Research

New postdoc positions available! Click here for more details!

Research Interests

Distributional approximations in probability theory, Stein’s method, mathematical and statistical modeling of infectious disease processes.

Publications

See also my profiles on arXiv.org and Google Scholar.

Recent manuscripts

  • J. Fulman and A. Röllin (preprint). Stein’s method and Narayana numbers. [arXiv]
  • W. H. Tang and A. Röllin (preprint). Model identification for ARMA time series through convolutional neural networks. [arXiv]
  • A. Röllin (preprint). Kolmogorov bounds for the normal approximation of the number of triangles in the Erdős-Rényi random graph. [arXiv]

Published

  • A. D. Barbour, A. Röllin, and N. Ross (2019). Error bounds in local limit theorems using Stein’s method. Bernoulli 25, 1076–1104[arXiv]
  • A. D. Barbour and A. Röllin (2019). Central limit theorems in the configuration model. Ann. Appl. Probab. 29, 1046–1069 [arXiv]
  • E. A. Peköz, A. Röllin and N. Ross (2019). Pólya urns with immigration at random times. Bernoulli 25, 189–220 [arXiv]
  • A. D. Barbour and A. Röllin (2018). A central limit theorem for the gossip process. Electron. J. Probab. 23, paper no. 123, 1–37. [arXiv]
  • A. Röllin (2018). On quantitative bounds in the mean martingale central limit theorem. Statist. Probab. Lett. 138, 171–176. [arXiv]
  • S. Athreya and A. Röllin (2018). Respondent driven sampling and sparse graph convergence. Electron. Comm. Probab. 23, paper no. 3, 1–12. [arXiv]
  • H. L. Gan, A. Röllin, N. Ross (2017). Dirichlet approximation of equilibrium distributions in Cannings models with mutation. Adv. Appl. Probab. 49, 927–959. [arXiv]
  • E. A. Peköz, A. Röllin and N. Ross (2017). Joint degree distributions of preferential attachment random graphs. Adv. Appl. Probab. 49, 368–387. [arXiv]
  • S. Athreya and A. Röllin (2016). Dense graph limits under respondent-driven sampling. Ann. Appl. Probab. 44, 2193–2210. [arXiv]
  • E. Peköz, A. Röllin and N. Ross (2016). Generalized gamma approximation with rates for urns, walks and trees. Ann. Probab. 44, 1776–1816. [arXiv]
  • X. Fang and A. Röllin (2015). Rates of convergence for multivariate normal approximation with applications to dense graphs and doubly indexed permutation statistics. Bernoulli 21, 2157-2189. [arXiv]
  • A. Röllin and N. Ross (2015). Local limit theorems via Landau-Kolmogorov inequalities. Bernoulli 21, 851-880. [arXiv]
  • K. H. X. Tan, L. Simonella, H. L. Wee, A. Röllin, Y.-W. Lim, W.-Y. Lim, K. S. Chia, M. Hartman, A. R. Cook (2013). Quantifying the natural history of breast cancer.
    British Journal of Cancer 109, 2035–2043. [article]
  • L. H. Y. Chen and A. Röllin (2013). Approximating dependent rare events. Bernoulli 19, 1243-1267. [arXiv]
  • E. A. Peköz, A. Röllin, and N. Ross (2013). Total variation error bounds for geometric approximation. Bernoulli 19, 610–632. [arXiv]
  • A. Röllin (2013). Stein’s method in high dimensions with applications. Ann. Inst. Henri Poincaré Probab. Stat. 49, 529–549. [arXiv]
  • E. A. Peköz, A. Röllin and N. Ross (2013). Degree asymptotics with rates for preferential attachment random graphs. Ann. Appl. Probab. 23, 1188-1218. [arXiv]
  • A. Röllin (2012). On the optimality of Stein factors. Probability Approximations and Beyond, Lecture Notes in Statistics 205, Springer. [arXiv]
  • C. L. Althaus, J. C. M. Heijne, S. A. Herzog, A. Röllin and N. Low (2012). Individual and population level effects of partner notification for Chlamydia trachomatisPLoS ONE 7. [journal]
  • E. A. Peköz and A. Röllin (2011). Exponential approximation for the nearly critical Galton-Watson process and occupation times of Markov chains. Electron. J. Probab. 16, 1381–1393. [journal]
  • S. Chatterjee, J. Fulman and A. Röllin (2011). Exponential approximation by Stein’s method and spectral graph theory. ALEA Lat. Am. J. Probab. Math. Stat. 8, 197–223. [arXiv]
  • E. A. Peköz, A. Röllin (2011). New rates for exponential approximation and the theorems of Rényi and Yaglom. Ann. Probab. 39, 587–608. [arXiv]
  • C. L. Althaus, J. C. M. Heijne, A. Röllin and N. Low (2010). Transmission dynamics of Chlamydia trachomatis affect the impact of screening programmes. Epidemics 2, 123-131. [DOI]
  • G. Reinert and A. Röllin (2010). Random subgraph counts and U-statistics: multivariate normal approximation via exchangeable pairs and embedding. J. Appl. Probab. 47, 378–393. [arXiv]
  • S. Tueckmantel, A. Röllin, A. E. Müller and C. Soligo (2009). Facial correlates of frontal bone pneumatisation in strepsirrhine primates. Mammalian Biology 74, 25-35.
  • E. A. Peköz, A. Röllin, V. Čekanavičius and M. Shwartz (2009). A three-parameter binomial approximation. J. Appl. Probab. 46, 1073–1085. [published versionpreprint (arXiv)]
  • G. Reinert and A. Röllin (2009). Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition. Ann. Probab. 37, 2150–2173. [published version on arXiv]
  • A. Röllin (2008). A note on the exchangeability condition in Stein’s method. Statist. Probab. Lett. 78, 1800–1806. [published versionpreprint (arXiv)]
  • A. Röllin (2008). Symmetric and centered binomial approximation of sums of locally dependent random variables. Electron. J. Probab. 13, 756–776. [preprint (arXiv)]
  • A. Röllin (2007). Translated Poisson approximation using exchangeable pair couplings. Ann. Appl. Probab. 17, 1596–1614. [published versionpreprint (arXiv)]
  • A. Röllin (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution. Bernoulli 11, 1115–1128. [published version]

Unpublished manuscripts

  • J. Fulman and A. Röllin (preprint). Stein’s method, heat kernel, and linear functions on the orthogonal groups. [arXiv]
  • L. H. Y. Chen and A. Röllin (preprint). Stein couplings for normal approximation. [arXiv]

A less serious, but important piece of research nonetheless…

  • A. Röllin and M. Zilversmit (preprint). A Test in discernment of Scotch whiskey and Cognac brandy among untrained tasters. [Preprint]
Talk slides
  • Stein couplings for normal approximation (June 2010) [PDF]
  • Local limit theorems via Landau-Kolmogorov inequalities and smoothing (June 2012) [PDF]
Skip to toolbar