Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

Feng Wang, Yu Han, Chin Seong Lim, Yunhao Lu, Juan Wang, Jun Xu, Hongyu Chen, Chun Zhang, Minghui Hong & Xiaogang Liu

Doping is a widely applied technological process in materials science that involves incorporating atoms or ions of appropriate elements into host lattices to yield hybrid materials with desirable properties and functions. For nanocrystalline materials, doping is of fundamental importance in stabilizing a specific crystallographic phase, modifying electronic properties, modulating magnetism as well as tuning emission properties. Here we describe a material system in which doping influences the growth process to give simultaneous control over the crystallographic phase, size and optical emission properties of the resulting nanocrystals. We show that NaYF₄ nanocrystals can be rationally tuned in size (down to ten nanometres), phase (cubic or hexagonal) and upconversion emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal phase and size arises from a strong dependence on the size and dipole polarizability of the substitutional dopant ion. Our results suggest that the doping-induced structural and size transition, demonstrated here in NaYF₄ upconversion nanocrystals, could be extended to other lanthanide-doped nanocrystal systems for applications ranging from luminescent biological labels to volumetric three-dimensional displays.

Upconversion nanocrystals are luminescent nanomaterials that convert a near-infrared excitation into a visible emission through lanthanide doping. Compared to organic fluorophores and semiconducting nanocrystals, upconversion nanocrystals offer high photostability, sharp emission bandwidths, and large anti-Stokes shifts (up to 500 nm) that separate discrete emission peaks from the infrared excitation. Along with the remarkable light penetration depth and the absence of autofluorescence in biological specimens under infrared excitation, these upconversion nanocrystals are ideal for use as luminescent probes in biological labelling and imaging technology. Despite recent progress in nanocrystal synthesis, it has been challenging to prepare small-sized nanocrystals (sub-20 nm) that emit strong upconversion luminescence on infrared excitation. Conventional techniques for controlling the crystallization of nanocrystals with well-defined crystal phase and size generally impose stringent control over a set of experimental variables, such as nature of solvent, temperature, reaction time and concentration of metal precursors. For example, hexagonal phase NaYF₄, which offers about an order-of-magnitude enhancement of upconversion efficiency relative to its cubic phase counterpart, typically exists in bulk materials and large-sized particles. As the physical dimension of the particle is reduced, high surface tension triggers phase transformation from anisotropic (hexagonal) to isotropic (cubic), resulting in a significant decrease of upconversion luminescence. Sufficiently high reaction temperatures (~300 °C) and prolonged heat treatment (up to several days) can lead to the pure hexagonal form of NaYF₄, but these processes are generally associated with significant particle aggregation or enlarged crystal size. Although sub-20-nm hexagonal-phase NaYF₄ nanocrystals have been synthesized in organic solvents, the synthesis requires air-sensitive, toxic organometallic precursors and hazardous coordinating solvents, which have become matters of substantial environmental concern. Here we present direct observation and mechanistic investigation of simultaneous phase and size control of upconversion NaYF₄ nanocrystals through lanthanide doping. We find that the lanthanide doping approach results in dramatic shortening of reaction time (down to 2 h) on cubic-to-hexagonal phase transition and a substantial decrease in the reaction temperature (down to 230 °C) needed for preparing ultra-small (10 nm) hexagonal phase upconversion nanoparticles.

In cubic sodium rare earth (RE) fluoride systems (NaREF₄) containing one type of high-symmetry cation site, fluoride structures (CaF₂) are formed, with the Ca²⁺ sites randomly occupied by Na⁺ and RE³⁺ ions. Here we present direct observation and mechanistic investigation of simultaneous phase and size control of upconversion NaYF₄ nanocrystals through lanthanide doping. We find that the lanthanide doping approach results in dramatic shortening of reaction time (down to 2 h) on cubic-to-hexagonal phase transition and a substantial decrease in the reaction temperature (down to 230 °C) needed for preparing ultra-small (10 nm) hexagonal phase upconversion nanoparticles.

To validate our hypothesis, Gd³⁺ ions (r = 1.193 Å) at different doping levels were used to induce phase transformation in upconversion NaYF₄:Yb/Er nanocrystals. We chose NaYF₄:Yb/Er nanocrystals because of their well-established efficient upconversion luminescence and well developed synthetic methods. All samples were first examined by X-ray powder diffraction (Fig. 1d). Without the Gd³⁺ ions added, the X-ray diffraction pattern of NaYF₄:Yb/Er (18/2 mol%) samples can be indexed as a mixture of the cubic (JCPDS file number 77-2042) and hexagonal (JCPDS file number 16-0334) phases of NaYF₄. On doping with increased Gd³⁺ concentrations, the transformation from cubic to hexagonal in these samples is evident. The pure hexagonal phase of NaYF₄ was obtained as the Gd³⁺ ion concentration reached 30 mol%. Notably, the cubic-to-hexagonal phase conversion is complete after heating at 200 °C for only 2 h, much less than the 20 h required for a complete phase transformation without the Gd³⁺ dopant. With further increase in Gd³⁺ ion concentration, no extra diffraction peaks were observed, indicating the formation of a homogeneous Y-Gd solid solution. This result can

©2010 Macmillan Publishers Limited. All rights reserved
be attributed to the small structural difference between the hexagonal phase NaYF₄ and NaGdF₄. They adopt the same space group (P6₃/m) with similar unit-cell parameters (a = 5.96 Å, c = 3.53 Å for NaYF₄ and a = 6.02 Å, c = 3.60 Å for NaGdF₄). The peak shifts towards lower diffraction angles in the X-ray powder diffraction patterns as a function of the Gd³⁺ ion concentration arises as a result of expansion in unit-cell volume owing to the substitution of Y³⁺ ions by larger Gd³⁺ ions in the host lattice. Importantly, we also observed that the diffraction peaks broaden with increasing Gd³⁺ dopant content, indicating a reduction of the average crystallite size.

To shed more light on the effect of lanthanide doping, we performed first principles calculations based on density functional theory (DFT) for ground-state geometry and formation energy of NaYF₄ and NaGdF₄ nanocrystals in both cubic and hexagonal phases (Supplementary Fig. 1). The DFT calculations include the generalized gradient approximation, using a plane wave basis (kinetic energy cut-off 400 eV) and projector augmented-wave pseudo potential. The formation energy is defined as the energy difference per unit cell between the nanocrystal and isolated atoms. In cubic phase, the formation energy per atom decreases by about 0.07 eV when Y³⁺ is replaced by Gd³⁺, representing the fact that NaYF₄ is more energetically stable than NaGdF₄ in cubic phase. In contrast, the formation energy per atom in hexagonal phase increases by about 0.07 eV when Y³⁺ is replaced by Gd³⁺, indicating that NaGdF₄ is more energetically stable than NaYF₄ in hexagonal phase. Our calculations are consistent with our experimental observations showing that an increase of the Gd³⁺ dopant content in the NaYF₄ host favours the formation of hexagonal phase nanocrystals.

We further studied the crystal structure and size of NaYF₄:Yb/Er (18/2 mol%) samples doped with Gd³⁺ ions at different concentrations (0–60 mol%) using transmission electron microscopy (TEM) (Fig. 2). Without deliberately added Gd³⁺ ions, the TEM image of the NaYF₄:Yb/Er (18/2 mol%) sample prepared in an aqueous solvent for 2 h shows two distinct particle morphologies that include small nanocubes and large nanorods (Fig. 2a), well consistent with the presence of two phases observed by X-ray powder diffraction. TEM images of samples obtained after 5 and 10 h of reactions still show the formation of mixed nanorods and nanocubes (Fig. 2b and c). High-resolution TEM analysis reveals that the small nanocubes are cubic phase NaYF₄ (Fig. 2d). We therefore concluded the large nanorods to be hexagonal-phase NaYF₄ and we further confirmed this by electron diffraction study (Fig. 2e). However, in the presence of Gd³⁺ dopant ions (30 mol%), the cubic-to-hexagonal phase conversion is clearly complete after only 2 h under identical reaction conditions (Fig. 2f).

The dramatic shortening of reaction time on phase transformation was further confirmed by repeated doping experiments with 45 mol% and 60 mol% of Gd³⁺. In all cases, the complete conversion of cubic to hexagonal phase occurred after 2 h, resulting in formation of highly uniform nanorods (Fig. 2g and h). With increasing Gd³⁺ dopant concentration (30–60 mol%), nanorods with gradually decreased dimensions are formed (Fig. 2f–h), which is consistent with a previous report in the case of Eu³⁺ doping. We determined the nanorods with a Gd³⁺ content of 60 mol% to be highly crystalline hexagonal phase using high-resolution TEM (Fig. 2i). Lattice fringes associated with (001) planes (d-spacing of 0.36 nm) appear along the nanorods, indicating that the nanorods grow along the c-axis (Supplementary Fig. 2). Compositional analysis of an individual nanorod by energy-dispersive X-ray spectroscopy reveals the presence of the doped elemental Yb, Er and Gd (Supplementary Fig. 2).

The size evolution of NaYF₄:Yb/Er nanocrystals can be partly attributed to the strong effect of the Gd³⁺ dopant ion on crystal growth rate through surface charge modification. Our DFT calculation shows that the electron charge density of the crystal surface increases after a Gd³⁺ ion substitutes the Y³⁺ ion in the crystal lattice. The charge of electron density on the surface of the small-sized nanocrystals can substantially slow the diffusion of negatively charged F⁻ ions to the surface, owing to an increase in charge repulsion, resulting in a tunable reduction of the NaYF₄ nanocrystal size (Fig. 2j).

To verify the phase and size control mechanism of this doping approach, larger lanthanide ions Sm³⁺ (r = 1.219 Å) and Nd³⁺ (r = 1.249 Å) were each doped into the NaYF₄:Yb/Er nanocrystals at a dopant concentration of 30 mol%. Both samples were found to crystallize in pure hexagonal phase with rod-like morphology (Supplementary Fig. 3). The larger Sm³⁺ and Nd³⁺ ions resulted in the formation of smaller nanorods than did the Gd³⁺ ion under identical reaction conditions. These results further confirm that the size and dipole polarizability of the lanthanide ion dominate the phase and size evolution of the NaYF₄ nanocrystals. We note that in the presence of a dopant ion (for example, La³⁺, r = 1.300 Å) with a significantly larger ionic size than the Y³⁺ ion, hexagonal phase NaYF₄ nanorods were not obtained (Supplementary Fig. 3). This can be ascribed to the large disparity in size between the La³⁺ and Y³⁺ ions, which leads to the formation of stable LaF₃ phase (Supplementary Fig. 3) rather than a homogenous La–Y solid solution.

Although several lanthanide dopant ions have been shown to control the crystal phase and size of upconversion NaYF₄:Yb/Er nanocrystals, only the Gd³⁺ dopant ion is shown to favour the upconversion luminescence. Photoluminescence investigation revealed that the NaYF₄:Yb/Er nanocrystals doped with Sm³⁺ or Nd³⁺ ions (30 mol%)
do not emit visible upconversion luminescence. In contrast, the presence of Gd$^{3+}$ dopant ions at a broad concentration range has no quenching effect on upconversion luminescence (Fig. 3a). This difference is probably due to quenching of the excitation energy through efficient energy transfer from Yb$^{3+}$ and Er$^{3+}$ to $^4F_{7/2}$ manifolds of Sm$^{3+}$ and $^4I_{15/2}$ manifolds of Nd$^{3+}$, respectively (Fig. 3b and c). In Gd$^{3+}$ doped systems, the lowest excited level ($^4F_{7/2}$) of Gd$^{3+}$ is situated in the ultraviolet region (Fig. 3d), which is far higher than most excited levels of Yb$^{3+}$ and Er$^{3+}$ involved in the upconversion processes. Thus, excitation energy loss through energy transfer from Yb$^{3+}$ and Er$^{3+}$ to 4f levels of Gd$^{3+}$ can be avoided. We also note that the emission intensity of NaYF$_4$:Yb/Er/Gd nanocrystals increases with increase in Gd$^{3+}$ concentration to 15 mol% and then exhibits a gradual decrease upon further increase in Gd$^{3+}$ dopant content. The initial increase in emission intensity can be associated with the increase in relative amount of hexagonal phase in the crystal structure. The subsequent decrease in emission intensity is primarily attributed to the reduction in crystal size. Smaller nanocrystals tend to have increased surface quenching sites and thus suppress upconversion luminescence by enhanced nonradiative energy transfer processes of the luminescent lanthanide ions.

To test the doping-induced crystal phase and size tuning further, we carried out the synthesis of NaYF$_4$:Yb/Er upconversion nanoparticles by Gd$^{3+}$ doping in organic solvents at different temperatures. Without the Gd$^{3+}$ ion added, a substantially high temperature of 300 °C is needed to generate hexagonal-phase nanoparticles with an average diameter of 25 nm. On increasing Gd$^{3+}$ dopant concentration, the size of nanoparticles can be tuned down to 10 nm (Supplementary Fig. 5). More importantly, we found that the Gd$^{3+}$ doping can lead to a significant decrease in the reaction temperature (down to 230 °C) required for preparing hexagonal phase nanoparticles (Supplementary Fig. 6). We found that the large decrease in reaction temperature had almost no effect on the size and morphology of NaYF$_4$ nanoparticles. In contrast, the reaction at 230 °C in the absence of Gd$^{3+}$ dopant ions yielded mostly polydisperse NaF crystals rather than monodisperse NaYF$_4$ nanoparticles. The results further confirm that the doping of Gd$^{3+}$ promotes cubic-to-hexagonal phase transformation in NaYF$_4$ nanocrystals.

The successful preparation of ultra-small nanoparticles with strong upconversion luminescence by lanthanide doping suggests that it is now possible to synthesize upconversion nanocrystals with simultaneous control over crystal phase, size and emission colours through the control of different combinations of lanthanide dopants at precisely defined concentrations. For example, small-sized NaYF$_4$ upconversion nanoparticles that emit tunable visible colours were readily synthesized by rational doping of Yb$^{3+}$, Er$^{3+}$, Gd$^{3+}$ and Tm$^{3+}$ ions at different concentrations. The addition of a second emitter (Tm$^{3+}$) at a trace concentration of 0.2 mol% had a negligible effect.
Figure 3 | Photoluminescence studies of NaYF₄:Yb/Er (18/2 mol%) nanocrystals with varying dopant concentration of Gd³⁺. a. Upconversion emission intensity versus dopant concentration of Gd³⁺ (0–60 mol%). The emission intensities were calculated by integrating the spectral intensity of the emission spectra over wavelength in the range 400–700 nm. Error bars shown represent the standard deviations from three repeated measurements. b–d. Proposed energy transfer mechanisms under 980-nm diode laser excitation in NaYF₄:Yb/Er nanocrystals doped with Sm³⁺, Nd³⁺, and Gd³⁺, respectively. The dashed-dotted, dashed, dotted, and full arrows represent photon excitation, energy transfer, multiphonon relaxation, and emission processes, respectively. The 2S→1L₂ notations used to label the f levels refer to spin (S), orbital (L) and angular (J) momentum quantum numbers, respectively, according to the Russell–Saunders notation.

Figure 4 | Photoluminescence studies of NaYF₄ nanocrystals dispersed in solutions and embedded in PDMS composite materials. a. Room-temperature (25 °C) upconversion emission spectra of cyclohexane solutions comprising NaYF₄:Yb/Er/Gd (18/2/5 mol%), NaYF₄:Yb/Tm/Er/Gd (20/0.2/0.1/5 mol%), NaYF₄:Yb/Tm/Er/Gd (20/0.2/0.05/5 mol%), and NaYF₄:Yb/Tm/Gd (20/0.2/5 mol%) nanoparticles, respectively. b. Corresponding Commission Internationale de l’Eclairage (CIE) chromaticity coordinates of the multicolour emissions from the samples shown in a. c. Photograph showing physical dimension and transparency of a PDMS sample composed of 0.1 wt% of NaYF₄:Yb/Er/Gd (18/2/5 mol%) nanoparticles. d. Luminescent image of a 3D structure generated in the PDMS sample via computer-controlled near-infrared laser scanning.

PARAMAGNETIC Gd³⁺ dopant ions provides the nanocrystals with a second imaging capability as magnetic resonance imaging probes.15

METHODS SUMMARY

Nanocrystal synthesis. We synthesized lanthanide-doped NaYF₄ nanorods and nanoparticles capped with oleic acid using the methods of ref. 19 and ref. 23, respectively. Additional experimental details are provided in the Supplementary Information.

Preparation of the nanoparticle/PDMS composite materials. A 10:1 (vol:vol) mixture of SYLGARD silicone elastomer 184, the curing agent (Dow Corning Corp.), and a cyclohexane solution containing upconversion nanoparticles (1 wt%) were thoroughly mixed in a glass container and aged overnight before heat treatment at 81 °C for 1 h. The composite materials with different types of nanoparticles can easily be cut into rectangular bars.

Volumetric 3D display. A 980-nm diode laser operating at 2,000 mW was directed into a fast scanning X-Y galvanometer with an F-theta lens (focal length of 198 mm) to focus the laser beam. A dynamic beam expander was attached to the galvanometer to control the Z position of the laser beam at a range of ±7 mm. The scanning of the laser beam was controlled through CyberLease scanning software from IDI Laser. A 3D cube structure was then drawn and imported into CyberLease to generate a 3D scanning path for the laser beam. During the writing process, the laser beam was scanned across the sample by altering the X-Y mirror of the galvanometer while the height of the focal point was changed by changing the expanded beam size. The laser power was attenuated to 27 mW and the scanning speed was set at 2 mm s⁻¹.

Received 25 June; accepted 15 December 2009.

