Research Interests

Distributional approximations in probability theory, Stein’s method, mathematical and statistical modeling of infectious disease processes.


See also my profiles on and Google Scholar.

Recent manuscripts

  • L. H. Y. Chen and A. Röllin (preprint). Stein couplings for normal approximation. [arXiv]

Accepted for publication

  • A. Röllin and Z.-S. Zhang (2022+). Dense multigraphon-valued stochastic processes and edge-changing dynamics in the configuration model. To appear in Ann. Appl. Probab. [arXiv]


  • A. Röllin (2022). Kolmogorov bounds for the normal approximation of the number of triangles in the Erdős-Rényi random graph. Probab. Engrg. Inform. Sci. 36, 747-773. [DOI]
  • J. Fulman and A. Röllin (2022). Stein’s method, heat kernel, and linear functions on the orthogonal groups. J. Algebra 607, 272–285. [DOI]
  • L. H. Y. Chen, A. Röllin, A. Xia (2021). Palm theory, random measures and Stein couplings. Ann. Appl. Probab. 31, 2881–2923. [DOI]
  • G. Kaur and A. Röllin (2021). Higher-order fluctuations in dense random graph models. Electron. J. Probab. 26, article no. 139, 1–36 [DOI]
  • X. Fang, H. L. Gan, S. Holmes, H. Huang, E. Peköz, A. Röllin, W. Tang (2021). Arcsine laws for random walks generated from random permutations with applications to genomics. J. Appl. Probab. 58, 851–867. [DOI]
  • S. Athreya, F. den Hollander and A. Röllin (2021). Graphon-valued stochastic processes from population genetics. Ann. Appl. Probab. 31, 1724–1745. [DOI]
  • W. H. Tang and A. Röllin (2021). Model identification for ARMA time series through convolutional neural networks. Decis. Support Syst. 146, 113544 [journal, arXiv (old version)]
  • J. Sankaran, H. Balasubramanian, W. H. Tang, X. W. Ng, A. Röllin, T. Wohland (2021). Simultaneous spatiotemporal super-resolution and multi-parametric fluorescence microscopy. Nature Communications 12, no. 1748 [journal, biorXiv]
  • L. H. Y. Chen, L. Goldstein and A. Röllin (2020). Stein’s method via induction. Electronic J. Probab. 25, paper no. 132, 49 pp. [journal, arXiv]
  • J. Fulman and A. Röllin (2020). Stein’s method and Narayana numbers.  Statist. Probab. Lett. 165, article no. 108835, 1–9. [arXiv]
  • E. Peköz, N. Ross and A. Röllin (2020). Exponential and Laplace approximation for occupation statistics of branching random walk. Electronic J. Probab. 25, paper no. 55, 1–22.
  • A. K. J. Teo, K. Prem, M. I. C. Chen, A. Röllin, M. L. Wong, H. H. La and A. R. Cook (2019). Estimating the size of key populations for HIV in Singapore using the network scale-up method. Sex. Transm. Infect. 95, 602–607.
  • A. D. Barbour, A. Röllin, and N. Ross (2019). Error bounds in local limit theorems using Stein’s method. Bernoulli 25, 1076–1104[arXiv]
  • A. D. Barbour and A. Röllin (2019). Central limit theorems in the configuration model. Ann. Appl. Probab. 29, 1046–1069 [DOI]
  • E. A. Peköz, A. Röllin and N. Ross (2019). Pólya urns with immigration at random times. Bernoulli 25, 189–220 [arXiv]
  • A. D. Barbour and A. Röllin (2018). A central limit theorem for the gossip process. Electron. J. Probab. 23, paper no. 123, 1–37. [arXiv]
  • A. Röllin (2018). On quantitative bounds in the mean martingale central limit theorem. Statist. Probab. Lett. 138, 171–176. [arXiv]
  • S. Athreya and A. Röllin (2018). Respondent driven sampling and sparse graph convergence. Electron. Comm. Probab. 23, paper no. 3, 1–12. [arXiv]
  • H. L. Gan, A. Röllin, N. Ross (2017). Dirichlet approximation of equilibrium distributions in Cannings models with mutation. Adv. Appl. Probab. 49, 927–959. [arXiv]
  • E. A. Peköz, A. Röllin and N. Ross (2017). Joint degree distributions of preferential attachment random graphs. Adv. Appl. Probab. 49, 368–387. [arXiv]
  • S. Athreya and A. Röllin (2016). Dense graph limits under respondent-driven sampling. Ann. Appl. Probab. 26, 2193–2210. [arXiv]
  • E. Peköz, A. Röllin and N. Ross (2016). Generalized gamma approximation with rates for urns, walks and trees. Ann. Probab. 44, 1776–1816. [arXiv]
  • X. Fang and A. Röllin (2015). Rates of convergence for multivariate normal approximation with applications to dense graphs and doubly indexed permutation statistics. Bernoulli 21, 2157-2189. [arXiv]
  • A. Röllin and N. Ross (2015). Local limit theorems via Landau-Kolmogorov inequalities. Bernoulli 21, 851-880. [arXiv]
  • K. H. X. Tan, L. Simonella, H. L. Wee, A. Röllin, Y.-W. Lim, W.-Y. Lim, K. S. Chia, M. Hartman, A. R. Cook (2013). Quantifying the natural history of breast cancer. British Journal of Cancer 109, 2035–2043. [article]
  • L. H. Y. Chen and A. Röllin (2013). Approximating dependent rare events. Bernoulli 19, 1243-1267. [arXiv]
  • E. A. Peköz, A. Röllin, and N. Ross (2013). Total variation error bounds for geometric approximation. Bernoulli 19, 610–632. [arXiv]
  • A. Röllin (2013). Stein’s method in high dimensions with applications. Ann. Inst. Henri Poincaré Probab. Stat. 49, 529–549. [arXiv]
  • E. A. Peköz, A. Röllin and N. Ross (2013). Degree asymptotics with rates for preferential attachment random graphs. Ann. Appl. Probab. 23, 1188-1218. [arXiv]
  • A. Röllin (2012). On the optimality of Stein factors. Probability Approximations and Beyond, Lecture Notes in Statistics 205, Springer. [arXiv]
  • C. L. Althaus, J. C. M. Heijne, S. A. Herzog, A. Röllin and N. Low (2012). Individual and population level effects of partner notification for Chlamydia trachomatisPLoS ONE 7. [journal]
  • E. A. Peköz and A. Röllin (2011). Exponential approximation for the nearly critical Galton-Watson process and occupation times of Markov chains. Electron. J. Probab. 16, 1381–1393. [journal]
  • S. Chatterjee, J. Fulman and A. Röllin (2011). Exponential approximation by Stein’s method and spectral graph theory. ALEA Lat. Am. J. Probab. Math. Stat. 8, 197–223. [arXiv]
  • E. A. Peköz, A. Röllin (2011). New rates for exponential approximation and the theorems of Rényi and Yaglom. Ann. Probab. 39, 587–608. [arXiv]
  • C. L. Althaus, J. C. M. Heijne, A. Röllin and N. Low (2010). Transmission dynamics of Chlamydia trachomatis affect the impact of screening programmes. Epidemics 2, 123-131. [DOI]
  • G. Reinert and A. Röllin (2010). Random subgraph counts and U-statistics: multivariate normal approximation via exchangeable pairs and embedding. J. Appl. Probab. 47, 378–393. [arXiv]
  • S. Tueckmantel, A. Röllin, A. E. Müller and C. Soligo (2009). Facial correlates of frontal bone pneumatisation in strepsirrhine primates. Mammalian Biology 74, 25-35.
  • E. A. Peköz, A. Röllin, V. Čekanavičius and M. Shwartz (2009). A three-parameter binomial approximation. J. Appl. Probab. 46, 1073–1085. [published versionpreprint (arXiv)]
  • G. Reinert and A. Röllin (2009). Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition. Ann. Probab. 37, 2150–2173. [published version on arXiv]
  • A. Röllin (2008). A note on the exchangeability condition in Stein’s method. Statist. Probab. Lett. 78, 1800–1806. [published versionpreprint (arXiv)]
  • A. Röllin (2008). Symmetric and centered binomial approximation of sums of locally dependent random variables. Electron. J. Probab. 13, 756–776. [preprint (arXiv)]
  • A. Röllin (2007). Translated Poisson approximation using exchangeable pair couplings. Ann. Appl. Probab. 17, 1596–1614. [published versionpreprint (arXiv)]
  • A. Röllin (2005). Approximation of sums of conditionally independent variables by the translated Poisson distribution. Bernoulli 11, 1115–1128. [published version]

A less serious, but important piece of research nonetheless…

  • A. Röllin and M. Zilversmit (preprint). A Test in discernment of Scotch whiskey and Cognac brandy among untrained tasters. [Preprint]
Talk slides
  • Stein couplings for normal approximation (June 2010) [PDF]
  • Local limit theorems via Landau-Kolmogorov inequalities and smoothing (June 2012) [PDF]
Skip to toolbar