tn = y′(x)− Φ(x, y(x); 0) ∀x ∈ [x0, XM ].

As y′(x) = f(x, y(x)), this implies that the one-step method (26) is consistent if, and only if, (we often
simply write iff)

Φ(x, y; 0) ≡ f(x, y), (30)

i.e., Φ(x, y(x); 0) = f(x, y(x)) ∀x ∈ [x0, XM ]. Now we are ready to state a convergence theorem for the
general one-step method (26).

Theorem 5 Suppose that the solution of the IVP (1)–(2) lies in R as does its approximation generated
from (26) when h ≤ h0. Suppose also that the function Φ(·, ·; ·) is uniformly continuous on R × [0, h0]
and satisfies the consistency condition (30) and the Lipschitz condition

|Φ(x, z;h)− Φ(x, z̃;h)| ≤ LΦ|z − z̃| ∀(x, z, h), (x, z̃, h) ∈ R× [0, h0]. (31)

Then, if successive approximation sequences (yn), generated for xn = x0 + nh, n ∈ {1, . . . , N}, are
obtained from (26) with successively smaller values of h, each less than h0, we have convergence of the
numerical solution to the solution of the IVP in the sense that

|y(x)− yn| −→ 0 as h → 0, n → ∞, xn → x ∈ [x0, XM ].

Proof: Suppose that h = XM−x0
N where N ∈ N. We shall assume that N is sufficiently large so that

h ≤ h0. Since y(x0) = y0 and therefore e0 = 0, Theorem 4 implies that

|y(xn)− yn| ≤
eLϕ(XM−x0) − 1

Lϕ
max

m∈{0,1,...,N−1}
|Tm|, n ∈ {1, . . . , N}. (32)

From the consistency condition (30) we have

Tn =

[
y(xn+1)− y(xn)

h
− f(xn, y(xn))

]
+ [Φ(xn, y(xn); 0)− Φ(xn, y(xn);h)].

According to the Mean-Value Theorem the expression in the first bracket is equal to y′(ξ) − y′(xn) for
some ξ ∈ [xn, xn+1]. Since y′(x) = f(x, y(x)) = Φ(x, y(x); 0) and Φ(·, ·; ·) is uniformly continuous on
R × [0, h0], it follows that y′ is uniformly continuous on [x0, XM ]. Thus, for each ε > 0 there exists an
h1(ε) > 0 such that

|y′(ξ)− y′(xn)| ≤
ε

2
for h ∈ (0, h1(ε)), n ∈ {0, 1, . . . , N − 1}.

Also, by the uniform continuity of Φ with respect to its third argument, there exists an h2(ε) > 0 such
that

|Φ(xn, y(xn); 0)− Φ(xn, y(xn);h)| ≤
ε

2
for h ∈ (0, h2(ε)), n ∈ {0, 1, . . . , N − 1}.

Thus, defining hε := min(h1(ε), h2(ε)) > 0, we have

|Tn| ≤ ε for h ∈ (0, hε), n ∈ {0, 1, . . . , N − 1}.

Inserting this into (32) we deduce that |y(xn)− yn| → 0 as h → 0 and n → ∞. Since

|y(x)− yn| ≤ |y(x)− y(xn)|+ |y(xn)− yn|,
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and the first term on the right also converges to zero as n → ∞ and xn → x, by the uniform continuity
of y on the interval [x0, XM ] the proof is complete. ⋄

We saw earlier that for Euler’s method the absolute value of the consistency error Tn is bounded
above by a constant multiple of the step size h, that is

|Tn| ≤ Kh ∀h ∈ (0, h0],

where K is a positive constant, independent of h. However there are other one-step methods (a class
of which, called Runge–Kutta methods, will be considered below) for which we can do better. More
generally, in order to quantify the asymptotic rate of decay of the consistency error as the step size h
converges to zero, we introduce the following definition.

Definition 4 The numerical method (26) is said to have order of accuracy p (or order of consistency
p), if p ∈ N is the largest natural number such that, for any sufficiently smooth solution curve (x, y(x))
in R of the IVP (1)–(2) we have

|Tn| = O(hp),

i.e., there exist constants h0,K > 0 such that |Tn| ≤ Khp for all h ∈ (0, h0], for any pair of points
(xn, y(xn)), (xn+1, y(xn+1)) on the solution curve.

Having introduced the general class of explicit one-step methods and the associated concepts of
consistency and order of accuracy (or order of consistency), we now focus on a specific family: explicit
Runge–Kutta methods.

2.5 Explicit Runge–Kutta methods

In the sense of Definition 4, the explicit Euler method is only first-order accurate; nevertheless, it is
simple and cheap to implement because to obtain yn+1 from yn we only require a single evaluation of
the function f at (xn, yn). Runge–Kutta (RK) methods aim to achieve higher accuracy by sacrificing the
efficiency of Euler’s method through re-evaluating f(·, ·) at points intermediate between (xn, y(xn)) and
(xn+1, y(xn+1)). The general form of the R-stage explicit RK family is as follows:

yn+1 = yn + hΦ(xn, yn;h), Φ(x, z;h) =

R∑
r=1

crkr(x, z;h),

k1(x, z;h) = f(x, z), kr(x, z;h) = f

(
x+ har, z + h

r−1∑
s=1

brsks(x, z;h)

)
, r ∈ {2, . . . , R}.

Remark 5 The most general version of a R-stage RK method is as follows:

yn+1 = yn + h
R∑

r=1

crkr, where kr = f

(
xn + har, yn + h

R∑
s=1

brsks

)
for r ∈ {1, . . . , R}.

If the method is not a R-stage explicit RK method, then it is called a R-stage implicit RK method.
The information about the coefficients of a RK method is usually displayed in the so-called Butcher

tableau
a B

cT
, where a = (a1, . . . , aR)

T ∈ RR, B = (bij)1≤i,j≤R ∈ RR×R, c = (c1, . . . , cR)
T ∈ RR.

In the case of an explicit RK method, the matrix B is strictly lower-triangular, i.e., the diagonal and
superdiagonal entries of B are all equal to zero.

14



For the sake of simplicity we now focus on explicit RK methods.

One-stage explicit RK methods. Suppose that R = 1, i.e.,

yn+1 = yn + hΦ(xn, yn;h) = yn + c1hf(xn, yn), where Φ(x, z;h) = c1f(x, z).

By the condition (30), a method from this family will be consistent iff c1 = 1. The resulting one-stage
explicit RK method is simply the explicit Euler method:

yn+1 = yn + hf(xn, yn). (33)

In the language of RK methods, yn+1 = yn + hΦ(xn, yn;h) with Φ(x, z;h) =
∑1

r=1 crkr(x, z;h), c1 = 1
and k1(x, z;h) = f(x, z).

Remark 6 The implicit Euler method yn+1 = yn + hf(xn+1, yn+1) is an example of a one-stage implicit
RK method: it can be written as yn+1 = yn+hΦ(xn, yn;h), where Φ(x, z;h) = k1(x, z;h) and k1(x, z;h) =
f(x+ h, z + hk1) (note that, unsurprisingly, k1 is now defined through an implicit relationship). For the
sake of simplicity we shall continue to concentrate here on explicit RK methods only.

Two-stage explicit RK methods. Next, consider the case of R = 2, corresponding to the following
family of methods:

yn+1 = yn + h(c1k1 + c2k2), (34)

where

k1 = f(xn, yn), (35)

k2 = f(xn + a2h, yn + b21hk1), (36)

and where the parameters c1, c2, a2 and b21 are to be determined.5 Clearly (34)–(36) can be rewritten
in the form (26) and therefore it is a family of one step methods. By the condition (30), a method from
this family will be consistent iff Φ(x, y; 0) = c1f(x, y) + c2f(x+ 0, y + 0) ≡ f(x, y), i.e., iff

c1 + c2 = 1.

Further conditions on the parameters are obtained by attempting to maximise the order of accuracy of the
method. Let us expand the consistency error of (34)–(36) in powers of h. Let us write fx := ∂f

∂x , fz :=
∂f
∂z

for the first-order partial derivatives of f = f(x, z), and fxx := ∂2f
∂x2 , fxz := ∂2f

∂x∂z , fzz := ∂2f
∂z2

for the
second-order partial derivatives of f = f(x, z). We have

Tn =
y(xn+1)− y(xn)

h
− c1f(xn, y(xn))− c2k2(xn, y(xn);h)

with (using Taylor’s Theorem)

k2(xn, y(xn);h) := f(xn + a2h, y(xn) + b21hf(xn, y(xn)))

=

[
f + a2hfx + b21hffz +

1

2
a22h

2fxx + a2b21h
2ffxz +

1

2
b221h

2f2fzz

]
(xn, y(xn)) +O(h3).

Noting that for the first term in Tn, we have the expansion

y(xn+1)− y(xn)

h
= y′(xn) +

1

2
hy′′(xn) +

1

6
h2y′′′(xn) +O(h3),

5We note in passing that the explicit Euler method is a member of this family of methods, corresponding to c1 = 1 and
c2 = 0. However we are now seeking methods that are at least second-order accurate.
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and noting that y′(xn) = f(xn, y(xn)) = (c1 + c2)f(xn, y(xn)), we deduce that

Tn =
1

2
hy′′(xn) +

1

6
h2y′′′(xn)− c2h[a2fx + b21ffz](xn, y(xn))

− c2h
2

[
1

2
a22fxx + a2b21ffxz +

1

2
b221f

2fzz

]
(xn, y(xn)) +O(h3).

Note that for y′, y′′, y′′′ we have from the DE that

y′(x) = f(x, y(x)), y′′(x) = fx(x, y(x)) + y′(x)fz(x, y(x)) = [fx + ffz](x, y(x)) = F1(x, y(x)),

and

y′′′(x) = [fxx + fxfz + ffxz](x, y(x)) + y′(x)[fxz + f2
z + ffzz](x, y(x))

= [fxfz + ff2
z + fxx + 2ffxz + f2fzz](x, y(x))

= [fzF1 + F2](x, y(x)),

where the functions F1, F2 are defined as

F1 := fx + ffz, F2 := fxx + 2ffxz + f2fzz.

We find that

Tn = h

[
1

2
F1 − a2c2fx − b21c2ffz

]
(xn, y(xn))

+ h2
[
1

6
fzF1 +

1

6
F2 −

1

2
a22c2fxx − a2b21c2ffxz −

1

2
b221c2f

2fzz

]
(xn, y(xn)) +O(h3).

It follows that Tn = O(h2) for any f provided that

a2c2 = b21c2 =
1

2
, c1 + c2 = 1,

or equivalently,

b21 = a2, c2 =
1

2a2
, c1 = 1− 1

2a2
.

This still leaves one free parameter, a2, but no choice of the parameters will make the method generally
third-order accurate.

There are two well-known examples of second-order explicit RK methods of the form (34)–(36):

a) The modified Euler method: In this case we take a2 :=
1
2 , b21 :=

1
2 , c1 := 0, c2 := 1 to obtain

yn+1 = yn + h f

(
xn +

h

2
, yn +

h

2
f(xn, yn)

)
.

The consistency error is

Tn = h2
[
1

6
fzF1 +

1

24
F2

]
(xn, y(xn)) +O(h3).

b) The improved Euler method: In this case we take a2 := 1, b21 := 1, c1 :=
1
2 , c2 :=

1
2 to obtain

yn+1 = yn +
h

2
[f(xn, yn) + f(xn + h, yn + hf(xn, yn))] .

The consistency error is

Tn = h2
[
1

6
fzF1 −

1

12
F2

]
(xn, y(xn)) +O(h3).

16



Exercise 1 Let α ∈ R\{0} and let xn = a + nh, n ∈ {0, 1, . . . , N}, be a uniform mesh on the interval
[a, b] of step size h = b−a

N . Consider the explicit one-step method for the numerical solution of the IVP
y′(x) = f(x, y(x)) for x ∈ (a, b), y(a) = y0, which determines approximations yn to the values y(xn) via

yn+1 = yn + h(1− α)f(xn, yn) + hαf

(
xn +

h

2α
, yn +

h

2α
f(xn, yn)

)
, n ∈ {0, 1, . . . , N − 1}.

(i) Denoting the first-order partial derivatives of f = f(x, z) by fx, fz, show that this method is consis-
tent and that its consistency error, Tn(h, α), can be expressed as

Tn(h, α) =
h2

8α

[(
4

3
α− 1

)
y′′′(xn) + y′′(xn)fz(xn, y(xn))

]
+O(h3).

(ii) This method is applied to the IVP y′(x) = −[y(x)]p, y(0) = 1, where p ∈ N. Show that 1) if p = 1
then there does not exist a choice α ̸= 0 for which Tn(h, α) = O(h3), and 2) if p ≥ 2 then there
exists α0 ̸= 0 such that Tn(h, α0) = O(h3).

Solution: (i) The method is of the form yn+1 = yn + hΦ(xn, yn;h), where the function Φ is given by

Φ(x, z;h) = (1− α)f(x, z) + αf

(
x+

h

2α
, z +

h

2α
f(x, z)

)
.

Since Φ(x, y; 0) ≡ f(x, y), the method is consistent. By definition, the consistency error is

Tn(h, α) =
y(xn+1)− y(xn)

h
− Φ(xn, y(xn);h).

Note that y′(x) = f(x, y(x)), y′′(x) = fx(x, y(x))+ fz(x, y(x))y
′(x), and y′′′(x) = fz(x, y(x))y

′′(x)+ [fxx+2ffxz +
f2fzz](x, y(x)). Using Taylor expansion, we find

Tn(h, α)

= y′(xn) +
h

2
y′′(xn) +

h2

6
y′′′(xn)− (1− α)y′(xn)− αf

(
xn +

h

2α
, y(xn) +

h

2α
y′(xn)

)
+O(h3)

= y′(xn) +
h

2
y′′(xn) +

h2

6
y′′′(xn)− (1− α)y′(xn)− αf(xn, y(xn))−

h

2
fx(xn, y(xn))−

h

2
fz(xn, y(xn))y

′(xn)

− α

2

(
h

2α

)2

fxx(xn, y(xn))− α

(
h

2α

)2

fxz(xn, y(xn))y
′(xn)−

α

2

(
h

2α

)2

fzz(xn, y(xn))[y
′(xn)]

2 +O(h3)

= y′(xn)− (1− α)y′(xn)− αy′(xn) +
h

2
y′′(xn)−

h

2
[fx(xn, y(xn)) + fz(xn, y(xn))y

′(xn)]

+
h2

6
y′′′(xn)−

h2

8α

[
fxx(xn, y(xn)) + 2fxz(xn, y(xn))y

′(xn) + fzz(xn, y(xn))[y
′(xn)]

2
]
+O(h3)

=
h2

6
y′′′(xn)−

h2

8α
[y′′′(xn)− y′′(xn)fz(xn, y(xn))] +O(h3)

=
h2

8α

[(
4

3
α− 1

)
y′′′(xn) + y′′(xn)fz(xn, y(xn))

]
+O(h3).

(ii) IVP y′(x) = −[y(x)]p, y(0) = 1, where p ∈ N. Here, f : R2 → R, f(x, z) := −zp, and we have fz(x, z) = −pzp−1.
1) If p = 1, then fz(x, z) = −1 and we have that y′(x) = −y(x), y′′(x) = −y′(x) = y(x), and y′′′(x) = y′(x) = −y(x),
so that

Tn(h, α) =
h2

8α

[
−
(
4

3
α− 1

)
y(xn)− y(xn)

]
+O(h3) = −h2

6
y(xn) +O(h3) = −h2

6
e−xn +O(h3).

Here, we have used that the true solution to the IVP y′(x) = −y(x), y(0) = 1 is given by y(x) = e−x. Since
e−xn ̸= 0, we see that there is no α ̸= 0 for which Tn(h, α) = O(h3).
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2) Now consider p ≥ 2. Then, y′(x) = −[y(x)]p, y′′(x) = −p[y(x)]p−1y′(x) = p[y(x)]2p−1, and y′′′(x) = p(2p −
1)[y(x)]2p−2y′(x) = −p(2p− 1)[y(x)]3p−2, and therefore

Tn(h, α) = − h2

8α

[(
4

3
α− 1

)
p(2p− 1) + p2

]
[y(xn)]

3p−2 +O(h3).

Choosing α such that ( 43α− 1)p(2p− 1) + p2 = 0, namely α = 3p−3
8p−4 =: α0, gives Tn(h, α0) = O(h3). ⋄

Three-stage explicit RK methods. Let us now suppose that R = 3 to illustrate the general idea.
Thus, we consider the family of methods:

yn+1 = yn + h [c1k1 + c2k2 + c3k3] ,

where

k1 = f(xn, yn),

k2 = f(xn + ha2, yn + hb21k1),

k3 = f(xn + ha3, yn + hb31k1 + hb32k2).

The method is consistent iff Φ(x, y; 0) = c1f(x, y) + c2f(x + 0, y + 0) + c3f(x + 0, y + 0 + 0) ≡ f(x, y),
i.e., iff

c1 + c2 + c3 = 1.

Our goal is to expand the consistency error Tn in powers of h.

Simplification: For simplicity, we assume that f = f(x, z) is independent of x, i.e.,

f(x, z) = f̃(z)

for some function f̃ of one real variable. In this case, the ODE has the form y′(x) = f̃(y(x)) and is called
autonomous. In this, case the method reads

yn+1 = yn + h
[
c1k̃1 + c2k̃2 + c3k̃3

]
,

where

k̃1 = f̃(yn),

k̃2 = f̃(yn + hb21k̃1),

k̃3 = f̃(yn + hb31k̃1 + hb32k̃2).

Now, let us expand the consistency error in powers of h. We have

Tn =
y(xn+1)− y(xn)

h
− c1f̃(y(xn))− c2k̃2(y(xn);h)− c3k̃3(y(xn);h)

with (using Taylor’s Theorem)

k̃2(y(xn);h) := f̃(y(xn) + hb21f̃(y(xn)))

= f̃(y(xn)) + h
[
b21f̃ f̃

′
]
(y(xn)) + h2

[
b221
2
f̃2f̃ ′′

]
(y(xn)) +O(h3)
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and

k3(y(xn);h) := f̃(y(xn) + hb31f̃(y(xn)) + hb32k̃2(y(xn);h))

= f̃(y(xn)) + h
[
b31f̃ f̃

′ + b32(f̃ + hb21f̃ f̃
′ +O(h2))f̃ ′

]
(y(xn))

+ h2
[
1

2
(b31f̃ + b32(f̃ +O(h)))2f̃ ′′

]
(y(xn)) +O(h3)

= f̃(y(xn)) + h
[
(b31 + b32)f̃ f̃

′
]
(y(xn))

+ h2
[
b21b32f̃ f̃

′2 +
(b31 + b32)

2

2
f̃2f̃ ′′

]
(y(xn)) +O(h3).

We find that

Φ(xn, y(xn);h) = c1f̃(y(xn)) + c2k̃2(y(xn);h) + c3k̃3(y(xn);h)

= (c1 + c2 + c3)f̃(y(xn)) + h
[
(b21c2 + (b31 + b32)c3)f̃ f̃

′
]
(y(xn))

+ h2
[
b21b32c3f̃ f̃

′2 +
b221c2 + (b31 + b32)

2c3
2

f̃2f̃ ′′
]
(y(xn)) +O(h3)

and we also have that

y(xn+1)− y(xn)

h
= y′(xn) +

1

2
hy′′(xn) +

1

6
h2y′′′(xn) +O(h3)

= f̃(y(xn)) + h

[
1

2
f̃ f̃ ′
]
(y(xn)) + h2

[
1

6
f̃ f̃ ′2 +

1

6
f̃2f̃ ′′

]
(y(xn)) +O(h3).

Noting that Tn = y(xn+1)−y(xn)
h − Φ(xn, y(xn);h), we conclude that we can achieve third-order accuracy,

i.e., Tn = O(h3), if there holds

c1 + c2 + c3 = 1,

b21c2 + (b31 + b32)c3 =
1

2
,

b221c2 + (b31 + b32)
2c3 =

1

3
,

b21b32c3 =
1

6
.

Solving this system of four equations for the six unknowns: c1, c2, c3, b21, b31, b32, we obtain a two-
parameter family of third-order accurate 3-stage explicit RK methods. We shall only highlight two
notable examples from this family:

(i) Heun’s method corresponds to

c1 =
1

4
, c2 = 0, c3 =

3

4
, b21 =

1

3
, b31 = 0, b32 =

2

3
,

yielding

yn+1 = yn + h

(
1

4
k̃1 +

3

4
k̃3

)
,

k̃1 = f̃(yn),

k̃2 = f̃

(
yn +

1

3
hk̃1

)
,

k̃3 = f̃

(
yn +

2

3
hk̃2

)
.
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(ii) Standard third-order explicit RK method. This is arrived at by selecting

c1 =
1

6
, c2 =

2

3
, c3 =

1

6
, b21 =

1

2
, b31 = −1, b32 = 2,

yielding

yn+1 = yn + h

(
1

6
k̃1 +

2

3
k̃2 +

1

6
k̃3

)
,

k̃1 = f̃(yn),

k̃2 = f̃

(
yn +

1

2
hk̃1

)
,

k̃3 = f̃
(
yn − hk̃1 + 2hk̃2

)
.

Four-stage explicit RK methods. For R = 4, an analogous argument leads to a two-parameter family
of four-stage RK methods of order four. A particularly popular example from this family is:

yn+1 = yn +
1

6
h (k1 + 2k2 + 2k3 + k4) ,

where

k1 = f(xn, yn),

k2 = f

(
xn +

1

2
h, yn +

1

2
hk1

)
,

k3 = f

(
xn +

1

2
h, yn +

1

2
hk2

)
,

k4 = f(xn + h, yn + hk3).

Here k2 and k3 represent approximations to the derivative y′(·) at points on the solution curve, intermedi-
ate between (xn, y(xn)) and (xn+1, y(xn+1)), and Φ(xn, yn;h) is a weighted average of the ki, i = 1, . . . , 4,
the weights corresponding to those of the Simpson rule method (to which the fourth-order explicit RK
method reduces when fz ≡ 0, i.e., when f(x, z) = f̂(x) for some function f̂).

In this section, we have constructed R-stage explicit RK methods of order of accuracy O(hR), R =
1, 2, 3, 4. It is natural to ask whether there exists an R stage method of order R for R ≥ 5. The answer to
this question is negative: in a series of papers John Butcher showed that for R = 5, 6, 7, 8, 9, the highest
order that can be attained by an R-stage RK method is, respectively, 4, 5, 6, 6, 7, and that for R ≥ 10 the
highest order is ≤ R− 2.

2.6 Absolute stability of explicit Runge–Kutta methods

We consider the model problem
y′(x) = λy(x), y(0) = y0, (37)

with λ ∈ (−∞, 0) and y0 ̸= 0. Trivially, the true solution to this IVP

y(x) = y0 e
λx

converges to 0 at an exponential rate as x → ∞. The question that we wish to investigate here is under
what conditions on the step size h does a RK method reproduce this behaviour. The understanding of this
matter will provide useful information about the adequate selection of h in the numerical approximation
of an IVP by an explicit RK method over an interval [x0, XM ] with XM ≫ x0. For the sake of simplicity,
we shall restrict our attention to the case of R-stage methods of order of accuracy R, with 1 ≤ R ≤ 4.
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Let us begin with R = 1. The only consistent explicit one-stage RK method is the explicit Euler
method. Applying (33) to (37) yields (note that here f : R2 → R, f(x, z) := λz)

yn+1 = yn + hf(xn, yn) = yn + λhyn = (1 + h̄)yn, n ∈ N0,

where h̄ := λh. Thus, for any n ∈ N0 we have

yn = (1 + h̄)ny0.

Consequently, the sequence (yn)n∈N0 will converge to 0 iff |1 + h̄| < 1, yielding h̄ ∈ (−2, 0); for such h
the explicit Euler method is said to be absolutely stable and the interval (−2, 0) is referred to as the
interval of absolute stability of the method.

Now consider R = 2 corresponding to two-stage second-order explicit RK methods:

yn+1 = yn + h(c1k1 + c2k2),

where
k1 = f(xn, yn), k2 = f(xn + a2h, yn + b21hk1)

with the order conditions

c1 + c2 = 1, a2c2 = b21c2 =
1

2

for second-order accuracy. Applying this to (37) yields,

yn+1 = yn + h(c1λyn + c2λ(yn + b21hλyn)) =

(
1 + h̄+

1

2
h̄2
)
yn, n ∈ N0,

and therefore, for any n ∈ N0 we have

yn =

(
1 + h̄+

1

2
h̄2
)n

y0.

Hence the method is absolutely stable iff ∣∣∣∣1 + h̄+
1

2
h̄2
∣∣∣∣ < 1,

namely when h̄ ∈ (−2, 0).
In the case of R = 3 an analogous argument shows that

yn+1 =

(
1 + h̄+

1

2
h̄2 +

1

6
h̄3
)
yn.

Demanding that ∣∣∣∣1 + h̄+
1

2
h̄2 +

1

6
h̄3
∣∣∣∣ < 1

then yields the interval of absolute stability: h̄ ∈ (−a, 0) with a ≈ 2.51.
When R = 4, we have that

yn+1 =

(
1 + h̄+

1

2
h̄2 +

1

6
h̄3 +

1

24
h̄4
)
yn,

and the associated interval of absolute stability is h̄ ∈ (−a, 0) with a ≈ 2.78.
For R ≥ 5 on applying the explicit RK method to the model problem (37) still results in a recursion

of the form
yn+1 = AR(h̄)yn, n ∈ N0,

however, unlike the case when R = 1, 2, 3, 4, in addition to h̄ the expression AR(h̄) also depends on
the coefficients of the explicit RK method; by a convenient choice of the free parameters the associated
interval of absolute stability may be maximised.
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3 Linear multi-step methods

While explicit RK methods present an improvement over, e.g., the explicit Euler method in terms of
accuracy, this is achieved by investing additional computational effort; in fact, RK methods require
more evaluations of f(·, ·) than would seem necessary. For example, the fourth-order method involves
four function evaluations per step. For comparison, by considering three consecutive points xn−1, xn =
xn−1 + h, xn+1 = xn−1 +2h, integrating the DE between xn−1 and xn+1, and applying Simpson’s rule to

approximate the resulting integral (that is,
∫ b
a g(x)dx ≈ b−a

6 (g(a) + 4g(a+b
2 ) + g(b))), yields

y(xn+1) = y(xn−1) +

∫ xn+1

xn−1

f(x, y(x)) dx

≈ y(xn−1) +
1

3
h [f(xn−1, y(xn−1)) + 4f(xn, y(xn)) + f(xn+1, y(xn+1))] ,

which leads to the Simpson rule method

yn+1 = yn−1 +
1

3
h [f(xn−1, yn−1) + 4f(xn, yn) + f(xn+1, yn+1)] . (38)

In contrast with the one-step methods considered in the previous section where only a single value yn
was required to compute the next approximation yn+1, here we need two preceding values, yn and yn−1

to be able to calculate yn+1, and therefore (38) is not a one-step method.
In this section we consider a class of methods of the type (38) for the numerical solution of the IVP

(1)–(2), called linear multi-step methods (LMMs).
Given a sequence of equally spaced mesh points (xn) with step size h, we consider the general linear

k-step method
k∑

j=0

αjyn+j = h
k∑

j=0

βjf(xn+j , yn+j), (39)

where α0, α1, . . . , αk, β0, β1, . . . , βk ∈ R. In order to avoid degenerate cases, we shall assume that αk ̸= 0
and that α2

0 + β2
0 ̸= 0, i.e., α0 and β0 are not both equal to zero. If βk = 0 then yn+k is obtained

explicitly from previous values of yj and f(xj , yj), and the k-step method is then said to be explicit.
On the other hand, if βk ̸= 0 then yn+k appears not only on the left-hand side but also on the right,
within f(xn+k, yn+k); because of this implicit dependence on yn+k the method is then called implicit.
The numerical method (39) is called linear because it involves only linear combinations of the {yn} and
the {f(xn, yn)}; for the sake of notational simplicity, henceforth we shall write

fn := f(xn, yn).

Let us give some examples of LMMs.

Example 3 We have already seen an example of a linear 2-step method in (38). Further examples:

a) The explicit Euler method yn+1 = yn+hfn is an explicit linear one-step method. The implicit Euler
method yn+1 = yn + hfn+1 is an implicit linear one-step method.

b) The trapezium rule method yn+1 = yn + h
2 (fn+1 + fn) is an implicit linear one-step method.

c) The four-step Adams6–Bashforth method

yn+4 = yn+3 +
h

24
(55fn+3 − 59fn+2 + 37fn+1 − 9fn)

6J. C. Adams (1819–1892)
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is an explicit linear four-step method; the four-step Adams–Moulton method

yn+4 = yn+3 +
h

720
(251fn+4 + 646fn+3 − 264fn+2 + 106fn+1 − 19fn)

is an implicit linear four-step method.

The construction of general classes of LMMs, such as the (explicit) Adams–Bashforth family and the
(implicit) Adams–Moulton family will be discussed in the next section.

3.1 Construction of linear multi-step methods

Let us suppose that (un)n∈N0 is a sequence of real numbers. We introduce the shift operator E, the
forward difference operator ∆+ and the backward difference operator ∆− by

E : (un)n∈N0 = (u0, u1, u2, . . . ) 7→ (un+1)n∈N0 = (u1, u2, . . . ),

∆+ : (un)n∈N0 = (u0, u1, u2, . . . ) 7→ (un+1 − un)n∈N0 = (u1 − u0, u2 − u1, . . . ),

∆− : (un)n∈N0 = (u0, u1, u2, . . . ) 7→ (un − un−1)n∈N0 = (u0, u1 − u0, u2 − u1, . . . ).

(Note we used the notation u−1 := 0.) Further, we define

E−1 : (un)n∈N0 = (u0, u1, u2, . . . ) 7→ (un−1)n∈N0 = (0, u0, u1, . . . )

and note that E ◦ E−1 = I, where I denotes the identity map I : (un)n∈N0 7→ (un)n∈N0 . Observe that

∆+ = E − I = E∆−, ∆− = I − E−1, E ◦ (I −∆−) = I.

Writing u := (un)n∈N0 , it follows that for any k ∈ N we have

[∆k
+u]n = [(E − I)ku]n =

k∑
j=0

(−1)j
(

k
j

)
un+k−j , [∆k

−u]n = [(I − E−1)ku]n =
k∑

j=0

(−1)j
(

k
j

)
un−j .

(Notation: ∆k
+ = ∆+ ◦ ∆+ ◦ · · · ◦ ∆+ (k times), ∆k

+u is a sequence with entries [∆k
+u]n, n ∈ N0, i.e.,

∆k
+u = ([∆k

+u]0, [∆
k
+u]1, . . . ). Similarly for ∆k

−u.)
Now suppose that u : R → R is a function whose derivative exists and is integrable on [x0, xn] for each

n ∈ N0. We then define un := u(xn) where xn = x0 + nh for n ∈ N0. With a slight abuse of notation, we
call the resulting sequence (u0, u1, u2, . . . ) again u as it will be clear from the context when we mean the
function and when we mean the sequence.

Letting D := d
dx be the differentiation-operator, by applying a Taylor series expansion we find that

[Esu]n = u(xn + sh) = un + sh[Du]n +
1

2!
(sh)2[D2u]n + · · · =

∞∑
k=0

(sh)k

k!
[Dku]n = [eshDu]n.

Thus, formally, hD = ln(E) = −ln(I −∆−), and therefore, again by Taylor series expansion,

hu′(xn) =

[(
∆− +

1

2
∆2

− +
1

3
∆3

− + · · ·
)
u

]
n

.

Now letting u(x) = y(x) where y is the solution of the IVP (1)–(2) and noting u′(x) = y′(x) = f(x, y(x)),
we find that

hf(xn, y(xn)) =

[(
∆− +

1

2
∆2

− +
1

3
∆3

− + · · ·
)
y

]
n

.
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By successive truncations of the infinite series on the right, we find that

y(xn)− y(xn−1) ≈ hf(xn, y(xn)), (n ≥ 1)

3

2
y(xn)− 2y(xn−1) +

1

2
y(xn−2) ≈ hf(xn, y(xn)), (n ≥ 2)

11

6
y(xn)− 3y(xn−1) +

3

2
y(xn−2)−

1

3
y(xn−3) ≈ hf(xn, y(xn)), (n ≥ 3)

and so on. These approximate equalities give rise to a class of implicit LMMs called backward differ-
entiation formulae (BDF), the simplest of which is the implicit Euler method.

Similarly, using E−1 = I −∆− and hD = −ln(I −∆−), we find

E−1(hD) = −(I −∆−)ln(I −∆−),

and therefore

hu′(xn) =

[(
∆− − 1

2
∆2

− − 1

6
∆3

− + · · ·
)
u

]
n+1

.

Letting, again, u(x) = y(x) where y is the solution of the IVP (1)–(2) and noting u′(x) = y′(x) =
f(x, y(x)), successive truncations of the infinite series on the right result in

y(xn+1)− y(xn) ≈ hf(xn, y(xn)),

1

2
y(xn+1)−

1

2
y(xn−1) ≈ hf(xn, y(xn)), (n ≥ 1)

1

3
y(xn+1) +

1

2
y(xn)− y(xn−1) +

1

6
y(xn−2) ≈ hf(xn, y(xn)), (n ≥ 2)

and so on. The first of these yields the explicit Euler method, the second the so-called explicit midpoint
rule, and so on.

Further methods can be created using a similar methodology. Without going into detail, one can
show that

y(xn+1)− y(xn) ≈ h

[(
I − 1

2
∆− − 1

12
∆2

− − 1

24
∆3

− − 19

720
∆4

− − · · ·
)
y′
]
n+1

(40)

and

y(xn+1)− y(xn) ≈ h

[(
I +

1

2
∆− +

5

12
∆2

− +
3

8
∆3

− +
251

720
∆4

− + · · ·
)
y′
]
n

. (41)

Using y′(x) = f(x, y(x)), successive truncations of (40) yield the family of Adams–Moulton methods,
while similar successive truncations of (41) gives rise to the family of Adams–Bashforth methods.

Next, we turn our attention to the analysis of LMMs and introduce the concepts of stability, consis-
tency and convergence.

3.2 Zero-stability

As is clear from (39) we need k starting values, y0, . . . , yk−1, before we can apply a linear k-step method
to the IVP (1)–(2): of these, y0 is given by the i.c. (2), but the others, y1, . . . , yk−1, have to be computed
by other means: say, by using a suitable RK method. The starting values will contain numerical errors
and it is important to know how these will affect further approximations yn, n ≥ k, which are calculated
by means of (39). Thus, we wish to consider the ‘stability’ of the numerical method with respect to ‘small
perturbations’ in the starting conditions.

Definition 5 A linear k-step method for the ODE y′(x) = f(x, y(x)) is called zero-stable if there exists
a constant K > 0 such that, for any two sequences (yn) and (ŷn), which have been generated by the same
formulae but with different initial data y0, y1, . . . , yk−1 and ŷ0, ŷ1, . . . , ŷk−1, respectively, we have

|yn − ŷn| ≤ K max
j∈{0,1,...,k−1}

|yj − ŷj | (42)
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for n ∈ {0, 1, . . . , N}, and as h tends to 0.

We shall prove later (cf. the first line of the proof of Theorem 6) that whether or not a method is
zero-stable can be determined by merely considering its behaviour when applied to the trivial differential
equation y′(x) = 0, corresponding to (1) with f ≡ 0; it is for this reason that the kind of stability
expressed in Definition 5 is called zero stability. While Definition 5 is expressive in the sense that it
conforms with the intuitive notion of stability whereby “small perturbations at input give rise to small
perturbations at output”, it would be a very tedious exercise to verify the zero-stability of a LMM using
Definition 5 only; thus we shall next formulate an algebraic equivalent of zero-stability, known as the root
condition, which will simplify this task. Before doing so we introduce some notation.

Given the linear k-step method (39) we consider its first characteristic polynomial

ρ : C → C, ρ(z) :=
k∑

j=0

αjz
j ,

and its second characteristic polynomial

σ : C → C, σ(z) :=

k∑
j=0

βjz
j ,

where, as before, αk ̸= 0 and α2
0 + β2

0 ̸= 0. For r ∈ (0,∞) and a ∈ C, we introduce the notation

Dr(a) := {z ∈ C : |z − a| < r}, D̄r(a) := {z ∈ C : |z − a| ≤ r}, ∂Dr(a) := {z ∈ C : |z − a| = r}.

Now we are ready to state the main result of this section.

Theorem 6 A LMM is zero-stable for any ODE of the form (1) where f satisfies the Lipschitz condition
(3), iff all zeros of its first characteristic polynomial lie inside the closed unit disc D̄1(0), with any which
lie on the unit circle ∂D1(0) being simple.

The algebraic stability condition contained in this theorem, namely that the roots of the first charac-
teristic polynomial lie in the closed unit disc and those on the unit circle are simple, is often called the
root condition.

Proof: (Sketch) Necessity. Apply the linear k-step method to the ODE y′(x) = 0 (i.e., f ≡ 0):

αkyn+k + αk−1yn+k−1 + · · ·+ α1yn+1 + α0yn = 0. (43)

Denoting the distinct zeros of the first characteristic polynomial ρ by z1, . . . , zS ∈ C, the general solution
of this k-th order linear difference equation has the form

yn =
S∑

s=1

ps(n)z
n
s , (44)

where ps(·) is a polynomial of degree one less than the multiplicity of the zero. Clearly, if |zs| > 1 then
there are starting values for which the corresponding solutions grow like |zs|n and if |zs| = 1 and its
multiplicity is ms > 1 then there are solutions growing like nms−1. In either case there are solutions that
grow unbounded as n → ∞, i.e. as h → 0 with nh fixed. Considering starting data y0, y1, . . . , yk−1 which
give rise to such an unbounded solution (yn), and starting data ŷ0 = ŷ1 = · · · = ŷk−1 = 0 for which the
corresponding solution of (43) is (ŷn) with ŷn = 0 for all n, we see that (42) cannot hold. To summarise,
if the root condition is violated then the method is not zero-stable.

Sufficiency. The proof that the root condition is sufficient for zero-stability is long and technical, and
will be omitted here. For details, see, for example, P. Henrici, Discrete Variable Methods in Ordinary
Differential Equations, Wiley, New York, 1962. ⋄
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Example 4 We shall consider the methods from Example 3.

a) Explicit Euler method: yn+1 − yn = hfn. Here, α1 = 1, α0 = −1, β1 = 0, β0 = 1. Hence,
ρ(z) = z − 1 which has a simple root at z = 1. Hence, the explicit Euler method is zero-stable.

Implicit Euler method: yn+1 − yn = hfn+1. Here, α1 = 1, α0 = −1, β1 = 1, β0 = 0. Hence,
ρ(z) = z − 1 which has a simple root at z = 1. Hence, the implicit Euler method is zero-stable.

Trapezium rule method: yn+1− yn = h(12fn+1+
1
2fn). Here, α1 = 1, α0 = −1, β1 = β0 =

1
2 . Hence,

ρ(z) = z − 1 which has a simple root at z = 1. Hence, the trapezium rule method is zero-stable.

b) 4-step Adams–Bashforth method: yn+4− yn+3 = h
(
55
24fn+3 − 59

24fn+2 +
37
24fn+1 − 9

24fn
)
. Here, α4 =

1, α3 = −1, α2 = α1 = α0 = 0, β4 = 0, β3 = 55
24 , β2 = −59

24 , β1 = 37
24 , β0 = − 9

24 . Hence,
ρ(z) = z4 − z3 = z3(z − 1) which has the root z1 = 0 with multiplicity 3, and the root z2 = 1 with
multiplicity 1. Hence, the four-step Adams–Bashforth method is zero-stable.

4-step Adams–Moulton method: yn+4−yn+3 = h
(
251
720fn+4 +

646
720fn+3 − 264

720fn+2 +
106
720fn+1 − 19

720fn
)
.

Here, α4 = 1, α3 = −1, α2 = α1 = α0 = 0, β4 = 251
720 , β3 = 646

720 , β2 = −264
720 , β1 = 106

720 , β0 = − 19
720 .

Hence, ρ(z) = z4 − z3 = z3(z− 1) which has the root z1 = 0 with multiplicity 3, and the root z2 = 1
with multiplicity 1. Hence, the four-step Adams–Moulton method is zero-stable.

c) Consider the three-step (sixth order accurate) LMM

11yn+3 + 27yn+2 − 27yn+1 − 11yn = h (3fn+3 + 27fn+2 + 27fn+1 + 3fn) .

Here, α3 = 11, α2 = 27, α1 = −27, α0 = −11, β3 = β2 = 27, β1 = 27, β0 = 3. Hence,

ρ(z) = 11z3 + 27z2 − 27z − 11 has the three simple roots z1 = 1, z2 = −19−4
√
15

11 , z3 = −19+4
√
15

11 .

Since |z3| = 19+4
√
15

11 > 1, the method is not zero-stable.

3.3 Consistency

In this section we consider the accuracy of the linear k-step method (39). For this purpose, as in the case
of one-step methods, we introduce the notion of consistency error. Thus, suppose that y is a solution of
the ODE (1). Then the consistency error of (39) is defined as

Tn :=

∑k
j=0 [αjy(xn+j)− hβjy

′(xn+j)]

h
∑k

j=0 βj
=

∑k
j=0 [αjy(xn+j)− hβjy

′(xn+j)]

hσ(1)
. (45)

Of course, the definition requires implicitly that σ(1) ̸= 0 (Rk: for any convergent LMM there holds
σ(1) = ρ′(1) ̸= 0; see proof of Theorem 8). Again, as in the case of one-step methods, the consistency
error can be thought of as the residual that is obtained by inserting the solution of the ODE into the
formula (39) and scaling this residual appropriately.

Definition 6 The numerical scheme (39) is said to be consistent with the ODE (1) if the consistency
error defined by (45) is such that for any ε > 0 there exists an hε > 0 for which |Tn| < ε for all h ∈ (0, hε)
and for any (k+1) points (xn, y(xn)), . . . , (xn+k, y(xn+k)) on any solution curve in R of the IVP (1)–(2).

Now let us suppose that the solution to the ODE is sufficiently smooth, and let us expand y(xn+j)
and y′(xn+j) into a Taylor series about the point xn and substitute these expansions into the numerator
in (45) to obtain

Tn =
C0y(xn) + C1hy

′(xn) + C2h
2y′′(xn) + · · ·

hσ(1)
, (46)
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where σ(1) ̸= 0, and the constants C0, C1, C2, · · · ∈ R are given by

C0 =

k∑
j=0

αj , Cq =

k∑
j=0

jq

q!
αj −

k∑
j=0

jq−1

(q − 1)!
βj for q ∈ N.

These constants can also be computed from the following relations:

C0 = ρ(1),

C1 = ρ′(1)− σ(1),

2C2 = ρ′(1)− 2σ′(1) + ρ′′(1),

6C3 = ρ′(1)− 3σ′(1) + 3ρ′′(1)− 3σ′′(1) + ρ′′′(1),

24C4 = ρ′(1)− 4σ′(1) + 7ρ′′(1)− 12σ′′(1) + 6ρ′′′(1)− 4σ′′′(1) + ρ′′′′(1),

120C5 = ρ′(1)− 5σ′(1) + 15ρ′′(1)− 35σ′′(1) + 25ρ′′′(1)− 30σ′′′(1) + 10ρ′′′′(1)− 5σ′′′′(1) + ρ′′′′′(1),

...

q!Cq =

q−1∑
j=1

(
S(q, j)ρ(j)(1)− qS(q − 1, j)σ(j)(1)

)
+ ρ(q)(1), q ∈ N≥2.

Here, S(q, j) := 1
j!

∑j
i=0(−1)i

(
j
i

)
(j − i)q denote the Stirling numbers of the second kind. For consistency

we need that Tn → 0 as h → 0 and this requires that C0 = C1 = 0, i.e.,

ρ(1) = 0 and ρ′(1) = σ(1) ̸= 0.

Let us observe that, according to this condition, if a linear multi-step method is consistent then it has a
simple root on the unit circle at z = 1; thus the root condition is not violated by this zero.

Definition 7 The numerical method (39) is said to have order of accuracy p (or order of consis-
tency p) if p ∈ N is the largest natural number such that for any sufficiently smooth solution curve in R
of the IVP (1)–(2) we have

|Tn| = O(hp),

i.e., there exist constants h0,K > 0 such that |Tn| ≤ Khp for all h ∈ (0, h0), for any (k + 1) points
(xn, y(xn)), . . . , (xn+k, y(xn+k)) on the solution curve.

We deduce from (46) that the method is of order of accuracy p iff

C0 = C1 = · · · = Cp = 0 and Cp+1 ̸= 0.

In this case,

Tn =
Cp+1

σ(1)
hpy(p+1)(xn) +O(hp+1);

the number Cp+1 ̸= 0 is then called the error constant of the method.

Exercise 2 Construct an implicit linear two-step method of maximum order of accuracy, containing one
free parameter. Determine the order of accuracy and the error constant of the method.

Solution: Taking α0 = a as parameter, the method has the form

yn+2 + α1yn+1 + ayn = h(β2fn+2 + β1fn+1 + β0fn),
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with β2 ̸= 0 and a2 + β2
0 ̸= 0. Here, α2 = 1, α0 = a. We have ρ(z) = z2 + α1z + a and σ(z) = β2z

2 + β1z + β0.
Assume σ(1) = β0 + β1 + β2 ̸= 0. We see that ρ(1) = 1 + a+ α1, ρ

′(1) = 2 + α1, ρ
′′(1) = 2, σ(1) = β0 + β1 + β2,

σ′(1) = β1 + 2β2, σ
′′(1) = 2β2, and ρ(i)(1) = σ(i)(1) = 0 for i ≥ 3. We have to determine four unknowns: α1, β2,

β1, β0, so we require four equations; these will be arrived at by demanding that

C0 = ρ(1) = 1 + a+ α1 = 0,

C1 = ρ′(1)− σ(1) = 2 + α1 − β0 − β1 − β2 = 0,

2C2 = ρ′(1)− 2σ′(1) + ρ′′(1) = 4 + α1 − 2β1 − 4β2 = 0,

6C3 = ρ′(1)− 3σ′(1) + 3ρ′′(1)− 3σ′′(1) + ρ′′′(1) = 8 + α1 − 3β1 − 12β2 = 0.

This gives α1 = −1− a, β0 = − 1
12 (1 + 5a), β1 = 2

3 (1− a), β2 = 1
12 (5 + a), and the resulting method is

yn+2 − (1 + a)yn+1 + ayn =
h

12
((5 + a)fn+2 + 8(1− a)fn+1 − (1 + 5a)fn) . (47)

Note that σ(1) = β0 + β1 + β2 = 1− a ̸= 0 iff a ̸= 1. We have that

24C4 = ρ′(1)− 4σ′(1) + 7ρ′′(1)− 12σ′′(1) + 6ρ′′′(1)− 4σ′′′(1) + ρ′′′′(1) = 16 + α1 − 4β1 − 32β2 = −(1 + a),

and that

120C5 = ρ′(1)− 5σ′(1) + 15ρ′′(1)− 35σ′′(1) + 25ρ′′′(1)− 30σ′′′(1) + 10ρ′′′′(1)− 5σ′′′′(1) + ρ′′′′′(1)

= 32 + α1 − 5β1 − 80β2 = −1

3
(17 + 13a).

If a ̸∈ {−1, 1}, then C4 ̸= 0, and the method (47) is third order accurate. If, on the other hand, a = −1, then
C4 = 0 and C5 ̸= 0 and the method (47) becomes the Simpson rule method: yn+2 − yn = h

3 (fn+2 + 4fn+1 + fn), a
fourth-order accurate two-step method. The error constant is C4 = − 1

24 (1+a) if a ̸= −1, and C5 = − 1
90 if a = −1.

⋄

Exercise 3 Determine all values of the parameter b ∈ R\{0}, for which the LMM

yn+3 + (2b− 3)(yn+2 − yn+1)− yn = hb(fn+2 + fn+1)

is zero-stable. Show that there exists a value of b for which the order of accuracy is 4. Is the method
convergent for this value of b? Show that if the method is zero-stable then its order of accuracy is 2.

Solution: According to the root condition, this LMM is zero-stable iff all roots of its first characteristic polynomial

ρ(z) = z3 + (2b− 3)(z2 − z)− 1

lie in the closed unit disc D̄1(0), and those on the unit circle ∂D1(0) are simple. Clearly, z1 = 1 is a root of ρ and
we note that

ρ(z) = (z − 1)ρ1(z), ρ1(z) := z2 − 2(1− b)z + 1.

Thus the method is zero-stable if, and only if, all roots of the polynomial ρ1 belong to the closed unit disc, and
those on the unit circle are simple and differ from z1 = 1.

Suppose that the method is zero-stable. Then, it follows that b ̸= 0 and b ̸= 2, since these values of b correspond
to double roots of ρ1 on the unit circle, respectively, z = 1 and z = −1. Since the product of the two roots of ρ1 is
equal to 1 and neither of them is equal to ±1, it follows that they are strictly complex; hence the discriminant of
the quadratic polynomial ρ1 is negative. Namely, 4(1− b)2 − 4 < 0, i.e., b ∈ (0, 2).

Conversely, suppose that b ∈ (0, 2). Then the roots of ρ are

z1 = 1, z2 = (1− b) + i
√
1− (1− b)2, z3 = (1− b)− i

√
1− (1− b)2.

Since |z2| = |z3| = 1, z2 ̸= 1, z3 ̸= 1, and z2 ̸= z3, all roots of ρ lie on the unit circle and they are simple. Hence
the method is zero-stable. To summarise, the method is zero-stable iff b ∈ (0, 2).
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Let us analyse the order of accuracy: Note that σ(z) = b(z2 + z). We see that ρ(1) = 0, ρ′(1) = 2b, ρ′′(1) = 4b,
ρ′′′(1) = 6, and ρ(i)(1) = 0 for i ≥ 4, and we see that σ(1) = 2b ̸= 0, σ′(1) = 3b, σ′′(1) = 2b, and σ(i)(1) = 0 for
i ≥ 3. We compute C0 = 0, C1 = 0, C2 = 0, C3 = 6−b

6 , C4 = 36−6b
24 = 6−b

4 , and C5 = 150−23b
120 . We find that

Tn =
C0

σ(1)
h−1y(xn) +

C1

σ(1)
y′(xn) +

C2

σ(1)
hy′′(xn) +

C3

σ(1)
h2y(3)(xn) +

C4

σ(1)
h3y(4)(xn) +

C5

σ(1)
h4y(5)(xn) +O(h5)

=
6− b

12b
h2y(3)(xn) +

6− b

8b
h3y(4)(xn) +

150− 23b

240b
h4y(5)(xn) +O(h5).

If b = 6, then Tn = 1
120h

4y(5)(xn) + O(h5) and so the method is 4th order accurate. As b = 6 does not belong
to the interval (0, 2), we deduce that the method is not zero-stable for b = 6. Finally, since zero-stability requires
b ∈ (0, 2), in which case 6−b

12b ̸= 0, it follows that if the method is zero-stable then its order of accuracy is 2. ⋄

3.4 Convergence

The concepts of zero-stability and consistency are of great theoretical importance. However, what matters
most from the practical point of view is that the numerically computed approximations yn at the mesh-
points xn, n ∈ {0, 1, . . . , N}, are close to those of the true solution y(xn) at these point, and that the
global error en = y(xn) − yn between the numerical approximation yn and the exact solution-value
y(xn) decays when the step size h is reduced. We introduce the following definition.

Definition 8 The LMM (39) is said to be convergent if, for all IVPs (1)–(2) subject to the hypotheses
of Theorem 1, we have that

lim
h→0

nh=x−x0

yn = y(x) (48)

holds for all x ∈ [x0, XM ] and for all solutions {yn}Nn=0 of the difference equation (39) with consis-
tent starting conditions, i.e. with starting conditions ys = ηs(h), s ∈ {0, 1, . . . , k − 1}, for which
limh→0 ηs(h) = y0, s ∈ {0, 1, . . . , k − 1}.

We emphasise here that Definition 8 requires that (48) holds not only for those sequences {yn}Nn=0 which
have been generated from (39) using exact starting values ys = y(xs), s = 0, 1, . . . , k − 1, but also for all
sequences {yn}Nn=0 whose starting values ηs(h) tend to the correct value, y0, as h → 0. This assumption is
made as in practice, exact starting values are usually not available and have to be computed numerically.

In the remainder of this section we shall investigate the interplay between zero-stability, consistency
and convergence; the section culminates in Dahlquist’s Equivalence Theorem which, under some technical
assumptions, states that for a consistent LMM zero-stability is necessary and sufficient for convergence.

3.4.1 Necessary conditions for convergence

In this section we show that both zero-stability and consistency are necessary for convergence.

Theorem 7 A necessary condition for the convergence of the LMM (39) is that it is zero-stable.

Proof: Let us suppose that the LMM (39) is convergent; we need to show that it is then zero-stable.
We consider the IVP y′(x) = 0, y(0) = 0, on the interval [0, XM ], XM > 0, whose solution is y ≡ 0.
Applying (39) to this problem yields the difference equation

k∑
j=0

αjyn+j = 0. (49)

Since the method is assumed to be convergent, for any x ∈ [0, XM ], we have that

lim
h→0
nh=x

yn = 0, (50)
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for all solutions of (49) satisfying ys = ηs(h), s ∈ {0, 1, . . . , k − 1}, where

lim
h→0

ηs(h) = 0, s ∈ {0, 1, . . . , k − 1}. (51)

Let z = reiϕ with r ≥ 0, ϕ ∈ [0, 2π) be a root of the first characteristic polynomial ρ. Then, the numbers

yn = hrn cos(nϕ)

define a solution to (49) satisfying (51). Indeed, using that
∑k

j=0 αjr
j cos(jϕ) = Re[ρ(reiϕ)] = 0 and∑k

j=0 αjr
j sin(jϕ) = Im[ρ(reiϕ)] = 0, we find

k∑
j=0

αjyn+j =

k∑
j=0

αjhr
n+j cos((n+ j)ϕ) = hrn

cos(nϕ) k∑
j=0

αjr
j cos(jϕ)− sin(nϕ)

k∑
j=0

αjr
j sin(jϕ)

 = 0.

We observe that if ϕ ̸∈ {0, π}, then

y2n − yn+1yn−1

sin2(ϕ)
= h2r2n

cos2(nϕ)− cos((n+ 1)ϕ) cos((n− 1)ϕ)

sin2(ϕ)
= h2r2n.

Since the left-hand side of this identity converges to 0 as h → 0, n → ∞, nh = x, we must have

lim
n→∞

(x
n

)2
r2n = 0

for any x ∈ [0, XM ]. This implies that r ∈ [0, 1] (recall r ≥ 0). In other words, we have proved that any
root of the first characteristic polynomial of (39) lies in the closed unit disc D̄1(0).

Next we prove that any root of the first characteristic polynomial of (39) that lies on the unit circle
∂D1(0) must be simple. Assume, instead, that z = reiϕ, is a multiple root of ρ(z), with |z| = r = 1
and ϕ ∈ [0, 2π). We shall prove below that this contradicts our assumption that the method (49) is
convergent. Similarly to before, we see that

yn =
√
hn rn cos(nϕ) =

√
hn cos(nϕ) (52)

defines a solution to (49), where we have used r = 1 in the second equality. This satisfies (51) as for any
s ∈ {0, 1, . . . , k − 1} we have

|ηs(h)| = |ys| ≤
√
h s ≤

√
h(k − 1) → 0 as h → 0.

If ϕ ∈ {0, π}, it follows from (52) with nh = x that

|yn| =
√
x
√
n, (53)

and we deduce from (53) that limn→∞,nh=x |yn| = ∞ whenever x ̸= 0, which contradicts (50). If, on the
other hand, ϕ ̸∈ {0, π}, then

z2n − zn+1zn−1

sin2(ϕ)
= 1, (54)

where zn = 1
n
√
h
yn =

√
h
x yn. Since, by (50), zn converges to 0 as h → 0, n → ∞, nh = x, it follows that

the left-hand side of (54) converges to 0 as h → 0, n → ∞, nh = x, which is a contradiction (as the
right-hand side converges to 1).

To summarise, we have proved that all roots of the first characteristic polynomial ρ of the LMM (39)
lie in the closed unit disc D̄1(0), and those which belong to the unit circle ∂D1(0) are simple. In view of
Theorem 6, the LMM is zero-stable. ⋄
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Theorem 8 A necessary condition for the convergence of the LMM (39) is that it is consistent.

Proof: Let us suppose that the LMM (39) is convergent; we need to show that it is then consistent.
Let us first show that C0 = 0. We consider the IVP y′(x) = 0, y(0) = 1, on the interval [0, XM ],

XM > 0, whose solution is y ≡ 1. Applying (39) to this problem yields the difference equation

k∑
j=0

αjyn+j = 0. (55)

We supply “exact” starting values for the numerical method; namely, ys = 1, s ∈ {0, 1, . . . , k− 1}. Given
that by hypothesis the method is convergent, we deduce that

lim
h→0
nh=x

yn = 1. (56)

Since in the present case yn is independent of the choice of h, (56) is equivalent to saying that

lim
n→∞

yn = 1. (57)

Passing to the limit n → ∞ in (55), we deduce that

C0 = ρ(1) =

k∑
j=0

αj = 0. (58)

In order to show that C1 = 0, we now consider the IVP y′(x) = 1, y(0) = 0, on the interval [0, XM ],
XM > 0, whose solution is y(x) = x. The difference equation (39) now becomes

k∑
j=0

αjyn+j = h
k∑

j=0

βj , (59)

where XM − x0 = XM − 0 = Nh and n ∈ {0, 1, . . . , N − k}. For a convergent method every solution of
(59) satisfying

lim
h→0

ηs(h) = 0, s ∈ {0, 1, . . . k − 1}, (60)

where ys = ηs(h), s ∈ {0, 1, . . . k − 1}, must also satisfy

lim
h→0
nh=x

yn = x. (61)

Since according to Theorem 7 zero-stability is necessary for convergence, we may take it for granted
that the first characteristic polynomial ρ of the method does not have a multiple root on the unit circle
∂D1(0); therefore

ρ′(1) =
k∑

j=1

jαj ̸= 0.

Let the sequence {yn}Nn=0 be defined by yn = Knh, where

K =
σ(1)

ρ′(1)
=

∑k
j=0 βj∑k
j=1 jαj

; (62)

31



this sequence clearly satisfies (60) and is a solution of (59) as

k∑
j=0

αjyn+j = hK
k∑

j=0

αj(n+ j) = KnhC0 +Khρ′(1) = hσ(1) = h
k∑

j=0

βj .

Furthermore, (61) implies that

x = y(x) = lim
h→0
nh=x

yn = lim
h→0
nh=x

Knh = Kx

for any x ∈ [0, XM ], and therefore K = 1. Hence, from (62), we obtain that

C1 = ρ′(1)− σ(1) = 0;

equivalently, ρ′(1) = σ(1). ⋄

3.4.2 Sufficient conditions for convergence

Theorem 9 (Dahlquist) For a LMM that is consistent with the ODE (1) where f is assumed to satisfy
a Lipschitz condition, and starting with consistent initial data, zero-stability is necessary and sufficient
for convergence. Moreover if the solution y has continuous derivatives of order (p + 1) and consistency
error O(hp), then the global error en = y(xn)−yn is also O(hp), i.e. the method is p-th order convergent.

According to Dahlquist’s theorem, if a LMM is not zero-stable its global error cannot be made
arbitrarily small by taking the mesh size h sufficiently small for any sufficiently accurate initial data.
In fact, if the root condition is violated then there exists a solution to the LMM which will grow by an
arbitrarily large factor in a fixed interval of x, however accurate the starting conditions are. This highlights
the importance of the concept of zero-stability and indicates its relevance in practical computations.

3.5 Maximum order of accuracy of a zero-stable linear multi-step method

Let us suppose that we have already chosen the coefficients αj , j ∈ {0, 1, . . . , k}, of the k-step method
(39). The question we shall be concerned with in this section is how to choose the coefficients βj ,
j ∈ {0, 1, . . . , k}, so that the order of accuracy of the resulting method (39) is as high as possible.

In view of Theorem 9 we shall only be interested in consistent methods, so it is natural to assume
that the first and second characteristic polynomials ρ and σ associated with (39) satisfy ρ(1) = 0,
ρ′(1)− σ(1) = 0, with σ(1) ̸= 0.

By inspection, the linear k-step method (39) has 2k + 2 coefficients: αj , βj , j ∈ {0, 1, . . . , k}, of
which αk is taken to be 1 by normalisation. This leaves us with 2k + 1 free parameters if the method is
implicit and 2k free parameters if the method is explicit (because in the latter case βk is fixed to have
value 0). According to (46), if the method is required to have order p, the p + 1 linear relationships
C0 = 0, C1 = 0, . . . , Cp = 0 involving αj , βj , j ∈ {0, 1, . . . , k}, must be satisfied. Thus, in the case of
the implicit method, we can impose p + 1 = 2k + 1 linear constraints C0 = 0, C1 = 0, . . . , C2k = 0
to determine the unknown constants, yielding a method of order p = 2k. Similarly, in the case of an
explicit method, the highest order we can expect is p = 2k− 1. Unfortunately, there is no guarantee that
such methods will be zero-stable. Indeed, in a paper published in 1956 Dahlquist proved that there is
no consistent, zero-stable k-step method whose order exceeds k + 2. Therefore the maximum orders 2k
and 2k− 1 cannot be attained without violating the condition of zero-stability when k ≥ 3. We formalise
these facts in the next theorem.

Theorem 10 There is no zero-stable linear k-step method whose order exceeds k+1 if k is odd or k+2
if k is even.
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Definition 9 A zero-stable linear k-step method of order k + 2 is said to be an optimal method.

Let us note that it can be shown that all roots of the first characteristic polynomial ρ associated with
an optimal LMM have modulus 1.

Example 5 As k + 2 = 2k iff k = 2 and the Simpson rule method is the only zero-stable linear 2-step
method of maximum order (see Exercise 2), we deduce that the Simpson rule method is the only zero-stable
LMM which is both of maximum order (2k = 4) and optimal (k + 2 = 4).

Optimal methods have certain disadvantages in terms of their stability properties; we shall return to
this question later on in the notes. Linear k-step methods for which the first characteristic polynomial
has the form ρ(z) = zk − zk−1 are called Adams methods. Explicit Adams methods are referred to as
Adams–Bashforth methods, while implicit Adams methods are termed Adams–Moulton methods.
Linear k-step methods for which ρ(z) = zk − zk−2 are called Nyström methods if explicit and Milne–
Simpson methods if implicit. All these methods are zero-stable.

3.6 Absolute stability of linear multi-step methods

Up to now we have been concerned with the stability and accuracy properties of LMMs in the asymptotic
limit of h → 0, n → ∞, nh fixed. However, it is of practical significance to investigate the performance of
methods in the case of h > 0 fixed and n → ∞. Specifically, we would like to ensure that when applied
to an IVP whose solution decays to zero as x → ∞, the LMM exhibits a similar behaviour, for h > 0
fixed and xn = x0 + nh → ∞. The canonical model problem with exponentially decaying solution is

y′(x) = λy(x), x > 0, y(0) = y0, (63)

where λ < 0 and y0 ̸= 0. Indeed, the true solution is y(x) = y0 e
λx and therefore, limx→∞ y(x) = 0. Let

us recall from Section 1 that the solution is asymptotically stable.
Now consider the linear k-step method (39) and apply it to the model problem (63). Noting that

f : R2 → R, f(x, z) = λz, this yields the linear difference equation

0 =
k∑

j=0

(αjyn+j − hβjf(xn+j , yn+j)) =
k∑

j=0

(αj − hλβj) yn+j .

Since the general solution yn to this homogeneous difference equation can be expressed as a linear com-
bination of powers of roots of the associated characteristic polynomial

π(z; h̄) = ρ(z)− h̄ σ(z), z ∈ C, (h̄ := λh) (64)

it follows that yn will converge to zero for h > 0 fixed and n → ∞ iff all roots of π(z; h̄) have modulus
less than 1. The kth degree polynomial π(z; h̄) defined by (64) is called the stability polynomial of the
linear k-step method with first and second characteristic polynomials ρ and σ, respectively.

Definition 10 The LMM (39) is called absolutely stable for a given h̄ iff for that h̄ all the roots
rs = rs(h̄) of the stability polynomial z 7→ π(z; h̄) defined by (64) satisfy |rs| < 1, s ∈ {1, . . . , k}.
Otherwise, the method is called absolutely unstable. An interval (α, β) ⊂ R is called the interval
of absolute stability if it is the largest open interval with the property that the method is absolutely
stable for all h̄ ∈ (α, β). If the method is absolutely unstable for all h̄, it is said to have no interval of
absolute stability.

Since for λ > 0 the solution of (63) exhibits exponential growth, it is reasonable to expect that a
consistent and zero-stable (and, therefore, convergent) LMM will have a similar behaviour for h > 0
sufficiently small, and will be therefore absolutely unstable for small h̄ = λh > 0. According to the next
theorem, this is indeed the case.
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Theorem 11 Every consistent and zero-stable LMM is absolutely unstable for small positive h̄.

Proof: As the method is consistent, there exists p ∈ N such that C0 = C1 = · · · = Cp = 0 and Cp+1 ̸= 0.
From the problem sheets, we know that then

π(eh̄; h̄) =
∞∑
q=0

h̄qCq =
∞∑

q=p+1

Cqh̄
q = O(h̄p+1). (65)

On the other hand, noting that the polynomial π(z; h̄) can be written in the factorised form

π(z; h̄) = (αk − h̄βk)
k∏

s=1

(z − rs)

where rs = rs(h̄), s ∈ {1, . . . , k}, signify the roots of z 7→ π(z; h̄), we deduce that

π(eh̄; h̄) = (αk − h̄βk)
k∏

s=1

(eh̄ − rs(h̄)). (66)

As h̄ → 0, αk − h̄βk → αk ̸= 0 and rs(h̄) → ζs, s ∈ {1, . . . , k}, where ζs, s ∈ {1, . . . , k}, are the roots of
ρ. Since, by assumption, the method is consistent, 1 is a root of ρ; furthermore, by zero-stability 1 is a
simple root of ρ. Let us suppose, for the sake of definiteness that it is ζ1 that is equal to 1. Then, ζs ̸= 1
for s ̸= 1 and therefore

lim
h̄→0

(eh̄ − rs(h̄)) = 1− ζs ̸= 0, s ̸= 1.

We deduce from (66) that the only factor of π(eh̄; h̄) that converges to 0 as h̄ → 0 is eh̄− r1(h̄) (the other
factors converge to nonzero constants). Now, by (65), π(eh̄; h̄) = O(h̄p+1), so it follows that

eh̄ − r1(h̄) = O(h̄p+1).

Thus we have shown that r1(h̄) = eh̄ +O(h̄p+1). This implies that r1(h̄) > 1 + 1
2 h̄ for small positive h̄.

That completes the proof. ⋄
According to the definition adopted in the previous section, an optimal k-step method is a zero-stable

linear k-step method of order k + 2. Recall that all roots of the first characteristic polynomial of an
optimal k-step method lie on the unit circle. It can be shown that an optimal LMM has no interval of
absolute stability.

3.6.1 General methods for locating the interval of absolute stability

In this section we shall describe two methods for identifying the endpoints of the interval of absolute
stability. The first of these is based on the Schur criterion, the second on the Routh–Hurwitz criterion.

The Schur criterion

Consider the polynomial

ϕ : C → C, ϕ(z) = ckz
k + ck−1z

k−1 + · · ·+ c1z + c0,

with c0, c1, . . . , ck ∈ C and ck ̸= 0, c0 ̸= 0. The polynomial ϕ is said to be a Schur polynomial if each
of its roots rs, satisfies |rs| < 1, i.e., rs ∈ D1(0) for all s ∈ {1, . . . , k}.

Let us consider the polynomial

ϕ̂ : C → C, ϕ̂(z) = c̄0z
k + c̄1z

k−1 + · · ·+ c̄k−1z + c̄k,
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where c̄j denotes the complex conjugate of cj for j ∈ {1, . . . , k}. Further, let us define

ϕ1 : C → C, ϕ1(z) =
ϕ̂(0)ϕ(z)− ϕ(0)ϕ̂(z)

z
.

The following key result is stated without proof.

Theorem 12 (Schur’s Criterion) The polynomial ϕ is a Schur polynomial iff |ϕ̂(0)| > |ϕ(0)| and ϕ1

is a Schur polynomial.

Exercise 4 Use Schur’s criterion to determine the interval of absolute stability of the LMM

yn+2 − yn =
h

2
(fn+1 + 3fn) .

Solution: The first and second characteristic polynomials of the method are

ρ(z) = z2 − 1, σ(z) =
1

2
(z + 3).

Therefore the stability polynomial is

π(z; h̄) = ρ(z)− h̄σ(z) = z2 − 1

2
h̄z −

(
1 +

3

2
h̄

)
.

Suppose 1 + 3
2 h̄ ̸= 0, i.e., h̄ ̸= − 2

3 so that we can apply the Schur criterion. We have

π̂(z; h̄) = −
(
1 +

3

2
h̄

)
z2 − 1

2
h̄z + 1.

Clearly, |π̂(0; h̄)| = 1 > |1 + 3
2 h̄| = |π(0; h̄)| iff h̄ ∈ (− 4

3 , 0). For such h̄, the polynomial

π1(z; h̄) =
π̂(0; h̄)π(z; h̄)− π(0; h̄)π̂(z; h̄)

z
= −1

2
h̄

(
2 +

3

2
h̄

)
(3z + 1)

has the unique root r1 = − 1
3 and is, therefore, a Schur polynomial. We deduce from Schur’s criterion that

z 7→ π(z; h̄), h̄ ̸= − 2
3 , is a Schur polynomial iff h̄ ∈ (− 4

3 , 0). Finally, for h̄ = − 2
3 , we see that π(z;− 2

3 ) = z(z + 1
3 )

is Schur polynomial. We conclude that the interval of absolute stability of the method is (− 4
3 , 0). ⋄

The Routh–Hurwitz criterion

Consider the mapping

m : D1(0) → C−, m(z) :=
z − 1

z + 1
,

where C− := {z ∈ C : Re(z) < 0}. Note that m is a bijection and its inverse is given by

m−1 : C− → D1(0), m−1(z) :=
1 + z

1− z
.

Consider

π

(
1 + z

1− z
; h̄

)
= ρ

(
1 + z

1− z

)
− h̄σ

(
1 + z

1− z

)
.

By multiplying this with (1− z)k, we obtain a polynomial of the form

(1− z)k
[
π

(
1 + z

1− z
; h̄

)]
= a0z

k + a1z
k−1 + · · ·+ ak. (67)

The roots of the stability polynomial z 7→ π(z; h̄) lie inside D1(0) iff the roots of the polynomial (67) lie
in C− and a0 ̸= 0.
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Theorem 13 (Routh–Hurwitz Criterion) The roots of a polynomial P : C → C, P (z) := a0z
k +

a1z
k−1 + · · ·+ ak with a0, . . . , ak ∈ R and a0 > 0 lie in C− iff all leading principal minors of the matrix

H :=



a1 a3 a5 · · · a2k−1

a0 a2 a4 · · · a2k−2

0 a1 a3 · · · a2k−3

0 a0 a2 · · · a2k−4

· · · · · · · · · · · · · · ·
0 0 0 · · · ak

 ∈ Rk×k

are positive, where we set aj := 0 if j > k. In particular, for k ∈ {2, 3, 4}, the necessary and sufficient
conditions for ensuring that all roots of P lie in C− are as follows:

a) for k = 2: a1 > 0, a2 > 0;

b) for k = 3: a1 > 0, a2 > 0, a3 > 0, a1a2 − a3a0 > 0;

c) for k = 4: a1 > 0, a2 > 0, a3 > 0, a4 > 0, a1a2a3 − a0a
2
3 − a4a

2
1 > 0.

Exercise 5 Use the Routh–Hurwitz criterion to determine the interval of absolute stability of the LMM
from the previous exercise.

Solution: We have the stability polynomial

π(z; h̄) = z2 − 1

2
h̄z −

(
1 +

3

2
h̄

)
.

We compute

P (z) := (1− z)2
[
π

(
1 + z

1− z
; h̄

)]
= −h̄z2 + (4 + 3h̄)z − 2h̄ =: a0z

2 + a1z + a2.

The roots of the stability polynomial z 7→ π(z; h̄) lie inside D1(0) iff the roots of P lie in C− and a0 ̸= 0. So, we
are unstable for h̄ = 0. For h̄ ̸= 0, we use the Routh–Hurwitz criterion:

Case h̄ < 0: Then, applying Theorem 13 a) to P , we find that all roots of P lie in C− iff 4 + 3h̄ > 0 and
−2h̄ > 0, i.e., iff h̄ ∈ (− 4

3 , 0).
Case h̄ > 0: Then, applying Theorem 13 a) to −P (z) = h̄z2 − (4 + 3h̄)z + 2h̄, we find that all roots of P lie in C−

iff all roots of −P lie in C− iff −(4 + 3h̄) > 0 and 2h̄ > 0, which is impossible.
Altogether, the interval of absolute stability is (− 4

3 , 0). ⋄
We conclude this section by listing the intervals of absolute stability (α, 0) of k-step Adams–Bashforth

and Adams–Moulton methods, for k = 1, 2, 3, 4. We shall also supply the orders p∗ and p and error
constants Cp∗+1 and Cp+1, respectively, of these methods. The verification is left as exercise.

k-step Adams–Bashforth (explicit) methods:

(1) k = 1, p∗ = 1, Cp∗+1 =
1
2 , α = −2,

yn+1 − yn = hfn;

(2) k = 2, p∗ = 2, Cp∗+1 =
5
12 , α = −1,

yn+2 − yn+1 =
h

2
(3fn+1 − fn);

(3) k = 3, p∗ = 3, Cp∗+1 =
3
8 , α = − 6

11 ,

yn+3 − yn+2 =
h

12
(23fn+2 − 16fn+1 + 5fn);
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(4) k = 4, p∗ = 4, Cp∗+1 =
251
720 , α = − 3

10 ,

yn+4 − yn+3 =
h

24
(55fn+3 − 59fn+2 + 37fn+1 − 9fn).

k-step Adams–Moulton (implicit) methods:

(1) k = 1, p = 2, Cp+1 = − 1
12 , α = −∞,

yn+1 − yn =
h

2
(fn+1 + fn);

(2) k = 2, p = 3, Cp+1 = − 1
24 , α = −6,

yn+2 − yn+1 =
h

12
(5fn+2 + 8fn+1 − fn);

(3) k = 3, p = 4, Cp+1 = − 19
720 , α = −3,

yn+3 − yn+2 =
h

24
(9fn+3 + 19fn+2 − 5fn+1 + fn);

(4) k = 4, p = 5, Cp+1 = − 27
1440 , α = −90

49 ,

yn+4 − yn+3 =
h

720
(251fn+4 + 646fn+3 − 264fn+2 + 106fn+1 − 19fn).

We notice that the k-step Adams–Moulton (implicit) method has a larger interval of absolute stability
and smaller error constant than the k-step Adams–Bashforth (explicit) method.
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4 Stiff problems

Let us consider an IVP for a system of m ODEs of the form

y′(x) = f(x,y(x)), y(x0) = y0, (68)

where y(x) = (y1(x), . . . ,ym(x))T. A linear k-step method for the numerical solution of (68) has the
form

k∑
j=0

αjyn+j = h
k∑

j=0

βjfn+j , (69)

where fn+j := f(xn+j ,yn+j). Let us suppose, for simplicity, that f(x,y) = Ay+b where A ∈ Cm×m and
b ∈ Cm; then (69) becomes

k∑
j=0

(αjIm − hβjA)yn+j = hσ(1)b, (70)

where σ(1) =
∑k

j=0 βj ̸= 0 and Im is the m × m identity matrix. Let us suppose that the eigenvalues

λ1, . . . , λm ∈ C of A are distinct. Then, there exists an invertible matrix H ∈ Cm×m such that

H−1AH =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm

 =: diag(λ1, . . . , λm) =: Λ. (71)

Let us define zn+j := H−1yn+j for j ∈ {0, 1, . . . , k}, and c := hσ(1)H−1b. Then, (70) can be rewritten
as

k∑
j=0

(αjIm − hβjΛ)zn+j =

k∑
j=0

(αjH
−1 − hβjΛH

−1)yn+j = H−1
k∑

j=0

(αjIm − hβjA)yn+j = c, (72)

or, in component-wise form,
k∑

j=0

(αj − hβjλi)zn+j,i = ci,

where zn+j,i and ci, i ∈ {1, . . . ,m}, are the components of zn+j and c respectively. Each of these m
equations is completely decoupled from the other m − 1 equations. Thus we are now in the framework
of Section 3 where we considered LMMs for a single ODE. However, there is a new feature here: as the
numbers λi, i ∈ {1, . . . ,m}, are eigenvalues of the matrix A, they need not be real. As a consequence
the parameter h̄ = hλ, where λ is any of the m eigenvalues, can be complex. This leads to the following
modification of our earlier definition of absolute stability (cf. Section 2.6 and Definition 10).

Definition 11 A linear k-step method is said to be absolutely stable in an open set RA ⊆ C if, for all
h̄ ∈ RA, all roots rs, s ∈ {1, . . . , k}, of the stability polynomial z 7→ π(z; h̄) associated with the method,
and defined by (64), satisfy |rs| < 1. The largest such set RA is called the region of absolute stability
of the method.

Clearly, the interval of absolute stability of a LMM is a subset of its region of absolute stability.

Exercise 6 a) Find the region of absolute stability of the explicit Euler method.
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b) For λ ∈ C− with |λ| ≫ 1, consider the second-order differential equation

y′′(x) + (1− λ)y′(x)− λy(x) = 0, y(0) = 1, y′(0) = −λ− 2.

1) Setting y(x) := (y(x), y′(x))T, rewrite this problem as a first-order system

y′(x) = Ay(x), y(0) = y0

for some A ∈ C2×2 and y0 ∈ C2.

2) Solve this problem and show that y(x) → (0, 0)T as x → ∞. Find the solution y to the original
problem.

3) Now, the explicit Euler method is applied to this first-order system, i.e., yn+1 = yn + hAyn for
n ∈ N0. What choice of the step size h ∈ (0, 1) will guarantee absolute stability in the sense that
yn → 0 as n → ∞?

Solution: a) For the explicit Euler method we have ρ(z) = z − 1 and σ(z) = 1, so that

π(z; h̄) = ρ(z)− h̄σ(z) = z − (1 + h̄).

This has the root r := 1 + h̄. Hence the region of absolute stability is

RA = {h̄ ∈ C : |1 + h̄| < 1} = D1(−1),

which is an the open disc with radius 1 centred at −1.
b) 1) Writing y = (y, y′)T, the IVP for the given second-order differential equation can be recast as

y′(x) = Ay(x), y(0) = y0,

where

A =

(
0 1
λ λ− 1

)
and y0 =

(
1

−λ− 2

)
.

2) The eigenvalues of A are λ1 := −1, λ2 := λ, and the vectors v1 := (1,−1)T, v2 := (1, λ)T are corresponding
eigenvectors. The general solution to the system is

y(x) = c1e
λ1xv1 + c2e

λ2xv2 =

(
c1e

−x + c2e
λx

−c1e
−x + λc2e

λx

)
.

From the initial condition, we see that y(0) = (c1 + c2,−c1 + λc2)
T = (1,−λ− 2)T, which yields c1 = 2, c2 = −1.

Hence, the solution is given by

y(x) =

(
2e−x − eλx

−2e−x − λeλx

)
and we see from the assumptions on λ that y(x) → (0, 0)T as x → ∞. Note that we have found the solution (and
its derivative) to the original problem:

y(x) = 2e−x − eλx, y′(x) = −2e−x − λeλx.

3) Explicit Euler for this system has the form

yn+1 = (I2 + hA)yn, n ∈ N0

with y0 = (1,−λ− 2)T. Consider the matrix M := I2 + hA whose eigenvalues are m1 := 1− h, m2 := 1 + λh, and
corresponding eigenvectors are v1 := (1,−1)T, v2 := (1, λ)T. We find that M is diagonalisable:

M = SDS−1, S :=

(
1√
2

1√
1+λ2

− 1√
2

λ√
1+λ2

)
, D :=

(
1− h 0
0 1 + λh

)
.
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Figure 1: The functions y(x) = 2e−x − eλx (blue) and y′(x) = −2e−x − λeλx (red) for λ = −45.

Hence, S−1yn+1 = S−1Myn = DS−1yn for n ∈ N0, and therefore S−1yn = DnS−1y0. Now, limn→∞ yn = 0 iff
limn→∞ S−1yn = 0, iff (Dn)n∈N converges to the zero matrix, iff |1 − h| < 1 and |1 + hλ| < 1. Since we only
consider h ∈ (0, 1), the first of these two requirements is satisfied and we deduce that the requirement for absolute
stability is that |1 + λh| < 1, i.e., λh ∈ D1(−1).

The graphs of the functions y and y′ are depicted in Figure 1 for λ = −45. Note that, if x ∈ [0,∞) is thought
of as time, y′ exhibits a fast transition near x = 0 while y is slowly varying for x > 0 and y′ is slowly varying for
x > 1

45 . Despite the fact that over the interval ( 1
45 ,∞) both y and y′ are ‘slowly varying’, we are forced to use a

small step size of h < 2
45 to ensure absolute stability. ⋄

In the example the y′ component of the solution y = (y, y′) exhibited two vastly different time scales;
in addition, the fast transition (which occurs between x = 0 and x ≈ 1

−λ for λ ∈ R<0) has negligible effect
on the solution so its accurate resolution does not appear to be important for obtaining an overall accurate
solution. Nevertheless, in order to ensure the stability of the numerical method under consideration, the

mesh size h is forced to be exceedingly small, h < −2Re(λ)|λ|2 , smaller than an accurate approximation of the

solution for x ≫ 1/|λ| would necessitate. Systems of ODEs which exhibit this behaviour are generally
referred to as stiff systems. We refrain from formulating a rigorous definition of stiffness. Indeed,
stiffness of an ODE is a concept that lacks a rigorous definition.7 A historic and pragmatic ‘definition’ by
Curtis and Hirschfelder8 (adapted to our setting) reads: stiff equations are equations where the implicit
Euler method works significantly better than the explicit Euler method. The idea behind this definition
is that for a ‘stiff system’ stability of the explicit Euler method requires the choice of a very small step
size, much smaller than the one required by accuracy.

4.1 Stability of numerical methods for stiff systems

In order to motivate the various definitions of stability which occur in this section, we begin with a simple
example. Consider the implicit Euler method for the IVP

y′(x) = λy(x), y(0) = y0,

where λ ∈ C. The stability polynomial of the method is π(z; h̄) = ρ(z)− h̄σ(z) where h̄ = λh, ρ(z) = z−1
and σ(z) = z. Since the only root of the stability polynomial is z = 1

1−h̄
, we deduce that the method has

the region of absolute stability

RA = {h̄ ∈ C : |1− h̄| > 1} = C\D̄1(1).

In particular RA includes C−. The next definition is due to Dahlquist (1963).

7See G. Söderlind, L. Jay, and M. Calvo, Stiffness 1952–2012: Sixty years in search of a definition. BIT Numerical
Mathematics, June 2015 55(2), 531–558.

8Integration of stiff equations. Proceedings of the National Academy of Sciences, March 1, 1952 38 (3) 235–243.
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Definition 12 A LMM is called A-stable if its region of absolute stability RA is such that C− ⊆ RA.

For example, according to the discussion preceding Definition 12, the implicit Euler method is A-
stable. As the next theorem by Dahlquist (1963) shows, Definition 12 is unfortunately far too restrictive.

Theorem 14

(i) No explicit LMM is A-stable.

(ii) The order of accuracy of an A-stable implicit LMM cannot exceed 2.

(iii) The second-order accurate A-stable LMM with smallest error constant is the trapezium rule method.

This motivates us to consider the following, less restrictive notion of stability, due to Widlund (1967).

Definition 13 A LMM is called A(α)-stable, α ∈ (0, π2 ), if its region of absolute stability RA is such
that Wα ⊆ RA, where Wα denotes the infinite open wedge

Wα = {h̄ ∈ C : arg(h̄) ∈ (π − α, π + α)}.

A LMM is called A(0)-stable if it is A(α)-stable for some α ∈ (0, π2 ). A LMM is called A0-stable if RA

includes the negative real axis in the complex plane.

Let us note in connection with this definition that if λ ∈ C− for a given λ then h̄ = λh either lies
inside the wedge Wα or outside Wα for all positive h. Consequently, if all eigenvalues λ of the matrix
A (cf. the sentence starting two lines above equation (71)) happen to lie in some wedge Wα then an
A(α)-stable method can be used for the numerical solution of the IVP (68) without any restrictions on
the step size h. In particular, if all eigenvalues of A are real and negative, then an A(0)-stable method
can be used. The next theorem can be regarded the analogue of Theorem 14 for the case of A(α) and
A(0)-stability.

Theorem 15

(i) No explicit LMM is A(0)-stable.

(ii) The only A(0)-stable linear k-step method whose order exceeds k is the trapezium rule method.

(iii) For each α ∈ [0, π2 ) there exist A(α)-stable linear k-step methods of order p for which k = p = 3
and k = p = 4.

A different way of loosening the concept of A-stability was proposed by Gear (1969). The motivation
behind it is the fact that for a typical stiff problem the eigenvalues of the matrix A which produce the
fast transients all lie to the left of a line {h̄ ∈ C : Re(h̄) = −a}, a > 0, in the complex plane, while those
that are responsible for the slow transients are clustered around zero.

Definition 14 A LMM is said to be stiffly stable if there exist a, c > 0 such that its region of absolute
stability RA is such that RA ⊇ R1 ∪R2 where

R1 = {h̄ ∈ C : Re(h̄) ∈ (−∞,−a)},
R2 = {h̄ ∈ C : Re(h̄) ∈ [−a, 0), Im(h̄) ∈ [−c, c]}.

It is clear that stiff stability implies A(α)-stability with α = arctan( ca). More generally, we have the
following chain of implications:

A-stability ⇒ stiff-stability ⇒ A(α)-stability ⇒ A(0)-stability ⇒ A0-stability.

In the next section we shall consider LMMs which are particularly well suited for the numerical
solution of stiff systems of ODEs.
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4.2 Backward differentiation methods for stiff systems

Consider a LMM with stability polynomial π(z; h̄) = ρ(z)− h̄σ(z). If the method is A(α)-stable or stiffly
stable, the roots r(h̄) of π(·; h̄) lie in D1(0) when h̄ is real and h̄ → −∞. Hence,

0 = lim
h̄→−∞

ρ(r(h̄))

h̄
= lim

h̄→−∞
σ(r(h̄)) = σ

(
lim

h̄→−∞
r(h̄)

)
;

in other words, the roots of π(·; h̄) approach those of σ. Thus it is natural to choose σ in such a way that
its roots lie within the unit disk. Indeed, a particularly simple choice would be to take σ(z) = βkz

k; the
resulting class of backward differentiation formulae (BDF) (see Section 3.1 for construction) has
the general form:

k∑
j=0

αjyn+j = hβkfn+k,

where the coefficients αj and βk are given in Table 3 which also displays the value of a in the definition
of stiff-stability, the angle α from the definition of A(α)-stability, the order p of the method and the
corresponding error constant Cp+1 for k ∈ {1, . . . , 6}. Backward differentiation methods with k ≥ 7 of
the kind considered here are not zero-stable and are therefore irrelevant from the practical point of view.

k α6 α5 α4 α3 α2 α1 α0 βk p Cp+1 amin αmax

1 1 −1 1 1 −1
2 0 90o

2 1 −4
3

1
3

2
3 2 −2

9 0 90o

3 1 −18
11

9
11 − 2

11
6
11 3 − 3

22 0.1 88o

4 1 −48
25

36
25 −16

25
3
25

12
25 4 − 12

125 0.7 73o

5 1 −300
137

300
137 −200

137
75
137 − 12

137
60
137 5 − 10

137 2.4 52o

6 1 −360
147

450
147 −400

147
225
147 − 72

147
10
147

60
147 6 − 20

343 6.1 19o

Table 3: Coefficients, order, error constant and stability parameters for backward differentiation methods

4.3 Adaptivity for stiff problems

Ideally, we would like to compute an approximate solution of the following IVP for a system of first-order
ODEs:

y′(x) = f(x,y(x)), y(x0) = y0, (73)

for all x ∈ [x0, XM ], and make sure that this approximation is accurate up to a certain (absolute/relative)
precision. In addition, we would like to achieve such a precision in the fastest/cheapest way possible.
How should this be done? We shall describe two attempts, the first attempt being conceptually simpler,
while the second attempt being the one preferred in practice for reasons which we shall explain.
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4.3.1 First attempt

A simple strategy could be to:

1. choose a one-step method of order p;

2. choose N ∈ N and compute the approximate solution {yn}Nn=0 using the step size h = XM−x0
N ;

3. choose a large natural number Ñ ∈ N with Ñ > N and compute the approximate solution {ỹn}Ñn=0

using the step size h̃ = XM−x0

Ñ
.

This way, we obtain two approximations yN and ỹÑ of y(XM ), which we may use to estimate the error.
To be more precise, we may use the (computable) difference ∥ỹÑ −yN∥ to estimate the (noncomputable)
error ∥y(XM ) − yN∥. If ∥ỹÑ − yN∥ is smaller than a target absolute tolerance TOL, then we finish the
computation. Otherwise, we

1. increase N so that N > Ñ ;

2. compute the approximate solution {yn}Nn=0 using h = XM−x0
N ;

3. check whether ∥ỹÑ − yN∥ < TOL.

If ∥ỹÑ − yN∥ < TOL, then we finish the computation. Otherwise, we select a new Ñ such that Ñ > N ,

and compute {ỹn}Ñn=0 using the step size h̃ = XM−x0

Ñ
. This procedure is repeated until convergence

(alternating N and Ñ). The following argument suggests that the (computable) difference ∥ỹÑ − yN∥
can be used to estimate the error ∥y(XM )− yN∥.

The idea to use ∥ỹÑ − yN∥ to estimate ∥y(XM )− yN∥ is based on the following calculations. Let us

assume that Ñ > N , and define α := h̃
h = N

Ñ
< 1. For h sufficiently small, we have

∥ỹÑ − yN∥ ≤ ∥ỹÑ − y(XM )∥+ ∥y(XM )− yN∥ ≤ C(h̃p + hp) = (1 + αp)Chp

for some constant C > 0, and thus,

∥y(XM )− yN∥ ≤ ∥y(XM )− ỹÑ∥+ ∥ỹÑ − yN∥ ≤ Ch̃p + (1 + αp)Chp = αp
(
Chp

)
+ (1 + αp)

(
Chp

)
.

For α < 1, αp ≪ 1+αp (in relative terms). Therefore, the term ∥y(XM )− ỹÑ∥ has a minor contribution,
and ∥ỹÑ − yN∥ may be used to estimate ∥y(XM )− yN∥.

This first adaptive strategy could deliver an accurate solution, but it is likely to be computationally
inefficient, because whenever the target tolerance is not met we need to compute another solution from
scratch on a finer computational mesh over the entire interval [x0, XM ] (i.e. a global mesh-refinement
needs to be performed – a new numerical approximation has to be computed on a globally refined mesh).

4.3.2 Second attempt

To improve efficiency, we can try to control the consistency error for each mesh point xn. Indeed, Theorem
4 states that the global error is bounded by the maximum of the consistency error up to a constant factor
(however, note the exponential term in the constant factor!). Therefore, the hope is that we may compute
a sufficiently accurate solution by choosing a suitable h or, better still, by adapting the step size locally,
that is, by selecting a suitable hn for every xn to control the local size of the consistency error.

To estimate the consistency error at x = xn, in addition to the one step method

yn+1 = yn + hΦ(xn,yn;h) =: Ψ(xn,yn;h), n ∈ {0, 1, . . . , N − 1}
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of order p being used, we consider an additional one-step method

ỹn+1 = ỹn + hΦ̃(xn, ỹn;h) =: Ψ̃(xn, ỹn;h), n ∈ {0, 1, . . . , N − 1}

of order p̃, with p̃ > p, and we compute

ERR(xn;h) := ∥Ψ̃(xn,yn;h)−Ψ(xn,yn;h)∥. (74)

The idea behind using (74) to estimate the consistency error Tn is that, if the error has been controlled
from x0 up until xn, for some n ≥ 1, then the difference between y(xn) and yn is “negligible”, and
therefore yn can be assumed to be equal to ỹn (both being “equal” to y(xn)). Hence,

hTn = y(xn+1)−Ψ(xn,y(xn);h)

= y(xn+1)− Ψ̃(xn,y(xn);h) + Ψ̃(xn,y(xn);h)−Ψ(xn,y(xn);h)

≈ y(xn+1)− Ψ̃(xn,y(xn);h) + Ψ̃(xn,yn;h)−Ψ(xn,yn;h)

≈ Chp̃+1 + Ψ̃(xn,yn;h)−Ψ(xn,yn;h). (75)

Since the left-hand side of (75) is of the order O(h · hp) = O(hp+1) and p̃ > p, it follows that the term
≈ Chp̃+1 on the right-hand side is “negligible” compared to the “leading term” Ψ̃(xn,yn;h)−Ψ(xn,yn;h).
Hence, hTn ≈ Ψ̃(xn,yn;h)−Ψ(xn,yn;h).

Summing up, the locally adaptive strategy proceeds as follows: at every step xn

1. select an initial local step size hn;

2. compute ERR(xn;hn);

3. if ERR(xn;hn) < TOL, set yn+1 = Ψ(xn,yn;hn); otherwise, choose a smaller hn and go to step 2.

To make this algorithm more efficient, it is common to increase the step hn every time this step has
been accepted, that is, to select βhn for a suitable β > 1.

Remark 7 Let TOL > 0 be a target absolute error tolerance and let ERR(xn;hn) < TOL. Then, the
“optimal” β is

β = βn =

(
TOL

ERR(xn;hn)

) 1
p+1

. (76)

Indeed, if ERR(xn;hn) < TOL, we could have chosen a larger hn and still satisfied the tolerance criterion.
Let βn be such that ERR(xn, βnhn) = TOL, so that βnhn is the ideal step size. Then, we deduce (76),
because

ERR(xn;βnhn) ≈ C(βnhn)
p+1 = βp+1

n Chp+1
n ≈ βp+1

n ERR(xn;hn).

To further improve the efficiency of this adaptive algorithm, it is convenient to use embedded RK
methods, which limit the number of function evaluations.

Definition 15 Two RK methods are embedded if they use the same stages. The Butcher tableau of two
embedded RK methods can be written as

a B[
cT2[
cT1

, where
a B[

cT2
and

a B[
cT1

are the Butcher tableaus of the two RK methods, respectively.
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Example 6 The Heun–Euler method has the Butcher tableau

0 0 0
1 1 0

1/2 1/2
1 0

, where

0 0 0
1 1 0

1/2 1/2

and

0 0 0
1 1 0

1 0

are the Butcher tableaus of Heun’s method yn+1 = yn +
h
2 (f(xn, yn) + f(xn + h, yn + hf(xn, yn))) and the

explicit Euler method yn+1 = yn + hf(xn, yn), respectively.

Example 7 Matlab integrators for ODEs (such as the functions ode45, ode23, etc.) are based on
embedded RK methods.9

9See L. F. Shampine and M. W. Reichelt, The MATLAB ODE suite (1997).
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Part II

Partial Differential Equations (PDEs)

Partial differential equations (PDEs) arise in mathematical models of numerous phenomena in science
and engineering, and they also frequently occur in problems that originate from economics and finance.
In most cases the equations concerned are so complicated that their solution by analytical means (e.g.
by Laplace or Fourier transform based techniques or in the form of an infinite series) is either impossible
or impracticable, and one has to resort to numerical techniques for their approximate solution.

This second part of the course is devoted to the construction and the mathematical analysis of the
conceptually simplest class of numerical techniques, finite difference (FD) methods, for the approximate
solution of elliptic and parabolic PDEs, by considering simple model problems. Preference is given to
theoretical results concerning the stability and the accuracy of numerical methods – properties that are
of key importance in practical computations.

5 Preliminaries: Function spaces

The accuracy of a numerical method for the approximate solution of PDEs depends on its capability to
represent the important qualitative features of the true solution. One such feature that has to be taken
into account in the construction and the analysis of numerical methods is the smoothness of the solution,
and this depends on the smoothness of the data.

Precise assumptions about the smoothness of the data and of the corresponding solution can be con-
veniently formulated by considering classes of functions with particular differentiability and integrability
properties, called function spaces. In this section, we present a brief overview of definitions and basic
results form the theory of function spaces which will be used throughout this second part of the course,
focusing on spaces of continuous functions, spaces of integrable functions, and Sobolev spaces.

5.1 Spaces of continuous functions

We describe some simple function spaces that consist of continuous and continuously differentiable func-
tions. For the sake of notational convenience, we introduce the concept of a multi-index.

An n-tuple α = (α1, . . . , αn) ∈ Nn
0 is called a multi-index. The number |α| := α1 + · · ·+ αn ∈ N0 is

called the length of the multi-index α = (α1, . . . , αn). We denote (0, . . . , 0) ∈ Nn
0 by 0; clearly |0| = 0.

We define

Dα :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

=
∂|α|

∂xα1
1 · · · ∂xαn

n
=: ∂

|α|
x1 . . . x1︸ ︷︷ ︸
α1 times

......xn . . . xn︸ ︷︷ ︸
αn times

.

Example. Let u : R3 → R, u(x) := u(x1, x2, x3) := x31x
3
2x

3
3. Then, we have the following:

• For α := (1, 2, 3), we have Dαu(x) = ∂6
x1x2x2x3x3x3

u(x) = 108x21x2.

• For α := (0, 1, 0), we have Dαu(x) = ∂x2u(x) = 3x31x
2
2x

3
3.

• For α := (2, 0, 0), we have Dαu(x) = ∂2
x1x1

u(x) = 6x1x
3
2x

3
3.

• We have
∑

α∈N30,
|α|=3

Dαu = ∂3
x1x1x1

u+∂3
x1x1x2

u+∂3
x1x1x3

u+∂3
x1x2x2

u+∂3
x1x3x3

u+∂3
x2x2x2

u+∂3
x1x2x3

u+

∂3
x2x2x3

u+ ∂3
x2x3x3

u+ ∂3
x3x3x3

u.

⋄
Let Ω be an open set in Rn, and let k ∈ N0. We denote by Ck(Ω) the set of all continuous real-valued

functions u : Ω → R such that Dαu is continuous on Ω for all α = (α1, . . . , αn) with |α| ≤ k.
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Assuming that Ω is a bounded open set, Ck(Ω) will denote the set of all u in Ck(Ω) such that Dαu
can be extended from Ω to a continuous function on Ω, the closure of the set Ω, for all α = (α1, . . . , αn)
with |α| ≤ k. The linear space Ck(Ω) can then be equipped with the norm

∥u∥Ck(Ω) :=
∑
|α|≤k

sup
x∈Ω

|Dαu(x)| ,

where x := (x1, . . . , xn). In particular, when k = 0, we shall write C(Ω) instead of C0(Ω);

∥u∥C(Ω) = sup
x∈Ω

|u(x)| = max
x∈Ω

|u(x)| .

Similarly, if k = 1,

∥u∥C1(Ω) =
∑
|α|≤1

sup
x∈Ω

|Dαu(x)| = sup
x∈Ω

|u(x)|+
n∑

j=1

sup
x∈Ω

∣∣∂xju(x)
∣∣ .

We write C∞(Ω) :=
⋂∞

k=0C
k(Ω) and C∞(Ω) :=

⋂∞
k=0C

k(Ω).
Example. Let n = 1, and consider the open interval Ω := (0, 1) ⊂ R. The function u : Ω → R, u(x) := 1

x
belongs to Ck(Ω) for all k ≥ 0. Since Ω = [0, 1], it is clear that u is not continuous on Ω; the same is true
of its derivatives. Therefore u does not belong to Ck(Ω) for any k ≥ 0. ⋄

The support of a function u ∈ C(Ω), denoted supp(u), is defined as the closure in Ω of the set
{x ∈ Ω : u(x) ̸= 0}, i.e.,

supp(u) := {x ∈ Ω : u(x) ̸= 0}.

In other words, supp(u) is the smallest closed subset of Ω such that u = 0 in Ω\supp(u).
Example. Let w : Rn → R be the function given by

w(x) :=

{
e
− 1

1−|x|2 , if |x| < 1,
0 , otherwise;

here |x| :=
√

x21 + · · ·+ x2n for x ∈ Rn. Clearly, supp(w) = {x ∈ Rn : |x| ≤ 1} is the closed unit ball. ⋄
We denote by Ck

c (Ω) the set of all u ∈ Ck(Ω) such that supp(u) ⊂ Ω and supp(u) is bounded (or
equivalently, the set of all functions u ∈ Ck(Ω) such that supp(u) ⊂ Ω and supp(u) is compact). Let

C∞
c (Ω) =

⋂
k≥0

Ck
c (Ω).

Example. The function w defined in the previous example belongs to C∞
c (Rn). ⋄

5.2 Spaces of integrable functions

Next we define a class of spaces that consist of (Lebesgue) integrable functions. Let p be a real number,
p ≥ 1; we denote by Lp(Ω) the set of all (measurable) functions u : Ω → R defined on an open set Ω ⊂ Rn

such that ∫
Ω
|u(x)|p dx < ∞.

Here, x := (x1, . . . , xn) and dx := dx1 · · · dxn. Functions which are equal almost everywhere on Ω (i.e.,
equal, except on a set of measure zero) are identified with each other. Lp(Ω) is equipped with the norm

∥u∥Lp(Ω) :=

(∫
Ω
|u(x)|p dx

) 1
p

.
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A particularly important case is p = 2; then,

∥u∥L2(Ω) =

√∫
Ω
|u(x)|2 dx.

The space L2(Ω) can be equipped with an inner product

(u, v)L2(Ω) :=

∫
Ω
u(x)v(x) dx.

Clearly, ∥u∥L2(Ω) =
√
(u, u)L2(Ω).

We note in passing that a subset of Rn is said to be a set of measure zero if it can be contained in the
union of countably many open balls of arbitrarily small total volume. For example, the set of all rational
numbers is a set of measure zero in R.

Lemma 1 (Cauchy–Schwarz inequality) Let u, v ∈ L2(Ω). Then,∣∣(u, v)L2(Ω)

∣∣ ≤ ∥u∥L2(Ω)∥v∥L2(Ω).

Proof. Let λ ∈ R. Then,

0 ≤ ∥u+ λv∥2L2(Ω) = (u+ λv, u+ λv)L2(Ω) = (u, u)L2(Ω) + (u, λv)L2(Ω) + (λv, u)L2(Ω) + (λv, λv)L2(Ω)

= ∥u∥2L2(Ω) + 2λ(u, v)L2(Ω) + λ2∥v∥2L2(Ω).

The right-hand side is a quadratic polynomial in λ with real coefficients which is nonnegative for all
λ ∈ R. Therefore its discriminant is nonpositive, i.e.,

∣∣2(u, v)L2(Ω)

∣∣2 − 4∥u∥2L2(Ω)∥v∥
2
L2(Ω) ≤ 0, and hence

the desired inequality holds. □

Corollary 1 (Triangle inequality) Let u, v ∈ L2(Ω). Then, u+ v ∈ L2(Ω) and

∥u+ v∥L2(Ω) ≤ ∥u∥L2(Ω) + ∥v∥L2(Ω).

Proof. By taking λ = 1 in the proof of the Cauchy–Schwarz inequality above, we deduce that

∥u+ v∥2L2(Ω) = ∥u∥2L2(Ω) + 2(u, v)L2(Ω) + ∥v∥2L2(Ω)

≤ ∥u∥2L2(Ω) + 2∥u∥L2(Ω)∥v∥L2(Ω) + ∥v∥2L2(Ω) = (∥u∥L2(Ω) + ∥v∥L2(Ω))
2,

where in the transition to the second line we applied the Cauchy–Schwarz inequality. □

Remark The space L2(Ω) equipped with the inner product (·, ·)L2(Ω) (and the associated norm ∥u∥L2(Ω) =√
(u, u)L2(Ω)) is an example of a Hilbert space. In general, a linear space X, equipped with an inner

product (·, ·)X (and the associated norm ∥u∥X :=
√

(u, u)X) is called a Hilbert space if, whenever (um)m∈N
is a Cauchy sequence in X, i.e., a sequence of elements of X such that limn,m→∞ ∥un − um∥X = 0, then
there exists a u ∈ X such that limm→∞ ∥um − u∥X = 0 (i.e., (um) converges to u in the norm of X).

5.3 Sobolev spaces

In this section we introduce a class of function spaces that play an important role in modern differential
equation theory. These spaces, called Sobolev spaces (after the Russian mathematician S.L. Sobolev),
consist of functions u ∈ L2(Ω) whose weak derivatives Dαu are also elements of L2(Ω). To give a precise
definition of a Sobolev space, we shall first explain the meaning of weak derivative.
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Suppose that u ∈ Ck(Ω); then we have the following integration-by-parts formula:∫
Ω
Dαu(x) v(x) dx = (−1)|α|

∫
Ω
u(x)Dαv(x) dx ∀α : |α| ≤ k, ∀ v ∈ C∞

c (Ω).

We note here that all integrals on ∂Ω that arise in the course of partial integration, based on the divergence
theorem,10 have vanished because v ∈ C∞

c (Ω). However, in the theory of partial differential equations
one often has to consider functions u that do not possess the smoothness hypothesized above, yet they
have to be differentiated (in some sense). It is for this purpose that we introduce the idea of a weak
derivative.

Suppose that u is locally integrable on Ω (i.e., u ∈ L1(ω) for each bounded open set ω, with ω ⊂ Ω).
Suppose also that there exists a function wα, locally integrable on Ω, and such that∫

Ω
wα(x) v(x) dx = (−1)|α|

∫
Ω
u(x)Dαv(x) dx ∀ v ∈ C∞

c (Ω).

Then we say that wα is the weak derivative of u (of order |α| = α1 + · · · + αn) and write wα = Dαu.
Clearly, if u is a smooth function then its weak derivatives coincide with those in the classical (pointwise)
sense. To simplify the notation, we shall use the letter D to denote both a classical and a weak derivative.

Example Let Ω := R, and suppose that we wish to determine the first weak derivative of the function
u : Ω → R, u(x) := (1 − |x|)+. Here, for a number y ∈ R, we write y+ := max{y, 0} to denote the
nonnegative part of y. Clearly u is not differentiable at the points 0 and ±1. However, because u is
locally integrable on Ω it may, nevertheless, possess a weak derivative. Indeed, for any v ∈ C∞

c (Ω), we
have that∫ ∞

−∞
u(x) v′(x) dx =

∫ ∞

−∞
(1− |x|)+ v′(x) dx

=

∫ 0

−1
(1 + x) v′(x) dx+

∫ 1

0
(1− x) v′(x) dx

= −
∫ 0

−1
v(x) dx+ [(1 + x)v(x)]x=0

x=−1 +

∫ 1

0
v(x) dx+ [(1− x)v(x)]x=1

x=0

= −
(∫ 0

−1
v(x) dx−

∫ 1

0
v(x) dx

)
= −

∫ ∞

−∞
w(x) v(x) dx,

where

w(x) =


0, x < −1,
1, x ∈ (−1, 0),

−1, x ∈ (0, 1),
0, x > 1.

Thus, the piecewise constant function w is the first (weak) derivative of the continuous piecewise linear
function u, i.e., w = u′ = Du. ⋄

Now we are ready to give a precise definition of a Sobolev space. Let k ∈ N0. We define (with Dα

denoting a weak derivative of order |α| )

Hk(Ω) := {u ∈ L2(Ω) : Dαu ∈ L2(Ω) ∀α : |α| ≤ k}.
10Observe that ∫

Ω

(∂xiu)v dx =

∫
Ω

∂xi(uv) dx−
∫
Ω

u ∂xiv dx =

∫
∂Ω

uv νi ds(x)−
∫
Ω

u ∂xiv dx,

where νi is the i-th component of the unit outward normal vector ν = (ν1, . . . , νn) to the boundary ∂Ω of Ω. Here, the first
equality follows from the product rule for derivatives, while the second equality follows by applying the divergence theorem
to the n-component vector function (0, . . . , 0, uv, 0, . . . , 0) whose i-th component is uv while all of the other components are
equal to zero, and noting that div(0, . . . , 0, uv, 0, . . . , 0) = ∂xi(uv) and (0, . . . , 0, uv, 0, . . . , 0) · ν = uv νi.
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The space Hk(Ω) is called a Sobolev space of order k; it is equipped with the (Sobolev) norm

∥u∥Hk(Ω) :=

√∑
|α|≤k

∥Dαu∥2
L2(Ω)

and the inner product

(u, v)Hk(Ω) :=
∑
|α|≤k

(Dαu,Dαv)L2(Ω).

With this inner product, Hk(Ω) is a Hilbert space. Letting

|u|Hk(Ω) :=

√∑
|α|=k

∥Dαu∥2
L2(Ω)

,

we can write

∥u∥Hk(Ω) =

√√√√ k∑
j=0

|u|2Hj(Ω).

The map u 7→ |u|Hk(Ω) is called the Sobolev semi-norm (it is only a semi-norm rather than a norm because

if |u|Hk(Ω) = 0 for u ∈ Hk(Ω) and k ≥ 1, then it does not necessarily follow that u = 0).

We will frequently use the spaces H1(Ω) and H2(Ω):

H1(Ω) :=
{
u ∈ L2(Ω) : ∂xju ∈ L2(Ω) ∀j ∈ {1, . . . , n}

}
,

∥u∥H1(Ω) :=

√√√√∥u∥2
L2(Ω)

+

n∑
j=1

∥∂xju∥2L2(Ω)
, |u|H1(Ω) :=

√√√√ n∑
j=1

∥∂xju∥2L2(Ω)

Similarly,

H2(Ω) :=
{
u ∈ L2(Ω) : ∂xju ∈ L2(Ω), ∂2

xixj
u ∈ L2(Ω) ∀ i, j ∈ {1, . . . , n}

}
,

∥u∥H2(Ω) :=

√√√√∥u∥2
L2(Ω)

+
n∑

j=1

∥∂xju∥2L2(Ω)
+

n∑
i,j=1

∥∂2
xixj

u∥2
L2(Ω)

, |u|H2(Ω) :=

√√√√ n∑
i,j=1

∥∂2
xixj

u∥2
L2(Ω)

.

Finally, we define a special Sobolev space,

H1
0 (Ω) := {u ∈ H1(Ω) : u = 0 on ∂Ω},

i.e., H1
0 (Ω) is the set of all functions u in H1(Ω) such that u = 0 on ∂Ω, (strictly speaking, trace of u

being zero on) the boundary of the set Ω. We shall use this space when considering a PDE that is coupled
with a homogeneous (Dirichlet) boundary condition: u = 0 on ∂Ω. We note here that H1

0 (Ω) is also a
Hilbert space, with the same norm and inner product as H1(Ω).

We conclude the section with the following important result.

Lemma 2 (Poincaré–Friedrichs inequality) Suppose that Ω is a bounded open set in Rn (with a
sufficiently smooth boundary ∂Ω). Then, there exists a constant c⋆ > 0, depending only on Ω, such that
for any u ∈ H1

0 (Ω) there holds

∥u∥2L2(Ω) ≤ c⋆

n∑
i=1

∥∂xiu∥2L2(Ω). (77)
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Proof. We shall prove this inequality for the special case of a rectangular domain Ω = (a, b)× (c, d) in
R2. The proof for general Ω is analogous. For u ∈ H1

0 (Ω), we have

u(x1, x2) = u(a, x2) +

∫ x1

a
∂x1u(ξ, x2) dξ =

∫ x1

a
∂x1u(ξ, x2) dξ.

Thus, by the Cauchy–Schwarz inequality,∫
Ω
|u(x1, x2)|2 dx1 dx2 =

∫ b

a

∫ d

c

∣∣∣∣∫ x1

a
∂x1u(ξ, x2) dξ

∣∣∣∣2 dx2 dx1

≤
∫ b

a

∫ d

c
(x1 − a)

(∫ x1

a
|∂x1u(ξ, x2)|

2 dξ

)
dx2 dx1

≤
(∫ b

a
(x1 − a) dx1

)(∫ d

c

∫ b

a
|∂x1u(ξ, x2)|

2 dξ dx2

)
=

1

2
(b− a)2

∫
Ω
|∂x1u(x1, x2)|

2 dx1 dx2.

Analogously, one shows that∫
Ω
|u(x1, x2)|2 dx1 dx2 ≤

1

2
(d− c)2

∫
Ω
|∂x2u(x1, x2)|

2 dx1 dx2.

By combining the two inequalities, we obtain∫
Ω
|u(x1, x2)|2 dx1 dx2 ≤ c⋆

∫
Ω

(
|∂x1u(x1, x2)|

2 + |∂x2u(x1, x2)|
2
)
dx1 dx2

with c⋆ > 0 given by 1
c⋆

= 2
(b−a)2

+ 2
(d−c)2

. □

6 Introduction to the theory of finite difference (FD) schemes

6.1 Elliptic boundary-value problems

We will start by focusing on boundary-value problems (BVPs) for elliptic PDEs. Elliptic equations
are typified by the Laplace equation11

∆u = 0,

and its nonhomogeneous counterpart, Poisson’s equation

−∆u = f.

More generally, let Ω be a bounded open set in Rn, and consider the (linear) second-order PDE

−
n∑

i,j=1

∂xj (aij∂xiu) +

n∑
i=1

bi∂xiu+ cu = f in Ω, (78)

where the coefficients aij , bi, c and f satisfy

aij ∈ C1(Ω), bi ∈ C(Ω), c, f ∈ C(Ω)

11Recall that in n space dimensions the Laplace operator ∆ is defined by ∆u := div(∇u) = ∂2
x1x1

u+ · · ·+ ∂2
xnxn

u.
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for i, j ∈ {1, . . . , n}, and additionally

n∑
i,j=1

aij(x)ξiξj ≥ c̃|ξ|2 ∀x ∈ Ω, ξ = (ξ1, . . . , ξn) ∈ Rn (79)

for some constant c̃ > 0 independent of x and ξ. The condition (79) is usually referred to as uniform
ellipticity and (78) is called an elliptic equation. In the case of Poisson’s equation, for example,
aij ≡ δij for i, j ∈ {1, . . . , n} (and also bi ≡ 0 for i ∈ {1, . . . , n} and c ≡ 0), and the ellipticity condition
is therefore trivially satisfied, with c̃ = 1.

We note that equation (78) can equivalently be written as

−div(A∇u) + b · ∇u+ cu = f in Ω,

where A(x) = (aij(x))1≤i,j≤n and b(x) = (b1(x), . . . , bn(x))
T (note we use the notation v · w := vTw

for the Euclidean inner product of two vectors v, w ∈ Rn). Recall that the divergence of a vector field
p(x) = (p1(x), . . . , pn(x))

T is defined as div(p) :=
∑n

i=1 ∂xipi. Then, the uniform ellipticity condition
(79) reads

(A(x)ξ) · ξ ≥ c̃|ξ|2 ∀x ∈ Ω, ξ ∈ Rn.

The equation (78) is supplemented with one of the following boundary conditions (b.c.):

• u = g on ∂Ω (Dirichlet b.c.); (if g ≡ 0, this b.c. is called homogeneous Dirichlet b.c.)

• ∂νu = g on ∂Ω, where ν denotes the unit outward normal vector to the boundary ∂Ω of Ω, and
where the derivative in the direction of ν is defined by ∂νu := ∇u · ν (Neumann b.c.);

• ∂νu+ σu = g on ∂Ω, where σ(x) ≥ 0 on ∂Ω (Robin b.c.).

In many physical problems more than one type of boundary condition is imposed on ∂Ω (e.g. ∂Ω is the
union of two disjoint subsets ∂Ω1 and ∂Ω2, with a Dirichlet boundary condition imposed on ∂Ω1 and
a Neumann boundary condition on ∂Ω2). The study of such mixed BVPs is beyond the scope of this
course.

6.1.1 Two solution concepts: classical and weak solutions

We begin by considering the homogeneous Dirichlet BVP

−div(A∇u) + b · ∇u+ cu = f in Ω, (80)

u = 0 on ∂Ω, (81)

where A = A(x) = (aij(x))1≤i,j≤n, b = b(x) = (b1(x), . . . , bn(x))
T, c = c(x) and f = f(x) are as in (79).

A function u ∈ C2(Ω) ∩ C(Ω) satisfying (80)–(81) pointwise is called a classical solution of this
problem. The theory of PDEs tells us that (80)–(81) has a unique classical solution, provided that
aij , bi, c, f and ∂Ω are sufficiently smooth. However, in many applications one has to consider BVPs
where these smoothness requirements are violated, and for such problems the classical theory of PDEs is
inappropriate. Take, e.g., Poisson’s equation on the cube Ω = (−1, 1)n in Rn, subject to a homogeneous
Dirichlet b.c.:

−∆u = f in Ω, where f(x) := sgn(12 − |x|), (∗)
u = 0 on ∂Ω.

This problem does not have a classical solution u ∈ C2(Ω)∩C(Ω), for otherwise ∆u would be a continuous
function on Ω, which is not possible because sgn(12 − |x|) is not a continuous function on Ω.
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In order to overcome the limitations of the classical theory of PDEs and to be able to deal with PDEs
with “nonsmooth” data such as (∗), we generalize the notion of solution by weakening the differentiability
requirements on u; this will lead us to the notion of weak solution. To begin, let us suppose that u is a
classical solution of (80)–(81). Then, for any v ∈ C1

c (Ω),

−
∫
Ω
div(A∇u) v dx+

∫
Ω
b · ∇u v dx+

∫
Ω
cu v dx =

∫
Ω
f v dx.

Integration by parts (divergence theorem) in the first integral and noting that v = 0 on ∂Ω, we obtain∫
Ω
(A∇u) · ∇v dx+

∫
Ω
b · ∇u v dx+

∫
Ω
cu v dx =

∫
Ω
f v dx ∀ v ∈ C1

c (Ω). (82)

In order for this equality to make sense we no longer need to assume that u ∈ C2(Ω): it is sufficient that
u ∈ L2(Ω) and ∂xiu ∈ L2(Ω) for i ∈ {1, . . . , n}. Thus, remembering that u has to satisfy a homogeneous
Dirichlet b.c. on ∂Ω, it is natural to seek u in the space H1

0 (Ω) instead, where, as in Section 5.3,

H1
0 (Ω) =

{
u ∈ L2(Ω) : ∂xiu ∈ L2(Ω) ∀i ∈ {1, . . . , n}, u = 0 on ∂Ω

}
.

Therefore, we consider the following problem: find u in H1
0 (Ω) such that (82) holds.

We note that C1
c (Ω) ⊂ H1

0 (Ω), and observe that when u ∈ H1
0 (Ω) and v ∈ H1

0 (Ω), (instead of
v ∈ C1

c (Ω)), the expressions on the left-hand side and right-hand side of (82) are both still meaningful.
This motivates the following definition.

Definition 16 Let aij ∈ C(Ω) for i, j ∈ {1, . . . , n}, bi ∈ C(Ω) for i ∈ {1, . . . , n}, c ∈ C(Ω), and let
f ∈ L2(Ω). Let A : Ω → Rn×n, A(x) = (aij(x))1≤i,j≤n, and b : Ω → Rn, b(x) = (b1(x), . . . , bn(x))

T. A
function u ∈ H1

0 (Ω) satisfying∫
Ω
(A∇u) · ∇v dx+

∫
Ω
b · ∇u v dx+

∫
Ω
cu v dx =

∫
Ω
f v dx ∀ v ∈ H1

0 (Ω) (83)

is called a weak solution of (80)–(81). (All partial derivatives should be understood as weak derivatives.)

6.1.2 Existence and uniqueness of weak solutions

One can show the following existence and uniqueness result for weak solutions:

Theorem 16 (Existence and uniqueness of weak solutions) Suppose that aij ∈ C(Ω) for i, j ∈
{1, . . . , n}, bi ∈ C1(Ω) for i ∈ {1, . . . , n}, c ∈ C(Ω), f ∈ L2(Ω). Let A : Ω → Rn×n, A(x) =
(aij(x))1≤i,j≤n, and b : Ω → Rn, b(x) = (b1(x), . . . , bn(x))

T. Assume that (79) holds, and assume
that c − 1

2div(b) ≥ 0 in Ω. Then, the BVP (80)–(81) possesses a unique weak solution u ∈ H1
0 (Ω). In

addition, there exists a constant c0 > 0 such that

∥u∥H1(Ω) ≤
1

c0
∥f∥L2(Ω). (84)

Now we return to our earlier example (∗), which has been shown to have no classical solution. However,
by applying Theorem 80 with aij ≡ 1 for i = j, aij ≡ 0 for i ̸= j, 1 ≤ i, j ≤ n (i.e., A ≡ In), bi ≡ 0 for
i = 1, . . . , n (i.e., b ≡ 0), c ≡ 0, f(x) = sgn(12 − |x|), and Ω = (−1, 1)n, we see that (79) holds with c̃ = 1
and the inequality c− 1

2div(b) ≥ 0 is trivially satisfied. Thus (∗) has a unique weak solution u ∈ H1
0 (Ω).

The key tool in proving the existence and uniqueness of a weak solution is the Lax–Milgram theorem:

Theorem 17 (Lax–Milgram) Let V be a real Hilbert space with norm ∥ · ∥V . Let a : V × V → R and
l : V → R be maps with the following properties:

53



• l is linear and a is bilinear, i.e., v 7→ a(v, w) is linear for any fixed w, and w 7→ a(v, w) is linear
for any fixed v,

• ∃ c0 > 0 such that a(v, v) ≥ c0∥v∥2V ∀v ∈ V (coercivity of a),

• ∃ c1 ≥ 0 such that |a(v, w)| ≤ c1∥v∥V ∥w∥V ∀v, w ∈ V (boundedness of a),

• ∃ c2 ≥ 0 such that |l(v)| ≤ c2∥v∥V ∀v ∈ V (boundedness of l).

Then, there exists a unique u ∈ V such that a(u, v) = l(v) ∀v ∈ V .

Example 8 Let Ω := (0, 1) and let f ∈ L2(Ω). Let p : Ω → R, p(x) := 2ex. Consider the problem

−(pu′)′ = f in Ω, u = 0 on ∂Ω.

We demonstrate how the Lax–Milgram theorem can be used to show that this problem has a unique weak
solution u ∈ H1

0 (Ω), i.e., that there exists a unique u ∈ H1
0 (Ω) such that∫ 1

0
p u′ v′ dx =

∫ 1

0
f v dx ∀v ∈ H1

0 (Ω).

Step 1: Define a Hilbert space V with norm ∥ · ∥V , a bilinear map a : V × V → R, and a linear map
l : V → R such that u ∈ V is a weak solution iff a(u, v) = l(v) ∀v ∈ V .

We consider the Hilbert space V := H1
0 (Ω) with norm ∥ · ∥V := ∥ · ∥H1(Ω). We define a : V × V → R

and l : V → R by

a(v, w) :=

∫ 1

0
p v′w′ dx, l(v) :=

∫ 1

0
f v dx

for v, w ∈ V . Note that a is bilinear, l is linear, and u ∈ V is a weak solution iff a(u, v) = l(v) ∀v ∈ V .
Step 2: Show coercivity of a, i.e., that ∃c0 > 0 such that a(v, v) ≥ c0∥v∥2V ∀v ∈ V .

We set c0 :=
2

1+c⋆
> 0, where c⋆ > 0 is the constant from the Poincaré–Friedrichs inequality (Lemma

2). Using that p(x) = 2ex ≥ 2 for all x ∈ [0, 1], we have

a(v, v) =

∫ 1

0
p |v′|2 dx ≥ 2

∫ 1

0
|v′|2 dx ≥ 2

1 + c⋆

(∫ 1

0
|v′|2 dx+

∫ 1

0
|v|2 dx

)
=

2

1 + c⋆
∥v∥2H1(Ω) = c0∥v∥2V

for any v ∈ V , where we have used the Poincaré–Friedrichs inequality
∫ 1
0 |v|

2 dx ≤ c⋆
∫ 1
0 |v

′|2 dx ∀v ∈ V .
Step 3: We show boundedness of a, i.e., that ∃c1 ≥ 0 such that |a(v, w)| ≤ c1∥v∥V ∥w∥V ∀v, w ∈ V .

We set c1 := 2e > 0. Using that |p(x)| = 2ex ≤ 2e for all x ∈ [0, 1], and using the Cauchy–Schwarz
inequality, we have that

|a(v, w)| ≤
∫ 1

0
|p| |v′| |w′|dx ≤ 2e

∫ 1

0
|v′| |w′|dx = 2e(|v′|, |w′|)L2(Ω)

≤ 2e∥v′∥L2(Ω)∥w′∥L2(Ω) ≤ 2e∥v∥H1(Ω)∥w∥H1(Ω) = c1∥v∥V ∥w∥V

for any v, w ∈ V , where we have used in the final inequality that there holds ∥v′∥L2(Ω) ≤ ∥v∥H1(Ω) for any
v ∈ H1(Ω) (and hence, in particular, for any v ∈ V as V ⊂ H1(Ω)).
Step 4: We show boundedness of l, i.e., that ∃c2 ≥ 0 such that |l(v)| ≤ c2∥v∥V ∀v ∈ V .

We set c2 := ∥f∥L2(Ω) ≥ 0. Using the Cauchy–Schwarz inequality, we have for any v ∈ V that

|l(v)| =
∣∣(f, v)L2(Ω)

∣∣ ≤ ∥f∥L2(Ω)∥v∥L2(Ω) ≤ ∥f∥L2(Ω)∥v∥H1(Ω) = c2∥v∥V ,

where we have used in the final inequality that there holds ∥v∥L2(Ω) ≤ ∥v∥H1(Ω) for any v ∈ H1(Ω) (and
hence, in particular, for any v ∈ V as V ⊂ H1(Ω)).
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Altogether, by the Lax–Milgram theorem there exists a unique u ∈ V such that a(u, v) = l(v) for all
v ∈ V , i.e., there exists a unique weak solution u ∈ V to the given problem. In addition, we find that
c0∥u∥2H1(Ω) ≤ a(u, u) = l(u) ≤ c2∥u∥H1(Ω) = ∥f∥L2(Ω)∥u∥H1(Ω), i.e.,

∥u∥H1(Ω) ≤
1

c0
∥f∥L2(Ω) =

1 + c⋆
2

∥f∥L2(Ω).

Remark. Theorem 16 implies that the weak formulation of the elliptic BVP (80)–(81) is well-posed in
the sense of Hadamard; that is, for each f ∈ L2(Ω) there exists a unique (weak) solution u ∈ H1

0 (Ω),
and “small” changes in f give rise to “small” changes in the corresponding solution u. The latter
property follows by noting that if u1 and u2 are weak solutions in H1

0 (Ω) of (80)–(81) corresponding to
right-hand sides f1 and f2 in L2(Ω), respectively, then u1−u2 is the weak solution in H1

0 (Ω) of (80)–(81)
corresponding to the right-hand side f1 − f2 ∈ L2(Ω). Thus, by virtue of (84),

∥u1 − u2∥H1(Ω) ≤
1

c0
∥f1 − f2∥L2(Ω), (85)

and the required continuous dependence of the solution of the BVP on the right-hand side follows. ⋄

6.1.3 Maximum principle

The maximum principle is a key property of elliptic equations. Under suitable sign-conditions imposed on
the source term (i.e., the right-hand side f) in the equation and the coefficients of the differential operator,
it (roughly speaking) ensures that the maximum value of the solution is attained at the boundary of the
domain rather than at an interior point.

We consider the BVP
−∆u = f in Ω, u = g on ∂Ω,

where Ω ⊂ Rn is a bounded open set, f ∈ C(Ω) and g ∈ C(∂Ω). Our goal is to show that if f(x) ≤ 0 for
all x ∈ Ω, and if u ∈ C2(Ω) ∩ C(Ω) is a classical solution to the above BVP, then the maximum value of
u over Ω is attained on the boundary ∂Ω of the domain, i.e.,

maxx∈Ω u(x) = maxx∈∂Ω u(x).

This is known as the maximum principle.

Proof for the case f < 0

Suppose that f(x) < 0 for all x ∈ Ω and that u ∈ C2(Ω) ∩ C(Ω) is a (classical) solution to the above
BVP, i.e., −∆u(x) = f(x) for all x ∈ Ω and u(x) = g(x) for all x ∈ ∂Ω. We prove that the maximum
value of u is then attained on ∂Ω. Suppose otherwise, that u attains its maximum value at some interior
point x0 ∈ Ω. Then,

∂xiu(x0) = 0, ∂2
xixi

u(x0) ≤ 0 ∀i ∈ {1, . . . , n}.

Hence, −∆u(x0) = −
∑n

i=1 ∂
2
xixi

u(x0) ≥ 0, which contradicts the assumption that f(x) < 0 for all x ∈ Ω.
The maximum value of u must therefore be attained on ∂Ω, i.e., maxx∈Ω u(x) = maxx∈∂Ω u(x).

Proof for the case f ≤ 0

Let us now prove the maximum principle under the weaker assumption f(x) ≤ 0 for all x ∈ Ω. To this
end, we consider the auxiliary function v ∈ C2(Ω) ∩ C(Ω) defined by

v(x) := u(x) +
ε

2n
(x21 + · · ·+ x2n) = u(x) +

ε

2n
|x|2,
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where ε > 0. Then, −∆v(x) = −∆u(x) − ε = f(x) − ε < 0 for all x ∈ Ω. Hence, by what we have
previously proved, v attains its maximum value on the boundary ∂Ω of Ω. Consequently,

max
x∈∂Ω

u(x) = max
x∈∂Ω

[
v(x)− ε

2n
|x|2
]
≥ max

x∈∂Ω
v(x)− max

x∈∂Ω

[ ε

2n
|x|2
]
= max

x∈Ω
v(x)− ε

2n
max
x∈∂Ω

|x|2.

As v(x) = u(x)+ ε
2n |x|

2 ≥ u(x) for all x ∈ Ω, we find maxx∈∂Ω u(x) ≥ maxx∈Ω u(x)− ε
2n maxx∈∂Ω |x|2 for

all ε > 0. Since the expression on the left-hand side of this inequality is independent of ε, as is the first
term on the right-hand side, by passing to the limit ε ↘ 0, we deduce that maxx∈∂Ω u(x) ≥ maxx∈Ω u(x).

As ∂Ω ⊂ Ω, trivially maxx∈Ω u(x) ≥ maxx∈∂Ω u(x). Therefore, we have maxx∈Ω u(x) = maxx∈∂Ω u(x).

Remark 8 (Minimum principle when f ≥ 0) Analogously, if −∆u = f in Ω, u = g on ∂Ω, and
f ≥ 0 in Ω, then −u is the solution of the PDE −∆(−u) = −f ≤ 0. Therefore −u attains its maximum
value on the boundary ∂Ω of the domain Ω. Equivalently, u attains its minimum value on ∂Ω, i.e.,

min
x∈Ω

u(x) = min
x∈∂Ω

u(x).

This is known as the minimum principle.

6.2 Methodology of FD schemes

Let Ω be a bounded open set in Rn and suppose that we wish to solve the BVP

Lu = f in Ω,

Bu = g on Γ := ∂Ω,
(86)

where L : u 7→ Lu is a linear partial differential operator, and B : u 7→ Bu is a linear operator which
specifies the b.c.. For example,

Lu := −div(A∇u) + b · ∇u+ cu,

and Bu := u (Dirichlet b.c.), or Bu := ∂νu (Neumann b.c.).
In general, it is impossible to determine the solution of the BVP (86) in closed form. Thus, the goal

of this chapter is to describe a simple and general numerical technique for the approximate solution of
(86), called the finite difference (FD) method. The construction of a FD scheme consists of two basic
steps: first, the computational domain is approximated by a finite set of points, called the FD mesh,
and second, the derivatives appearing in the PDE (and, possibly also in the b.c.) are approximated by
divided differences (difference quotients) on the FD mesh.

To describe the first of these two steps more precisely, suppose that we have “approximated” Ω = Ω∪Γ
by a finite set of points

Ωh = Ωh ∪ Γh,

where Ωh ⊂ Ω and Γh ⊂ Γ; Ωh is called a mesh, Ωh is the set of interior mesh-points and Γh the set
of boundary mesh-points. The parameter h = (h1, . . . , hn) measures the “fineness” of the mesh (here
hi denotes the mesh-size in the coordinate direction xi): the smaller max1≤i≤n hi is, the finer the mesh.

Having constructed the mesh, we proceed by replacing the derivatives in L by divided differences,
and we approximate the b.c. in a similar fashion. This yields the FD scheme

LhU(x) = fh(x), x ∈ Ωh,

BhU(x) = gh(x), x ∈ Γh,
(87)

where fh and gh are suitable approximations of f and g, respectively. Now (87) is a system of linear
algebraic equations involving the values of U at the mesh-points, and can be solved by, e.g., Gaussian
elimination, provided, of course, that it has a unique solution. The sequence {U(x) : x ∈ Ωh} is an
approximation to {u(x) : x ∈ Ωh}, the values of the exact solution at the mesh-points.

There are two classes of problems associated with FD schemes:
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• the first, and more fundamental, is the problem of approximation, that is, whether (87) approx-
imates the BVP (86) in some sense, and whether its solution {U(x) : x ∈ Ωh} approximates
{u(x) : x ∈ Ωh}, the values of the exact solution at the mesh-points.

• the second problem concerns the effective solution of the discrete problem (87) using techniques
from numerical linear algebra.

In this course, our focus is on the first of these two problems. (See MA4230 for an introduction to
numerical linear algebra).

6.3 FD approximation of a two-point boundary-value problem

In order to give a simple illustration of the general framework of FD approximation, let us consider the
following two-point BVP for a second-order linear (ordinary) differential equation:

−u′′ + cu = f in (0, 1),

u(0) = 0, u(1) = 0,
(88)

where f, c ∈ C([0, 1]) are real-valued continuous functions on [0, 1], and c(x) ≥ 0 for all x ∈ [0, 1].

6.3.1 Construction of a FD scheme

The first step in the construction of a FD scheme for this BVP is to define the mesh. Let N ∈ N with
N ≥ 2, and let h := 1

N be the mesh-size; the mesh-points are xi := ih for i ∈ {0, 1, . . . , N}. Formally,
Ωh := {x1, . . . , xN−1} is the set of interior mesh-points, Γh := {x0, xN} the set of boundary mesh-points
and Ωh := Ωh ∪ Γh the set of all mesh-points. Suppose that u is sufficiently smooth (e.g., u ∈ C4([0, 1])).
Then, by Taylor series expansion,

u(xi+1) = u(xi + h) = u(xi) + hu′(xi) +
h2

2
u′′(xi) +

h3

6
u′′′(xi) +O(h4),

u(xi−1) = u(xi − h) = u(xi)− hu′(xi) +
h2

2
u′′(xi)−

h3

6
u′′′(xi) +O(h4),

so that

D+
x u(xi) :=

u(xi+1)− u(xi)

h
= u′(xi) +O(h), D−

x u(xi) :=
u(xi)− u(xi−1)

h
= u′(xi) +O(h),

and

D+
x D

−
x u(xi) = D−

x D
+
x u(xi) =

u(xi+1)− 2u(xi) + u(xi−1)

h2
= u′′(xi) +O(h2).

The operators D+
x and D−

x are called the forward/backward first divided difference operator,
respectively, and D+

x D
−
x (= D−

x D
+
x ) is called the (symmetric) second divided difference operator.

The difference operator D0
x, called the central first divided difference operator, is defined by

D0
xu(xi) :=

D+
x u(xi) +D−

x u(xi)

2
=

u(xi+1)− u(xi−1)

2h
(= u′(xi) +O(h2)).

Thus, we replace the second derivative u′′ in the DE at a mesh point xi by the second divided difference
D+

x D
−
x u(xi); hence,

−D+
x D

−
x u(xi) + c(xi)u(xi) ≈ f(xi), i ∈ {1, . . . , N − 1},

u(x0) = 0, u(xN ) = 0.
(89)
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Now (89) indicates that the approximate solution U (not to be confused with the exact solution u) should
be sought as the solution of the system of difference equations:

−D+
x D

−
x Ui + c(xi)Ui = −Ui+1 − 2Ui + Ui−1

h2
+ c(xi)Ui = f(xi), i ∈ {1, . . . , N − 1},

U0 = 0, UN = 0.
(90)

This is, in fact, a system of N −1 linear algebraic equations for the N −1 unknowns U1, . . . , UN−1. Using
matrix notation, the linear system can be written as follows:

2

h2
+ c(x1) − 1

h2 0
− 1

h2

2

h2
+ c(x2) − 1

h2

. . .
. . .

. . .

− 1
h2

2

h2
+ c(xN−2) − 1

h2

0 − 1
h2

2

h2
+ c(xN−1)




U1

U2
...

UN−2

UN−1

 =


f(x1)
f(x2)

...
f(xN−2)
f(xN−1)

 ,

or, more compactly, AU = F , where A ∈ R(N−1)×(N−1) is the symmetric tridiagonal matrix displayed
above, and U := (U1, . . . , UN−1)

T ∈ RN−1 and F := (f(x1), . . . , f(xN−1))
T ∈ RN−1.

6.3.2 Existence and uniqueness of solutions to the FD scheme

We begin the analysis of the FD scheme (90) by showing that it has a unique solution. It suffices to show
that the matrix A is invertible.

Remark 9 If c(x) > 0 ∀x ∈ Ω, then A is strictly diagonally dominant, i.e.,

|aii| >
∑

j∈{1,...,N−1}\{i}

|aij | ∀i ∈ {1, . . . , N − 1},

and hence, A is invertible and the FD scheme (90) possesses a unique solution U .

In the more general case c ≥ 0 in Ω, we will prove invertibility of A by developing a technique which
we shall, in subsequent sections, extend to the FD approximation of PDEs. The purpose of this section
is to introduce the key ideas through the FD approximation (89) of the simple two-point BVP (88).

For this purpose, we introduce, for two functions V and W defined at the interior mesh-points
x1, . . . , xN−1, the inner product

(V,W )h :=
N−1∑
i=1

hViWi,

which resembles the L2((0, 1))-inner product (v, w)L2((0,1)) :=
∫ 1
0 v(x)w(x) dx.

The argument that we shall develop is based on mimicking, at the discrete level, the following proce-
dure based on integration-by-parts, noting that the solution of the BVP (88) satisfies the homogeneous
b.c. u(0) = u(1) = 0 at the end-points of the interval [0, 1]:∫ 1

0
(−u′′(x) + c(x)u(x))u(x) dx =

∫ 1

0
|u′(x)|2 dx+

∫ 1

0
c(x)|u(x)|2 dx ≥

∫ 1

0
|u′(x)|2 dx, (91)

thanks to the assumption that c(x) ≥ 0 for all x ∈ [0, 1]. Thus, if e.g. f is identically zero on [0, 1], then
so is −u′′ + cu, and thanks to the inequality (91) the function u′ is then also identically equal to zero on
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[0, 1]. Consequently, u is a constant function on [0, 1], but because u(0) = 0 and u(1) = 0, the constant
function u must be identically zero. In other words, the only solution to the homogeneous BVP (i.e.,
the BVP with f ≡ 0) is the function u ≡ 0. For the FD approximation of the BVP, if we could show
by an analogous argument that the homogeneous system of linear algebraic equations corresponding to
f(xi) = 0, i ∈ {1, . . . , N − 1}, has the trivial solution Ui = 0, i ∈ {0, . . . , N}, as its unique solution, then
the desired invertibility of the matrix A would directly follow.

Our key technical tool to this end is the following summation-by-parts identity, which is the discrete
counterpart of the integration-by-parts identity (−u′′, u)L2((0,1)) = (u′, u′)L2((0,1)) = ∥u′∥2L2((0,1)) satisfied

by the function u, obeying the homogeneous b.c. u(0) = u(1) = 0, used in (91) above.

Lemma 3 Suppose that V is a function defined at the mesh-points xi, i ∈ {0, 1, . . . , N}, and V0 = VN =
0; then,

(−D+
x D

−
x V, V )h =

N∑
i=1

h
∣∣D−

x Vi

∣∣2 . (92)

Proof. Recalling the definitions of the inner product (·, ·)h and of D+
x D

−
x Vi, we have that

(−D+
x D

−
x V, V )h = −

N−1∑
i=1

h (D+
x D

−
x Vi)Vi = −

N−1∑
i=1

Vi+1 − Vi

h
Vi +

N−1∑
i=1

Vi − Vi−1

h
Vi

= −
N∑
i=1

Vi − Vi−1

h
Vi−1 +

N∑
i=1

Vi − Vi−1

h
Vi

=

N∑
i=1

Vi − Vi−1

h
(Vi − Vi−1) =

N∑
i=1

h
∣∣D−

x Vi

∣∣2 ,
where in the third equality, we shifted the index in the first summation and used V0 = VN = 0. □

Now, let V be as in the above lemma and note that as c(x) ≥ 0 for all x ∈ [0, 1], we have that

(AV, V )h = (−D+
x D

−
x V + cV, V )h = (−D+

x D
−
x V, V )h + (cV, V )h ≥

N∑
i=1

h
∣∣D−

x Vi

∣∣2 . (93)

Thus, if AV = 0 for some V = (V1, . . . , VN−1)
T ∈ RN−1, then D−

x Vi = 0 for all i ∈ {1, . . . , N}; because
V0 = VN = 0, this implies that Vi = 0 for all i ∈ {0, 1, . . . , N}. Hence AV = 0 iff V = 0. It follows that
A is invertible, and thereby (90) has a unique solution, U = A−1F. We record this result in the next
theorem.

Theorem 18 Suppose that c, f ∈ C([0, 1]), and c(x) ≥ 0 for all x ∈ [0, 1]; then, the FD scheme (90)
possesses a unique solution U .

We note in passing that, by Theorem 16, the BVP (88) has a unique (weak) solution under the
hypotheses on c and f asserted in Theorem 18.

Remark 10 We used the symbol A to denote the matrix of the system of linear equations that arises
from the FD approximation as well as the FD operator V 7→ −D+

x D
−
x V + cV . Similarly, we used the

symbol U to denote the vector (U1, . . . , UN−1)
T of unknowns representing the solution of the system of

linear algebraic equations AU = F as well as the mesh function defined on the FD mesh Ωh with the
understanding that U0 = UN = 0. For notational simplicity we shall continue to use these conventions
throughout: i.e., we shall use the same notation for matrices and FD operators, and we shall use the
same notation for vectors and mesh functions defined over FD meshes. It will be clear from the context
which of the two interpretations of the same symbol is intended.
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6.3.3 Stability, consistency, and convergence

Next, we investigate the approximation properties of the FD scheme (90). A key ingredient in our analysis
is the fact that the scheme (90) is stable (or discretely well-posed) in the sense that “small” perturbations
in the data result in “small” perturbations in the FD solution. Effectively, we prove a discrete version of
(84). Let us define the discrete L2-norm ∥ · ∥h and the discrete Sobolev norm ∥ · ∥1,h by

∥U∥h :=
√
(U,U)h =

√√√√N−1∑
i=1

h|Ui|2, ∥U∥1,h :=
√
∥U∥2h + ∥D−

x U ]|2h,

where ∥V ]|h :=
√∑N

i=1 h |Vi|2 is the norm induced by the inner product (V,W ]h :=
∑N

i=1 hViWi.

Using this notation, the inequality (93) can be rewritten as

(AV, V )h ≥ ∥D−
x V ]|2h. (94)

In fact, by employing a discrete version of the Poincaré–Friedrichs inequality (77), stated in Lemma 4
below, we shall be able to prove that (AV, V )h ≥ c0∥V ∥21,h, where c0 > 0 is a constant independent of h.

Lemma 4 (Discrete Poincaré–Friedrichs inequality) Let V be a function defined on the FD mesh
{xi := ih : i ∈ {0, . . . , N}}, where h := 1

N and N ∈ N≥2, and such that V0 = VN = 0; then, there exists
a constant c⋆ > 0, independent of V and h, such that, for all such V ,

∥V ∥2h ≤ c⋆∥D−
x V ]|2h. (95)

Proof. Using the definition of D−
x Vi and the Cauchy–Schwarz inequality, we have

|Vi|2 =

∣∣∣∣∣∣
i∑

j=1

h (D−
x Vj)

∣∣∣∣∣∣
2

≤

 i∑
j=1

h

 i∑
j=1

h
∣∣D−

x Vj

∣∣2 = ih

i∑
j=1

h
∣∣D−

x Vj

∣∣2 .
Therefore, because

∑N−1
i=1 i = 1

2(N − 1)N and Nh = 1, we have that

∥V ∥2h =

N−1∑
i=1

h |Vi|2 ≤
N−1∑
i=1

ih2
i∑

j=1

h
∣∣D−

x Vj

∣∣2 ≤ 1

2
(N − 1)Nh2

N∑
j=1

h
∣∣D−

x Vj

∣∣2 ≤ 1

2
∥D−

x V ]|2h.

We find the claimed inequality (95) holds with c⋆ =
1
2 . □

Using the inequality (95) to bound the right-hand side of the inequality (94) from below we obtain

(AV, V )h ≥ 1

c⋆
∥V ∥2h. (96)

Adding the inequality (94) to the inequality (96) we arrive at the inequality

(AV, V )h ≥ 1

1 + c⋆

(
∥V ∥2h + ∥D−

x V ]|2h
)
= c0∥V ∥21,h, (97)

where c0 :=
1

1+c⋆
. Now the stability of the FD scheme (90) easily follows.

Theorem 19 The scheme (90) is stable in the sense that

∥U∥1,h ≤ 1

c0
∥f∥h. (98)
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Proof. From the inequality (97) and the definition (90) of the FD scheme we have that

c0∥U∥21,h ≤ (AU,U)h = (f, U)h ≤ ∥f∥h∥U∥h ≤ ∥f∥h∥U∥1,h,

and hence the inequality (98). □
Using this stability result it is easy to derive an estimate of the error between the exact solution u

and its FD approximation U . We define the global error e by

ei := u(xi)− Ui, i ∈ {0, . . . , N}.

Obviously e0 = 0, eN = 0, and

Aei = Au(xi)−AUi = Au(xi)− f(xi) = −D+
x D

−
x u(xi) + c(xi)u(xi)− f(xi) = u′′(xi)−D+

x D
−
x u(xi)

for i ∈ {1, . . . , N − 1}. Thus,

Aei = φi, i ∈ {1, . . . , N − 1}, e0 = eN = 0 (99)

where φi := Au(xi) − f(xi) = u′′(xi) − D+
x D

−
x u(xi) is the consistency error (or truncation error).

By applying the inequality (98) to the FD scheme (99), we obtain

∥u− U∥1,h = ∥e∥1,h ≤ 1

c0
∥φ∥h. (100)

It remains to estimate ∥φ∥h. We showed in Section 6.3.1 that, if u ∈ C4([0, 1]), then

φi = u′′(xi)−D+
x D

−
x u(xi) = O(h2),

i.e., there exists a constant C > 0, independent of h, such that |φi| ≤ Ch2 for h > 0 sufficiently small.
Consequently,

∥φ∥h =

√√√√N−1∑
i=1

h |φi|2 ≤ Ch2. (101)

By combining the inequalities (100) and (101) it follows that

∥u− U∥1,h ≤ C

c0
h2. (102)

In fact, a more careful treatment of the remainder term in the Taylor series expansion reveals that

φi = u′′(xi)−D+
x D

−
x u(xi) = u′′(xi)−

u(xi+1)− 2u(xi) + u(xi−1)

h2
= −h2

12
u(4)(ξi)

for some ξi ∈ (xi−1, xi+1). Thus,

|φi| ≤
h2

12
max
x∈[0,1]

∣∣∣u(4)(x)∣∣∣ = h2

12
∥u(4)∥C([0,1]),

and hence, we can take C = 1
12∥u

(4)∥C([0,1]) in inequality (101). Recalling that c0 =
1

1+c⋆
and c⋆ =

1
2 , we

deduce that c0 =
2
3 . Substituting the values of the constants C and c0 into (102) it follows that

∥u− U∥1,h ≤ h2

8
∥u(4)∥C([0,1]).

Thus we have proved the following result.

Theorem 20 Let f, c ∈ C([0, 1]) with c(x) ≥ 0 for all x ∈ [0, 1], and suppose that the corresponding
(weak) solution of the BVP (88) belongs to C4([0, 1]); then

∥u− U∥1,h ≤ h2

8
∥u(4)∥C([0,1]). (103)
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6.4 Key steps of a general error analysis for FD approximations of elliptic PDEs

The analysis of the simple FD scheme (90) contains the key steps of a general error analysis for FD
approximations of (elliptic) PDEs:

(1) The first step is to prove the stability of the scheme in an appropriate mesh-dependent norm (see
inequality (98), for example). A typical stability result for the general FD scheme (87) is

|||U |||Ωh
≤ C1(∥fh∥Ωh

+ ∥gh∥Γh
), (104)

where ||| · |||Ωh
, ∥ · ∥Ωh

and ∥ · ∥Γh
are mesh-dependent norms involving mesh-points of Ωh (or Ωh) and

Γh, respectively, and C1 > 0 is a constant, independent of h.
(2) The second step is to estimate the size of the consistency error,

φΩh
:= Lhu− fh, in Ωh,

φΓh
:= Bhu− gh, on Γh.

(in the case of the FD scheme (88) φΓh
= 0, and therefore φΓh

did not appear explicitly in our error
analysis). If

∥φΩh
∥Ωh

+ ∥φΓh
∥Γh

→ 0 as h → 0,

for a sufficiently smooth solution u of the boundary-value problem (86), we say that the scheme (87) is
consistent. If p ∈ N is the largest natural number such that

∥φΩh
∥Ωh

+ ∥φΓh
∥Γh

= O(hp)

as h → 0, for all sufficiently smooth u, the scheme is said to have order of accuracy (or order of
consistency) p.

The FD scheme (87) is said to provide a convergent approximation to the solution u of the BVP
(86) in the norm ||| · |||Ωh

, if

|||u− U |||Ωh
→ 0 as h → 0.

If q ∈ N is the largest natural number such that

|||u− U |||Ωh
= O(hq)

as h → 0, then the scheme is said to have order of convergence q. From these definitions we deduce
the following fundamental theorem.

Theorem 21 Suppose that the FD scheme (87), involving linear FD operators Lh and Bh, is stable (i.e.,
the inequality (104) holds for all fh and gh) and that the scheme is a consistent approximation of the
BVP (86); then the FD scheme (87) is a convergent approximation of the BVP (86), and the order of
convergence q is not smaller than the order of accuracy p.

Proof. We define the global error e := u− U . Then, thanks to the assumed linearity of Lh, we have

Lhe = Lh(u− U) = Lhu− LhU = Lhu− fh.

Thus, Lhe = φΩh
. Similarly, thanks to the assumed linearity of Bh, we have that Bhe = φΓh

. By the
assumed stability of the scheme it then follows that

|||u− U |||Ωh
= |||e|||Ωh

≤ C1(∥φΩh
∥Ωh

+ ∥φΓh
∥Γh

),

and hence the stated result with q ≥ p thanks to the consistency of order p of the FD scheme. □

Thus, stability and consistency imply convergence. This abstract result is at the heart of the conver-
gence analysis of FD approximations of PDEs.
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7 FD approximation of elliptic problems

In Section 6 we presented a detailed error analysis for a FD approximation of a two-point BVP. Here we
shall carry out a similar analysis for the model problem

−∆u+ cu = f in Ω,

u = 0 on ∂Ω,
(105)

where Ω := (0, 1)2, c is a continuous function on Ω, i.e., c ∈ C(Ω), and c(x, y) ≥ 0 ∀(x, y) ∈ Ω. For the
function f , we assume that f is a continuous on Ω, i.e., f ∈ C(Ω).

We assume that the unique weak solution u to this BVP belongs to C4(Ω) (in particular, u is a
classical solution).

Remark 11 In this course, we do not consider the more general case where f is merely in L2(Ω), and
where a classical solution does not exist; see the original notes by Endre Süli for this. This gives rise to
technical difficulties: in particular, we cannot use a Taylor series expansion to estimate the size of the
consistency error.

The first step in the construction of the FD approximation of (105) is to define the mesh. Let
N ∈ N≥2 and let h := 1

N ; the mesh-points are (xi, yj), i, j ∈ {0, 1, . . . , N}, where xi := ih, yj := jh.
These mesh-points form the mesh

Ωh := {(xi, yj) : i, j ∈ {0, 1, . . . , N}} ⊂ Ω.

Similarly as in Section 3, we consider the set of interior mesh-points

Ωh := {(xi, yj) : i, j ∈ {1, . . . , N − 1}} ⊂ Ω,

and the set of boundary mesh-points Γh := Ωh \ Ωh. Analogously to (90), the FD scheme is

−(D+
x D

−
x Ui,j +D+

y D
−
y Ui,j) + c(xi, yj)Ui,j = f(xi, yj) for (xi, yj) ∈ Ωh,

U = 0 on Γh.
(106)

In an expanded form, this can be written as follows:

−
[
Ui+1,j − 2Ui,j + Ui−1,j

h2
+

Ui,j+1 − 2Ui,j + Ui,j−1

h2

]
+ c(xi, yj)Ui,j = f(xi, yj), i, j ∈ {1, . . . , N − 1}, (107)

Ui,j = 0 if i ∈ {0, N} or if j ∈ {0, N}. (108)

For each i and j, i, j ∈ {1, . . . , N − 1}, the FD equation (107) involves five values of the approximate
solution U : Ui,j , Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1, and is therefore frequently referred to as the five-point
difference scheme. It is again possible to write (107)–(108) as a system of linear algebraic equations

AU = F, (109)

where now

U = (U11, . . . , U1,N−1, U21, . . . , U2,N−1, . . . . . . , UN−1,1, . . . , UN−1,N−1)
T,

F = (F11, . . . , F1,N−1, F21, . . . , F2,N−1, . . . . . . , FN−1,1, . . . , FN−1,N−1)
T,

and A ∈ R(N−1)2×(N−1)2 is a sparse matrix of banded structure (i.e., a sparse matrix whose nonzero
entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on
either side). A typical row of the matrix contains five nonzero entries, corresponding to the five values of
U in the FD stencil shown in Fig. 2, while the sparsity structure of A is depicted in Fig. 3.
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Figure 2: The mesh Ωh(·), the boundary mesh Γh(×), and a typical five-point difference stencil.
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Figure 3: The sparsity structure of the matrix A ∈ R(N−1)2×(N−1)2 (illustration for N = 5).
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7.1 Existence and uniqueness, stability, consistency, and convergence

Next we show that (106) has a unique solution. We proceed analogously as in Section 6. For two functions,
V and W , defined on Ωh, we introduce the inner product

(V,W )h :=

N−1∑
i=1

N−1∑
j=1

h2Vi,jWi,j ,

which resembles the L2-inner product (v, w)L2(Ω) :=
∫
Ω v(x, y)w(x, y) dx dy. The next result is a direct

extension of Lemma 3 from the univariate case to the case of two space dimensions.

Lemma 5 Suppose that V is a function defined on Ωh and that V = 0 on Γh; then,

(−D+
x D

−
x V, V )h + (−D+

y D
−
y V, V )h =

N∑
i=1

N−1∑
j=1

h2|D−
x Vi,j |2 +

N−1∑
i=1

N∑
j=1

h2|D−
y Vi,j |2. (110)

Proof. The identity (110) is a direct consequence of (92) and the analogous identity for −D+
y D

−
y . □

Returning to the analysis of the FD scheme (106), we shall now proceed in much the same way as in
the univariate case considered in the previous section. We note that, since c ≥ 0 on Ω, by (110) we have

(AV, V )h = (−D+
x D

−
x V −D+

y D
−
y V + cV, V )h

= (−D+
x D

−
x V, V )h + (−D+

y D
−
y V, V )h + (cV, V )h

≥
N∑
i=1

N−1∑
j=1

h2|D−
x Vi,j |2 +

N−1∑
i=1

N∑
j=1

h2|D−
y Vi,j |2,

(111)

for any V defined on Ωh such that V = 0 on Γh. Now this implies, just as in the one-dimensional analysis
presented in Section 6, that A is an invertible matrix. Indeed, if AV = 0, then (111) yields

D−
x Vi,j =

Vi,j − Vi−1,j

h
= 0, i ∈ {1, . . . , N}, j ∈ {1, . . . , N − 1};

D−
y Vi,j =

Vi,j − Vi,j−1

h
= 0, i ∈ {1, . . . , N − 1}, j ∈ {1, . . . , N}.

Since V = 0 on Γh, these imply that V = 0. Thus AV = 0 iff V = 0. Hence A is invertible, and
U = A−1F is the unique solution of (106). Thus the solution of the FD scheme (106) may be found by
solving the system of linear algebraic equations (109).

In order to prove the stability of the FD scheme (106), we introduce (similarly as in the univariate
case) the mesh–dependent norms

∥U∥h :=
√

(U,U)h, ∥U∥1,h :=
√
∥U∥2h + ∥D−

x U ]|2x + ∥D−
y U ]|2y,

where

∥D−
x U ]|x :=

√√√√ N∑
i=1

N−1∑
j=1

h2|D−
x Ui,j |2, ∥D−

y U ]|y :=

√√√√N−1∑
i=1

N∑
j=1

h2|D−
y Ui,j |2.

The norm ∥ · ∥1,h is the discrete version of the Sobolev norm ∥ · ∥H1(Ω), defined by

∥u∥H1(Ω) :=
√
∥u∥2

L2(Ω)
+ ∥∂xu∥2L2(Ω) + ∥∂yu∥2L2(Ω).

With this new notation, the inequality (111) can be rewritten in the following compact form:

(AV, V )h ≥ ∥D−
x V ]|2x + ∥D−

y V ]|2y. (112)
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Lemma 6 (Discrete Poincaré–Friedrichs inequality) Suppose V is a function defined on Ωh and
V = 0 on Γh; then, there exists a constant c∗ > 0, independent of V and h, such that, for all such V ,

∥V ∥2h ≤ c∗
(
∥D−

x V ]|2x + ∥D−
y V ]|2y

)
. (113)

Proof. The inequality (113) is a straightforward consequence of its univariate counterpart (95). It
follows from (95) that, for each fixed j ∈ {1, . . . , N − 1},

N−1∑
i=1

h|Vi,j |2 ≤
1

2

N∑
i=1

h|D−
x Vi,j |2. (114)

Analogously, for each fixed i ∈ {1, . . . , N − 1},

N−1∑
j=1

h|Vi,j |2 ≤
1

2

N∑
j=1

h|D−
y Vi,j |2. (115)

We first multiply (114) by h and sum through j ∈ {1, . . . , N − 1}, then multiply (115) by h and sum
through i ∈ {1, . . . , N−1}, and then add these two inequalities to obtain 2∥V ∥2h ≤ 1

2(∥D
−
x V ]|2x+∥D−

y V ]|2y).
Hence we arrive at (113) with c∗ =

1
4 . □

Now the inequalities (112) and (113) imply that (AV, V )h ≥ 1
c∗
∥V ∥2h. Finally, combining this inequal-

ity with (112) and recalling the definition of the norm ∥ · ∥1,h, we obtain

(AV, V )h ≥ c0∥V ∥21,h, where c0 :=
1

1 + c∗
. (116)

Using the inequality (116) we can now prove the stability of the FD scheme (106).

Theorem 22 The FD scheme (106) is stable in the sense that

∥U∥1,h ≤ 1

c0
∥f∥h. (117)

Proof. The proof of this inequality is identical to that of the stability inequality (98) in the univariate
case. From (116) and (106) we have that

c0∥U∥21,h ≤ (AU,U)h = (f, U)h ≤ ∥f∥h∥U∥h ≤ ∥f∥h∥U∥1,h,

and hence we arrive at the desired inequality (117). □
Having established stability of the FD scheme (106), we turn to the question of its accuracy. We

define the global error e by

ei,j := u(xi, yj)− Ui,j , i, j ∈ {0, 1, . . . , N}.

Then, assuming that u ∈ C4(Ω), and employing Taylor series expansions with remainder terms in the x
and y coordinate directions, respectively, we have for i, j ∈ {1, . . . , N − 1} that

Aei,j = Au(xi, yj)− f(xi, yj) = ∆u(xi, yj)− (D+
x D

−
x u(xi, yj) +D+

y D
−
y u(xi, yj))

=
[
∂2
xxu(xi, yj)−D+

x D
−
x u(xi, yj)

]
+
[
∂2
yyu(xi, yj)−D+

y D
−
y u(xi, yj)

]
= −h2

12
∂4
xxxxu(ξi, yj)−

h2

12
∂4
yyyyu(xi, ηj)
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for some ξi ∈ (xi−1, xi+1), ηj ∈ (yj−1, yj+1). We define the consistency error (or truncation error)
of the FD scheme (106) by

φi,j := Au(xi, yj)− fi,j , where fi,j := f(xi, yj).

Then, by the calculations above,

φi,j = −h2

12

(
∂4
xxxxu(ξi, yj) + ∂4

yyyyu(xi, ηj)
)

for i, j ∈ {1, . . . , N − 1}, and

Aei,j = φi,j , i, j ∈ {1, . . . , N − 1},
e = 0 on Γh.

Thanks to the stability result (117), we therefore have that

∥u− U∥1,h = ∥e∥1,h ≤ 1

c0
∥φ∥h. (118)

To arrive at a bound on the global error e := u − U in the norm ∥ · ∥1,h it therefore remains to bound
∥φ∥h and insert the resulting bound in the right-hand side of (118). Indeed, by noting that

|φi,j | ≤
h2

12

(∥∥∂4
xxxxu

∥∥
C(Ω)

+
∥∥∂4

yyyyu
∥∥
C(Ω)

)
,

we deduce that the consistency error φ satisfies

∥φ∥h ≤ h2

12

(∥∥∂4
xxxxu

∥∥
C(Ω)

+
∥∥∂4

yyyyu
∥∥
C(Ω)

)
. (119)

Finally, (118) and (119) yield the following result.

Theorem 23 Let f, c ∈ C(Ω) with c(x, y) ≥ 0 for all (x, y) ∈ Ω, and suppose that the corresponding
weak solution u of the BVP (105) belongs to C4(Ω); then,

∥u− U∥1,h ≤ 5h2

48

(∥∥∂4
xxxxu

∥∥
C(Ω)

+
∥∥∂4

yyyyu
∥∥
C(Ω)

)
. (120)

Proof. Recall that c0 =
1

1+c∗
and c∗ =

1
4 , so that 1

c0
= 5

4 , and combine (118) and (119). □

According to this result, the five-point difference scheme (106) for the BVP (105) is second-order
convergent, provided that u is sufficiently smooth. As in the univariate case, we have deduced second-order
convergence of the FD scheme from its stability and its second-order consistency, under the assumption
that the true solution u satisfies u ∈ C4(Ω).

7.2 Nonaxiparallel domains and nonuniform meshes

We have carried out an error analysis of FD schemes for the PDE −∆u+ cu = f on a square domain Ω.
The error analysis of FD schemes for more general elliptic equations would proceed along similar lines.
Consider, e.g.,

− [∂x(a1∂xu) + ∂y(a2∂yu)] + b1∂xu+ b2∂yu+ cu = f
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on the unit square Ω := (0, 1)2 in R2. We approximate this PDE by

− 1

h

[
a1(xi+1/2, yj)

Ui+1,j − Ui,j

h
− a1(xi−1/2, yj)

Ui,j − Ui−1,j

h

]
− 1

h

[
a2(xi, yj+1/2)

Ui,j+1 − Ui,j

h
− a2(xi, yj−1/2)

Ui,j − Ui,j−1

h

]
+ b1(xi, yj)

Ui+1,j − Ui−1,j

2h
+ b2(xi, yj)

Ui,j+1 − Ui,j−1

2h
+ c(xi, yj)Ui,j = f(xi, yj).

This is still a five point difference scheme that is second order consistent.
When Ω has a curved boundary, a nonuniform mesh has to be used near ∂Ω to avoid a loss of accuracy.

To be more precise, let us introduce the following notation: let hi+1 := xi+1 −xi, hi := xi −xi−1, and let
ℏi := 1

2(hi+1 + hi). We define

D+
x Ui :=

Ui+1 − Ui

ℏi
, D−

x Ui :=
Ui − Ui−1

hi
, D+

x D
−
x Ui :=

1

ℏi

(
Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

)
.

Similarly, let kj+1 := yj+1 − yj , kj := yj − yj−1, and let kj :=
1
2(kj+1 + kj). Let

D+
y Uj :=

Uj+1 − Uj

kj
, D−

y Uj :=
Uj − Uj−1

kj
, D+

y D
−
y Uj :=

1

kj

(
Uj+1 − Uj

kj+1
− Uj − Uj−1

kj

)
.

Note that, whereas on a uniform mesh D−
x Ui+1 = D+

x Ui and D−
y Uj+1 = D+

y Uj , on nonuniform meshes
this is no longer the case. For the same reason, on a nonuniform mesh D+

x D
−
x Ui ̸= D−

x D
+
x Ui and

D+
y D

−
y Uj ̸= D−

y D
+
y Uj . On a general nonuniform mesh

Ωh := {(xi, yj) ∈ Ω : xi+1 − xi = hi+1, yj+1 − yj = kj+1},

the Laplace operator ∆ can be approximated by D+
x D

−
x +D+

y D
−
y .

Consider, e.g., the Dirichlet problem

−∆u = f in Ω,

u = 0 on ∂Ω,

where Ω and the nonuniform mesh Ωh are depicted in Fig. 4.

Figure 4: Nonuniform mesh Ωh.

The FD approximation of this BVP is

−(D+
x D

−
x Ui,j +D+

y D
−
y Ui,j) = f(xi, yj) in Ωh,

Ui,j = 0 on Γh,
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or equivalently,

− 1

ℏi

(
Ui+1,j − Ui,j

hi+1
− Ui,j − Ui−1,j

hi

)
− 1

kj

(
Ui,j+1 − Ui,j

kj+1
− Ui,j − Ui,j−1

kj

)
= f(xi, yj) in Ωh,

Ui,j = 0 on Γh.

A typical difference stencil is shown in Fig. 5; clearly we still have a five-point difference scheme.

u
u u

u

u
(xi, yj−1)

(xi−1, yj) (xi+1, yj)

(xi, yj+1)

(xi, yj)

hi hi+1

kj

kj+1

Figure 5: Five-point stencil on a nonuniform mesh.

7.3 The discrete maximum principle

Our objective is to construct a FD approximation of the elliptic BVP −∆u = f in Ω, u = g on ∂Ω, and
show that a discrete counterpart of the maximum principle satisfied by the function u holds for its FD
approximation U . For simplicity, we confine ourselves to the case of two space dimensions and consider
a general nonaxiparallel domain, such as the one depicted in Fig. 4, and a general nonuniform mesh

Ωh = {(xi, yj) ∈ Ω : xi+1 − xi = hi+1, yj+1 − yj = kj+1}.

The Laplace operator ∆ is approximated by D+
x D

−
x + D+

y D
−
y , with the difference operators D+

x D
−
x ,

D+
y D

−
y defined as in Section 7.2. The FD approximation of the Dirichlet problem

−∆u = f in Ω,

u = g on ∂Ω

is then given by

−(D+
x D

−
x Ui,j +D+

y D
−
y Ui,j) = f(xi, yj) in Ωh,

Ui,j = g(xi, yj) on Γh.
(121)

Equivalently,

− 1

ℏi

(
Ui+1,j − Ui,j

hi+1
− Ui,j − Ui−1,j

hi

)
− 1

kj

(
Ui,j+1 − Ui,j

kj+1
− Ui,j − Ui,j−1

kj

)
= f(xi, yj) in Ωh,

Ui,j = g(xi, yj) on Γh.

Suppose that f(xi, yj) < 0 for all (xi, yj) ∈ Ωh and that the maximum value of U is attained at an
interior mesh point (xi0 , yj0) ∈ Ωh. Clearly,(

1

ℏi

(
1

hi+1
+

1

hi

)
+

1

kj

(
1

kj+1
+

1

kj

))
Ui,j =

Ui+1,j

ℏi hi+1
+

Ui−1,j

ℏi hi
+

Ui,j+1

kj kj+1
+

Ui,j−1

kj kj
+ f(xi, yj)
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for any (xi, yj) ∈ Ωh. Therefore, because Ui0±1,j0 ≤ Ui0,j0 and Ui0,j0±1 ≤ Ui0,j0 , and f(xi0 , yj0) < 0, it
follows that(

1

ℏi0

(
1

hi0+1
+

1

hi0

)
+

1

kj0

(
1

kj0+1
+

1

kj0

))
Ui0,j0 <

Ui0,j0

ℏi0 hi0+1
+

Ui0,j0

ℏi0 hi0
+

Ui0,j0

kj0 kj0+1
+

Ui0,j0

kj0 kj0
.

Note, however, that the expressions on the two sides of this inequality are equal, which means that we
have run into a contradiction. Thus we have shown that if f(xi, yj) < 0 for all (xi, yj) ∈ Ωh then the
maximum value of U is attained on the boundary Γh of Ωh, which completes the proof of the discrete
maximum principle in this case:

max(xi,yj)∈Γh
Ui,j = max(xi,yj)∈Ωh

Ui,j .

Now suppose that f(xi, yj) ≤ 0 for all (xi, yj) ∈ Ωh. We define the auxiliary mesh function V by

Vi,j := Ui,j +
ε

4
(x2i + y2j ) for (xi, yj) ∈ Ωh.

Hence,

−(D+
x D

−
x Vi,j +D+

y D
−
y Vi,j) = −(D+

x D
−
x Ui,j +D+

y D
−
y Ui,j)− ε = f(xi, yj)− ε < 0 in Ωh,

which then implies that the maximum value of V is attained on Γh. Therefore,

max
(xi,yj)∈Γh

Ui,j = max
(xi,yj)∈Γh

[
Vi,j −

ε

4
(x2i + y2j )

]
≥ max

(x,y)∈Γh

Vi,j −
ε

4
max

(xi,yj)∈Γh

(x2i + y2j ) = max
(xi,yj)∈Ωh

Vi,j −
ε

4
max

(xi,yj)∈Γh

(x2i + y2j ).

As Vi,j ≥ Ui,j for (xi, yj) ∈ Ωh, it follows max(xi,yj)∈Γh
Ui,j ≥ max(xi,yj)∈Ωh

Ui,j − ε
4 max(xi,yj)∈Γh

(x2i + y2j )
for all ε > 0. By passing to the limit ε ↘ 0 it follows that max(xi,yj)∈Γh

Ui,j ≥ max(xi,yj)∈Ωh
Ui,j .

As Γh ⊂ Ωh, trivially max(xi,yj)∈Ωh
Ui,j ≥ max(xi,yj)∈Γh

Ui,j , and therefore we deduce from these two

inequalities that if f(xi, yj) ≤ 0 for all (xi, yj) ∈ Ωh, then the discrete maximum principle holds:

max(xi,yj)∈Γh
Ui,j = max(xi,yj)∈Ωh

Ui,j .

Analogously, if f(xi, yj) ≥ 0 for all (xi, yj) ∈ Ωh, then the discrete minimum principle holds:

min(xi,yj)∈Γh
Ui,j = min(xi,yj)∈Ωh

Ui,j .

Our objective in the next section is to use the discrete maximum/minimum principle we have established
to prove the stability of the FD scheme (121) with respect to perturbations in the boundary data.

7.4 Stability in the discrete maximum norm

Consider the FD scheme (121) on the nonuniform mesh formulated in Section 7.2. Our first result asserts
the existence of a solution to (121) as well as its uniqueness.

Lemma 7 The FD scheme (121) has a unique solution.

Proof. We note that (121) is a system of linear algebraic equations for the values Ui,j such that
(xi, yj) ∈ Ωh. So, if the total number of mesh-points contained in Ωh is denoted by Mh, then the system
of linear algebraic equations concerned has an Mh ×Mh matrix, and showing the existence of a unique
solution to the FD scheme (121) is therefore equivalent to showing that the matrix of the linear system
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is invertible. The matrix of the linear system associated with (121) is invertible iff the corresponding
homogeneous system of linear algebraic equation has the zero vector as its only solution, which is, in turn,
equivalent to showing that the FD scheme (121) with f(xi, yj) = 0 for all (xi, yj) ∈ Ωh and g(xi, yj) = 0
for all (xi, yj) ∈ Γh has the trivial solution as its only solution, i.e., that Ui,j = 0 for all (xi, yj) ∈ Ωh. Let
us therefore consider

−(D+
x D

−
x Ui,j +D+

y D
−
y Ui,j) = 0 in Ωh,

Ui,j = 0 on Γh.
(122)

The existence of a solution to (122) is obvious: the mesh-function U , with Ui,j = 0 for all (xi, yj) ∈ Ωh

is clearly a solution. According to the discrete maximum principle, for any solution U of (122), we have
0 = max(xi,yj)∈Ωh

Ui,j , while according to the discrete minimum principle 0 = min(xi,yj)∈Ωh
Ui,j . Therefore

the only solution is U = 0. This then implies the existence of a unique solution to (121). □

We are now ready to embark on the analysis of the stability of the scheme (121) with respect to per-
turbations in the boundary data. Consider the mesh functions U (1) and U (2), which satisfy, respectively:

−(D+
x D

−
x U

(1)
i,j +D+

y D
−
y U

(1)
i,j ) = f(xi, yj) in Ωh,

U
(1)
i,j = g(1)(xi, yj) on Γh

(123)

and

−(D+
x D

−
x U

(2)
i,j +D+

y D
−
y U

(2)
i,j ) = f(xi, yj) in Ωh,

U
(2)
i,j = g(2)(xi, yj) on Γh

(124)

for given boundary data g(1) and g(2). Let U := U (1) − U (2) and g := g(1) − g(2). Then, by subtracting
(124) from (123) we find that U solves

−(D+
x D

−
x Ui,j +D+

y D
−
y Ui,j) = 0 in Ωh,

Ui,j = g(xi, yj) on Γh.
(125)

By the discrete maximum principle we have from (125) that

max
(xi,yj)∈Ωh

Ui,j = max
(xi,yj)∈Γh

Ui,j = max
(xi,yj)∈Γh

g(xi, yj) ≤ max
(xi,yj)∈Γh

|g(xi, yj)|.

In other words, for all (xi, yj) ∈ Ωh,

Ui,j ≤ max
(xi,yj)∈Γh

|g(xi, yj)|. (126)

It follows from (125) that −U solves

−(D+
x D

−
x (−U)i,j +D+

y D
−
y (−U)i,j) = 0 in Ωh,

(−U)i,j = −g(xi, yj) on Γh,
(127)

where (−U)i,j := −Ui,j . Hence, also,

−Ui,j = (−U)i,j ≤ max
(xi,yj)∈Γh

| − g(xi, yj)| = max
(xi,yj)∈Γh

|g(xi, yj)| (128)

for all (xi, yj) ∈ Ωh. By combining (126) and (128) we have the inequality |Ui,j | ≤ max(xi,yj)∈Γh
|g(xi, yj)|

for all (xi, yj) ∈ Ωh, and hence,

max
(xi,yj)∈Ωh

|Ui,j | ≤ max
(xi,yj)∈Γh

|g(xi, yj)|.
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By recalling the definitions of U and g, we have thereby shown that

max
(xi,yj)∈Ωh

|U (1)
i,j − U

(2)
i,j | ≤ max

(xi,yj)∈Γh

|g(1)(xi, yj)− g(2)(xi, yj)|. (129)

The inequality (129) expresses continuous dependence of the solution U to the FD scheme with respect
to the boundary data g: it ensures that small perturbations in the boundary data result in small per-
turbations of the associated solution, a property that is referred to as stability of the solution with
respect to perturbations in the boundary data (in the discrete maximum norm, in this case).
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8 FD approximation of parabolic problems

This section is concerned with the construction and mathematical analysis of FD methods for the nu-
merical solution of parabolic equations.

8.1 The heat equation

As a simple yet representative model problem we shall focus on the heat equation (or diffusion
equation) in one space dimension: Seek a function u = u(x, t) satisfying

∂tu = ∂2
xxu, (130)

which we shall consider for x ∈ R and t ∈ (0,∞), subject to the initial condition (i.c.)

u(x, 0) = u0(x) for x ∈ R, (131)

where u0 : R → R is a given function, called an initial datum.
The solution of this IVP can be expressed explicitly in terms of the initial datum u0. As the expression

for the solution of the IVP provides helpful insight into the behaviour of solutions of parabolic PDEs,
which we shall try to mimic in the course of their numerical approximation, we shall summarize here
briefly the derivation of this explicit expression for the analytical solution of the IVP (130)–(131).

We recall that the Fourier transform of a function v : R → C is defined by

[Fv](ξ) := v̂(ξ) :=

∫ ∞

−∞
v(x) e−ixξ dx, ξ ∈ R.

We shall assume henceforth that the functions under consideration are sufficiently smooth and that they
decay to 0 as x → ±∞ sufficiently quickly in order to ensure that our formal manipulations make sense.

By Fourier-transforming the PDE (130) we obtain∫ ∞

−∞
∂tu(x, t) e

−ixξ dx =

∫ ∞

−∞
∂2
xxu(x, t) e

−ixξ dx.

After (formal) integration by parts on the right-hand side and ignoring ‘boundary terms’ at ±∞, we
obtain

∂tû(ξ, t) = (iξ)2û(ξ, t) = −ξ2û(ξ, t),

where û(ξ, t) :=
∫∞
−∞ u(x, t) e−ixξ dx is the Fourier transform of u with respect to the x-variable. Then,

we see that û(ξ, t) = e−tξ2 û(ξ, 0) = e−tξ2 û0(ξ), and therefore u(x, t) = F−1
(
ξ 7→ e−tξ2 û0(ξ)

)
, where F−1

denotes the inverse Fourier transform defined by

v(x) = [F−1v̂](x) :=
1

2π

∫ ∞

−∞
v̂(ξ)eixξ dξ.

Thus, after some lengthy calculations whose details we omit, we find that

u(x, t) =

∫ ∞

−∞
w(x− y, t)u0(y) dy, where w(x, t) :=

1√
4πt

e−
x2

4t .

The function w is called the heat kernel. So, finally,

u(x, t) =
1√
4πt

∫ ∞

−∞
e−

(x−y)2

4t u0(y) dy. (132)
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This formula gives an explicit expression for the solution of the heat equation (130) in terms of the
initial datum u0. Because w(x, t) > 0 for all (x, t) ∈ R× (0,∞), and

∫∞
−∞w(y, t) dy = 1 for all t ∈ (0,∞),

we deduce from (132) that if u0 is a bounded continuous function, then

supx∈R|u(x, t)| ≤ supx∈R|u0(x)| ∀t ∈ (0,∞). (133)

In other words, the ‘largest’ and ‘smallest’ values of x 7→ u(x, t) at t > 0 cannot exceed those of u0. A
similar bound on the ‘magnitude’ of the solution at future times in terms of the ‘magnitude’ of the initial
datum can be obtained in the L2-norm. We will show that the L2-norm of the solution, at any time
t > 0, is bounded by the L2-norm of the initial datum. We shall then try to mimic this property when
using various numerical approximations of the IVP for the heat equation.

We now extend our definition of the space L2(Ω) to complex-valued functions. In particular, we let
L2(R) be the set of all (measurable) functions u : R → C for which

∫∞
−∞|u(x)|2dx < ∞, and we define

∥u∥L2(R) :=

√∫ ∞

−∞
|u(x)|2dx for u ∈ L2(R).

Functions which are equal almost everywhere are identified with each other.

Lemma 8 (Parseval’s identity) Let u ∈ L2(R). Then, û ∈ L2(R) and there holds

∥u∥L2(R) =
1√
2π

∥û∥L2(R).

Proof. We begin by observing that∫ ∞

−∞
û(ξ) v(ξ) dξ =

∫ ∞

−∞

(∫ ∞

−∞
u(x) e−ixξ dx

)
v(ξ) dξ

=

∫ ∞

−∞

(∫ ∞

−∞
v(ξ) e−ixξ dξ

)
u(x) dx =

∫ ∞

−∞
u(x) v̂(x) dx,

(134)

where we take (where, for a complex-valued function w, we denote by w the complex conjugate of w)

v(t) := û(t) = 2π[F−1u](t), t ∈ R.

Then, the left-hand side in (134) becomes
∫∞
−∞ û(ξ) v(ξ) dξ =

∫∞
−∞|û(ξ)|2dξ = ∥û∥2L2(R) and the right-

hand side in (134) becomes
∫∞
−∞ u(x) v̂(x) dx = 2π

∫∞
−∞|u(x)|2 dx = 2π∥u∥2L2(R), giving the desired result.

Here, we have used that

v̂(x) =

∫ ∞

−∞
v(t) e−ixt dt =

∫ ∞

−∞
û(t) e−ixt dt = 2π

(
1

2π

∫ ∞

−∞
û(t) eixt dt

)
= 2π[F−1û](x) = 2πu(x)

for any x ∈ R. □

Returning to the equation (130), we thus have by Parseval’s identity that

∥u(·, t)∥L2(R) =
1√
2π

∥û(·, t)∥L2(R) ∀t ∈ (0,∞),

and therefore

∥u(·, t)∥L2(R) =
1√
2π

∥ξ 7→ e−tξ2 û0(ξ)∥L2(R) ≤
1√
2π

∥û0∥L2(R) = ∥u0∥L2(R) ∀t ∈ (0,∞).
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Thus we have shown that

∥u(·, t)∥L2(R) ≤ ∥u0∥L2(R) ∀t ∈ (0,∞). (135)

This is a useful result as it can be used to deduce stability of the solution of the equation (130) with respect
to perturbations of the initial datum in a sense which we shall now explain. Suppose that u0, ũ0 ∈ L2(R)
and denote by u and ũ the solutions to (130) resulting from the initial datum u0 and ũ0, respectively.
Then u− ũ solves the heat equation with initial datum u0 − ũ0, and therefore, by (135), we have that

∥u(·, t)− ũ(·, t)∥L2(R) ≤ ∥u0 − ũ0∥L2(R) ∀t ∈ (0,∞). (136)

This inequality implies continuous dependence of the solution on the initial datum: small perturbations
in u0 in the L2(R)-norm will result in small perturbations in the associated solution u(·, t) in the L2(R)-
norm for all t ∈ (0,∞). The inequality (135) is therefore a relevant property, which we shall try to mimic
with our numerical approximations of the equation (130).

8.2 FD approximation of the heat equation

We take our computational domain to be

{(x, t) |x ∈ R, t ∈ [0, T ]},

where T > 0 is a given final time. We then consider a FD mesh with spacing ∆x > 0 in the x-direction and
spacing ∆t := T

M in the t-direction, with M ∈ N, and we approximate the partial derivatives appearing
in the PDE using divided differences as follows. Let xj := j∆x and tm := m∆t, and note that

∂tu(xj , tm) ≈ u(xj , tm+1)− u(xj , tm)

∆t
, ∂2

xxu(xj , tm) ≈ u(xj+1, tm)− 2u(xj , tm) + u(xj−1, tm)

(∆x)2
.

This then motivates us to approximate the heat equation (130) at the point (xj , tm) by the following
numerical method, called the explicit Euler scheme:

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, j ∈ Z, m ∈ {0, 1, . . . ,M − 1},

U0
j := u0(xj), j ∈ Z.

Equivalently, we can write this as

Um+1
j = Um

j + µ(Um
j+1 − 2Um

j + Um
j−1), j ∈ Z, m ∈ {0, 1, . . . ,M − 1},

U0
j := u0(xj), j ∈ Z,

where µ = ∆t
(∆x)2

. Thus, Um+1
j can be explicitly calculated, for all j ∈ Z, from the values Um

j+1, U
m
j , Um

j−1

from the previous time level.
Alternatively, if instead of time level m the expression on the right-hand side of the explicit Euler

scheme is evaluated on the time level m+ 1, we arrive at the implicit Euler scheme:

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j ∈ Z, m ∈ {0, 1, . . . ,M − 1},

U0
j := u0(xj), j ∈ Z.
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The explicit and implicit Euler schemes are special cases of a more general one-parameter family of
numerical methods for the heat equation, called the θ-scheme, which is a convex combination of the two
Euler schemes, with a parameter θ ∈ [0, 1]. The θ-method is defined as follows:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j ∈ Z, m ∈ {0, 1, . . . ,M − 1},

U0
j := u0(xj), j ∈ Z,

where θ ∈ [0, 1] is a parameter. For θ = 0 the θ-scheme coincides with the explicit Euler scheme, for θ = 1
it is the implicit Euler scheme, and for θ = 1/2 it is the arithmetic average of the two Euler schemes, and
is called the Crank–Nicolson scheme.

Numerical methods of this kind are called fully-discrete approximations. An alternative approach
is to approximate only the spatial partial derivative in the heat equation, resulting in the following IVP
for a system of ODEs:

dUj(t)

dt
=

Uj+1(t)− 2Uj(t) + Uj−1(t)

(∆x)2
, j ∈ Z,

Uj(0) := u0(xj), j ∈ Z.

This is called a spatially semi-discrete approximation, because no discretization with respect to
the temporal variable t has taken place. Because an IVP for the heat equation is considered for x ∈ R,
the spatially semidiscrete approximation consists of an infinite system of ODEs. Had the range of x
been limited to a bounded interval (a, b) of the real line instead, and had, in conjunction with the i.c.,
boundary conditions been supplied at x = a and x = b, spatial semi-discretization of such an initial-
boundary-value problem (IBVP) for the heat equation would have resulted in a system consisting of a
finite number of ODEs, coupled to algebraic equations that stem from the spatial discretization of the
boundary conditions. Such a system of differential-algebraic equations (DAEs) could then have been
solved approximately by any standard method for the numerical solution of DAEs (such as, e.g., the
Matlab solvers ode15s and ode23t). Because no discretization in time was performed in the first place,
this approach is usually referred to as the method of lines.

8.2.1 Accuracy of the θ-scheme

Our aim in this section is to assess the accuracy of the θ-scheme for the IVP for the heat equation. The
consistency error of the θ-scheme is defined by

Tm
j :=

um+1
j − umj

∆t
− (1− θ)

umj+1 − 2umj + umj−1

(∆x)2
− θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
,

for j ∈ Z and m ∈ {0, 1, . . . ,M − 1}, where

umj := u(xj , tm).

We shall explore the size of the consistency error by performing a Taylor series expansion about a suitable
point. We choose the point (xj , tm+ 1

2
), where tm+ 1

2
:= tm + ∆t

2 , we have that

um+1
j = u

(
xj , tm+ 1

2
+

∆t

2

)
=

[
u+

∆t

2
ut +

(∆t)2

8
utt +

(∆t)3

48
uttt +

(∆t)4

384
utttt

]
(xj , tm+ 1

2
) +O((∆t)5),

umj = u

(
xj , tm+ 1

2
− ∆t

2

)
=

[
u− ∆t

2
ut +

(∆t)2

8
utt −

(∆t)3

48
uttt +

(∆t)4

384
utttt

]
(xj , tm+ 1

2
) +O((∆t)5).
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Therefore, we have that

um+1
j − umj

∆t
=

[
ut +

(∆t)2

24
uttt

]
(xj , tm+ 1

2
) +O((∆t)4).

Next, we use Taylor expansion to find

um
j+1 − 2um

j + um
j−1

(∆x)2
=

u(xj+1, tm+ 1
2
− ∆t

2 )− 2u(xj , tm+ 1
2
− ∆t

2 ) + u(xj−1, tm+ 1
2
− ∆t

2 )

(∆x)2

=
u(xj +∆x, tm+ 1

2
)− 2u(xj , tm+ 1

2
) + u(xj −∆x, tm+ 1

2
)

(∆x)2

− ∆t

2

ut(xj +∆x, tm+ 1
2
)− 2ut(xj , tm+ 1

2
) + ut(xj −∆x, tm+ 1

2
)

(∆x)2

+
(∆t)2

8

utt(xj +∆x, tm+ 1
2
)− 2utt(xj , tm+ 1

2
) + utt(xj −∆x, tm+ 1

2
)

(∆x)2

+ · · ·

=

[
uxx +

(∆x)2

12
uxxxx +

(∆x)4

360
uxxxxxx +O((∆x)6)

]
(xj , tm+ 1

2
)

− ∆t

2

[
uxxt +

(∆x)2

12
uxxxxt +

(∆x)4

360
uxxxxxxt +O((∆x)6)

]
(xj , tm+ 1

2
)

+
(∆t)2

8

[
uxxtt +

(∆x)2

12
uxxxxtt +

(∆x)4

360
uxxxxxxtt +O((∆x)6)

]
(xj , tm+ 1

2
) +O((∆t)3).

Similarly, we find

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
=

[
uxx +

(∆x)2

12
uxxxx +

(∆x)4

360
uxxxxxx +O((∆x)6)

]
(xj , tm+ 1

2
)

+
∆t

2

[
uxxt +

(∆x)2

12
uxxxxt +

(∆x)4

360
uxxxxxxt +O((∆x)6)

]
(xj , tm+ 1

2
)

+
(∆t)2

8

[
uxxtt +

(∆x)2

12
uxxxxtt +

(∆x)4

360
uxxxxxxtt +O((∆x)6)

]
(xj , tm+ 1

2
) +O((∆t)3)

and hence,

(1− θ)
um
j+1 − 2um

j + um
j−1

(∆x)2
+ θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2

=

[
uxx +

(∆x)2

12
uxxxx +

(∆x)4

360
uxxxxxx +O((∆x)6)

]
(xj , tm+ 1

2
)

+ (2θ − 1)
∆t

2

[
uxxt +

(∆x)2

12
uxxxxt +

(∆x)4

360
uxxxxxxt +O((∆x)6)

]
(xj , tm+ 1

2
)

+
(∆t)2

8

[
uxxtt +

(∆x)2

12
uxxxxtt +

(∆x)4

360
uxxxxxxtt +O((∆x)6)

]
(xj , tm+ 1

2
) +O((∆t)3).

Altogether, we have that

Tm
j =

[
ut − uxx −

(∆x)2

12
uxxxx −

(∆x)4

360
uxxxxxx +O((∆x)6)

]
(xj , tm+ 1

2
)

+ (2θ − 1)
∆t

2

[
−uxxt −

(∆x)2

12
uxxxxt −

(∆x)4

360
uxxxxxxt +O((∆x)6)

]
(xj , tm+ 1

2
)

+
(∆t)2

8

[
1

3
uttt − uxxtt −

(∆x)2

12
uxxxxtt −

(∆x)4

360
uxxxxxxtt +O((∆x)6)

]
(xj , tm+ 1

2
) +O((∆t)3).
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Finally, using that uxx = ut as u is a solution to the heat equation, we arrive at the following final
expansion for the consistency error:

Tm
j =

[
−(∆x)2

12
utt −

(∆x)4

360
uttt +O((∆x)6)

]
(xj , tm+ 1

2
)

+ (2θ − 1)
∆t

2

[
−utt −

(∆x)2

12
uttt −

(∆x)4

360
utttt +O((∆x)6)

]
(xj , tm+ 1

2
)

+
(∆t)2

8

[
−2

3
uttt −

(∆x)2

12
utttt −

(∆x)4

360
uttttt +O((∆x)6)

]
(xj , tm+ 1

2
) +O((∆t)3).

Hence, we see that

Tm
j =

{
O((∆x)2 + (∆t)2) for θ = 1

2 ,
O((∆x)2 +∆t) for θ ̸= 1

2 .

Thus, in particular, the explicit and implicit Euler schemes have consistency error Tm
j = O((∆x)2 +∆t)

while the Crank–Nicolson scheme has consistency error Tm
j = O((∆x)2 + (∆t)2).

8.3 Practical stability of FD schemes

In order to be able to replicate the stability property (135) at the discrete level, we require an appropriate
notion of stability. We shall say that a FD scheme for the heat equation is (practically) stable in the
ℓ2 norm, if

∥Um∥ℓ2 ≤ ∥U0∥ℓ2 ∀m ∈ {1, . . . ,M},

where

∥Um∥ℓ2 :=

√√√√∆x

∞∑
j=−∞

|Um
j |2.

We shall use the semidiscrete Fourier transform, defined below, to explore the stability of the FD
schemes under consideration. In order to avoid complicating the discussion with the inclusion of technical
details that concern the convergence of various infinite sums, we shall simply assume throughout that all
infinite sums considered converge.

Definition 17 The semidiscrete Fourier transform of a function U defined on the infinite mesh with
mesh-points xj = j∆x, j ∈ Z, is defined by

Û(k) := ∆x
∞∑

j=−∞
Uj e

−ikxj , k ∈
[
− π

∆x
,
π

∆x

]
.

We shall also require the inverse semidiscrete Fourier transform, as well as the discrete counterpart of
Parseval’s identity that connect these transforms, analogously to the case of the Fourier transform and
its inverse considered earlier.

Definition 18 Let Û be defined on the interval [− π
∆x ,

π
∆x ]. The inverse semidiscrete Fourier transform

of Û is defined by

Uj :=
1

2π

∫ π
∆x

− π
∆x

Û(k) eikxj dk, j ∈ Z,

where xj = j∆x for j ∈ Z.

We then have the following discrete Parseval’s identity. The proof is very similar to the proof of
Lemma 8 and left as an exercise.
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Lemma 9 (Discrete Parseval’s identity) Let

∥U∥ℓ2 :=

√√√√∆x
∞∑

j=−∞
|Uj |2 and ∥Û∥L2((− π

∆x
, π
∆x

)) :=

√∫ π
∆x

− π
∆x

|Û(k)|2 dk.

If ∥U∥ℓ2 is finite, then so is ∥Û∥L2((− π
∆x

, π
∆x

)), and

1√
2π

∥Û∥L2((− π
∆x

, π
∆x

)) = ∥U∥ℓ2 .

With all technical prerequisites in place, we are now ready to discuss the stability of the various FD
schemes under consideration. We begin by exploring the practical stability of the explicit and implicit
Euler schemes. We shall prove in particular that the explicit Euler scheme is conditionally practically
stable (the condition required for stability being that µ := ∆t

(∆x)2
≤ 1), while the implicit Euler scheme

will be shown to be unconditionally practically stable.

8.3.1 Stability analysis of the explicit Euler scheme

We are now ready to embark on the stability analysis of the explicit Euler scheme for the heat equation
(130). By inserting

Um
j =

1

2π

∫ π
∆x

− π
∆x

eikj∆xÛm(k) dk

into the explicit Euler scheme we deduce that

1

2π

∫ π
∆x

− π
∆x

eikj∆x Ûm+1(k)− Ûm(k)

∆t
dk =

1

2π

∫ π
∆x

− π
∆x

eik(j+1)∆x − 2eikj∆x + eik(j−1)∆x

(∆x)2
Ûm(k) dk

=
1

2π

∫ π
∆x

− π
∆x

eikj∆x eik∆x − 2 + e−ik∆x

(∆x)2
Ûm(k) dk.

By comparing the left-hand side with the right-hand side we deduce that the two integrands are identically
equal,12 and therefore

Ûm+1(k) = Ûm(k) + µ(eik∆x − 2 + e−ik∆x)Ûm(k), where µ :=
∆t

(∆x)2

for allwave numbers k ∈
[
− π

∆x ,
π
∆x

]
. The number µ is called theCFL number (after Richard Courant,

Kurt Friedrichs, and Hans Lewy, who first performed an analysis of this kind).13 We thus deduce that

Ûm+1(k) = λ(k)Ûm(k), where λ(k) := 1 + µ(eik∆x − 2 + e−ik∆x).

We call λ(k) the amplification factor. By the discrete Parseval identity (Lemma 9) we have that

∥Um+1∥ℓ2 =
1√
2π

∥Ûm+1∥L2((− π
∆x

, π
∆x

)) =
1√
2π

∥λÛm∥L2((− π
∆x

, π
∆x

))

≤ 1√
2π

max
k∈[− π

∆x
, π
∆x ]

|λ(k)| ∥Ûm∥L2((− π
∆x

, π
∆x

)) = max
k∈[− π

∆x
, π
∆x ]

|λ(k)| ∥Um∥ℓ2 .

12This is a consequence of the fact that the semidiscrete Fourier transform and its inverse are injective mappings.
13Richard Courant, Kurt Friedrichs, and Hans Lewy (Über die partiellen Differenzengleichungen der mathematischen

Physik. Mathematische Annalen, 100:32–74, 1928).
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In order to mimic the bound (135) we would like to ensure that

∥Um+1∥ℓ2 ≤ ∥Um∥ℓ2 ∀m ∈ {0, 1, . . . ,M − 1}.

Thus we demand that maxk∈[− π
∆x

, π
∆x ]

|λ(k)| ≤ 1, i.e.,

max
k∈[− π

∆x
, π
∆x ]

∣∣∣1 + µ(eik∆x − 2 + e−ik∆x)
∣∣∣ ≤ 1.

Using Euler’s formula eiφ = cos(φ) + i sin(φ) and the trigonometric identity 1 − cos(φ) = 2 sin2(φ2 ) we
can restate this as follows:

max
k∈[− π

∆x
, π
∆x ]

∣∣∣∣1− 4µ sin2
(
k∆x

2

)∣∣∣∣ ≤ 1.

This holds iff µ ≤ 1
2 . Thus we have shown the following result.

Theorem 24 (Practical stability of explicit Euler) Suppose that Um
j is the solution of the explicit

Euler scheme

Um+1
j − Um

j

∆t
=

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, j ∈ Z, m ∈ {0, 1, . . . ,M − 1},

U0
j := u0(xj), j ∈ Z,

and µ := ∆t
(∆x)2

≤ 1
2 . Then,

∥Um∥ℓ2 ≤ ∥U0∥ℓ2 ∀m ∈ {1, . . . ,M}. (137)

In other words the explicit Euler scheme is conditionally practically stable, the condition for
stability being that µ = ∆t

(∆x)2
≤ 1

2 . One can also show that if µ > 1
2 , then (137) will fail. In other words,

once ∆x has been chosen, one must choose ∆t so that ∆t
(∆x)2

≤ 1
2 in order to ensure that (137) holds.

8.3.2 Stability analysis of the implicit Euler scheme

We shall now perform a similar analysis for the implicit Euler scheme for the heat equation (130), which
is defined as follows:

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j ∈ Z, m ∈ {0, 1, . . . ,M − 1},

U0
j := u0(xj), j ∈ Z.

Equivalently,

Um+1
j − µ(Um+1

j+1 − 2Um+1
j + Um+1

j−1 ) = Um
j , j ∈ Z, m ∈ {0, 1, . . . ,M − 1},

U0
j := u0(xj), j ∈ Z,

where, again, µ := ∆t
(∆x)2

. Using an identical argument as for the explicit Euler scheme, we find that the

amplification factor is now

λ(k) :=
1

1 + 4µ sin2
(
k∆x
2

) .
Clearly, maxk∈[− π

∆x
, π
∆x ]

|λ(k)| ≤ 1 for all values of µ = ∆t
(∆x)2

. Thus we have the following result.
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Theorem 25 (Practical stability of implicit Euler) Suppose that Um
j is the solution of the implicit

Euler scheme

Um+1
j − Um

j

∆t
=

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j ∈ Z, m ∈ {0, 1, . . . ,M − 1},

U0
j := u0(xj), j ∈ Z.

Then, for all ∆t > 0 and ∆x > 0,

∥Um∥ℓ2 ≤ ∥U0∥ℓ2 ∀m ∈ {1, . . . ,M}. (138)

In other words, the implicit Euler scheme is unconditionally practically stable, meaning that
(138) holds without any restrictions on ∆x and ∆t.

8.4 Von Neumann stability

In certain situations, practical stability is too restrictive and we need a less demanding notion of stability.
The one below, due to John von Neumann, is called von Neumann stability.

Definition 19 We say that a FD scheme for the heat equation on the time interval [0, T ] is von Neu-
mann stable in the ℓ2 norm, if there exists a constant C = C(T ) > 0 such that

∥Um∥ℓ2 ≤ C∥U0∥ℓ2 ∀m ∈
{
1, . . . ,M =

T

∆t

}
,

where

∥Um∥ℓ2 :=

√√√√∆x

∞∑
j=−∞

|Um
j |2.

Clearly, practical stability implies von Neumann stability with stability constant C = 1. As the
stability constant C in the definition of von Neumann stability may dependent on T , and when it does
then typically C(T ) → ∞ as T → ∞, it follows that, unlike practical stability which is meaningful for
m = 1, 2, . . . , von Neumann stability only makes sense on finite time intervals [0, T ] and for the limited
range of 0 ≤ m ≤ T

∆t .

Von Neumann stability of a FD scheme can be easily verified by using the following result.

Lemma 10 Suppose that the semidiscrete Fourier transform of the solution {Um
j }∞j=−∞, m ∈ {0, 1, . . . , T

∆t},
of a FD scheme for the heat equation satisfies

Ûm+1(k) = λ(k)Ûm(k)

and there exists a constant C0 ≥ 0 such that

|λ(k)| ≤ 1 + C0∆t ∀ k ∈
[
− π

∆x
,
π

∆x

]
.

Then, the scheme is von Neumann stable. In particular, if C0 = 0, then the scheme is practically stable.

Proof: By Parseval’s identity for the semidiscrete Fourier transform we have that

∥Um+1∥ℓ2 =
1√
2π

∥Ûm+1∥L2((− π
∆x

, π
∆x

)) =
1√
2π

∥λÛm∥L2((− π
∆x

, π
∆x

))

≤ 1√
2π

max
k∈[− π

∆x
, π
∆x ]

|λ(k)| ∥Ûm∥L2((− π
∆x

, π
∆x

)) = max
k∈[− π

∆x
, π
∆x ]

|λ(k)| ∥Um∥ℓ2 .
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Hence, ∥Um+1∥ℓ2 ≤ (1 + C0∆t)∥Um∥ℓ2 for all m ∈ {0, 1, . . . ,M − 1}. Therefore,

∥Um∥ℓ2 ≤ (1 + C0∆t)m∥U0∥ℓ2 ∀m ∈ {1, . . . ,M}.

As 1 + C0∆t ≤ eC0∆t and (1 + C0∆t)m ≤ eC0m∆t ≤ eC0T for any m ∈ {1, . . . ,M}, it follows that

∥Um∥ℓ2 ≤ eC0T ∥U0∥ℓ2 ∀m ∈ {1, . . . ,M},

meaning that von Neumann stability holds with stability constant C = eC0T . In particular if C0 = 0,
then C = 1, and practical stability follows. □

8.5 Initial-boundary-value problems for parabolic problems

When a parabolic PDE is considered on a bounded spatial domain, one needs to impose boundary
conditions (b.c.) at the boundary of the domain. Here we shall concentrate on the simplest case, when
a Dirichlet b.c. is imposed at both endpoints of the spatial domain, which we take to be the nonempty
bounded open interval (a, b) of R. We shall therefore consider the following Dirichlet initial-boundary-
value problem (IBVP) for the heat equation:

∂tu = ∂2
xxu, x ∈ (a, b), t ∈ (0, T ],

subject to the initial condition (i.c.)

u(x, 0) = u0(x), x ∈ [a, b],

and the following Dirichlet b.c. at x = a and x = b:

u(a, t) = A(t), u(b, t) = B(t), t ∈ (0, T ].

We assume that the b.c. is compatible with the i.c. in the sense that A(0) = u0(a) and B(0) = u0(b).

Remark 12 We note in passing that the Neumann IBVP for the heat equation is

∂tu = ∂2
xxu, x ∈ (a, b), t ∈ (0, T ],

subject to the i.c.
u(x, 0) = u0(x), x ∈ [a, b],

and the Neumann b.c.
∂xu(a, t) = A(t), ∂xu(b, t) = B(t), t ∈ (0, T ].

An example of a mixed Dirichlet–Neumann IBVP for the heat equation is

∂tu = ∂2
xxu, x ∈ (a, b), t ∈ (0, T ],

subject to the i.c.
u(x, 0) = u0(x), x ∈ [a, b],

and the mixed Dirichlet–Neumann b.c.

u(a, t) = A(t), ∂xu(b, t) = B(t), t ∈ (0, T ].
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8.5.1 θ-scheme for the Dirichlet IBVP

Our aim in this section is to construct a numerical approximation of the Dirichlet IBVP based on the
θ-scheme. Let ∆x := b−a

J and ∆t := T
M , and define

xj := a+ j∆x, j ∈ {0, 1, . . . , J}, tm := m∆t, m ∈ {0, 1, . . . ,M}.

We approximate the Dirichlet IBVP with the following θ-scheme:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
,

for j ∈ {1, . . . , J − 1}, m ∈ {0, 1, . . . ,M − 1},

U0
j := u0(xj), j ∈ {0, 1, . . . , J},

Um+1
0 := A(tm+1), Um+1

J := B(tm+1), m ∈ {0, 1, . . . ,M − 1}.

In order to implement this scheme it is helpful to rewrite it as a system of linear algebraic equations to
compute the values of the approximate solution on time-level m+1 from those on time-level m. We have

Um+1
j − θµ δ2Um+1

j = Um
j + (1− θ)µ δ2Um

j , j ∈ {1, . . . , J − 1}, m ∈ {0, 1, . . . ,M − 1},
U0
j := u0(xj), j ∈ {0, 1, . . . , J},

Um+1
0 := A(tm+1), Um+1

J := B(tm+1), m ∈ {0, 1, . . . ,M − 1},

where µ := ∆t
(∆x)2

and

δ2Um+1
j := Um+1

j+1 − 2Um+1
j + Um+1

j−1 , δ2Um
j := Um

j+1 − 2Um
j + Um

j−1.

The matrix form of this system of linear equations is therefore the following. We consider the sym-
metric tridiagonal matrix

A :=


−2 1 0
1 −2 1

. . .
. . .

. . .

1 −2 1

0 1 −2


∈ R(J−1)×(J−1).

Let I := IJ−1 be the (J − 1)× (J − 1) identity matrix. Then, the θ-scheme can be written as

(I − θµA)Um+1 = (I + (1− θ)µA)Um + θµFm+1 + (1− θ)µFm, m ∈ {0, 1, . . . ,M − 1},

where Um+1 := (Um+1
1 , . . . , Um+1

J−1 )T ∈ RJ−1, Um := (Um
1 , . . . , Um

J−1)
T ∈ RJ−1 and

Fm+1 := (A(tm+1), 0, . . . , 0, B(tm+1))
T ∈ RJ−1, Fm := (A(tm), 0, . . . , 0, B(tm))T ∈ RJ−1.

Thus, for each m ∈ {0, 1, . . . ,M − 1}, we are required to solve a system of linear algebraic equations
with system matrix I − θµA in order to compute Um+1 from Um.
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8.5.2 The discrete maximum principle

We now try to prove a bound for the θ-scheme in the discrete maximum norm, analogous to (133) satisfied
by the solution of the heat equation. Recall that the CFL number is defined by µ := ∆t

(∆x)2
.

Theorem 26 (Discrete maximum principle for the θ-scheme) The θ-scheme for the Dirichlet IBVP
for the heat equation, with θ ∈ [0, 1] and (1 − θ)µ ≤ 1

2 , yields a sequence of numerical approximations
{Um

j }0≤j≤J ;0≤m≤M satisfying

min{U0
min, U

min
0 , Umin

J } ≤ Um
j ≤ max{U0

max, U
max
0 , Umax

J } ∀j ∈ {0, 1, . . . , J}, m ∈ {0, 1, . . . ,M}

where U0
min := min{U0

0 , U
0
1 , . . . , U

0
J}, Umin

0 := min{U0
0 , U

1
0 , . . . , U

M
0 }, Umin

J := min{U0
J , U

1
J , . . . , U

M
J }, and

U0
max := max{U0

0 , U
0
1 , . . . , U

0
J}, Umax

0 := max{U0
0 , U

1
0 , . . . , U

M
0 }, Umax

J := max{U0
J , U

1
J , . . . , U

M
J }.

Proof: We rewrite the θ-scheme as

(1 + 2θµ)Um+1
j = θµ

(
Um+1
j+1 + Um+1

j−1

)
+ (1− θ)µ

(
Um
j+1 + Um

j−1

)
+ (1− 2(1− θ)µ)Um

j , (139)

and note that, by hypothesis, θµ ≥ 0, (1 − θ)µ ≥ 0, and 1 − 2(1 − θ)µ ≥ 0. Suppose that U attains its
maximum value at an interior mesh-point (xj0 , tm0+1) for some j0 ∈ {1, . . . , J − 1}, m0 ∈ {0, . . . ,M − 1}.
We define U⋆ := max{Um0+1

j0+1 , Um0+1
j0−1 , Um0

j0+1, U
m0
j0−1, U

m0
j0

}. Then,

(1 + 2θµ)Um0+1
j0

≤ 2θµU⋆ + 2(1− θ)µU⋆ + (1− 2(1− θ)µ)U⋆ = (1 + 2θµ)U⋆, (140)

and therefore, Um0+1
j0

≤ U⋆. We also have U⋆ ≤ Um0+1
j0

as Um0+1
j0

is assumed to be the overall maximum

value. Hence, Um0+1
j0

= U⋆. Thus the maximum value is also attained at the points neighbouring

(xj0 , tm0+1) present in the scheme.14

The same argument applies to these neighbouring points, and we can then repeat this process until
the boundary at x = a or x = b or at t = 0 is reached, and this will happen in a finite number of
steps. The maximum is therefore attained at a boundary point. Similarly, the minimum is attained at a
boundary point. □

We have just proved that when µ(1 − θ) ≤ 1
2 the θ-scheme satisfies the discrete maximum principle.

Clearly, this condition is more demanding than the ℓ2-stability condition which requires µ(1 − 2θ) ≤ 1
2

when θ ∈ [0, 12) (see problem sheets). For example, the Crank–Nicolson scheme (θ = 1
2) is unconditionally

stable in the ℓ2 norm, yet it only satisfies the discrete maximum principle when µ = ∆t
(∆x)2

≤ 1. More

generally, for θ ∈ [12 , 1] the θ-scheme is unconditionally stable in the ℓ2-norm, but it will only satisfy
the discrete maximum principle unconditionally when θ = 1 (implicit Euler scheme); for θ ∈ [12 , 1) the
validity of the discrete maximum principle is only guaranteed when µ(1− θ) ≤ 1

2 . Concerning the values
of θ ∈ [0, 12 ], except for θ = 0 when the conditions for the validity of the discrete maximum principle and
discrete ℓ2-stability coincide (both require that µ ≤ 1

2), for θ ∈ (0, 12 ] the inequality µ(1− θ) ≤ 1
2 is more

restrictive than µ(1− 2θ) ≤ 1
2 .

14To see that the maximum value Um0+1
j0

= U∗ is attained at each of the points neighbouring (xj0 , tm0+1) present in the

scheme, first observe that if: (a) θ = 0, then Um+1
j+1 and Um+1

j−1 are absent from the right-hand side of (139); (b) if θ = 1 then
Um

j+1 and Um
j−1 are absent from the right-hand side of (139); (c) if 2(1 − θ)µ = 1, then Um

j is absent from the right-hand
side of (139), and (d) if θ /∈ {0, 1, 1− 1

2µ
}, then Um+1

j+1 , Um+1
j−1 , Um

j+1, U
m
j−1, and Um

j are all present on the right-hand side of
(139). There are therefore four different cases to be discussed: (a), (b), (c) and (d). Suppose that we are in case (d) (the
cases (a), (b) and (c) being dealt with identically); if one of Um0+1

j0+1 , Um0+1
j0−1 , Um0

j0+1, U
m0
j0−1, U

m0
j0

were strictly smaller than

Um0+1
j0

= U∗, then, by returning to the transition from (139) to (140), we would deduce (140) from (139), but now with the

≤ symbol in (140) replaced by <, which would then imply that Um0+1
j0

< U∗. This would, however, contradict the equality

Um0+1
j0

= U∗ which we have already proved.
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8.5.3 Convergence analysis of the θ-scheme in the maximum norm

We close our discussion of FD schemes for the heat equation (130) in one space-dimension with the
convergence analysis of the θ-scheme for the Dirichlet IBVP. We begin by rewriting the scheme as follows:

(1 + 2θµ)Um+1
j = θµ

(
Um+1
j+1 + Um+1

j−1

)
+ (1− θ)µ

(
Um
j+1 + Um

j−1

)
+ (1− 2(1− θ)µ)Um

j ,

for j ∈ {1, . . . , J − 1} and m ∈ {0, 1, . . . ,M − 1}. The scheme is considered subject to the i.c.

U0
j := u0(xj), j ∈ {0, 1, . . . , J},

and the b.c.
Um+1
0 := A(tm+1), Um+1

J := B(tm+1), m ∈ {0, 1, . . . ,M − 1}.

The consistency error for the θ-scheme is given by

Tm
j :=

um+1
j − umj

∆t
− (1− θ)

umj+1 − 2umj + umj−1

(∆x)2
− θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
,

where umj := u(xj , tm), and therefore

(1 + 2θµ)um+1
j = θµ

(
um+1
j+1 + um+1

j−1

)
+ (1− θ)µ

(
umj+1 + umj−1

)
+ (1− 2(1− θ)µ)umj + (∆t)Tm

j .

Let us define the global error, that is the discrepancy at a mesh-point between the exact solution
and its numerical approximation, by

emj := u(xj , tm)− Um
j .

Note that em+1
0 = em+1

J = e0j = 0 for all j ∈ {0, 1, . . . , J} and m ∈ {0, 1, . . . ,M − 1}, and we have that

(1 + 2θµ) em+1
j = θµ

(
em+1
j+1 + em+1

j−1

)
+ (1− θ)µ

(
emj+1 + emj−1

)
+ (1− 2(1− θ)µ) emj + (∆t)Tm

j .

We define Em := max{|em0 |, |em1 |, . . . , |emJ |} and Tm := max{|Tm
0 |, |Tm

1 |, . . . , |Tm
J |}. As, by hypothesis,

θµ ≥ 0, (1− θ)µ ≥ 0, and 1− 2(1− θ)µ ≥ 0, we find that

(1 + 2θµ)Em+1 ≤ 2θµEm+1 + 2(1− θ)µEm + (1− 2(1− θ)µ)Em + (∆t)Tm

= 2θµEm+1 + Em + (∆t)Tm

for any m ∈ {0, 1, . . . ,M − 1}. Hence, Em+1 ≤ Em + (∆t)Tm for any m ∈ {0, 1, . . . ,M − 1}. As E0 = 0,
we find that

Em ≤ Em−1 + (∆t)Tm−1

≤ Em−2 + (∆t)Tm−2 + (∆t)Tm−1

...

≤ (∆t)
(
T 0 + T 1 + · · ·+ Tm−1

)
≤ m(∆t) max

i∈{0,...,m−1}
T i ≤ T max

i∈{0,...,m−1}
T i

for any m ∈ {1, . . . ,M}. This implies that

max
m∈{0,1,...,M}

max
j∈{0,1,...,J}

|emj | ≤ T max
i∈{0,1,...,M−1}

T i.
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Recall that, assuming that u is sufficiently smooth, the consistency error of the θ-scheme is

Tm
j =

{
O
(
(∆x)2 + (∆t)2

)
if θ = 1/2,

O
(
(∆x)2 +∆t

)
if θ ̸= 1/2.

It therefore follows that

max
m∈{0,1,...,M}

max
j∈{0,1,...,J}

|emj | =
{

O
(
(∆x)2 + (∆t)2

)
if θ = 1/2,

O
(
(∆x)2 +∆t

)
if θ ̸= 1/2.

The results developed in this section can be extended to multidimensional axiparallel domains, such
as rectangular or L-shaped domains in two space-dimensions whose edges are parallel with the coordinate
axes, or cuboid-shaped domains in three space-dimensions whose faces are parallel with the coordinate
planes. For more complicated computational domains, such as those with nonaxiparallel or curved faces,
FD meshes with uneven spacing need to be used for points inside the computational domain that are
closest to the boundary of the domain, or if a mesh with even spacing is used, then ‘ghost-points’, which
lie outside the computational domain, need to be introduced. For further details, we refer to e.g., R.
LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, 2007; or to
K.W. Morton and D.F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction,
2nd Edition, CUP, 2005.

In the next section we shall confine ourselves to discussing the construction of FD schemes for the
heat equation in two space-dimensions on a rectangular spatial domain.

8.6 FD approximation of parabolic equations in two space-dimensions

On an open rectangle Ω := (a, b)× (c, d) in R2, we consider the heat equation

∂tu = ∂2
xxu+ ∂2

yyu, (x, y) ∈ Ω, t ∈ (0, T ],

subject to the i.c.
u(x, y, 0) = u0(x, y), (x, y) ∈ [a, b]× [c, d],

and the Dirichlet b.c.
u(x, y, t) = B(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T ].

We begin by considering the explicit Euler FD approximation of this problem.

8.6.1 The explicit and implicit Euler schemes

Let

δ2xUi,j := Ui+1,j − 2Ui,j + Ui−1,j , δ2yUi,j := Ui,j+1 − 2Ui,j + Ui,j−1.

Let ∆x := b−a
Jx

, ∆y := d−c
Jy

, ∆t := T
M , and define

xi := a+ i∆x, i ∈ {0, 1, . . . , Jx},
yj := c+ j∆y, j ∈ {0, 1, . . . , Jy},
tm := m∆t, m ∈ {0, 1, . . . ,M}.

The explicit Euler FD approximation of the heat equation on the space-time domain Ω× [0, T ] is

Um+1
i,j − Um

i,j

∆t
=

δ2xU
m
i,j

(∆x)2
+

δ2yU
m
i,j

(∆y)2
, (141)
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for i ∈ {1, . . . , Jx − 1}, j ∈ {1, . . . , Jy − 1}, m ∈ {0, 1, . . . ,M − 1}, subject to the i.c.

U0
i,j := u0(xi, yj), i ∈ {0, 1, . . . , Jx}, j ∈ {0, 1, . . . , Jy},

and the b.c.

Um+1
i,j := B(xi, yj , tm+1), at the boundary mesh-points, for m ∈ {0, 1, . . . ,M − 1}.

The implicit Euler FD approximation of the heat equation on the space-time domain Ω× [0, T ] is defined
analogously, with (141) replaced by

Um+1
i,j − Um

i,j

∆t
=

δ2xU
m+1
i,j

(∆x)2
+

δ2yU
m+1
i,j

(∆y)2
.

8.6.2 The θ-scheme

By taking the convex combination of the explicit and implicit Euler schemes, with a parameter θ ∈ [0, 1],
with θ = 0 corresponding to the explicit Euler scheme and θ = 1 to the implicit Euler scheme, we obtain
a one-parameter family of schemes, called the θ-scheme. It is defined as follows.

Let ∆x := b−a
Jx

, ∆y := d−c
Jy

, and ∆t := T
M . For θ ∈ [0, 1], consider the FD scheme

Um+1
i,j − Um

i,j

∆t
= (1− θ)

(
δ2xU

m
i,j

(∆x)2
+

δ2yU
m
i,j

(∆y)2

)
+ θ

(
δ2xU

m+1
i,j

(∆x)2
+

δ2yU
m+1
i,j

(∆y)2

)
,

for i ∈ {1, . . . , Jx − 1}, j ∈ {1, . . . , Jy − 1}, m ∈ {0, 1, . . . ,M − 1}, subject to the i.c.

U0
i,j := u0(xi, yj), i ∈ {0, 1, . . . , Jx}, j ∈ {0, 1, . . . , Jy},

and the b.c.

Um+1
i,j := B(xi, yj , tm+1), at the boundary mesh-points, for m ∈ {0, 1, . . . ,M − 1}.

Practical stability

The practical stability of the θ-scheme (in the absence of a b.c. now, i.e., for the pure IVP rather than
the IBVP) in the ℓ2 norm is easily assessed by inserting

Um
i,j =

1

(2π)2

∫ π
∆x

− π
∆x

∫ π
∆y

− π
∆y

eı(kxi∆x+kyj∆y)Ûm(kx, ky) dky dkx.

(Here, ı denotes the complex number, and i the index from Um
i,j). We deduce that

Ûm+1(kx, ky)− Ûm(kx, ky)

∆t
= (1− θ)

−4 sin2
(
kx∆x

2

)
(∆x)2

+
−4 sin2

(
ky∆y

2

)
(∆y)2

 Ûm(kx, ky)

+ θ

−4 sin2
(
kx∆x

2

)
(∆x)2

+
−4 sin2

(
ky∆y

2

)
(∆y)2

 Ûm+1(kx, ky)

for all (kx, ky) ∈
[
− π

∆x ,
π
∆x

]
×
[
− π

∆y ,
π
∆y

]
. Writing µx := ∆t

(∆x)2
and µy := ∆t

(∆y)2
, we find that

Ûm+1(kx, ky) = λ(kx, ky)Û
m(kx, ky) ∀(kx, ky) ∈

[
− π

∆x
,
π

∆x

]
×
[
− π

∆y
,
π

∆y

]
,
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where the amplification factor is given by

λ(kx, ky) :=
1− 4(1− θ)

[
µx sin

2
(
kx∆x

2

)
+ µy sin

2
(
ky∆y

2

)]
1 + 4θ

[
µx sin

2
(
kx∆x

2

)
+ µy sin

2
(
ky∆y

2

)]
for (kx, ky) ∈

[
− π

∆x ,
π
∆x

]
×
[
− π

∆y ,
π
∆y

]
. For practical stability in the ℓ2 norm, we require that

|λ(kx, ky)| ≤ 1 ∀ (kx, ky) ∈
[
− π

∆x
,
π

∆x

]
×
[
− π

∆y
,
π

∆y

]
.

Note that λ(kx, ky) ≤ 1 without any restriction on µx, µy. Hence, the scheme is practically stable iff

λ(kx, ky) ≥ −1 ∀(kx, ky) ∈
[
− π

∆x ,
π
∆x

]
×
[
− π

∆y ,
π
∆y

]
, which holds iff

(1− 2θ)

[
µx sin

2

(
kx∆x

2

)
+ µy sin

2

(
ky∆y

2

)]
≤ 1

2
∀(kx, ky) ∈

[
− π

∆x
,
π

∆x

]
×
[
− π

∆y
,
π

∆y

]
,

i.e., iff

(1− 2θ)(µx + µy) ≤
1

2
.

For example, the implicit Euler scheme (θ = 1) and the Crank–Nicolson scheme (θ = 1/2) are
unconditionally practically stable, while the explicit Euler scheme (θ = 0) is only conditionally practically
stable, the stability condition being that ∆x, ∆y, and ∆t satisfy the following inequality:

µx + µy = ∆t

(
1

(∆x)2
+

1

(∆y)2

)
≤ 1

2
.

Discrete maximum principle

Under a suitable condition the θ-scheme for the IBVP also satisfies a discrete maximum principle. To
see this, we rewrite the θ-scheme as

(1 + 2θ(µx + µy))U
m+1
i,j = (1− 2(1− θ)(µx + µy))U

m
i,j

+ (1− θ)µx(U
m
i+1,j + Um

i−1,j) + (1− θ)µy(U
m
i,j+1 + Um

i,j−1)

+ θµx(U
m+1
i+1,j + Um+1

i−1,j) + θµy(U
m+1
i,j+1 + Um+1

i,j−1),

for i ∈ {1, . . . , Jx − 1}, j ∈ {1, . . . , Jy − 1}, m ∈ {0, 1, . . . ,M − 1}, subject to the i.c.

U0
i,j := u0(xi, yj), i ∈ {0, 1, . . . , Jx}, j ∈ {0, 1, . . . , Jy},

and the b.c.

Um
i,j := B(xi, yj , tm), at the boundary mesh-points, for m ∈ {1, . . . ,M}.

Theorem 27 Suppose that

(1− θ)(µx + µy) ≤
1

2
, θ ∈ [0, 1].

Then, the θ-scheme satisfies the following discrete maximum principle:

min{U0
min, U

min
∂ } ≤ Um

i,j ≤ max{U0
max, U

max
∂ }

for all i ∈ {0, 1, . . . , Jx}, j ∈ {0, 1, . . . , Jy}, m ∈ {0, 1, . . . ,M}, where

U0
min := min{U0

i,j | i ∈ {0, 1, . . . , Jx}, j ∈ {0, 1, . . . , Jy}}, Umin
∂ := min{Um

i,j | (xi, yj) ∈ ∂Ω,m ∈ {0, 1, . . . ,M}},
U0
max := max{U0

i,j | i ∈ {0, 1, . . . , Jx}, j ∈ {0, 1, . . . , Jy}}, Umax
∂ := max{Um

i,j | (xi, yj) ∈ ∂Ω,m ∈ {0, 1, . . . ,M}}.
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Proof: The proof proceeds by a straightforward modification of the proof of the discrete maximum
principle for the θ-scheme in one space-dimension. □

In summary, then, for

(1− θ)(µx + µy) ≤
1

2

the θ-scheme satisfies the discrete maximum principle. This condition is more demanding than the one
for the practical stability of the scheme in the ℓ2 norm, which requires that

(1− 2θ)(µx + µy) ≤
1

2
.

For example, the Crank–Nicolson scheme (θ = 1
2) is unconditionally practically stable in the ℓ2 norm,

but for the discrete maximum principle to hold we had to assume that

µx + µy =
∆t

(∆x)2
+

∆t

(∆y)2
≤ 1.

Error analysis

We close our discussion by returning to the θ-scheme for the IBVP, and discussing its error analysis. The
starting point is to rewrite the scheme as follows:

(1 + 2θ(µx + µy))U
m+1
i,j = (1− 2(1− θ)(µx + µy))U

m
i,j

+ (1− θ)µx(U
m
i+1,j + Um

i−1,j) + (1− θ)µy(U
m
i,j+1 + Um

i,j−1)

+ θµx(U
m+1
i+1,j + Um+1

i−1,j) + θµy(U
m+1
i,j+1 + Um+1

i,j−1),

for i ∈ {1, . . . , Jx − 1}, j ∈ {1, . . . , Jy − 1}, m ∈ {0, 1, . . . ,M − 1}, subject to the i.c.

U0
i,j := u0(xi, yj), i ∈ {0, 1, . . . , Jx}, j ∈ {0, 1, . . . , Jy},

and the b.c.

Um
i,j := B(xi, yj , tm), at the boundary mesh-points, for m ∈ {1, . . . ,M}.

Suppose further that

(1− θ)(µx + µy) ≤
1

2
, θ ∈ [0, 1].

The consistency error of the θ-scheme is defined as

Tm
i,j :=

um+1
i,j − umi,j

∆t
− (1− θ)

(
δ2xu

m
i,j

(∆x)2
+

δ2yu
m
i,j

(∆y)2

)
− θ

(
δ2xu

m+1
i,j

(∆x)2
+

δ2yu
m+1
i,j

(∆y)2

)
,

where we write umi,j := u(xi, yj , tm). By performing Taylor series expansions, one can deduce that

Tm
i,j =

{
O
(
(∆x)2 + (∆y)2 + (∆t)2

)
if θ = 1/2,

O
(
(∆x)2 + (∆y)2 +∆t

)
if θ ̸= 1/2.

It follows from the definition of the consistency error Tm
i,j for the θ-scheme that

(1 + 2θ(µx + µy))u
m+1
i,j = (1− 2(1− θ)(µx + µy))u

m
i,j

+ (1− θ)µx(u
m
i+1,j + umi−1,j) + (1− θ)µy(u

m
i,j+1 + umi,j−1)

+ θµx(u
m+1
i+1,j + um+1

i−1,j) + θµy(u
m+1
i,j+1 + um+1

i,j−1)

+ ∆t Tm
i,j
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for i ∈ {1, . . . , Jx − 1}, j ∈ {1, . . . , Jy − 1}, m ∈ {0, 1, . . . ,M − 1}. We define the global error as

emi,j := u(xi, yj , tm)− Um
i,j .

Then, e0i,j = 0 for any i ∈ {0, 1, . . . , Jx}, j ∈ {0, 1, . . . , Jy}, and also emi,j = 0 for any (xi, yj) ∈ ∂Ω,
m ∈ {1, . . . ,M}. Further,

(1 + 2θ(µx + µy))e
m+1
i,j = (1− 2(1− θ)(µx + µy))e

m
i,j

+ (1− θ)µx(e
m
i+1,j + emi−1,j) + (1− θ)µy(e

m
i,j+1 + emi,j−1)

+ θµx(e
m+1
i+1,j + em+1

i−1,j) + θµy(e
m+1
i,j+1 + em+1

i,j−1)

+ (∆t)Tm
i,j for i ∈ {1, . . . , Jx − 1} and j ∈ {1, . . . , Jy − 1}.

Let us define Em := maxi,j |emi,j | and Tm := maxi,j |Tm
i,j |. As by hypothesis 1− 2(1− θ)(µx + µy) ≥ 0, we

have that

(1 + 2θ(µx + µy))E
m+1 ≤ 2θ(µx + µy)E

m+1 + Em + (∆t)Tm ∀m ∈ {0, 1, . . . ,M − 1}.

Hence,
Em+1 ≤ Em +∆t Tm ∀m ∈ {0, 1, . . . ,M − 1}.

As E0 = 0, we deduce that

Em ≤ Em−1 + (∆t)Tm−1

≤ Em−2 + (∆t)Tm−2 + (∆t)Tm−1

...

≤ (∆t)
(
T 0 + T 1 + · · ·+ Tm−1

)
≤ m(∆t) max

l∈{0,...,m−1}
T l ≤ T max

l∈{0,...,m−1}
T l

for any m ∈ {1, . . . ,M}. This implies that

max
m∈{0,1,...,M}

max
i∈{0,1,...,Jx},j∈{0,1,...,Jy}

|emi,j | ≤ T max
l∈{0,1,...,M−1}

T l.

Recall that, assuming that u is sufficiently smooth, the consistency error of the θ-scheme satisfies

Tm
i,j =

{
O
(
(∆x)2 + (∆y)2 + (∆t)2

)
if θ = 1/2,

O
(
(∆x)2 + (∆y)2 +∆t

)
if θ ̸= 1/2.

We conclude that, under the assumption (1− θ)(µx + µy) ≤ 1
2 , there holds

max
m∈{0,1,...,M}

max
i∈{0,1,...,Jx},j∈{0,1,...,Jy}

|emi,j | =
{

O
(
(∆x)2 + (∆y)2 + (∆t)2

)
if θ = 1/2,

O
(
(∆x)2 + (∆y)2 +∆t

)
if θ ̸= 1/2.
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